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This appendix contains proofs and supplementary results for the paper “Identification
of and correction for publication bias.” Section A collects proofs for the results stated
in the main text. Section B discusses several details and extensions of the applications,
including accounting for estimation error in p(·), identification with sign-normalized data,
conditioning on covariates, and a range of robustness checks. Section C contains further
empirical results, including moments and results for our GMM approaches which leave the
distribution of true effects unrestricted, and empirical results for the Camerer et al. (2018)
and Croke et al. (2016) applications. Finally, Section D gathers additional theoretical
results on topics including the extension of our identification results to cases where publi-
cation probabilities depend on Σ and Ω, the interpretation of meta-regression coefficients
in the presence of selectivity, the extension of our inference results to multivariate settings,
the effect of selection on Bayesian inference, and optimal selection in a stylized model.
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A Proofs

Proof of Equation 1: By construction, and Bayes’ rule

fZ|Ω,Σ(z|ω,σ)=fZ∗|Ω∗,Σ∗,D(z|ω,σ,1)

=
P(D=1|Z∗=z,Ω∗=ω,Σ∗=σ)

P(D=1|Ω∗=ω,Σ∗=σ)
·fZ∗|Ω∗(z|ω)

=
p(z)

E[p(Z∗)|Ω∗=ω]
ϕ(z−ω).

�

Proof of Proposition 1: We divide the proof of this proposition into two lemmas which
might be of independent interest. In the first lemma we do not impose the assumptions
of Proposition 1, so this result holds outside of the normal case. The second lemma then
shows that the conditions of Proposition 1 imply the conditions of the first lemma. We
omit conditioning on Σ throughout, since it makes no difference as shown by Equation (1).

Lemma A.1
If for all z, FZ|Ω(z|ω) is continuous and strictly decreasing in ω, tends to one as ω→−∞,
and tends to zero as ω→∞, then ω̂α(z) as defined in (2) exists, is unique, and is continuous
and strictly increasing for all z. If, further, FZ|Ω(z|ω) is continuous in z for all ω then
ω̂α(Z) is α-quantile unbiased for ω under the truncated sampling setup of Definition 1,

P(ω̂α(Z)≤ω|Ω=ω)=1−α for all ω.
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Proof: For the first claim, note that since FZ|Ω(z|ω) tends to zero as ω→−∞ and
tends to one as ω→∞, for any z and any α∈(0,1) there exist ωl(z) and ωu(z) such that

FZ|Ω(z|ωu(z))<1−α<FZ|Ω(z|ωl(z)),

where since FZ|Ω(z|ω) is decreasing in ω we know that ωl(z) < ωu(z). Thus, since
FZ|Ω(z|ω) is continuous in ω, the intermediate value theorem implies that there ex-
ists ω̂α(z) ∈ (ωl(z),ωu(z)) such that FZ|Ω(z|ω̂α(z)) = 1−α. Since FZ|Ω(z|ω) is strictly
decreasing we know this ω̂α(z) is unique, while its strict monotonicity and continuity
likewise follow from strict monotonicity and continuity of FZ|Ω in both arguments.

For the second claim, note that since FZ|Ω(z|ω) is strictly decreasing in ω, ω̂α(z)≤ω
if and only if FZ|Ω(z|ω)≤ 1−α. Continuity of FZ|Ω(z|ω) in z, however, means that Z
is continuously distributed conditional on Ω =ω for all ω, and thus that FZ|Ω(Z|ω) is
uniformly distributed conditional on Ω=ω. Thus,

P
(
FZ|Ω(z|ω)≤1−α|Ω=ω

)
=1−α,

so
P(ω̂α(Z)≤ω|Ω=ω)=1−α for all ω,

as we aimed to show. �

Lemma A.2
If the distribution of latent draws Z∗ conditional on (Ω∗,Σ∗) is N(Ω∗,1), p(z)>0 for all z,
and p(·) is almost everywhere continuous, then the assumptions of Lemma A.1 are satisfied.

Proof: Under the stated assumptions, Z is continuously distributed under all ω∈R,
with density given by Equation (1). To prove the strict monotonicity of FZ|Ω(z|ω) in ω,
we adapt the proof of Lemma A.1 in Lee et al. (2016).

In particular, note that for z1>z0 and ω1>ω0,

fZ|Ω(z1|ω1)

fZ|Ω(z0|ω1)
>
fZ|Ω(z1|ω0)

fZ|Ω(z0|ω0)
,

as can be verified from multiplying out these expressions. This means, however, that

fZ|Ω(z1|ω1)fZ|Ω(z0|ω0)>fZ|Ω(z1|ω0)fZ|Ω(z0|ω1).

Integrating both sides with respect to z0 from −∞ to z<z1, and with respect to z1 from
z to∞, we obtain that

(1−FZ|Ω(z|ω1))FZ|Ω(z|ω0)>(1−FZ|Ω(z|ω0))FZ|Ω(z|ω1),

and thus that FZ|Ω(z|ω0)>FZ|Ω(z|ω1). Since this argument applies for all z and all ω0,
ω1, we have shown that FZ|Ω(z|ω) is strictly decreasing in ω for all z.
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To prove that FZ|Ω(z|ω)→0 as ω→∞, note that by our assumption that p(z) is almost
everywhere continuous, for any z0 there exists a point z1>z0, and an open neighborhood
(z1−ε,z1+ε) of z1 such that p(·) is continuous on the closure of this neighborhood, and
z0<z1−2ε. Note, however, that for ω>z1 +ε, fZ|Ω(z|ω) for z≤ z0 is bounded above
by ϕ((z−ω)/σ)/(σ·E[p(Z)|Ω∗=ω]). On the other hand, the infimum of fZ|Ω(z|ω) over
(z1−ε,z1+ε) is bounded below by pl ·ϕ((z1−ε−ω)/σ)/(σ·E[p(Z)|Ω∗=ω]) for

pl= inf
z∈[z1−ε,z1+ε]

p(z)>0.

Integrating and taking the ratio, we see that

P(z≤z0|Ω=ω)

P(z∈(z1−ε,z1+ε)|Ω=ω)
≤ Φ((z0−ω)/σ)

2εpl ·ϕ((z1−ε−ω)/σ)/σ
.

This expression can in turn be bounded above by

Φ((z0−ω)/σ)

2εpl ·ϕ((z0−ω)/σ)/σ
,

which is proportional to Mill’s ratio and tends to zero and ω→∞ (see, for example,
Baricz (2008)). This immediately implies that FZ|Ω(z0|ω)→0, as we aimed to show. The
claim that FZ|Ω(z|ω)→1 as ω→−∞ can be proved analogously. �

Proof of Equation (3): By construction, when Σ≡Σr,

fZ,Zr(z,z
r)=fZ∗,Zr∗|D(z,zr|d=1)

=
P(D=1|Z∗=z,Zr∗=zr)

P(D=1)
·fZ∗,Zr∗(z,zr)

=
p(z)

E[p(Z∗)]
fZ∗,Zr∗(z,z

r),

and, since Z∗⊥Zr∗|Ω∗,

fZ∗,Zr∗(z,z
r)=

∫
ϕ(z−ω)ϕ(zr−ω)dµΩ(ω).

�

Proof of Proposition 2: Denote

∆∗=
Σr∗

Σ∗
=
√

Var(Zr|Ω),

and similarly for ∆. Consistent with our convention of using lower case variables for
realizations, let us denote realizations of ∆ by δ.

We first show identification of p(·) conditional on ∆. We begin by considering the
symmetric case, where σ = σr and thus δ = 1. We then allow σ 6= σr, recovering the
symmetric case by (de-)convolution of Zr with normal noise. Finally, we show that the
distribution µΘ of Θ∗ is identified.
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The symmetric case: For the case δ=1, we have that as in Equation (3) of the paper

fZ,Zr|∆(z,zr|1)=
p(z)

E[p(Z∗)|∆∗=1]
fZ∗,Zr∗|∆∗(z,z

r|1).

It immediately follows that

fZ,Zr|∆(a,b|1)·p(b)=fZ,Zr|∆(b,a|1)·p(a)

for all a, b. Note, next, that Zr has full support given (Z,∆), and thus that if
fZ,Zr|∆(a,b|1)>0, for some (a,b), fZ,Zr|∆(a,c|1)>0, for all c∈R. This in turn implies that

p(c)=p(a)·
fZ,Zr|ρ(c,a|1)

fZ,Zr|ρ(a,c|1)

for all c∈R, where p(a) is the only unknown on the right hand side. We thus find that
p(·) is identified up to scale. Note that we have not used normality in this argument, so
the result continues to hold in cases where Z∗,Zr∗ are non-normal but have the same
distribution conditional on Ω∗.

The case δ∗ 6=1: We already proved identification of p(·) for the case δ=1. We will next
show that we can reduce the case where δ 6≡1 to this special case. Let Z̃r be such that

Z̃r∗|Z∗,D,Ω∗,∆∗∼N(Ω∗,1).

If fZ̃r|Z is identified, we are done. Note that

fZ̃r|Z=fΩ|Z∗ϕ,

for ϕ the standard normal density and

fZr|Z,∆ =fΩ|Z,∆∗ϕ∆

for ϕ∆ the N(0,∆2) density. Based on the last equation, fΩ|Z,∆ is identified using de-
convolution (this is a standard result; see for instance Wasserman (2006), Chapter 10.1,
equation 10.18. An extensive discussion of deconvolution can be found in Meister (2009)).
We then recover

fΩ|Z(ω|z)=

∫
fΩ|Z,∆(ω|z,δ)f∆|Z(δ|z)dδ,

and identification of p(·) follows.

Identification of µΘ Knowledge of p(·) up to scale allows us to recover the joint density
fX∗,Σ∗ via

fX∗,Σ∗(x,σ)=
E[p(Z∗)]

p(x/σ)
fX,Σ(x,σ).

Deconvolution then identifies µΘ∗|Σ∗, since fZ∗|Σ∗ = µΘ∗|Σ∗ ∗ϕΣ∗. Integrating over the
marginal distribution of Σ∗ yields µΘ. �
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Proof of Proposition 3: Assume without loss of generality that σ = 1 lies in the
interior of the support of Σ, and let

h(z)=fZ∗|Σ∗(z|1).

If h(·) is identified, then so are p(·) and µΘ. We will show that h(·) is identified,
which immedaitely identifies µΘ by deconvolution, since h=µΘ∗ϕ. We can then identify
p(z) as before, since the truncated conditional density of Z is given by

fZ|Σ(z|σ)=
p(z)

E[p(Z∗)|Σ∗=σ]
fZ∗|Σ∗(z|σ), (1)

and thus

p(z)=const.·
fZ|Σ(z|1)

h(z)
.

A second order ODE for h(·). Let π=1/σ be the precision of an estimate. Differ-
entiating the log of expression (1) for the truncated density at π=1 yields

g(z)=∂πlogfZ|Σ(z|1/π)|π=1 =C1+∂πlogfZ∗|Σ∗(z|1/π)|π=1 (2)

for a constant C1. Note how, as we differentiate logfZ|Σ(z|1/π) with respect to π at a
given value z, the term p(z) drops out of the resulting equation (this plays the same role as
the ratio (4) discussed in the paper). The function g is identified under our assumptions.

Recall now that the definition of the standard normal density implies ϕ′(z)=−zϕ(z).
The density fZ∗|Σ∗ is given by µΘ∗ϕΣ, and thus fZ∗|Σ∗(z|1/π)=

∫
ϕ(z−θπ)dµΘ(θ), which

implies

∂zfZ∗|Σ∗(z|1)=−
∫

(z−θ)ϕ(z−θ)dµΘ(θ)

∂2
zfZ∗|Σ∗(z|1)=−fZ∗|Σ∗(z|1)+

∫
(z−θ)2ϕ(z−θ)dµΘ(θ)

∂πfZ∗|Σ∗(z|1)=

∫
θ(z−θ)ϕ(z−θ)dµΘ(θ)

=−
[
fZ∗|Σ∗(z|1)+z·∂zfZ∗|Σ∗(z|1)+∂2

zfZ∗|Σ∗(z|1)
]
,

from which we conclude (recall that h(z)=fZ∗|Σ∗(z|1))

h′′(z)=(C1−1−g(z))·h(z)−z·h′(z). (3)

Equation (3) is a second order linear homogeneous ordinary differential equation.

Two free parameters Given the initial conditions h(0)=h0 and h′(0)=h′0, and given
C1, the solution to this equation exists and is unique, because all coefficients are continuous
in z; cf. Murphy (2011). Furthermore, the general solution to this differential equation
can be written in the form h(z,C1,h0,h

′
0)=h0·h1(z,C1)+h′0·h2(z,C1), where the functions

h1(·) and h2(·) are determined by equation (3); cf. Murphy (2011), chapter B. This leaves
three free parameters to be determined, C1,h0 and h′0. The constraint

∫
h(z)dz=1 pins

down h0 or h′0 given the other two parameters, so that there remain two free parameters.
The remainder of the proof shows that these parameters are identified as well.
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A fourth order ODE for h(·). We next turn to the second derivative k(·) defined by

k(z)=∂2
πlogfZ|Σ(z|1)=C2+∂2

πlogfZ∗|Σ∗(z|1),

which is identified under our assumptions, just like g(·). We show below that calculations
similar to those for the first derivative with respect to π yield the fourth order differential
equation

h(4)(z)=
(
k(z)−C2+(g(z)−C1)

2−2
)
h(z)−4zh′(z)−(z2+5)h′′(z)−2zh(3)(z). (4)

To complete this proof, after deriving (4) we show that it allows us to pin down the
remaining free parameters. We provide further discussion immediately following the proof.

Derivation of the fourth order ODE for h(·) Differentiating logfZ∗|Σ∗ twice yields

∂2
πlogfZ∗|Σ∗(z|1)=

∂2
πfZ∗|Σ∗(z|1)

h(z)
−(g(z)−C1)

2,

so that
∂2
πfZ∗|Σ∗(z|1)=h(z)·

(
k(z)−C2+(g(z)−C1)

2).
From fZ∗|Σ∗(z|1/π)=

∫
ϕ(z−θπ)dµΘ(θ) we note that

∂2
πfZ∗|Σ∗(z|1)=

∫ (
−θ2+θ2(z−θ)2)ϕ(z−θ)dµΘ(θ).

We furthermore have

h(3) =−3h′(z)−
∫

(z−θ)3ϕ(z−θ)dµΘ(θ)

h(4) =−3h′′(z)−3

∫
(z−θ)2ϕ(z−θ)dµΘ(θ)+

∫
(z−θ)4ϕ(z−θ)dµΘ(θ)

=−6h′′(z)−3h(z)+

∫
(z−θ)4ϕ(z−θ)dµΘ(θ).

Comparing coefficients on θ between ∂2
πfZ∗|Σ∗ and the derivatives of h(·), we get the

fourth order differential equation (4).

The fourth order ODE pins down the remaining free parameters Our proof is
complete once we have shown that there is at most one set of values C1,C2,h0 and h′0 such
that the resulting h satisfies the two differential equations (3) and (4). Differentiating
equation (3) three times yields

h′′(z)= (−1+C1−g(z))h(z) −zh′(z)
h(3)(z)= −g′(z)h(z) +(−2+C1−g(z))h′(z) −zh′′(z)
h(4)(z)= −g′′(z)h(z) −2g′(z)h′(z) +(−3+C1−g(z))h′′(z) −zh(3)(z)
h(5)(z)= −g(3)(z)h(z) −3g′′(z)h′(z) −3g′(z)h′′(z)

+(−4+C1−g(z))h(3)(z) −zh(4)(z),
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and differentiating equation (4) yields

h(4)(z)=
(
−2−C2+(−C1+g(z))2+k(z)

)
h(z) −4zh′(z)

−
(
5+z2

)
h′′(z) −2zh(3)(z),

h(5)(z)= (2(−C1+g(z))g′(z)+k′(z))h(z) +
(
−6−C2+(C1−g(z))2+k(z)

)
h′(z)

−6zh′′(z) +
(
−7−z2

)
h(3)(z) −2zh(4)(z).

We can iteratively eliminate the derivatives of h(·) from these equations by substitution.
After doing so, we divide by h(z), which is possible since h(z)>0 for all z by construction.
This yields the following equation involving the constants C1 and C2, but not involving
the function h(·) or any of its derivatives:

C2
1+C2

2+g(z)2+k(z)2−z2g′(z)2+4k(z)g′′(z)+3g′′(z)2

−2C2(g(z)+k(z)+2g′′(z))+2g(z)
(
k(z)+2

(
g′(z)2+g′′(z)

))
+C1

(
2C2−2

(
g(z)+k(z)+2

(
g′(z)2+g′′(z)

)))
−2g′(z)g(3)(z)=2g′(z)k′(z)

This equation again has to hold for all z. Differentiating twice with respect to z yields
new equations where the constants C1 and C2 enter only linearly, and we can explicitly
solve for them.1

Substituting the solutions C1 and C2 back into one of the first order differential
equations we obtained by substitution and elimination of higher order derivatives above,
we obtain a solution for h′0 given h0. Given h0, h

′
0 and the constants C1 and C2, equation

(3) yields a unique solution h(z) for all z. Rescaling any solution h(·) by a constant again
yields a solution by linearity of the differential equations. h0 is finally pinned down by
the constraint

∫
h(z)dz=1. �

Remarks:

• The proof of Proposition 3 shows that our model is overidentified. If we consider
higher order derivatives of equations (3) and (4), or alternatively evaluate them at
different values z, we obtain infinitely many restrictions on a finite number of free
parameters.

• The proof of identification is considerably simplified if we restrict the model to a
normal distribution for Θ∗, Θ∗∼N(µ̄,τ2), which implies Z∗|Σ∗=1∼N(µ̄,τ2+1),

and thus h(z)=const.·exp
(
− 1

2(τ2+1)
(z−µ̄)2

)
. Denoting e(z)=∂zlogh(z), we can

rewrite equation (3) as

e′(z)=C1−g(z)−1−ze(z)−e2(z),

while the normality assumption yields e(z)=−(z−µ̄)/(τ2+1) and e′(z)=− 1
(τ2+1)

.
Plugging in yields

− 1
(τ2+1)

=C1−g(z)−1+z z−µ̄
(τ2+1)

−
(

z−µ̄
(τ2+1)

)2

.

1The resulting expressions are unwieldy and so are omitted here, but are available on request.
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Evaluating this equation at different values z pins down τ2 and µ̄.

• The proof of Proposition 3 could be equivalently stated in terms of linear operators
rather than differential equations. In particular, the ordinary differential equations
(3) and (4) are equivalent to the following two linear operator equations, indexed
by z and linear in µ, ∫

[θ(z−θ)−(g(z)−C1)]ϕ(z−θ)dµΘ(θ)=0∫ [(
−θ2+θ2(z−θ)2)−(k(z)−C2+(g(z)−C1)

2)]ϕ(z−θ)dµΘ(θ)=0

Identification is then equivalent to existence of at most one (µΘ,C1,C2) triple solving
these equations for all z.

B Details and Extensions of Empirical Applications

This section discusses a variety of details for and extensions of the empirical applications
reported in the main text. Section B.1 develops an extension of our confidence set con-
struction approach that allows estimation error in p(·). Section B.2 discusses the extension
of our identification results to cases where we condition on covariates. Section B.3 develops
an extension of our identification results to allow the sign of Z to be normalized as in
two of our applications. Sections B.4 and B.5 describe the likelihood used for estimation
in our applications and the details of the data and variable construction, respectively.
Finally, Section B.6 discusses a variety additional specifications and robustness checks
for the results reported in the main text.

B.1 Estimation Error in p(·)
The bias corrections discussed in Section I.B assume the conditional publication probability
is known. If p(·) is instead estimated with error, median unbiased estimation is challenging,
but constructing valid confidence sets for ω is straightforward.

Suppose we parameterize the conditional publication probability by β, and let ω̂α(Z;β)
be the α-quantile unbiased estimator under β. For many specifications of p(·), and in
particular for those used in our applications, ω̂α(z;β) is continuously differentiable in β for
all z. If we have a consistent and asymptotically normal estimator β̂ for β, for 0<δ<α,
consider the interval[

ω̂α−δ
2

(
Z;β̂
)
−c1− δ

2
σ̂L(Z),ω̂1−α−δ

2

(
Z;β̂
)

+c1− δ
2
σ̂U(Z)

]
where c1− δ

2
is the level 1− δ

2
quantile of the standard normal distribution while σ̂L(x) and

σ̂U(z) are delta-method standard errors for ω̂α−δ
2

(
z;β̂
)

and ω̂1−α−δ
2

(
z;β̂
)

, respectively. If

our model for p(·) is correctly specified, Bonferroni’s inequality implies that this interval
covers ω with probability at least 1−α in large samples.2

2Even in cases where we do not have an asymptotically normal estimator for β, for example because
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B.2 Conditioning on covariates

Our baseline results do not consider any study level covariates, such as journal of pub-
lication, year of initial circulation of a study, research topic, identification approach, or
author seniority. Heterogeneity in degree of publication bias based on study and author
characteristics has been explored by many authors, including Open Science Collaboration
(2015), Brodeur et al. (2016) and Brodeur et al. (2018). Conditioning our analysis on such
covariates might be interesting for two reasons: (i) to make our identification assumptions
more credible, and (ii) to explore variation in p(·) and µΘ.

Provided our assumptions hold conditional on the covariates, our results extend directly
to this setting. Considering covariates C, Equation (1) could for instance be modified to

fZ|Ω,Σ,C(z|ω,σ,c)=
p(z,c)

E[p(Z∗,c)|Ω∗=ω]
ϕ(z−ω).

If p(z,c) is known up to scale for each c, we can apply Proposition 1 conditional on C
to obtain corrected estimates. Likewise, if we have replication estimates we can apply
Proposition 2 conditional on C=c to identify p(z,c) up to scale for each c, along with the
conditional distribution of true effects given the covariate µΘ|C. Finally, if Θ∗ and Σ∗ are
independent conditional on covariates in the population of latent studies, we can apply
Proposition 3 conditional on C=c to identify p(z,c) up to scale for each c, along with
µΘ|C. Note, however, that in both cases µΘ is not identified without further restrictions.

In Section B.6 below, we re-estimate our applications allowing p(·) to depend on
covariates like journal of publication and year of initial circulation of a study. However,
in no case do we reject our baseline specifications at conventional significance levels.

B.3 Sign-normalized data

In the applications of Section III.A and III.B, the sign of the estimates Z in our replication
datasets is normalized to be positive, with the sign of Zr adjusted accordingly. The
following corollary shows that under this sign normalization identification of p(·) still holds,
using either replication studies or meta-studies, so long as p(·) is symmetric in its argument.

Corollary B.1 1. Consider the setup of Proposition 2. Assume additionally that p(·) is
symmetric, p(z)=p(−z), and that fΣ|Z∗(σ|z)=fΣ|Z∗(σ|−z) for all z. Suppose that
we observe i.i.d. draws of (W,W r)=sign(Z)·(Z,Zr). In this setup p(·) is nonpara-
metrically identified on R up to scale, and the distribution of |Θ∗| is identified as well.

2. Consider the setup of Proposition 3. Assume additionally that p(·) is symmetric,
i.e., p(z)=p(−z). Suppose that we observe i.i.d. draws of (|X|,Σ). In this setup
p(·) is nonparametrically identified on R up to scale, and the distribution of |Θ∗|
is identified as well.

we consider a fully nonparameteric model for p(·), given an initial level 1−δ confidence set CSβ for

β we can form a Bonferroni confidence set for ω as
[
infβ∈CSβ

ω̂α−δ
2

(Z;β),supβ∈CSβ
ω̂1−α−δ

2
(Z;β)

]
.
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Proof of Corollary B.1:

Replication studies: Let S∗=±1 with probability 0.5, independently of (Z∗,Zr∗,Σ∗,Σr∗,Θ∗,D),
and let S=S∗ denote S∗ for published studies. Define

(V,V r)=S ·(W,W r).

We show that (V,V r) satisfies the assumptions of Proposition 2, from which the claim
then follows. Define S̃∗=S∗·sign(Z∗), so that (V,V r)=S̃ ·(Z,Zr), and define Ω̃∗=S̃∗·Ω∗.
Since S̃ is independent of (Z,Zr,∆,Ω),

Ω̃∗∼µ̃= 1
2
(µΩ∗+µ−Ω∗)

and

fV,V r,∆(v,vr,δ)=p(v)·f∆|Z∗(δ|v)·
∫
ϕ(v−ω)· 1

δ
ϕ
(
vr−ω
δ

)
dµ̃Ω(ω)∫∫

p(v′)·ϕ(v′−ω)dv′dµ̃Ω(ω)
.

This has the exact same form as the density of (Z,Zr,∆) under the symmetric measure
µ̃Ω. The claim follows, since identification of µ̃Ω implies identification of the distribution
of |Ω∗|. �
Meta-studies: The proof for meta-studies proceeds similarly to the replication studies
case. Let S∗=±1 with probability 0.5, independently of (Z∗,Σ∗Θ∗,D), and let S=S∗

denote S∗ for published studies. Define V =S · |X|. We show that (V,Σ) satisfies the
assumptions of Proposition 3, from which the claim then follows.

Define S̃∗ = S∗ · sign(X∗), so that V = S̃ ·X, and define Θ̃∗ = S̃∗ ·Θ∗. Since S̃ is
independent of (Z,Σ,Θ), we get Θ̃∗∼µ̃= 1

2
(µΘ∗+µ−Θ∗) and

fV/Σ|Σ(z|σ)=
p(z)·

∫
ϕ(z−θ/σ)dµ̃(θ)∫∫

p(z′)ϕ(z′−θ/σ)dz′dµ̃(θ)
.

This has the exact same form as the density of Z given Σ under the symmetric measure µ̃.
The claim follows, where we again use the fact that identification of µ̃ implies identification
of the distribution of |Θ∗|. �
B.4 Likelihood and parametric specifications

B.4.1 Systematic replications

Under the replication setting the marginal density of Z,Zr,∆ (where again ∆=Σr/Σ) is

fZ,Zr,∆(z,zr,δ)=
p(z)

∫
ϕ(z−ω)· 1

δ
ϕ
(
zr−ω
δ

)
dµΩ(ω)∫∫

p(z′)·ϕ(z′−ω)dz′dµΩ(ω)
f∆∗|Z∗(δ|z). (5)

Denoting the total number of observations by J, the joint likelihood of the observed sam-
ple ((z1,z

r
1,δ1),...,(zJ ,z

r
J ,δJ)) is L(p,µΩ)=

∏J
j=1fZ,Zr,∆(zj,z

r
j ,δj). To fit a given model, we

maximize this likelihood with respect to p(·) and µΩ. Since f∆∗|Z∗ enters multiplicatively,
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it plays no role in maximum likelihood estimation of p(·) and µΩ. Hence, we drop this
term from the likelihood used in estimation.

To model p(·), similar to Hedges (1992) we consider step functions

p(z)∝
K∑
k=1

βp,k ·1(ζk−1≤z<ζk),

where −∞= ζ0<ζ1<...<ζK =∞ are fixed cutoffs. Since p(·) is only identified up to
scale, we normalize βp,K=1 and estimate βp,1,...,βp,K−1. Thus βp,k can be interpreted as
the publication probability for a latent study with Z∗ between ζk−1 and ζk, relative to
a latent study with Z∗≥ζK−1.

Sign normalization The sign of the initial estimate is normalized to be positive in both
of our replication datasets. In these applications, we thus follow the approach of Corollary
B.1 and assume that p(·) is symmetric around zero. We conduct estimation based on the
normalized z-statistics (W,W r)=sign(Z)·(Z,Zr) using the marginal likelihood

fW,Wr,∆(w,wr,δ)=fZ,Zr,∆(w,wr,δ)+fZ,Zr,∆(−w,−wr,δ).

In this setting, Corollary B.1 implies that βp,1,...βp,K−1 and the distribution of |Θ∗| are
identified.

B.4.2 Meta-studies

In the meta-study context, the marginal likelihood of (X,Σ) is

fX,Σ(x,σ)=
p(x

σ
)·
∫
ϕ
(
x−θ
σ

)
dµΘ(θ)∫

p(x
′

σ
)·ϕ
(
x′−θ
σ

)
dx′dµΘ(θ)

f∗Σ(σ). (6)

Again denoting the total number of observations by J, this yields joint likelihood
L(p,µΘ) =

∏J
j=1fX,Σ(xj,σj), which we again use to estimate p(·) and µΘ. As before,

fΣ enters multiplicatively and need not be specified. Also as before, we consider step
function specifications for p(·).
Sign normalization In contexts where the sign of the initial estimate has been nor-
malized to be positive, we follow the analog of the approach described above, restricting
p(·) to be symmetric and conducting estimation based on |X|=W ·Σ and Σ.

B.5 Details on data and variable construction

In this section, we discuss how we cast the data of Camerer et al. (2016) and Open Science
Collaboration (2015) into our framework. The data in Wolfson and Belman (2015) is
already in the desired format.

B.5.1 Details for economics laboratory experiments

To apply our approach, we need z-statistics and standard errors for both the original
and replication studies. For the application to data from Camerer et al. (2016), we first
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collect p-values and standardized effect sizes from table S1 in the supplement. Some of
the p-values are censored below at .001, so for these studies we also collect the original
estimates and standard errors from the replication reports posted online by Camerer et
al.3 and recompute the censored p-values. We then construct z-statistics by inverting the
p-value transformation, |z|=Φ−1(1−p/2). To obtain effect size estimates, we apply the
Fisher transformation to standardized effect sizes reported by Camerer et al. Dividing
these estimates by the z-statistics finally recovers the standard error.

B.5.2 Details for psychology laboratory experiments

To apply our approach to the data from Open Science Collaboration (2015), we again need
z-statistics and standard errors for both the original and replication studies. We draw the in-
puts for all of these calculations from the RPPdataConverted spreadsheet posted online by
the Open Science Collaboration.4 Since Open Science Collaboration (2015) report p-values
for both the original and replication studies, we invert the p-value transform to obtain z
statistics. We use the p-values reported in their columns T.pval.USE.O and T.pval.USE.R
for the original and replication studies, respectively. Since some of the p-values in this appli-
cation are based on one-sided tests, we account for this in the inversion step. To compute ef-
fect size estimates, we again apply the Fisher transformation to the standardized effect sizes
(columns T.r.O and T.r.R of RPPdataConverted for the original and replication studies, re-
spectively), and then divide these estimates by the z-statistics to construct standard errors.

B.6 Additional maximum likelihood results

This section discusses results from additional specifications estimated by maximum
likeihood, intended to complement the results discussed in the main text.

B.6.1 Additional results for economics laboratory experiments

Here we report results based on an alternative specification for the economics replication
data from Camerer et al. (2016). We consider specifications which allow the probability of
publication to vary depending on whether a latent study is sent to the American Economic
Review (AER) or Quarterly Journal of Economics (QJE). The publication probability is
identified up to scale separately for each journal. We index the journal by c, and set p(z,c)
proportional to one for both journals when the result is significantly different from zero
at the 5% level. This ensures that the β parameters can be interpreted as publication
probabilities for insignificant results relative to significant results at the same journal. Our
ultimate specification is

p(Z,S)∝


βp,1 |Z|<1.96,C=AER

βp,1+βp,2 |Z|<1.96,C=QJE

1 |Z|≥1.96.

3Available at https:/c/experimentaleconreplications.com/replicationreports.html, ac-
cessed September 3, 2016.

4Available at https://osf.io/ytpuq/files/, accessed January 19, 2017.
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Results are reported in Table 1. In both the replication and metastudy specifications
we estimate that the QJE is more likely to publish insignificant results. This makes
sense given that the sample contains one significant result and one insignificant result
published in the QJE, while it contains fifteen significant results and one insignificant
result published in the AER. The estimated publication probabilities for the QJE are
quite noisy, however, and we cannot reject the hypothesis that βp,2 = 0, so the same
publication rule is used at both journals.

Replication

κ λ βp,1 βp,2
0.337 2.411 0.016 0.218

(0.233) (1.057) (0.021) (0.336)

Meta-study

κ̃ λ̃ βp,1 βp,2
1.847 0.131 0.021 0.786

(1.582) (0.065) (0.030) (1.497)

Table 1: Selection estimates from lab experiments in economics, allowing publication
probability to vary by journal. The left panel reports estimates from replication specifications,
while the right panel reports results from meta-study specifications. Publication probability
βp is measured relative to omitted category of studies significant at 5% level.

B.6.2 Additional results for psychology laboratory experiments

We next report results based on three alternative specifications for the psychology repli-
cation data from Open Science Collaboration (2015). We first limit attention to studies
with a large number of denominator degrees of freedom. Second, we limit attention to
studies where the replication protocols were approved by the original authors. Third, we
allow the publication rule to vary by journal.

Denominator degrees of freedom As noted in the main text, our baseline analysis of
the Open Science Collaboration (2015) data focuses on studies that use z- or t-statistics (or
the squares of these statistics). Our analysis then treats these statistics as approximately
normal. A potential problem here is that t-distributions with a small number of degrees
of freedom behave differently from normal distributions, and in particular have heavier
tails. While the smallest degrees of freedom in the Open Science Collaboration (2015)
data is seven, this concern may still lead us to worry about the validity of our approach
in this setting. To address this concern, in Table 2 we report parameter estimates using
the replication and meta-study specifications discussed in Section III.B, where

p(Z)∝


βp,1 |Z|<1.64

βp,2 1.64≤|Z|<1.96

1 |Z|≥1.96,

except that we now limit attention to the 52 observations with denominator degrees of
freedom at least 30 in the original study.5 Our results are broadly similar for this restricted

5We screen only on the degrees of freedom in the original study since sample sizes, and thus degrees of
freedom, in the replication studies depend on the results in the initial study. Hence, screening on replication
degrees of freedom has the potential to introduce additional selection on the results of the original study.
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sample and for the full data.

Replication

κ λ βp,1 βp,2
0.192 1.523 0.007 0.143

(0.012) (0.367) (0.005) (0.078)

Meta-study

κ̃ λ̃ βp,1 βp,2
0.869 0.138 0.018 0.247

(0.648) (0.059) (0.012) (0.142)

Table 2: Selection estimates from lab experiments in psychology, restricted to observations
with denominator degrees of freedom at least 30, with standard errors in parentheses. The left
panel reports estimates from replication specifications, while the right panel reports results from
meta-study specifications. Publication probability βp is measured relative to omitted category
of studies significant at 5% level.

Approved replications As discussed in the main text, Gilbert et al. (2016) argue that
some of the replications in Open Science Collaboration (2015) deviated substantially from
the protocol of the original studies, which might lead to a violation of our assumption that
the replication and original results are generated by the same underlying parameter Θ.
Before conducting their replications, however, Open Science Collaboration (2015) asked
the authors of each original study to review the proposed replication protocol, and recorded
whether the original authors endorsed the replication protocol. We can thus partly address
this critique by limiting attention to the subset of studies where the replication was
endorsed by the authors of the original study. Re-estimating the specifications of Section
III.B on the 51 endorsed replications, we obtain the estimates reported in Table 3. These
estimates suggest a somewhat smaller degree of selection than our baseline estimates,
consistent with a higher rate of replication for approved replications, but are broadly
similar to our other estimates. Figure 1 plots the original and replication estimates along
with our adjusted estimates, showing somewhat better fit than in Figure 8 in the main text.

Replication

κ λ βp,1 βp,2
0.433 1.231 0.016 0.358

(0.182) (0.350) (0.010) (0.160)

Meta-study

κ̃ λ̃ βp,1 βp,2
0.634 0.198 0.022 0.440

(0.503) (0.079) (0.014) (0.217)

Table 3: Selection estimates from lab experiments in psychology, approved replications, with
standard errors in parentheses. The left panel reports estimates from replication specifications,
while the right panel reports results from meta-study specifications. Publication probability
βp is measured relative to omitted category of studies significant at the 5% level.

Publication rule varies by journal The published studies replicated in Open Science
Collaboration (2015) are drawn from Psychological Science (PS), Journal of Personality
and Social Psychology (JPSP), and Journal of Learning Memory and Cognition (JLMC).
In this section we estimate a model where we allow the publication rule to vary by journal,
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Figure 1: This figure plots the estimates W and W r from the original and replication studies in
Open Science Collaboration (2015), limiting the sample to approved replications, along with the
median unbiased estimate θ̂1

2
based on the estimated selection model and the original estimate.

which we index by C. In particular, we consider the publication rule:

p(Z,C)∝



βp,1 |Z|<1.64,C=JLMC

βp,1+βp,2 |Z|<1.64,C=PS

βp,1+βp,3 |Z|<1.64,C=JPSP

βp,4 1.64≤|Z|<1.96,C=JLMC

βp,4+βp,5 1.64≤|Z|<1.96,C=PS

βp4+βp,6 1.64≤|Z|<1.96,C=JPSP

1 |Z|≥1.96,

As discussed in the economics application above, we normalize the publication probability
for studies significant at the 5% level to be proportional to one, which allows us to interpret
the β coefficients in terms of the publication probability for insignificant studies relative
to that for significant studies at the same journal. Such a normalization is necessary since
publication probabilities are only identified up to a journal-specific scaling factor.

Results from estimating this model are reported in Table 4. These are noisier than our
baseline estimates, as is intuitive given the larger number of parameters, but the JLMC coef-
ficients show roughly the same pattern as our baseline specifications. None of the differences
between journal publication probabilities are significant, and a joint test yields a p-value
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of .78 in the replication specification and .84 in the metastudy specification, so in neither
case do we reject the null hypothesis that all the journals use the same publication rule.

Replication

κ λ βp,1 βp,2 βp,3 βp,4 βp,5 βp,6
0.311 1.314 0.008 0.002 -0.001 0.426 -0.287 -0.331

(0.117) (0.294) (0.008) (0.011) (0.011) (0.244) (0.263) (0.259)
Meta-study

κ̃ λ̃ βp,1 βp,2 βp,3 βp,4 βp,5 βp,6
0.966 0.154 0.013 0.005 0.008 0.555 -0.360 -0.368

(0.565) (0.054) (0.014) (0.019) (0.026) (0.320) (0.350) (0.364)

Table 4: Selection estimates from lab experiments in psychology, allowing publication
probability to vary by journal. The top panel reports estimates from replication specifications,
while the bottom panel reports results from meta-study specifications. Publication probability
βp is measured relative to omitted category of studies significant at 5% level.

B.6.3 Additional results for minimum wage meta-study

This section reports results based on two alternative specifications for the data from
Wolfson and Belman (2015). Since Wolfson and Belman (2015) include estimates from both
published and working papers, we first reanalyze the data limiting attention to published
studies. We then examine whether the publication rules appear to vary with time.

Published Studies Table 5 reports estimates based on the model

Θ∗∼ θ̄+t(ν)·τ̃ , p(Z)∝


βp,1 Z<−1.96

βp,2 −1.96≤Z<0

βp,3 0≤Z<1.96

1 Z≥1.96

based on the subset of papers published by 2013, consisting of 705 estimates drawn from
31 studies. As in the main text we cluster our standard errors at the study level. The
resulting estimates are broadly similar to those obtained on the full sample.

θ̄ τ̃ ν̃ βp,1 βp,2 βp,3
0.022 0.044 1.697 0.838 0.365 0.387

(0.012) (0.025) (0.378) (0.332) (0.147) (0.140)

Table 5: Meta-study selection estimates from minimum wage data, published studies, with
standard errors in parentheses. Publication probability βp is measured relative to omitted
category of studies estimating a positive effect significant at the 5% level.
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Time Trends We next examine whether publication rules appear to vary over time.
In particular, letting Ti denote the year in which study i was initially circulated, for
ς(x)=exp(x)/(1+exp(x)) the logistic function we consider the model

Θ∗∼ θ̄+t(ν)·τ̃ , p(Z,T)∝


ς(βp,1+βp,2(T−2013)) Z<−1.96

ς(βp,3+βp,4(T−2013)) −1.96≤Z<0

ς(βp,5+βp,6(T−2013)) 0≤Z<1.96

ς(1) Z≥1.96

where we measure time in years relative to 2013, which is the median year observed in the
data, and T varies between 2000 and 2015. We use the logistic function here to ensure
that publication probabilities lie between zero and one, and without the time trend this
would simply be a reparameterization of our baseline model. Publication probabilities are
only identified up to a year-specific scaling, so by normalizing the publication coefficient
for studies finding a negative and significant effect of the minimum wage on employment
to be proportional to one, we again ensure that the βp coefficients can be interpreted
as measuring publication probabilities relative to the publication probability for studies
finding a negative and significant effect within the same year.

θ̄ τ̃ ν̃ βp,1 βp,2 βp,3 βp,4 βp,5 βp,6
0.019 0.021 1.359 0.284 0.176 -1.231 0.074 -1.089 0.025

(0.009) (0.013) (0.299) (0.750) (0.175) (0.603) (0.118) (0.486) (0.113)

Table 6: Meta-study selection estimates from minimum wage data, published studies, with
standard errors in parentheses. Publication probability βp is measured relative to omitted
category of studies estimating a positive effect significant at the 5% level.

These estimates are consistent with our baseline model assuming that publication
rules are constant over time, with a p-value of 0.7 for the test of the joint hypothesis that
βp,2 =βp,4 =βp,6 =0.

B.7 Bias corrections based on applications

In this section, we plot our median unbiased estimators and corrected confidence sets,
analogous to Figure 2 of the paper, based on the selection estimates from our applica-
tions. Corrections based on replication estimates from the Camerer et al. (2016) data are
plotted in Figure 2. Corrections based on replication estimates from the Open Science
Collaboration (2015) data are plotted in Figure 3. Corrections based on estimates using
data from Wolfson and Belman (2015) are reported in Figure 4.

C Additional Empirical Results

This section provides additional empirical results to supplement those in the paper. Section
C.1 describes method of moments based estimation approaches that allow us to drop

18



0 1 2 3 4 5
X

-1

0

1

2

3

4

5

6

7

E
st

im
at

ed
 

95% Confidence Bounds
Bonferroni Corrected 95% Bounds
Median Unbiased Estimator

Figure 2: This figure plots 95% confi-
dence bounds and the median unbiased
estimator for the selection estimates based
on replication data on economics lab
experiments. The usual (uncorrected)
estimator and confidence bounds are
plotted in grey for comparison.
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Figure 3: This figure plots 95% confi-
dence bounds and the median unbiased
estimator for the selection estimates based
on replication data on psychology lab
experiments. The usual (uncorrected)
estimator and confidence bounds are
plotted in grey for comparison.
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Figure 4: This figure plots 95% confidence
bounds and the median unbiased estimator
for the selection estimates based on metas-
tudy data on the minimum wage. The usual
(uncorrected) estimator and confidence
bounds are plotted in grey for comparison.
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our parametric assumptions on the distribution of true effects, and reports results from
these approaches in our applications. Section C.2 describes results from an additional
replication application using data from Camerer et al. (2018), while Section C.3 describes
results from an additional metastudy application using data from Croke et al. (2016).

C.1 Moment-based estimation results

In the main text we report estimates based on parametric specifications for the distribution
of true effects in latent studies. To confirm that our results are robust to the choice of para-
metric specification, in this section we report estimates from moment-based approaches
that require only that we specify a functional form for the publication probability p, and
leave the distribution of true effects fully nonparametric. The moments used to obtain
these estimators are motivated by the identification arguments in Section II of the paper.

We begin by introducing the moments we consider in the replication and meta-study
settings, respectively, and then discuss results in our applications. Overall, we find that
while moment-based approaches often yield less precise conclusions, our main findings
are robust to dropping our parametric specifications for the distribution of true effects.

C.1.1 Estimation Moments

Replication Moments In our discussion of identification for settings with replication
data in Section II.A of the main text, we noted that if the original and replication estimates
have the same distribution in the population of latent studies, then absent selective
publication the joint distribution of published and replication estimates will likewise be
symmetric. This observation implies a moment restriction that can be used for estimation.

To derive our moments, we first consider the case where ∆∗=Σr∗/Σ∗=1 for all latent
studies, so the original and replication studies have the same standard error. For any
constants c1, c2

E[1{|Z∗|>c1,|Zr∗|≤c2}−1{|Zr∗|>c1,|Z∗|≤c2}]=0,

in the population of latent studies no matter the distribution µ of true effects.6 In particu-
lar, this reflects our observation in the main text that, absent selection, we should observe
an equal number of cases where the original results are significant and the replications are
insignificant, and where the replication results are significant and the original results are
insignificant, where we can consider results significant and insignificant at different levels.

We can recover the distribution of latent studies from the distribution of published
studies by weighting by the inverse of the publication probability, E[p(Z∗)]/p(Z). This
implies the moment restriction

E

[
E[p(Z∗)]

p(Z)
(1{|Z|>c1,|Zr|≤c2}−1{|Zr|>c1,|Z|≤c2})

]
=0

6Here we focus on the absolute value of the original and replication estimates to avoid complications
from the sign normalization in our replication applications.
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in the population of published studies. Since E[p(Z∗)] does not vary across observations,
the moment restriction continues to hold if we drop this term, yielding moments

E

[
1

p(Z)
({|Z|>c1,|Zr|≤c2}−1{|Zr|>c1,|Z|≤c2})

]
=0 (7)

which depend only on observables and p(·) and so can be used to estimate p(·).
Thus far, in deriving moments we have assumed that ∆∗= 1. In our applications,

however, we in fact have ∆∗|Z∗∼f∆∗|Z∗. If the distribution of ∆ is bounded above by
some value δmax≥1, we can adapt the moments (7) to account for unequal variances by
noising up both the original and replication estimates to noise level δmax. In particular,
for ε, εr i.i.d. N(0,1) random variables,

E

 1

p(Z)

 1
{∣∣∣Z+

√
δ2

max−1ε
∣∣∣>c1,∣∣∣Zr+√δ2

max−∆2εr
∣∣∣≤c2}−

1
{∣∣∣Zr+√δ2

max−∆2εr
∣∣∣>c1,∣∣∣Z+

√
δ2

max−1ε
∣∣∣≤c2}

=0.

To eliminate the added noise (ε,εr) in these moments, we can take the conditional
expectation of each component given the data and define

h(z,δ1,z
r,δ2)=E

[
1

{∣∣∣∣Z∗+√δ2
max−δ2

1ε

∣∣∣∣>c1,∣∣∣∣Zr∗+√δ2
max−δ2

2ε
r

∣∣∣∣≤c2}|Z∗=z,Zr∗=zr]

=

(
1−Φ

(
c1−z√
δ2

max−δ2
1

)
+Φ

(
−c1−z√
δ2

max−δ2
1

))(
Φ

(
c2−zr√
δ2

max−δ2
2

)
−Φ

(
−c1−zr√
δ2

max−δ2
2

))
.

By the law of iterated expectations, we obtain the moment restrictions

E

[
1

p(Z)
(h(Z,1,Zr,∆)−h(Zr,∆,Z,1))

]
=0 (8)

which depends only on observables and p and so can be used for estimation.
To use these moments in practice we need to choose a value of δmax and values for

c. In our applications we below we take δmax to equal sample maximum of ∆, which
is about 2.5 for the economics replications and about 2 for the psychology replications,
and consider values c in each specification corresponding to the critical values used in
p. Setting δmax to the sample maximum is ad-hoc, so as a further check we also report
results based on the moments

E

[
1

p(Z)

((
Z2−1

)
−
(
Zr2−∆r2

))]
=0 (9)

which can be shown to hold for any µΩ by arguments along the same lines as above and
do not require that we select a value δmax.
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Metastudy Moments The moments we consider in our metastudy applications are
derived using a similar approach. As noted in our discussion of metastudy identification
in Section II.B of the text, absent selectivity in the publication process our assumptions
imply that the distribution of effects for noisier studies is just a noised-up version of the
distribution for less noisy studies. In particular, if we consider a pair of values σ1, σ2 with
σ2>σ1 and a pair of latent studies (i,i′) then for any constant c and ε∼N(0,1)

E

[
1{X∗i <cΣ∗i}−1

{
X∗i′+

√
Σ∗2i −Σ∗2i′ ε<cΣ

∗
i

}∣∣∣∣Σ∗i =σ1,Σ
∗
i′=σ2

]
=0.

As above we can eliminate the noise from the added error ε. If we define

h(x,σ2,σ1)=E

[
1

{
X∗i +

√
σ2

2−σ2
1ε<cσ

∗
2

}
|X∗i =x

]
=Φ

(
cσ2−x√
σ2

2−σ2
1

)

then the law of iterated expectations implies that

E[1{X∗i <cΣ∗i}−h(X∗i′,Σ
∗
i′,Σ
∗
i )|Σ∗i =σ1,Σ

∗
i′=σ2]=0.

As in the replication setting, to obtain moments which hold in the population of
published studies, we can weight inversely by the publication probability (now for the
pair Xi, Xi′), again dropping normalizing constants to obtain the moments

E

[
1

p(Xi/Σi)

1

p(Xi′/Σi′)
(1{Xi<cΣi}−h(Xi′,Σi′,Σi))

∣∣∣∣Σ′i>Σi]=0 (10)

which depend only on p(·) and observables and so can be used for estimation.7

For estimation, we again consider values of c corresponding to the thresholds used
in p(·). Since our moments hold for each pair (i,i′) with Σi>Σi′, we average over all pairs
of observations and obtain asymptotic distributions using results for estimators based on
U-statistics from Honore and Powell (1994).

C.1.2 Empirical Applications

Economics laboratory experiments In our application to data on economics lab
experiments from Camerer et al. (2016), we again model the publication probability as

p(Z)∝

{
βp if |Z|≤1.96

1 otherwise.

When we attempt to estimate βp based on moments (8), we find that while the system
of moments is just-identified and can be solved exactly, the zero of the sample moments
corresponds to a very small negative value of βp. This occurs because, unlike in likelihood
estimation, the GMM moments do not automatically rule out negative values of βp,

7In the sign-normalized case, as above we instead form moments based on the absolute value of Xi.
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though such values are meaningless under our model. Indeed, we see in simulation
that even under correct specification negative point estimates arise with non-negligible
probability for small sample sizes and small values of βp. To address this issue, in Table 7
we report 95% confidence sets based on Stock and Wright (2000), which are robust both
to weak-identification and to parameter-on-the-boundary issues.

Robust CS, Baseline Moments

βp Lower Bound βp Upper Bound
0.000 0.048

Robust CS, Alternative Moments

βp Lower Bound βp Upper Bound
0.000 ∞

Table 7: Identification-robust 95% confidence sets for βp for lab experiments in economics.
The left panel reports results based on our baseline moments (8) for replication models, while
the right panel reports results based on the alternative moments (9). Publication probability
βp is measured relative to omitted category of studies significant at the 5% level.

From these results, we see that when we consider our baseline moments (8) we obtain
a robust confidence set roughly consistent with the estimate of βp reported in the main
text, even though we are fully relaxing our assumption on the distribution of latent
effects. When we consider the alternative moments (9), by contrast, the moments are
less informative, and the robust confidence set covers the full parameter space.

As before, instead of using the replication data we can instead focus just on the initial
estimates and standard errors and apply our meta-study approach based on the moments
(10). The results from this approach are reported in Table 8. For comparability with the
replication results above we include both a conventional point estimate and standard error
and an identification-robust confidence based on the generalization of Stock and Wright
(2000) to the present U-statistic setting. These results are again broadly consistent with
those obtained both from the replication moments above and from our likelihood estimates
in the main text, showing strong selection in favor of statistically significant results.

Point Estimate

βp
0.040

(0.042)

Robust CS

βp Lower Bound βp Upper Bound
0.000 0.177

Table 8: Moment-based results for lab experiments in economics. The left panel reports an
estimate and standard error based on our moments (10) for metastudy models, while the right
panel reports a 95% identification-robust confidence set based on the same moments. Publication
probability βp is measured relative to omitted category of studies significant at the 5% level.

Psychology laboratory experiments Turning next to the data on lab experiments
in psychology from Open Science Collaboration (2015), as in the main text we model the
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Figure 5: This figure plots 95% identification-robust joint confidence sets for βp,1 and βp,2
using data from lab experiments in psychology. The left panel plots results based on the baseline
replication moments (8), while the right panel plots results based on the metastudy moments (10).

publication probability as

p(Z)∝


βp1 if |Z|≤1.64

βp2 if 1.64< |Z|≤1.96

1 otherwise.

We find that identification of βp2 based on both our replication and metastudy moments
appears weak in this setting. We report identification-robust joint confidence sets for
(βp1,βp2) based on Stock and Wright (2000) in Figure 5. While both confidence sets
allow a wide range of possible values βp2, only small values of βp,1 are consistent with
the confidence set based on replication data. On the other hand, results based on our
meta-study approach allow a wide range of values for either parameter, though they rule
out cases where both are large simultaneously. Both sets of results are consistent with our
estimates in the main text, and in the case of the replications specification again provide
evidence of selection against insignificant results.

To avoid specifying a value δmax to use in the moments (8), we can instead consider the
moments (9). Since this yeilds only a single moment restriction, we consider selection only
on significance at the 5% level, as in our application to economics lab experiments above.
Robust confidence sets from this specification are reported in Table 9. These results
highlight that we still obtain informative results in this setting if we restrict attention
to selection on significance at the 5% level.
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Robust CS,
Alternative Replication Moments

βp Lower Bound βp Upper Bound
0.000 0.051

Robust CS, Metastudy Moments

βp Lower Bound βp Upper Bound
0.000 0.115

Table 9: Identification-robust 95% confidence sets for βp for lab experiments in psychology,
assuming only selection on significance at the 5% level. The left panel reports results based
on our alternative moments (9) for replication data, while the right panel reports results based
on our metastudy moments. Publication probability βp is measured relative to omitted category
of studies significant at the 5% level.

Effect of minimum wage on employment For the data from Wolfson and Belman
(2015) we consider the specification

p(X/Σ)∝


βp1 if Z<−1.96

βp2 if −1.96≤Z<0

βp3 if 0≤Z<1.96

1 if Z≥1/96.

Table 10 reports estimates and standard errors. We see that the main message of our

βp,1 βp,2 βp,3
1.174 0.231 0.235

(0.417) (0.100) (0.080)

Table 10: Meta-study selection estimates from GMM specifications for minimum wage data,
with standard errors in parentheses. Publication probability βp is measured relative to omitted
category of studies estimating a positive effect significant at the 5% level.

likelihood results in this setting, that results finding a significant and negative effect of the
minimum wage on employment are favored over insignificant results, again comes through
clearly. In contrast to our likelihood results the point estimate for βp1 also suggests
selection in favor of significant results finding a positive effect of the minimum wage on
employment, but given the large standard error associated with this coefficient the results
are also consistent with selection on statistical significance alone (βp1 =1, βp2 =βp3), with
a p-value of .86 for the joint test.

C.2 Results for Nature and Science replication study

This section describes results from applying our method to replication data from Camerer
et al. (2018). This study replicated 21 social science studies published in the journals
Science and Nature between 2010 and 2015. The authors selected results for replication
based on significance at the 5% level, so the function p(·) must be interpreted as the
probability that a result was both published and selected for replication. Nonetheless,
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Figure 6: The left panel shows a binned density plot for the normalized z-statistics W= |X|/Σ
using data from Camerer et al. (2018). The grey line marks W=1.96. The middle panel plots
the z-statistics W from the initial study against the estimate W r from the replication study.
The grey lines mark W and W r =1.96, as well as W =W r. The right panel plots the initial
estimate |X|=W ·Σ against its standard error Σ. The grey line marks |X|/Σ=1.96.

we can still explore the question of selection in this setting by focusing on selection above
the 5% significance threshold.

Histogram Before we discuss our formal estimation results, consider the distribution
of originally published estimates W = |Z|, shown by the histogram in the left panel of
Figure 6. This histogram shows that no results insignificant at the 5% are included in
the sample, but it is not obvious from this plot whether there is evidence for selection
above the 5% threshold.

Results from replication specifications The middle panel of Figure 6 plots the joint
distribution of W, W r in the replication data of Camerer et al. (2018). We consider the
model

|Ω∗|∼Γ(κ,λ), p(Z)∝


βp,1 |Z|<1.96

βp,2 1.96≤|Z|<2.58

1 |Z|≥2.58.

To match the selection of results for replication we set βp,1 = 0 so results insignificant
at the 5% level are always excluded from the sample, while we leave βp,2 free so results
significant between 5% and 1% level may be published with different probability than
results significant at the 1% level. Fitting this model by maximum likelihood yields the
estimates reported in the left panel of Table 11. These estimates therefore imply that
results significant between the 5% and 1% level are about half as likely to be published
as results significant at the 1% level.

Results from meta-study specifications The right panel of Figure 6 shows a meta-
study plot for the Camerer et al. (2018) data. As for the replication case we consider the
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Replication

κ λ βp,1 βp,2
0.211 1.653 0.000 0.480

(0.107) (0.372) (0.000) (0.236)

Meta-study

κ̃ λ̃ βp,1 βp,2
0.070 0.663 0.000 0.583

(0.083) (0.324) (0.000) (0.178)

Table 11: Selection estimates from social science experiments published in Nature and Science.
The left panel reports estimates from replication specifications, while the right panel reports
results from meta-study specifications. The parameters (κ,λ) and (κ̃,λ̃) are not comparable.
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Figure 7: This figure plots the estimates W and W r from the original and replication studies
in Camerer et al. (2018), along with the median unbiased estimate θ̂1

2
based on the estimated

selection model and the original estimate.

model

|Θ∗|∼Γ(κ̃,λ̃), p(Z)∝


βp,1 |Z|<1.96

βp,2 1.96≤|Z|<2.58

1 |Z|≥2.58.

Fitting this model by maximum likelihood (again with the restriction βp,1=0) yields the
estimates reported in the right panel of Table 11. Comparing these estimates to those
in the left panel, we see that the estimates from the two approaches are again similar.

Bias corrections To interpret our results, we plot our median-unbiased estimates based
on the Camerer et al. (2018) data in Figure 8. We see that the adjusted estimates track
the replication estimates fairly well for studies with smaller original z-statistics. For
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studies with larger original z-statistics, our corrected estimates tend to be larger than the
replication estimates.

C.3 Results for deworming meta-study

Here we report results based on data from the recent meta-study Croke et al. (2016) on
the effect of mass drug administration for deworming on child body weight. They collect
results from randomized controlled trials which report child body weight as an outcome,
and focus on intent-to-treat estimates from the longest follow-up reported in each study.
They include all studies identified by the previous review of Taylor-Robinson et al. (2015),
as well as additional trials identified by Welch et al. (2017). They then extract estimates
as described in Croke et al. (2016) and obtain a final sample of 22 estimates drawn from
20 studies, which we take as the basis for our analysis. For further discussion of sample
construction, see Taylor-Robinson et al. (2015), Croke et al. (2016), and Welch et al. (2017).
To account for the presence of multiple estimates in some studies, we again cluster by study.

Histogram Consider first the distribution of the normalized estimates Z, shown by the
histogram in the left panel of Figure 8. Given the small sample size of 22 estimates, this
histogram should not be interpreted too strongly. That said, the density of Z appears
to jump up at 0, which suggests selection toward positive estimates.
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Figure 8: The left panel shows a binned density plot for the z-statistics X/Σ in the deworming
metastudy data. The solid grey lines mark |X|/Σ=1.96, while the dash-dotted grey line marks
X/Σ = 0. The right panel plots the estimate X against its standard error Σ. The grey lines
mark |X|/Σ=1.96.

Results from meta-study specifications The right panel of Figure 8 plots the joint
distribution of X, the estimated intent to treat effect of mass deworming on child weight,
along with the standard error Σ in the Croke et al. (2016) data.
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We next consider the model

Θ∗∼N(θ̄,τ̃2), p(Z)∝

{
βp |Z|<−1.96

1 |Z|≥1.96,

where we constrain the the distribution of Θ∗ to be normal and the function p(·) to be
symmetric to limit the number of free parameters. Fitting this model yields the estimates
reported in Table 12.

θ̄ τ̃ βp
0.190 0.343 2.514

(0.120) (0.128) (1.869)

Table 12: Meta-study estimates from deworming data, with robust standard errors in
parentheses. Publication probabilities βp measured relative to omitted category of studies
significant at 5% level.

The point estimates here suggest that statistically significant results are less likely
to be included in the meta-study of Croke et al. (2016) than are insignificant results.
However, the standard errors are quite large, and the difference in publication (inclusion)
probabilities between significant and insignificant results is itself not significant at con-
ventional levels, so there is no basis for drawing a firm conclusion here. Likewise, the
estimated θ̄ suggests a positive average effect in the population, but is not significantly
different from zero at conventional levels.

We next consider the more flexible specification

Θ∗∼N(θ̄,τ2), p(Z)∝


βp,1 Z<−1.96

βp,2 −1.96≤Z<0

βp,3 0≤Z<1.96

1 Z≥1.96.

Results based on this specification are reported in Table 13. These estimates differ
substantially from those reported above, and suggest strong selectivity against negative
estimates, particularly negative and significant estimates. However, as can be seen from
Figure 8 there is only a single negative and statistically significant estimate in the sample,
so the reliability of conventional large-sample approximations here is highly suspect.

To reduce the number of free parameters, we estimate a version of the model which
does not allow discontinuities in p(·) based on statistical significance, but only based on
the sign of the estimate,

Θ∗∼N(θ̄,τ2), p(Z)∝

{
βp X/Σ<0

1 Z≥0.
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θ̄ τ̃ βp,1 βp,2 βp,3
-0.714 -0.521 0.008 0.151 1.299
(0.625) (0.206) (0.025) (0.207) (1.112)

Table 13: Meta-study selection estimates from deworming wage data, flexible specification,
with standard errors in parentheses. Publication probability βp is measured relative to omitted
category of studies estimating a positive effect significant at the 5% level.

Fitting this model yields the estimates reported in Table 14. These estimates suggest
strong selectivity on the sign of the estimated effect, where positive effects are estimated
to be ten times more likely to be published than negative effects. While this is consistent
with the distribution of observations in Figure 8, our choice of this specification was driven
by our results in Table 13. Given that this is a form of specification search, it suggests
that conventional asymptotic approximations may be unreliable here, and thus that these
results should be treated with caution.

θ̄ τ̃ βp
-0.217 0.365 0.094
(0.156) (0.103) (0.099)

Table 14: Meta-study selection estimates from deworming wage data, restricted asymmetric
specification, with standard errors in parentheses. Publication probability βp is measured
relative to omitted category of studies estimating a positive effect significant at the 5% level.

D Additional Theoretical Results

This section provides additional theoretical results to complement those in the main
text. Section D.1 provides further discussion of meta-regression coefficients. Section D.2
discusses the extension of our baseline identification results to the case with selection on
both Z∗ and Σ∗. Section D.3 further generalizes our results to allow selection on (Z∗,Ω∗,Σ∗)
and shows that we can still identify fZ|Ω in this setting, which is enough to let us implement
selection corrections, and develops specification tests based on this model. Section D.4
extends our corrected inference results to inference on scalar parameters in settings with
multidimensional selection (for example, selection on tests for pre-trends in difference
in differences specifications). Section D.5 discusses the effect of selection on Bayesian
inference, and Section D.6 discusses optimal selection in the context of a simple model.

D.1 Interpretation of meta-regression coefficients

In Section IV.B of the main text we discussed meta-regressions. We noted that under
our assumptions meta-regressions deliver a valid test of the null of no selectivity. We
also noted, however, that in the presence of selectivity the function E[Z|1/Σ=π] is in
general non-linear, and the slope of the best linear predictor cannot be interpreted as a
selection-corrected estimate of E[Θ∗].
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To see this, consider the following simple example. Suppose that Θ∗≡ θ̄>0, so there
is no parameter heterogeneity across latent studies, and that p(Z)=1(Z>zc), so there
is strict selection on significant, positive effects. Let ε∼N(0,1), and let m be the inverse

Mill’s ratio, m(x)= ϕ(x)
1−Φ(x)

. Then

E[Z|1/Σ=π]=E[πθ̄+ε|πθ̄+ε>zc]=πθ̄+m
(
zc−πθ̄

)
.

This is a nonlinear function of π, and the slope and intercept of the best linear predictor
approximating this function both depend on the distribution of π (that is, of Σ). If
Σ takes on only small values, and thus π only takes on large values, the Mill’s ratio
term is negligible, and E∗[Z|1/Σ=π]≈πθ̄. If Σ takes on only large values, a first order
approximation around π=0 yields

E∗[Z|1/Σ=π]≈m(zc)+θ̄(1−m′(zc))·π.

This shows in particular that the slope, which in this example equals θ̄(1−m′(zc)), is in
general different from the average effect θ̄, so that meta-regressions cannot be expected
to deliver bias-corrected estimates of E[Θ∗].

D.2 Selection depending on Σ∗ given Z∗

In this section we consider the extension of our identification results to the case where
the publication probability takes the form p(Z∗,Σ∗), so selection depends both on the
z-statistic and the standard error. Such selection could arise, for instance, if journals
prefer to publish precise estimates.

In settings with replication data, this extension is straightforward. In particular,
we can treat the standard error Σ∗ for the original study as a covariate and consider a
conditional analysis as discussed in Section B.2. This will allow us to identify p(z,σ) up to
scale for each σ, as well as the conditional distribution of true effects given the standard
error µΘ|Σ, though we cannot in general identify µΘ or µΣ.

In settings with meta-study data, our identification argument exploits variation in
Σ, so conditioning on Σ is not a viable option. If we impose multiplicative separability
p(Z∗,Σ∗)=pZ(Z∗)pΣ(Σ∗), however, then we can still show identification of pZ(·).

In particular, if the assumptions of Proposition 3 hold, save that the publication
probability is of the form p(Z∗,Σ∗)=pZ(Z∗)pΣ(Σ∗), then

fZ|Σ(z|σ)=
pZ(z)

E[p(Z∗)|Σ∗=σ]

∫
ϕ(z−θ/σ)dµΘ(θ),

just as in the case with selection on Z alone. The proof of Proposition 3 applied to this
new density thus shows that we can recover pZ(·) and µΘ.

D.3 Selection depending on (Ω∗,Σ∗) given Z∗

Selection of an empirical result for publication might depend not only on the result itself
but also on other empirical findings reported in the same manuscript, or on unreported
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results obtained by the researcher. Publication probabilities conditional on Z∗,Σ∗ and
Ω∗ then implicitly average over these variables, resulting in additional dependence on
Ω∗. Hence, our assumption that publication decisions are independent of true effects
conditional on reported results, D⊥Ω∗|Z∗, may fail. Allowing for a more general se-
lection probability p(Z∗,Ω∗,Σ∗), we can still identify fX|Ω,Σ, which is the key object for
bias-corrected inference as discussed in Section I.B.

Proposition D.1
Consider the setup of Proposition 2, but allow

D|Z∗,Ω∗,Σ∗∼Ber(p(Z∗,Ω∗,Σ∗)).

In this setup fZ|Ω is nonparametrically identified.

Proof of Proposition D.1: Under the setup considered, and again denoting ∆=Σr/Σ,
using the implied conditional independence assumptions we get

fZr|Z,∆(zr,z,δ)=

∫
fZr∗|∆∗,Z∗,D,Ω∗(z

r|δ,z,1,ω)fΩ∗|∆∗,Z∗,D(ω|δ,z,1)dθ

=

∫
ϕδ(z

r−ω)fΩ∗|Z∗,D(ω|z,1)dω

=(fΩ|Z∗ϕδ)(zr|z).

By deconvolution, this immediately implies that we can identify fΩ|Z. Since fZ is directly
identified, Bayes’ rule yields the desired result via

fZ|Ω(z|ω)=
fΩ|Z(ω|z)·fZ(z)∫
fΩ|Z(ω|z′)·fZ(z′)dz′

.

�
Note that in this proof we never appealed to normality of Z∗ (though we did use

normality of Zr∗). Hence, the result continues to apply in settings where Z∗ is non-normal
(for example due to manipulation of results or p-hacking).

D.3.1 Latent selection model

To make the generalized selection model introduced in the last section more concrete, this
section shows how selection on (Z∗,Ω∗) can arise from selection on an unobserved variable.
We then calculate a Lagrange multiplier test of our baseline model against a parametric
model of this form. If our baseline model is correct this specification test will have correct
size (in large samples), while the parametric model we adopt for selection on (Z∗,Ω∗)
controls where the specification test will have power if our baseline model is incorrect.

Assume that publication decisions are based on(
Z∗

V ∗

)
|Ω∗∼N

((
Ω∗

Ω∗

)
,

(
1 0
0 1

))
,
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where V ∗ is a second, independent estimate of the true effect Ω∗, with the same variance
as Z∗. Assume further that

D|Z∗,V ∗,Ω∗∼Ber(p(Z∗,V ∗)),

so publication decisions are based on Z∗ and V ∗. Since V ∗ is unobserved, integrating over
its distribution gives publication probabilities of the form p(Z∗,Ω∗).

We want our parametric specification for p(z,v) to nest our baseline specifications,

p(z)=
K∑
k=1

βp,k1{ζk−1≤z<ζk}.

To ensure this, we consider the generalized specification

p(z,v)=

∑K
k=1β̃

1
p,k1{ζk−1≤z<ζk,|v|≥ζV }

+
∑K

k=1β̃
0
p,k1{ζk−1≤z<ζk,|v|<ζV },

which allows publication probabilities to depend on whether two-sided z-tests based on
the latent variable v reject Ω∗ = 0. Integrating over the distribution of V ∗ yields the
following specification for p(z,ω):

p(z,ω)=

∑K
k=1β̃

1
p,k1{ζk−1≤z<ζk}

(
1−Ψ̃(ζV ,ω)

)
+
∑K

k=1β̃
0
p,k1{ζk−1≤z<ζk}Ψ̃(ζV ,ω),

where
Ψ̃(ζV ,ω)=Pr{|V |<ζV |Ω∗=ω}=Φ(ζV−ω)−Φ(−ζV−ω).

One can show that p(z,ω) is only nonparametrically identified up to a normalization for
each value ω. Analogous to our baseline specifications, here we impose the normalization
β̃1
p,K= β̃0

p,K=1. If we then define

βp,k= β̃1
p,k+Ψ̃(ζV ,0)·(β̃0

p,k−β̃1
p,k),

γp,k=
(
β̃1
p,k−β̃0

p,k

)
·Ψ̃(ζV ,0),

and

Ψ(ζV ,ω)=
Ψ̃(ζV ,ω)−Ψ̃(ζV ,0)

−Ψ̃(ζV ,0)
,

we obtain the specification

p(z,ω)=
K∑
k=1

(βp,k+γp,k ·Ψ(ζV ,ω))·1{ζk−1≤z<ζk}. (11)

Note that our normalization now implies that βp,K=1 and γp,K=0.
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Specification test results Since the specification (11) nests our baseline specifications,
we can use it to form Lagrange multiplier specification tests in our replication applications
(testing the restriction γp,k=0 for all k). This specification test yields p-values of 0.48 and
0.38 in our Camerer et al. (2016) and Open Science Collaboration (2015) applications,
respectively.

D.4 Inference when selection depends on multiple variables

This section extends the inference results developed in the main text to cases where
publication decisions are based not just on a scalar, but instead on a normally distributed
vector of estimates. Let X∗i represent the estimates from study i, and assume that

X∗i |Θ∗i ∼N(Θ∗i ,Ξ)

for Ξ known. Assume that Ξ is constant across latent studies i; the generalization to the
case where latent study i has variance Ξ∗i is immediate. Since X∗i is a vector, Ξ is a matrix.

Assumption D.1
The distribution fX∗|Θ∗(x|θ) is multivariate normal with mean θ and variance Ξ:

fX∗|Θ∗(x|θ)=(2π)−
k
2 |Ξ|−

1
2exp

(
−1

2
(x−θ)′Ξ−1(x−θ)

)
.

We consider inference on Γ=v′Θ for a known non-zero vector v, treating the other
elements of Θ, denoted Ω, as nuisance parameters.8 To conduct inference on the ith
element of Θ we can simply take v to be the ith standard basis vector. To illustrate our
results, we consider the example of difference in differences estimation, with selection on
both statistical significance and a test for parallel trends.

D.4.1 Illustrative example: difference in differences

Suppose we observe data from two states, s∈{1,2} over three time periods t∈{1,2,3}.
Denote the average outcome for residents of state s at time t by Yst, and note that under
regularity conditions, Yst will be approximately normally distributed

Yst∼N
(
µst,σ

2
st

)
.

For simplicity we assume that Yst is independent of Ys′t′ if s 6=s′ or t 6=t′.
Suppose we are interested in estimating the effect of a particular state-level policy,

and let Dst be a dummy for the presence of the policy in state s at time t. The difference
in differences model (with no control variables) assumes that

µst=αs+βt+Dstγ.

8In an abuse of notation, this parameter Ω is unrelated to the variance-normalized effect Ω considered
in other sections.
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If we are interested in the effect of a policy enacted in state 1 in period 3 and nowhere
else in the sample, for example, we would take

Dst=1{s=1,t=3}.

A key identifying assumption in the difference-in-differences model is that the only source
of variation in µst at the state-by-time level is the policy change of interest. In particular,
while we allow state fixed effects αs and time fixed effects βt, we rule out state-time-specific
effects other than those acting throughDst.This is known as the parallel trends assumption.

With only two periods of data this assumption is untestable, since we have four
free parameters (α1,α2,β2,γ) and only four means (µ11,µ12,µ21,µ22). With data from an
additional time period, however, we have five free parameters and six means and so can
instead consider the model

µst=αs+βt+D̃stλ+Dstγ

where
D̃st=1{s=1,t=2}

and the parallel trends assumption implies that λ=0. Thus, given data from two states
in three time periods the parallel trends assumption is testable.

Formal and informal tests of parallel trends are common in applications of difference
in differences strategies. To describe a formal test in our setting, note that the natural
estimator (G,L) for (γ,λ) has a simple form,

(G,L)=((X13−X12)−(X23−X22),(X12−X11)−(X22−X21)).

To test the parallel trends assumption in this setting we again want to test that λ, the
mean of L, is equal to zero.

Consider a population of latent studies with the structure just described, and let us
further simplify the model by setting σst=1 for all t. For latent estimates X∗=(G∗,L∗)
and latent true effects Θ∗=(Γ∗,Λ∗),(

G∗

L∗

)∣∣∣∣( Γ∗

Λ∗

)
∼N

((
Γ∗

Λ∗

)
,

(
4 2
2 4

))
where the covariance matrix is known.

As in our illustrative example in the main text, assume studies that reject γ=0 at the
5% level are ten times more likely to be published than studies that do not. In addition,
assume studies that reject λ=0 at the 5% level are ten times less likely to be published
than studies that do not. This leads to publication probability

p(X)∝1

{
|G∗|
σG

>1.96,
|L∗|
σL
≤1.96

}
·1+1

{
|G∗|
σG

>1.96,
|L∗|
σL
≥1.96

}
·0.1
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Figure 9: This figure plots the median
bias of (G) /σG in the difference in
differences example.

Figure 10: This figure plots the coverage
of conventional 95% confidence sets in the
difference in differences example.

+1

{
|G∗|
σG
≤1.96,

|L∗|
σL
≤1.96

}
·0.1+1

{
|G∗|
σG
≤1.96,

|L∗|
σL

>1.96

}
·0.01.

This publication rule favors studies that find significant difference in difference estimates,
and disfavors studies that reject the parallel trends assumption.

To illustrate the effect of selective publication in this setting, Figure 9 plots the
median bias of G as an estimator for γ (scaled by the standard error σG of G∗). Selective
publication results in large bias for the conventional estimator G, which depends on both
the parameter of interest γ and the nuisance parameter λ. Analogously, Figure 10 plots
the coverage of the usual two-sided confidence set G∗±1.96σG, and shows that selective
publication results in substantial coverage distortions.

D.4.2 Sufficient statistic for nuisance parameter

To conduct inference on γ, treating ω as a nuisance parameter, it will be helpful to derive
a sufficient statistic for ω. Note that for M(v) a (dim(X)−1)×dim(X) matrix such that
M(v)

(
I−Ξvv′

v′Ξv

)
has full row-rank,

(G(x),W(x))=

(
v′x,M(v)

(
I−Ξvv′

v′Ξv

)
x

)
is a one-to one transformation of x. Thus (G,W)=(G(X),W(X)) are jointly sufficient
for θ, and rather than basing inference on X we can equally well base inference on (G,W).
Note moreover that for G∗=G(X∗) and W ∗=W(X∗), X∗∼N(θ,Ξ) implies that(

G∗

W ∗

)
∼N

((
γ
ω

)
,

(
σ2
G 0
0 ΞW

))
(12)
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for ω=M(v)
(
I−Ξvv′

v′Ξv

)
θ, σ2

G=v′Ξv, and ΞW =M(v)
(
I−Ξvv′

v′Ξv

)
Ξ
(
I− vv′Ξ

v′Ξv

)
M(v)′. Thus the

conditional distribution of G∗ given W ∗ depends only on γ,

G∗|W ∗∼N(γ,σ∗G),

and by conditioning on W ∗ we can eliminate dependence on the nuisance parameter ω.
This property continues to hold for the conditional distribution of published G given W ,
as the following lemma shows.

Lemma D.3
Under Assumption D.1, the conditional density G|W,Γ is given by

fG|W,Γ(g|w,γ)=
p(g,w)

E[p(G∗,W ∗)|W ∗=w,Γ∗=γ]

1

σG
φ

(
g−γ
σG

)
(13)

for φ the standard normal density, where we use the fact that (g,w) is a one-to-one
transformation of x to write p(g,w)=p(x(g,w)).

Proof of Lemma D.3 Note that we can draw from the conditional distribution G|W=
w,Γ=γ by drawing from the conditional distribution G∗|W ∗=w,Γ∗=γ and discarding
the draw G∗ with probability 1−p(G∗,w). The result then follows from Bayes rule. �

Thus, we see that the conditional density of G given W depends only on the parameter
of interest γ and not on the nuisance parameter ω. Hence, by conditioning on W we can
eliminate the nuisance parameter and conduct inference on γ alone.

D.4.3 Optimal quantile-unbiased estimates

To conduct frequentist inference, we generalize the median-unbiased estimator and equal-
tailed confidence set proposed in Section I.B of the main text to the present setting. Using
a result from Pfanzagl (1994) we show that the resulting quantile-unbiased estimators
are optimal in a strong sense.

Formally, define γ̂α(X) by

FG(X)|W(X),Γ(G|W,γ̂α(X))=1−α.

This estimator is simply the value γ such that the observed G lies at the 1−α quantile
of the corresponding conditional distribution given W . The following proposition, based
on the results of Pfanzagl (1994), shows that this estimator is both quantile-unbiased and,
in a strong sense, optimal in the class of quantile-unbiased estimators.

Proposition D.2
Let Assumption D.1 hold, and assume further that the conditional distribution of G given
W is continuous for all γ and almost every W , and that the parameter space for ω given
γ contains an open set for all γ. Then

1. The estimator γ̂α(X) is level-α quantile unbiased:

Pr{γ̂α(X)≤γ|Θ=(γ,ω)}=1−α for all γ, ω,
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2. This estimator is uniformly most concentrated in the class of level-α quantile-unbiased
estimators, in the sense that for any other level-α quantile unbiased estimator γ̃(X)
and any loss function L(d,γ) that attains its minimum at d=γ and is increasing
as d moves away from γ,

E[L(γ̂α(X),γ)|Θ=(γ,ω)]≤E[L(γ̃(X),γ)|Θ=(γ,ω)] for all γ, ω.

Proof of Proposition D.2 Since the multivariate normal distribution belongs to the
exponential family, we can write

fG∗,W∗|Θ∗(g,w|θ)= h̃(g,w)r̃(γ(θ),ω(θ))exp
(
γ(θ)g+ω(θ)′w

)
.

By the same argument as in the proof of Lemma D.3, this implies that

fG,W |Θ(g,w|θ)=h(g,w)r(γ(θ),ω(θ))exp(γ(θ)g)exp
(
ω(θ)′w

)
(14)

for h(g,w)=p(g,w)h̃(g,w) and

r(γ,ω)=
r̃(γ,ω)

E[p(X∗)|Θ∗=θ(γ,ω)]
.

The density (14) has the same structure as (5.5.14) of Pfanzagl (1994), and satisfies
properties (5.5.1)-(5.5.3) of Pfanzagl (1994) as well. Part 1 of the proposition then follows
immediately Theorem 5.5.9 of Pfanzagl (1994).

Part 2 of the proposition follows by using Theorem 5.5.9 of Pfanzagl (1994) along
with (14) to verify the conditions of Theorem 5.5.15 of Pfanzagl (1994). �

Using this result we see that γ̂1
2
(X) is the optimal median-unbiased estimator for the

parameter of interest γ. A natural level-α confidence interval to accompany this estimator
is then the equal-tailed confidence interval

CS=
[
γ̂α

2
(X),γ̂1−α

2
(X)
]
.

Difference in differences example (continued) To illustrate our corrections in a
multivariate setting, Figure 11 plots the difference between our median-unbiased estimator
γ̂1

2
(X) and the conventional estimator γ̂=G in the difference-in-differences example. As

this plot makes clear, γ̂1
2
(X) depends on both G and L. Thus, while we are interested

only in the difference-in-differences parameter γ, the result for the pretest of parallel
trends also plays a role in our estimate. Figure 12 plots the rejection region for a 5% test
of H0 :γ=0 based on our equal-tailed confidence interval for γ. As this plot shows, the
results of this test likewise depend on both G and L.

D.5 Bayesian inference

In the main text we discuss the effect of selective publication on frequentist inference on θ
under known p(·). The effect of selective publication on Bayesian inference is more subtle,
and depends on the prior. Here we briefly discuss Bayesian inference on θ under known p(·)
for two natural classes of priors. These priors can be thought of as two extreme points of
the set of relevant priors. For ease of exposition, we assume the standard error Σ is constant
and suppress it in our notation. None of the results in this section rely on normality.
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Figure 11: This figure plots the difference
between the median-unbiased estiamtor
γ̂1

2
(X) and the conventional estimator G

in the difference-in-differences example.

Figure 12: This figure plots the (shaded)
rejection region for a 5% test of H0 :γ=0
based on equal-tailed confidence sets for
γ in the differences in differences example.

Definition D.1 (Two classes of priors)
Consider the following two classes of prior distributions πµ for µΘ:

1. Unrelated Parameters: πµ is a point mass at some µΘ, so that µΘ is known and
the prior distribution of Θ∗i is i.i.d. across i.

2. Common Parameters: πµ assigns positive probability only to point-measures µΘ, so
that Θ∗i is constant across i (equal to Θ∗0) with probability 1.

The unrelated parameters prior corresponds to the case where each latent study con-
siders a different parameter. Thus, under priors in this class, learning the true parameter
value Θ∗i in latent study i conveys no information about the true parameter value Θ∗i′
in latent study i′, and Θ∗i is iid across i. The common parameters prior, by contrast,
assumes that all latent studies attempt to estimate the same parameter Θ∗0. Thus, priors
in this class imply that Θ∗i is perfectly dependent across i.

For both the unrelated and common parameters classes, the marginal prior πΘ∗ for
Θ∗ is unrestricted. For any πΘ∗ there is a unique prior in each class consistent with this
marginal distribution.

If we observe a single draw X∗, our posterior for Θ∗ depends only on the marginal
prior πΘ∗, and so is the same whether we consider the unrelated or common parameters
priors. By contrast, when we observe a single draw X from the distribution of published
papers, which class of priors we use turns out to be important. The following result is
closely related to the findings of Yekutieli (2012).

Lemma D.4 (Two posterior distributions)
Based on single observation of X, we obtain the following posteriors:
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1. Under unrelated parameters priors:

fΘ|X(θ|x)=fX∗|Θ∗(x|θ)·πΘ∗(θ)/πX∗(x)

2. Under common parameters priors:

fΘ|X(θ|x)=
p(x)

E[p(X∗)|Θ∗=θ]
fX∗|Θ∗(x|θ)·πΘ∗(θ)/πX∗(x)

∝fX|Θ(x|θ)·πΘ∗(θ)

Proof of Lemma D.4:

1. Unrelated parameters: By construction D⊥Θ|X∗, and thus

fΘ|X(θ|x)=fΘ∗|X∗,D(θ|x,d=1)

=fΘ∗|X∗(θ|x)

=fX∗|Θ∗(x|θ)·πΘ∗(θ)/fX∗(x).

2. Common parameters: This follows immediately from the truncated likelihood (1).

�
Under the unrelated parameters prior, our posterior fΘ|X(θ|x) after observing X=x

is the same as our posterior had we observed X∗=x. The form of p(·) has no effect on
our posterior distribution, and inference proceeds exactly as in the case without selection.
Under the common parameters prior, by contrast, our posterior fΘ|X(θ|x) corresponds
to updating our marginal prior πΘ∗ using the truncated likelihood fX|Θ(x|θ).

The fact that selection has no effect on our posterior under the unrelated parameters
prior may be surprising, but reflects the fact that under this prior, selection changes the
marginal prior πΘ for true effects in published studies. In particular, under this prior we
have

πΘ(θ)=
E[p(X∗)|Θ∗=θ]

E[p(X∗)]
πΘ∗(θ),

which reflects the fact that the distribution of true effects for published studies differs from
that for latent studies under this prior. When we update this prior based on observation of
X, however, the adjustment by E[p(X∗)|Θ∗=θ] in the prior cancels that in the likelihood,
and selection has no net effect on the posterior. Under the common parameters prior,
by contrast, πΘ∗ = πΘ, so the adjustment term in the prior due to selective inference
continues to play a role in the posterior. For related discussion, see Yekutieli (2012).
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D.6 Optimal selection for publication in a simple model

In the main text we discuss how to account for selective publication in inference and
how to identify selectivity. It is natural to ask, however, whether selective publication
is a good idea in the first place or just a misguided application of statistics leading to
either publication bias or needlessly complicated inference. The answer to this question
depends on the journal’s objective function. One possibility is as follows. Suppose that
published estimates are inputs into policy decisions, for instance in development economics,
education, public finance, or medicine. If there are constraints on how many studies are
published and read, then selectivity of the sort we observe might be justified.

We discuss a stylized version of this idea in a development economics context, though
our model might also be considered a stylized description of medical publishing and
doctors’ prescriptions of treatments for patients. As in the last section we suppress the
standard error Σ, and the results here do not rely on normality.

Suppose that each i corresponds to a different policy intervention. Suppose the dis-
tribution µ of true treatment effects Θ∗ is known to journal editors and readers, and that
the expected effect E[Θ∗] of a randomly chosen treatment on the likelihood of escaping
poverty is non-positive. Suppose further that the journal is read by policy makers who
aim to minimize poverty. Assume finally that each treatment is relevant for a population
of equal size, normalized to 1. A policy maker wishes to implement a given treatment
if the expected impact on the outcome considered is positive, conditional on the observed
estimate X=x. Thus, their optimal treatment assignment rule is

t(x)=1(E[Θ|X=x]>0), (15)

which results in the expected outcome

v(x)=max(0,E[Θ|X=x]) (16)

where E[Θ|X] is the policymakers’ posterior expectation of Θ after observing X.9 Suppose
the journal also aims to minimize poverty, but faces a marginal (opportunity) cost of c,
in units comparable to treatment outcomes, when publishing a given study. Policymakers
update their behavior only for published studies with E[Θ|X]>0. This updated behavior
results in an expected poverty reduction of E[Θ|X] relative to the status quo. It follows
that the optimal publication rule for the journal is

p(X∗)=1(E[Θ∗|X∗]>c). (17)

If the conditional expectation is increasing in X∗, this rule is equivalent to

p(X∗)=1(X∗>xc),

so that results should get published if they are positive and “significant” relative to the
critical value xc, defined via E[Θ∗|X∗=xc]=c.

9Perhaps surprisingly, truncation is irrelevant for this posterior expectation. This stems from the
fact that we assume policy makers have unrelated parameters priors as in Definition D.1 above.
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This result rationalizes selectivity in the publication process: the optimal rule derived
here corresponds to one-sided testing. A more realistic version of this story allows for
variation across latent studies in the variance of X∗, the cost of implementing treatment,
the size of the populations to be treated, etc. All of these would affect the critical value
xc, which thus should vary across i and need not be equal to conventional critical values
of hypothesis tests. What remains true, however, is that publication decisions that are
optimal according to the above model are selective in a way which leads to publication
bias, and correct inference needs to account for this selectivity.
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