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This Online Appendix consists of the following sections.

(A1) We discuss the relationship between Theorem 1, Afriat’s Theorem, and Fishburn’s condition.

(A2) We extend the analysis of the rank dependent utility (RDU) model (Quiggin, 1982) to an

arbitrary number of states.

(A3) This contains further applications of the GRID method which are not presented in the

main text; in particular, we cover the choice acclimating personal equilibrium (CPE) model

(Kőszegi and Rabin, 2007), the maxmin expected utility (MEU) model (Gilboa and Schmei-

dler, 1989), the variational preference (VP) model (Maccheroni, Marinacci, and Rustichini,

2006), a model with budget-dependent reference points, and a model of intertemporal con-

sumption.

(A4) This extends the results on EU- and RDU-rationalizability with concave Bernoulli functions

discussed in the main text.

(A5) We describe and explain the GARP and F-GARP tests, in their generalized form needed for

calculating Afriat’s or Varian’s e�ciency index.

(A6) This contains more analysis of the data from Choi et al. (2007).

(A7) More analysis of the data from Choi et al. (2014).

(A8) More analysis of the data from Halevy, Persitz, and Zrill (2018), including results on Varian’s

index.

(A9) Algorithms for calculating Varian’s index for the locally nonsatiated, stochastically monotone,

and expected utility models.
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A1. Theorem 1, Afriat’s Theorem, and Fishburn’s condition

A1.1 Afriat’s Theorem and Theorem 1

Returning to the context of Section I, we consider a data set of the formO “ tpxt, BtquTt“1,

where Bt is a compact subset of Rs̄
` and x

t P Bt. We assume that Bt is downward compre-

hensive, so Bt “ Bt. Afriat’s (1967) Theorem characterizes data sets that are rationalizable

by locally nonsatiated utility (LNU) functions. A utility function U : Rs̄
` Ñ R is locally non-

satiated if at every open neighborhood N of x P Rs̄
`, there is y P N such that Upyq ° Upxq.

We present here a version of Afriat’s Theorem in this environment. Note that our envi-

ronment is actually more general than that of Afriat’s (original) result since Afriat only

considered data sets where Bt are linear budget sets. However, it is known that the result

could be generalized to data sets with nonlinear budget constraints (see Forges and Minelli

(2009) and Nishimura, Ok, and Quah (2017)), and we shall also refer to this result as Afriat’s

Theorem.1

Let D “ txt : t “ 1, 2, . . . , T u; in other words, D consists of those bundles that were

chosen by the subject at some observation in the data set. For bundles xt and x
t1
in D, xt is

said to be revealed preferred to x
t1
(we denote this by x

t •˚
x
t1
) if xt1 P Bt;2 x

t is said to be

strictly revealed preferred to x
t1
(and we denote this by x

t °˚
x
t1
) if xt1 P BtzBBt. O obeys

the Generalized Axiom of Revealed Preference (GARP) if, whenever there are observations

ppti ,xtiq (for i “ 1, 2, . . . , n) in O satisfying

x
t1 •˚

x
t2 , x

t2 •˚
x
t3 , . . . , xtn´1 •˚

x
tn , and x

tn •˚
x
t1 , (a.1)

then we cannot replace •˚ with °˚ anywhere in this chain; in other words, while there can

be revealed preference cycles in O, they cannot contain a strict revealed preference. It is

straightforward to show that if O is obtained from a subject maximizing a locally nonsatiated

utility (LNU) function, then it must obey GARP. Less trivially, the converse is also true:

if O obeys GARP then there is a continuous and strictly increasing (in particular, locally

1 In Section A5.1, we present a closely related generalization of Afriat’s Theorem to modified data sets.
2 Our terminology di↵ers a little from the standard, which refers to •˚ as the direct revealed preference

relation and uses revealed preference to refer to the transitive closure of this relation. Since our exposition
avoids any discussion of the transitive closure, we have adopted the simpler terminology here.
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nonsatiated) utility function that rationalizes O (see Forges and Minelli (2009) or Nishimura,

Ok, and Quah (2017)).

In the original version of the theorem due to Afriat, the starting point is a classical data

set O “ tpxt,ptquTt“1, in which case x
t is revealed preferred to x

t1
if pt ¨ xt1 § p

t ¨ xt (so

x
t1 P Bt “ Bppt,pt ¨ xtq), and x

t is strictly revealed preferred to x
t1
if pt ¨ xt1 † p

t ¨ xt.

When O “ tpxt,ptquTt“1 obeys GARP, it is possible to rationalize O with a utility function

that is strictly increasing, continuous, and concave. The additional property of concavity is

sensitive to the linearity of the budget sets; when budget sets are not linear, GARP does

not guarantee rationalization with a concave utility function, or even a convex preference.

To relate Afriat’s Theorem more closely with Theorem 1, note that the following is easy

to show: GARP is equivalent to the existence of a function Ū : D Ñ R that is strictly

increasing that obeys the following revealed preference conditions:

Ūpxtq • Ūpxq for all x P Bt X D, and (a.2)

Ūpxtq ° Ūpxq for all x P pBtzBBtq X D. (a.3)

Therefore, we could state Afriat’s Theorem in the following manner: O is rationalizable

by a strictly increasing and continuous utility function if (and only if) there is a strictly

increasing function Ū : D Ñ R such that (a.2) and (a.3) hold. Stating Afriat’s Theorem in

this way highlights its similarity with, and its di↵erence from, Theorem 1, in the case where

the state probabilities are held fixed across observations. Clearly, the conditions (a.2) and

(a.3) are analogous to (6) and (7) in Theorem 1; in both results, it su�ces to find utilities

on a particular finite subset of the true consumption space Rs̄
`, such that the chosen bundle

x
t is superior to other bundles in Bt

that are within that subset. But the results di↵er in two

respects: (i) in the case of Afriat’s Theorem, one is required to find any increasing function

Ū , whereas in Theorem 1, the function to be found has the form �pūp¨qq for some strictly

increasing ū : X Ñ R`; (ii) in the case of Afriat’s Theorem, it su�ces to compare x
t with

feasible bundles in the finite set D, whereas in Theorem 1, the comparison is made with

feasible bundles in the finite grid G.

Note that Theorem 1 cannot be improved by requiring (6) and (7) to hold only when

comparing x
t with feasible bundles in the smaller set D (rather than G). Indeed, consider
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the case of the single-observation data set in Example 1 (Section I.B of the main text).

Conditions (8) and (9) will be satisfied trivially, since tx1u “ tp1, 2qu “ D, but that single

observation is not EU-rationalizable.

A1.2 EU-rationalizability, Fishburn’s condition, and GARP

We have shown that a data set O “ tpxt, BtquTt“1 is EU-rationalizable with probability

weights t⇡tuTt“1 if and only if there is a strictly increasing function ū : X Ñ R` obeying

conditions (8) and (9). Conditions (8) and (9) generate a finite list of preference pairs

between some chosen bundle xt and another bundle x in Bt XG or
`
BtzBBt

˘
XG. The strict

increasing condition on ū can also be reformulated as saying that the bundle pr, r, . . . , rq is

strictly preferred to pr1, r1, . . . , r1q whenever r ° r1, for r, r1 P X . We gather these together

in a list tpaj,bjquMj“1, where for all j § N (with N † M), aj is weakly preferred to b
j (so

the pairs are drawn from (8)) and for j ° N , aj is strictly preferred to b
j (so the pairs are

drawn from (9) and the strict increasing condition on ū). Each a
j (similarly b

j) specifies

the outcome in each state and the probability of that state. We can write a
j in its lottery

form gpajq, which is a vector with |X | entries, with the ith entry giving the probability of ith

ranked number in X ; similarly, bj can be written in its lottery form gpbjq. For example, in the

example given in the Introduction, X “ t0, 1, 2, 3, 4, 6u and the two states are equiprobable,

so the bundle p2, 4q chosen from B1 has the lottery form p0, 0, 1{2, 0, 1{2, 0q.

We know from Fishburn (1975) that the list tpgpajq, gpbjqquMj“1 is consistent with expected

utility (i.e., there is a strictly increasing ū that solves (8) and (9)) if and only if it satisfies

the following condition, which we shall refer to as Fishburn’s condition:3 there does not exist

�j with
∞M

j“1 �
j “ 1, �j • 0 for all j, and �j ° 0 for some j ° N , such that

Mÿ

j“1

�jgpajq “
Mÿ

j“1

�jgpbjq. (a.4)

This condition is very intuitive: assuming that the agent has a preference over lotteries,

the independence axiom says that the lottery
∞M

j“1 �
jgpajq must be strictly preferred to

3 Fishburn’s (1975) result characterizes consistency with expected utility for a finite list of lottery pref-
erence pairs; it is not about portfolio choice as such.
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∞M
j“1 �

jgpbjq, and therefore (a.4) is excluded.4 Put another way, a violation of Fishburn’s

condition must imply a violation of the independence axiom.

Combining our characterization of EU-rationalizability with Fishburn’s result gives the

following: a data set O “ tpxt, BtquTt“1 is EU-rationalizable with probability weights t⇡tuTt“1

if and only if the preference pairs on G (as revealed by the data) obey Fishburn’s condition.

We now specialize to the case where the probabilities are fixed across observations. In this

case, a subject who is maximizing expected utility is maximizing the same expected utility

function across observations, and EU-rationalizability is a special case of rationalizability by

an LNU function. It follows that the conditions required of ū for EU-rationalizability must

also be stronger than GARP. Equivalently, it must be the case that Fishburn’s condition

implies GARP. Indeed, suppose there are observations ppti ,xtiq (for i “ 1, 2, . . . , n) in O

satisfying (a.1) and we can replace •˚ with °˚ somewhere in this chain, then there will be

a violation of Fishburn’s condition since

1

n
rgpxt1q ´ gpxt2qs ` 1

n
rgpxt2q ´ gpxt3qs ` ¨ ¨ ¨ ` 1

n
rgpxtn´1q ´ gpxtnqs ` 1

n
rgpxtnq ´ gpxt1qs “ 0.

(Note that since the probability of each state is the same across observations, there is no

ambiguity in using gpxtq to denote the lottey form of a bundle x
t.)

A2. Testing the multi-state RDU model

We have already discussed the two-state case of the RDU model in Section I.D, and have

also explained there how this model could be tested, which is the material most directly

relevant to our empirical implementation in Section IV. In this section, we describe the

RDU model more generally, i.e., in the case where there are more than two states, and

we present the corresponding empirical test using the GRID method. Note that this test

neither assumes nor requires the Bernoulli function to be concave; RDU-rationalizability

with a concave Bernoulli function is covered in Section A4.2.
4 To be precise, suppose that the agent has a preference over lotteries with prizes in X . The independence

axiom says that if lottery gpaq is preferred (strictly preferred) to gpbq, then ↵gpaq ` p1 ´ ↵qgpcq is preferred
(strictly preferred) to ↵gpbq ` p1´↵qgpcq, where gpcq is another lottery and ↵ P r0, 1s. Repeated application
of this property and the transitivity of the preference will guarantee that

∞
M

j“1 �
jgpajq is strictly preferred

to
∞

M

j“1 �
jgpbjq.
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We consider a setting where, at every observation, the probability of state s (for s “
1, 2, . . . , s̄) is ⇡s ° 0.5 Given a contingent consumption bundle x P Rs̄

`, we can rank the

entries of x from the smallest to the largest, with any ties broken by the rank of the state. We

denote the rank of xs in x by rpx, sq. For example, if there are five states and x “ p1, 4, 4, 3, 5q,
we have rpx, 1q “ 1, rpx, 2q “ 3, rpx, 3q “ 4, rpx, 4q “ 2, and rpx, 5q “ 5. A rank dependent

expected utility function gives to the bundle x the utility

V pxq “
s̄ÿ

s“1

�px, squpxsq, (a.5)

where u : R` Ñ R` is a Bernoulli function,

�px, sq “ ⇢
´∞

ts1:rpx,s1q§rpx,squ ⇡s1

¯
´ ⇢

´∞
ts1:rpx,s1q†rpx,squ ⇡s1

¯
, (a.6)

and ⇢ : r0, 1s Ñ r0, 1s is a continuous and strictly increasing function, with ⇢p0q “ 0 and

⇢p1q “ 1. (If ts1 : rpx, s1q † rpx, squ is empty, we let ⇢
´∞

ts1:rpx,s1q†rpx,squ ⇡s1

¯
“ 0.) The

function ⇢, which we shall refer to as the transformation function, distorts the distribution

of the bundle x. An agent who maximizes rank dependent utility behaves like an expected-

utility maximizer, except that he gives a weight of �px, sq to the outcome in state s; note

that this weight depends on the objective probability of state s but also on the rank of the

outcome in that state. Since u is strictly increasing, �px, sq “ �pupxq, sq and we can write

V pxq “ �pupxqq, where for any vector u “ pu1, u2, . . . , us̄q,

�puq “
s̄ÿ

s“1

�pu, squs. (a.7)

It is straightforward to check that � : Rs̄
` Ñ R is a strictly increasing and continuous

function. Since V has the form assumed in Theorem 1, we can use that result to devise a

test for RDU-rationalizability.

By definition, a data set O “ tpxt, BtquTt“1 is RDU-rationalizable if there is a transfor-

mation function ⇢ : r0, 1s Ñ r0, 1s and a Bernoulli function u : R` Ñ R` such that V as

defined by (a.5) satisfies V pxtq • V pxq for all x P Bt. The next proposition states the test

for RDU-rationalizability; it generalizes to multiple states the test formulated in Section I.D.

5 To keep the notation light, we confine ourselves to the case where ⇡ does not vary across observations.
There is no conceptual di�culty in allowing for this variation if we choose to do so.
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Proposition A.1. Suppose that O “ tpxt, BtquTt“1 is RDU-rationalizable with the transfor-

mation function ⇢ and the Bernoulli function u. Let X be a finite set in R` that contains

X ˚
, where the latter is defined by (5) (in the main text) and let

� “
#
r P R : r “

ÿ

sPS1
⇡s for some S 1 Ñ S “ t1, 2, . . . , s̄u

+
. (a.8)

Then the restriction of ⇢ to �, ⇢̄ : � Ñ r0, 1s, and the restriction of u to X , ū : X Ñ R` are

strictly increasing functions that satisfy

s̄ÿ

s“1

�pxt, sqūpxsq •
s̄ÿ

s“1

�px, sqūpxsq for all x P Bt X G (a.9)

and
s̄ÿ

s“1

�pxt, sqūpxsq °
s̄ÿ

s“1

�px, sqūpxsq for all x P
`
BtzBBt

˘
X G. (a.10)

Conversely, if for a data set O there are strictly increasing functions ⇢̄ : � Ñ r0, 1s (with
⇢̄p0q “ 0 and ⇢̄p1q “ 1) and ū : X Ñ R` such that (a.9) and (a.10) are satisfied (with � given

by (a.6) (with ⇢̄ taking the place of ⇢), then O is RDU-rationalizable with a transformation

function ⇢ that extends ⇢̄ and a Bernoulli function u that extends ū.

Proof. The first part of this proposition follows immediately from the definition of RDU-

rationalizability. For the converse, suppose there are ⇢̄ and ū satisfying conditions (a.9) and

(a.10); note that these are simply conditions (6) and (7) (in the main text), specialized to

the RDU model, with � given by (a.7). Let ⇢ : r0, 1s Ñ r0, 1s be a transformation function

extending ⇢̄; clearly ⇢ exists since � is finite and ⇢̄ is strictly increasing. Since (a.9) and (a.10)

hold, Theorem 1 guarantees that O is RDU-rationalizable by the transformation function ⇢

and some Bernoulli function u extending ū. QED

The inequality conditions (a.9) and (a.10) are bilinear in t⇢̄p�qu�P� and tūprqurPX . So

this result tells us that we can test for RDU-rationalizability by looking for a solution to a

finite set of inequalities that are bilinear in a finite set of unknowns and, as we explained in

Section I.D, problems of this type are decidable. Note that our treatment of the two-state

case in Section I.D is a special case of Proposition A.1, with � “ t0, ⇡2, ⇡1, 1u, ⇢1 “ ⇢̄p⇡1q
and ⇢2 “ ⇢̄p⇡2q.
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A3. Further applications of the GRID method

For many models of choice under risk or under uncertainty, the GRID method is a

useful approach to test rationalizability. As we explain in the main text (Section I), these

tests often involve finding a Bernoulli function u and an aggregator function � belonging to

some family � (corresponding to a particular model) which together rationalize the data.

In the subjective expected utility (SEU) case, the GRID test involves solving a system of

inequalities that are bilinear in the utility levels tūprqurPX and the subjective probabilities

t⇡sus̄s“1 (see Section I.D). Such a formulation seems natural enough in the SEU case; what

is worth remarking (and perhaps not obvious a priori) is that the same pattern holds across

many of the common models of choice under risk and under uncertainty: they can be tested

by solving a system of inequalities that are bilinear in tūprqurPX and a finite set of variables

specific to the particular model in question. It is known that bilinear systems are decidable,

in the sense that there is an algorithm that can determine in a finite number of steps whether

or not a solution exists.

In the main text, we have already explained how the expected utility (EU), disappoint-

ment aversion (DA), and rank dependent utility (RDU) models can be tested using the

GRID method. In this section, we further illustrate the flexibility of the GRID method by

applying it to several prominent models of decision making under risk and under uncertainty

(Sections A3.1-A3.4). We also explain how it can used to test models of discounted utility,

which in formal terms, are very similar to the EU model and its generalizations (Section

A3.5).

A3.1 Choice acclimating personal equilibrium

The choice acclimating personal equilibrium (CPE) model (Kőszegi and Rabin, 2007)

(with a piecewise linear gain-loss function) specifies utility as V pxq “ �pupxq,⇡q, where

�ppu1, u2, . . . , us̄q,⇡q “
s̄ÿ

s“1

⇡sus ` 1

2
p1 ´ �q

s̄ÿ

r,s“1

⇡r⇡s|ur ´ us|, (a.11)

⇡ “ t⇡sus̄s“1 are the objective probabilities, and � P r0, 2s is the coe�cient of loss aversion.6

6 Our presentation of CPE follows Masatlioglu and Raymond (2016). The restriction of � to r0, 2s guar-
antees that V respects first order stochastic dominance but allows for loss-loving behavior (see Masatlioglu
and Raymond (2016)).
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We say that a data set O “ tpxt, BtquTt“1 is CPE-rationalizable with the probability weights

⇡t “ p⇡t
1, ⇡

t
2, . . . , ⇡

t
s̄q " 0 if there is � in the collection �CPE of functions of the form (a.11),

and a Bernoulli function u : R` Ñ R` such that, for each t, �pupxtq,⇡tq • �pupxq,⇡tq for

all x P Bt. Applying Theorem 1, O is CPE-rationalizable if and only if there is � P r0, 2s
and a strictly increasing function ū : X Ñ R` that solve (6) and (7) (in the main text).

It is notable that, irrespective of the number of states, this test is linear in the remaining

variables for any given value of �. Thus it is relatively straightforward to implement via a

collection of linear tests (running over di↵erent values of � P r0, 2s).

A3.2 Maxmin expected utility

We again consider a setting where no objective probabilities can be attached to each

state. An agent with maxmin expected utility (MEU) preferences (Gilboa and Schmeidler,

1989), evaluates each bundle x P Rs̄
` using the formula V pxq “ �pupxqq, where

�puq “ min
⇡P⇧

#
s̄ÿ

s“1

⇡sus

+
, (a.12)

where ⇧ Ä �`` “ t⇡ P Rs̄
`` :

∞s̄
s“1 ⇡s “ 1u is nonempty, compact in Rs̄, and convex.

(⇧ can be interpreted as a set of probability weights.) Given these restrictions on ⇧, the

minimization problem in (a.12) always has a solution and � is strictly increasing.

A data set O “ tpxt, BtquTt“1 is said to be MEU-rationalizable if there is a function � in

the collection �MEU of functions of the form (a.12), and a Bernoulli function u : R` Ñ R`

such that, for each t, �pupxtq,⇡tq • �pupxq,⇡tq for all x P Bt. By Theorem 1, this holds if

and only if there exist ⇧ and a strictly increasing function ū : X Ñ R` that solve (6) and

(7) (in the main text).

We claim that these conditions can be formulated in terms of the solvability of a set

of bilinear inequalities. This is easy to see for the two-state case where we may assume,

without loss of generality, that there is ⇡˚
1 and ⇡˚˚

1 P p0, 1q such that ⇧ “ tp⇡1, 1 ´ ⇡1q :

⇡˚
1 § ⇡1 § ⇡˚˚

1 u. Then it is clear that �pu1, u2q “ ⇡˚
1u1 ` p1 ´ ⇡˚

1 qu2 if u1 • u2 and

�pu1, u2q “ ⇡˚˚
1 u1 ` p1 ´ ⇡˚˚

1 qu2 if u1 † u2. Consequently, for any px1, x2q P G, we have

V px1, x2q “ ⇡˚
1 ūpx1q ` p1 ´ ⇡˚

1 qūpx2q if x1 • x2 and V px1, x2q “ ⇡˚˚
1 ūpx1q ` p1 ´ ⇡˚˚

1 qūpx2q if

x1 † x2 and this is independent of the precise choice of ū. Therefore, O is MEU-rationalizable
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if and only if we can find ⇡˚
1 and ⇡˚˚

1 in p0, 1q, with ⇡˚
1 § ⇡˚˚

1 , and an increasing function

ū : X Ñ R` that solve (6) and (7) (in the main text). The requirement takes the form of a

system of bilinear inequalities that are linear in tūprqurPX after conditioning on ⇡˚
1 and ⇡˚˚

1 .

The result below covers the general case. The test involves solving a system of bilinear

inequalities in the variables ⇡̄spxq (for all s and x P G) and ūprq (for all r P X ). Note that

⇡̄pxq “ p⇡̄1pxq, ⇡̄2pxq, . . . , ⇡̄s̄pxqq is used to construct the set of priors ⇧ (in (a.12)) and that

⇡̄pxq is the distribution in ⇧ that minimizes the expected utility of the bundle x (see (a.16)).

Proposition A.2. A data set O “ tpxt, BtquTt“1 is MEU-rationalizable if and only if there

is a function ⇡̄ : G Ñ �`` and a strictly increasing function ū : X Ñ R` such that

⇡̄pxtq ¨ ūpxtq • ⇡̄pxq ¨ ūpxq for all x P G X Bt
, (a.13)

⇡̄pxtq ¨ ūpxtq ° ⇡̄pxq ¨ ūpxq for all x P G X pBtzBBtq, and (a.14)

⇡̄pxq ¨ ūpxq § ⇡̄px1q ¨ ūpxq for all px,x1q P G ˆ G. (a.15)

If these conditions hold, O admits an MEU-rationalization where ⇧ (in (a.12)) is the convex

hull of t⇡̄pxquxPG, the Bernoulli function u : R` Ñ R extends ū, and

V pxq “ min
⇡P⇧

t⇡ ¨ ūpxqu “ ⇡̄pxq ¨ ūpxq for all x P G. (a.16)

Proof: Suppose that O is rationalizable by � as defined by (a.12). For any x in the finite

grid G, let ⇡̄pxq be an element in argmin⇡P⇧ ⇡ ¨ upxq and let ū be the restriction of u to X .

Then it is clear that the conditions (a.13)–(a.15) hold.

Conversely, suppose that there is a function ⇡̄ and a strictly increasing function ū obeying

the conditions (a.13)–(a.15). Define ⇧ as the convex hull of t⇡̄pxq : x P Gu; ⇧ is a nonempty

and convex subset of �`` and it is compact in Rs̄ since G is finite. Suppose that there exists

x P G and ⇡ P ⇧ such that ⇡ ¨ ūpxq † ⇡̄pxq ¨ ūpxq. Since ⇡ is a convex combination of

elements in t⇡̄pxq : x P Gu, there must exist x
1 P G such that ⇡̄px1q ¨ ūpxq † ⇡̄pxq ¨ ūpxq,

which contradicts (a.15). We conclude that ⇡̄pxq ¨ ūpxq “ min⇡P⇧ ⇡ ¨ ūpxq for all x P G. We

define � : Rs̄
` Ñ R by �puq “ min⇡P⇧ ⇡ ¨u. Then the conditions (a.13) and (a.14) are just the

conditions (6) and (7) (in the main text), and Theorem 1 guarantees that there is a Bernoulli

function u : R` Ñ R` extending ū such that O is rationalizable by V pxq “ �pupxqq. QED
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A3.3 Variational preferences

A popular model of decision making under uncertainty which generalizes maxmin ex-

pected utility is variational preferences (VP), introduced by Maccheroni, Marinacci, and

Rustichini (2006). In this model, a bundle x P Rs̄
` has utility V pxq “ �pupxqq, where

�puq “ min
⇡P�``

t⇡ ¨ u ` cp⇡qu (a.17)

and c : �`` Ñ R` is a continuous and convex function with the following boundary condi-

tion: for any sequence ⇡n P �`` tending to ⇡̃, with ⇡̃s “ 0 for some s, we obtain cp⇡nq Ñ 8.

This boundary condition, together with the continuity of c, guarantee that there is ⇡˚ P �``

that solves the problem in (a.17).7 Therefore, � is well-defined and strictly increasing.

We say that O “ tpxt, BtquTt“1 is VP-rationalizable if there is a function � in the collection

�V P of functions of the form (a.17), and a Bernoulli function u : R` Ñ R` such that, for

each t, �pupxtq,⇡tq • �pupxq,⇡tq for all x P Bt. By Theorem 1, this holds if and only if

there exists a function c : �`` Ñ R` that is continuous, convex, and has the boundary

property, and a strictly increasing function ū : X Ñ R` that together solve (6) and (7)

(in the main text), with � defined by (a.17). The following result is a reformulation of this

characterization that has a similar flavor to Proposition A.2; crucially, the necessary and

su�cient conditions on O are formulated as a finite set of bilinear inequalities.

Proposition A.3. A data set O “ tpxt, BtquTt“1 is VP-rationalizable if and only if there

is a function ⇡̄ : G Ñ �``, a function c̄ : G Ñ R`, and a strictly increasing function

ū : X Ñ R` such that

⇡̄pxtq ¨ ūpxtq ` c̄pxtq • ⇡̄pxq ¨ ūpxq ` c̄pxq for all x P G X Bt
, (a.18)

⇡̄pxtq ¨ ūpxtq ` c̄pxtq ° ⇡̄pxq ¨ ūpxq ` c̄pxq for all x P G X pBtzBBtq, and (a.19)

⇡̄pxq ¨ ūpxq ` c̄pxq § ⇡̄px1q ¨ ūpxq ` c̄px1q for all px,x1q P G ˆ G. (a.20)

If these conditions hold, then O can be rationalized by a variational preference V , with �

given by (a.17), such that the following holds:

7 Indeed, pick any ⇡̃ P �`` and define S “ t⇡ P �`` : ⇡ ¨ u ` cp⇡q § ⇡̃ ¨ u ` cp⇡̃qu. The boundary
condition and continuity of c guarantee that S is compact in Rs̄ and hence argmin⇡PSt⇡ ¨ u ` cp⇡qu “
argmin⇡P�`` t⇡ ¨ u ` cp⇡qu is nonempty.

11



(i) c : �`` Ñ R` satisfies cp⇡̄pxqq “ c̄pxq for all x P G;

(ii) the Bernoulli function u : R` Ñ R satisfies ūprq “ uprq for all r P X ; and

(iii) ⇡̄pxq P argmin⇡P�``t⇡ ¨ upxq ` cp⇡qu, leading to V pxq “ ⇡̄pxq ¨ ūpxq ` c̄pxq, for all

x P G.

Proof: Suppose O is rationalizable by � as defined by (a.17). Let ū be the restriction of

u to X . For any x in G, let ⇡̄pxq be an element in argmin⇡P�``t⇡ ¨ upxq ` cp⇡qu, and let

c̄pxq “ cp⇡̄pxqq. Then it is clear that the conditions (a.18)–(a.20) hold.

Conversely, suppose that there is a strictly increasing function ū and functions ⇡̄ and c̄

obeying conditions (a.18)–(a.20). For every ⇡ P �``, define c̃p⇡q “ maxxPGtc̄pxq ´ p⇡ ´
⇡̄pxqq ¨ ūpxqu. It follows from (a.20) that c̄px1q • c̄pxq ´ p⇡̄px1q ´ ⇡̄pxqq ¨ ūpxq for all x P G.

Therefore, c̃p⇡̄px1qq “ c̄px1q for any x
1 P G. The function c̃ is convex and continuous but

it need not obey the boundary condition. However, we know there is a function c defined

on �`` that is convex, continuous, obeys the boundary condition, with cp⇡q • c̃p⇡q for

all ⇡ P �`` and cp⇡q “ c̃p⇡q for ⇡ P t⇡̄pxq : x P Gu. We claim that, with c so defined,

min⇡P�``t⇡ ¨ ūpxq ` cp⇡qu “ ⇡pxq ¨ ūpxq ` c̄pxq for all x P G. Indeed, for any ⇡ P �``,

⇡ ¨ ūpxq ` cp⇡q • ⇡ ¨ ūpxq ` c̃p⇡q • ⇡ ¨ ūpxq ` c̄pxq ´ p⇡ ´ ⇡̄pxqq ¨ ūpxq “ ⇡̄pxq ¨ ūpxq ` c̄pxq.

On the other hand, ⇡̄pxq ¨ upxq ` cp⇡̄pxqq “ ⇡̄pxq ¨ upxq ` c̄pxq, which establishes the claim.

We define � : Rs̄
` Ñ R by (a.17); then (a.18) and (a.19) are just versions of (6) and (7) (in

the main text), and so Theorem 1 guarantees that there is a Bernoulli function u : R` Ñ R`

extending ū such that O is rationalizable by V pxq “ �pupxqq. QED

A3.4 Models with budget-dependent reference points

So far in our discussion we have assumed that the agent has a preference over di↵erent

contingent outcomes, without being too specific as to what actually constitutes an outcome in

the agent’s mind. On the other hand, models such as prospect theory have often emphasized

the impact of reference points, and changing reference points, on decision making. Some of

these phenomena can be easily accommodated within our framework.

12



For example, imagine a portfolio choice experiment where, at observation t, the subject

chooses a state contingent bundle x
t from a constraint set Bt P Rs̄

`, so the data set is

O “ tpxt, BtquTt“1. The standard way of thinking about the subject’s behavior is to assume

that his choice from Bt is governed by a preference defined on Rs̄
`, which implicitly means

that the situation where he receives nothing from the experiment in every state (formally the

vector 0) is the subject’s constant reference point. But a researcher may well be interested

in whether the subject has a di↵erent reference point or multiple reference points that vary

with the budget (and perhaps manipulable by the researcher). Most obviously, suppose that

the subject has an endowment point !t P Rs̄
` and a classical budget set Bt “ tx P Rs̄

` :

p
t ¨x § p

t ¨!tu. In this case, a possible hypothesis is that the subject will evaluate di↵erent

bundles in Bt based on a utility function defined on the deviation from the endowment;

in other words, the endowment is the subject’s reference point. Another possible reference

point is that bundle in Bt which gives the same payo↵ in every state.

Whatever it may be, suppose the researcher has a hypothesis about the possible reference

point at observation t, which we shall denote by q
t P Rs̄

`, and that the subject chooses

according to some utility function V : r´K,8qs̄ Ñ R` where K ° 0 is su�ciently large

so that r´K,8qs̄ Ä Rs̄ contains all the possible reference point-dependent outcomes in the

data, i.e., the set
îT

t“1 B̃
t, where

B̃t “ tx1 P Rs̄ : x
1 “ x ´ q

t for some x P Btu.

Let t�p¨, tquTt“1 be a collection of functions, where �p¨, tq : r´K,8qs̄ Ñ R is increasing in

all of its arguments. We say that O “ tpxt, BtquTt“1 is rationalizable by t�p¨, tquTt“1 and

the reference points tqtuTt“1 if there exists a Bernoulli function u : r´K,8q Ñ R` such that

�pupxt´q
tq, tq • �pupx´q

tq, tq for all x P Bt. This is formally equivalent to saying that the

modified data set O1 “ tpxt ´q
t, B̃tquTt“1 is rationalizable by t�p¨, tquTt“1. Applying Theorem

1, rationalizability holds if and only if there is a strictly increasing function ū : X Ñ R`

that obeys (6) and (7) (in the main text), where

X “ tr P R : r “ xt
s ´ qts for some t, su Y t´Ku.

Therefore, we may test whether O is rationalizable by expected utility, or by any of the mod-

els described so far, in conjunction with budget dependent reference points. Note that a test
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of rank dependent utility in this context is su�ciently flexible to accommodate phenomena

emphasized by cumulative prospect theory (see Tversky and Kahneman (1992)), such as a

Bernoulli function u : r´K,8q Ñ R that is S-shaped (and hence nonconcave) around 0 and

probabilities distorted by a weighting function.

A3.5 Models of intertemporal consumption

Models of intertemporal consumption are formally very similar to models of risky or

uncertain consumption, so the GRID method could be applied to study these models as well.

To give a sense of how our method could be applied, we shall consider a data set collected

from a budgetary choice experiment of the type performed by Andreoni and Sprenger (2012).

There is a finite number of observations of each subject. At observation t, the subject

is asked to divide a budget of mt between consumption at date dptq and a later date Dptq,
with the interest rate being rt ° ´1. In formal terms, the budget set at observation t is

Bt “ tpxdptq, xDptqq P R2
` : p1 ` rtqxdptq ` xDptq § mtu. (a.21)

As in Andreoni and Sprenger (2012) we are interested in checking if the data is consistent

with a discounted utility model, possibly with a present bias. In other words, given a data set

O “ tpxt, BtquTt“1 we are asking if there is a discount factor � P p0, 1q, a present bias coe�cient

� ° 0, and a Bernoulli function u : R` Ñ R` such that the choice x
t “ pxt

dptq, x
t
Dptqq at

observation t maximizes

upxdptqq ` �Dptq´dptqupxDptqq

among all pxdptq, xDptqq P Bt, in the case where dptq ° 0; in the case where dptq “ 0 (so the

earlier payment is made at the current date), xt “ pxt
0, x

t
Dptqq should maximize

upx0q ` ��DptqupxDptqq

among all px0, xDptqq P Bt. In the event that the data is not exactly consistent with this

model, we would like to find u, � and � that gives the best fit in the sense of maximizing

Afriat’s e�ciency index.

For a given � and �, we can check if there is Bernoulli function that rationalizes the data

by using Theorem 1. Simply set

X “ t0u Y tr : r “ xt
dptq or r “ xt

Dptq for some observation tu
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and let G “ X 2. Such a Bernoulli function exists if and only if we can find an increasing

function ū : X Ñ R` with the revealed preference conditions (6) and (7) holding between

the observed choice x
t and alternatives in Bt X G. If dptq ° 0, this requires

ūpxt
dptqq ` �Dptq´dptqūpxt

Dptqq • ūpaq ` �Dptq´dptqūpbq for all pa, bq P Bt X G and

ūpxt
dptqq ` �Dptq´dptqūpxt

Dptqq ° ūpaq ` �Dptq´dptqūpbq for all pa, bq P
`
BtzBBt

˘
X G.

and in the case where dptq “ 0, this requires

ūpxt
0q ` ��Dptqūpxt

Dptqq • ūpaq ` ��Dptqūpbq for all pa, bq P Bt X G and

upxt
0q ` ��Dptqupxt

Dptqq ° upaq ` ��Dptqupbq for all pa, bq P
`
BtzBBt

˘
X G.8

So to test (or estimate) such a model involves two stages: first, we fix p�, �q and perform

a linear test to check if there is an increasing ū obeying the revealed preference conditions

stated above or, failing that, to calculate Afriat’s e�ciency index; and second, do a search

through di↵erent values of p�, �q, in order to find a value at which the data set passes exactly,

or comes as close to passing as possible (in the sense of maximizing Afriat’s e�ciency index).

Since this only involves searching two parameters (� and �) for a pass, or a good fit, this is

computationally feasible.9 We could also test the model with concavity imposed on u. In

that case, in stage 1, we perform for a given p�, �q, the linear test specified by Proposition 1

to determine the associated Afriat’s e�ciency index;10 in second stage, search for the p�, �q
at which the data passes exactly or where the e�ciency index is maximized.

A4. More on Concave EU- and RDU-rationalizability

We begin this section with an intuitive example of a classical data set with two obser-

vations that is EU-rationalizable but only with a nonconcave Bernoulli function. We then

explain how we could test for RDU-rationalizability with a concave Bernoulli function in

9 Note that the test for the rank dependent utility model we performed in the empirical section of the
paper also involves searching through two parameters; in that case, they are the distorted probabilities of
the two states (see Section I.D and Section IV in the main text).

10 This corresponds to an application of the proposition where, at observation t, ⇡t

1 “ 1 and ⇡t

2 “ �Dptq´dptq

if dptq ° 0 and ⇡t

2 “ ��Dptq if dptq “ 0. While the probability of each state ⇡s is held fixed across observations
in the proposition, it is clear that that is not crucial to the result, nor do we really need the weights to add
up to 1 (though they must be positive).
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the two-state case (again using the GRID method); this is essentially a continuation of the

discussion in Section III, which describes the test for concave EU-rationalizability. The final

subsection gives the general GRID testing procedure for EU- or RDU-rationalizability with

concave Bernoulli functions when there are multiple states.

A4.1 Example of EU-rationalizability with a nonconcave Bernoulli function

Suppose an agent maximizes expected utility and has the Bernoulli function ûpyq “
py´4q3, which is strictly concave for y † 4 and strictly convex for y ° 4. Note that Bernoulli

functions of this type are not a novel contrivance: indeed, they were used by Friedman and

Savage (1948, Figure 2) to explain why an agent can simultaneously buy insurance and

accept risky gambles. We assume that there are two states of the world, which occur with

equal probability. At pt “ p1, 3{2q and with wealth equal to 1, the agent chooses x1 P r0, 1s
to maximize fpx1q “ px1 ´ 4q3 ` p2p1 ´ x1q{3 ´ 4q3. Over this range, the Bernoulli function

is strictly concave and so is f ; one could check that f 1p1q † 0 so that there is unique

interior solution which we denote x
t “ pb, aq (see Figure A.1). (Solving the (quadratic)

first order condition gives xt “ pb, aq « p0.83, 0.11q.) At the prices pt1 “ p1, 1q with wealth

equal to 64, the agent chooses x1 P r0, 64s to maximize gpx1q “ px1 ´ 4q3 ` p60 ´ x1q3 . It is
straightforward to check that g is strictly convex on r0, 64s and it is thus maximized at the

two end points p0, 64q and p64, 0q.

Now consider a data set with two observations: the bundle x
t “ pb, aq chosen at p

t “
p1, 3{2q and x

t1 “ p64, 0q chosen at p
t1 “ p1, 1q. We know that this data set is EU-

rationalizable by the Bernoulli function ûpyq “ py´4q3. We also know from Afriat’s Theorem

(since these two observations satisfy the generalized axiom of revealed preference) that there

is an increasing, continuous, and concave utility function defined on R2
` that rationalizes

these observations. However, such a function cannot be of the EU form because this data

set is not EU-rationalizable with a concave Bernoulli function.

For readers familiar with classical consumer theory, this is clear because an additive

and concave utility function (on the consumption space) must generate a normal demand

function, while the demand behavior displayed in these observations requires consumption

in state 2 to violate normality.11 Indeed, in Figure A.1a we have performed a Slutsky
11 By definition, a good is normal if a parallel outward shift in the budget line leads to an increase in the
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(a) Data set with two observations (b) Data set with N inserted

Figure A.1: EU-rationalizable but not concave EU-rationalizable data set

decomposition by adding an additional budget line through x
t1
that is parallel to the one

through x
t; demand on this line has to be between c and d for normality to hold, which in

turn means (given that utility is strictly increasing) that there is a bundle between c
1 and

d
1 that is strictly preferred to x

t1
, contradicting the optimality of the latter.

More directly, one could check that these two observations will fail the concave EU

test stated in Proposition 1. In this case, the two observations are pb, aq and p64, 0q, and
64 is also the largest achievable consumption at these two observations, so we can choose

X “ t0, a, b, 64u. The set N is depicted by the dotted lines in Figure A.1b. The point p1, 0q
can be written as pb ` ↵p64 ´ bq, 0q for some ↵ P p0, 1q and the point p64 ´ a, aq can be

written as p64 ´ �p64 ´ bq, aq for some � P p0, 1q, where ↵ ° � (because the budget line at

t1 is steeper than the one at t). Suppose to the contrary that there is a strictly increasing

ū : X Ñ R` with a linear extension ū` that passes the test. This means in particular, by

the optimality condition on pb, aq, that

ūpbq ` ūpaq “ ū`pbq ` ū`paq • ū`p1q ` ū`p0q

“ ūpbq ` ↵ rūp64q ´ ūpbqs ` ūp0q,

demand for that good.
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which implies that

ūpaq ´ ūp0q • ↵pūp64q ´ ūpbqq. (a.22)

Similarly the optimality of p64, 0q implies that

ūp64q ` ūp0q “ ū`p64q ` ū`p0q • ū`p64 ´ aq ` ū`paq

“ ūp64q ´ � rūp64q ´ ūpbqs ` ū`paq.

Re-arranging this inequality gives

�pū`p64q ´ ū`pbqq • ū`paq ´ ū`p0q (a.23)

The inequalities (a.22) and (a.23) are incompatible since ↵ ° � and ūp64q ° ūp0q.

A4.2 Concave RDU-rationalizability with two states

In Section III, we explain how we can test for concave EU-rationalizability of a modified

data set, i.e., the data set Opeq “ tpxt, BtpetqquTt“1, with

Btpetq “ Bppt, etpt ¨ xtq Y txtu

“ tx P Rs̄
` : pt ¨ x § etpt ¨ xtu Y txtu.

(a.24)

(see (14) in the main text), in the case where there are just two states. We now show how

that test can be modified to accommodate concave RDU-rationalizability (in other words,

RDU-rationalizability with a concave Bernoulli function), again in the context of two states.

The two-state results (for both the EU and RDU models) are just special cases of the results

with multiple states which are covered in the next subsection. Nonetheless, we present the

two-state case separately because the results are easier to describe and to understand, and

also because this is the relevant case for the empirical tests implemented in Section IV.

We assume that the objective probabilities for both states are strictly positive and, with

no loss of generality, assume that ⇡1 • ⇡2. As we explain in Section I.D, in this model,

the subject chooses a bundle x “ px1, x2q in the budget set to maximize the utility function

V : R2
` Ñ R`, with � given by (a.7), so

V px1, x2q “ �pupx1q, upx2qq “

$
’&

’%

⇢1upx1q ` p1 ´ ⇢1qupx2q if x1 § x2

p1 ´ ⇢2qupx1q ` ⇢2upx2q if x1 ° x2

(a.25)

18



The constants ⇢1 and ⇢2 obey (11).

Recall the definitions of X ˚˚, X , ū, and ū’s linear extension ū` in Section III. Suppose

that Opeq is RDU-rationalizable by the concave Bernoulli function u, which means that

x
t “ pxt

1, x
t
2q is optimal in the set Btpetq. By construction, ū` is a Bernoulli function satisfying

ū`prq “ uprq for all r P X and it is linear between adjacent values of X ; furthermore, the

concavity of u guarantees that ū` is also concave, with uprq • ū`prq for all r P r0, r̄s. These
properties guarantee that �pupx1q, upx2qq • �pū`px1q, ū`px2qq for any bundle px1, x2q and

�pupxt
1q, upxt

2qq • �pū`pxt
1q, ū`pxt

2qq at every choice bundle pxt
1, x

t
2q. It follows immediately

from this observation that Opeq is also RDU-rationalized by ū`. In particular, the following

must hold:

�pū`pxt
1q, ū`pxt

2qq • �pū`pmq, ū`pmqq for pm,mq P BBppt,pt ¨ xtq (a.26)

and

�pū`pxt
1q, ū`pxt

2qq • �pū`px1q, ū`px2qq for all px1, x2q P N X BBppt,pt ¨ xtq. (a.27)

The first condition states that the observed choice must be preferred to the bundle on the

45 degree line intersecting with the budget line BBppt,pt ¨ xtq. The second states that the

observed choice is superior to points on the budget line that intersect with the net N . These

conditions follow immediately from the assumed optimality of xt in the set Btpetq. The next
results states that these conditions are also su�cient for concave RDU-rationalizability.

Proposition A.4. Consider a two-state experiment in which ⇡1 • ⇡2 and suppose a modified

data set from this experiment, Opeq “ tpxt, BtpetqqutPT , is RDU-rationalizable with p⇢1, ⇢2q
satisfying (11) (in the main text) and a concave Bernoulli function u : R` Ñ R`. Let

X Ä R` contain X ˚˚
(as defined by (15) in the main text). Then u’s restriction to X ,

ū : X Ñ R`, has the following properties:

(i) ūprq † ūpr1q for all r † r1
;

(ii) for any three adjacent points r † r1 † r2
in X ,

ūpr1q ´ ūprq
r1 ´ r

• ūpr2q ´ ūpr1q
r2 ´ r1
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(iii) ū` : R` Ñ R`, the linear extension of ū, satisfies (a.26) and (a.27) at all t, with �

given by (a.25).

Conversely, if for some modified data set Opeq there is p⇢1, ⇢2q satisfying (11) and ū : X Ñ
R` such that properties (i), (ii), and (iii) are satisfied, then ū’s linear extension ū` is a

concave Bernoulli function that RDU-rationalizes Opeq.

Proof. If Opeq is a data set from this experiment that is RDU-rationalizable with a concave

Bernoulli function u, then its restriction ū must obviously satisfy (i) and (ii). And we have

already established that the conditions (a.26) and (a.27) hold at all t. We turn now to the

converse.

Suppose there is ū : X Ñ R` satisfying conditions (i) to (iii) and let ū` be its linear

extension. Then (i) guarantees that ū` is strictly increasing on R` and (ii) guarantees

that ū` is concave. We claim that V pxtq • V pxq for any x P Btpetq, where V px1, x2q “
�pū`px1q, ū`px2qq. Indeed, ū` is linear between adjacent values of X and the probability

weights in the definition of � (see (a.25) is constant in the regions of R2
` above and below

the 45 degree line. It follows that the utility function V (with u “ ū`) is linear in every set

W Ä R2
`, where W equals

prr, r1s ˆ rz, z1sq X tpx1, x2q P R2
` : x2 § x1u

or

prr, r1s ˆ rz, z1sq X tpx1, x2q P R2
` : x2 • x1u,

with r and r1 being adjacent points in X (and similarly z and z1). It follows that in any

set of the form xW X Bppt, etpt ¨ xtq, for some xW “ rr̂, r̂1s ˆ rẑ, ẑ1s, the function V will be

maximized at some px˚
1 , x

˚
2q that lies on the budget line (i.e., px˚

1 , x
˚
2q P BBppt, etpt ¨xtq, since

V is strictly increasing) and either x˚
1 P tr̂, r̂1u, x˚

2 P tẑ, ẑ1u, or x˚
1 “ x˚

2 . More generally, there

is px˚˚
1 , x˚˚

2 q maximizing V px1, x2q “ �pū`px1q, ū`px2qq in Bppt, etpt ¨ xtq, such that either

x˚˚
1 “ x˚˚

2 , with px˚˚
1 , x˚˚

2 q P BBppt, etpt ¨xtq, or px˚˚
1 , x˚˚

2 q P N X BBppt, etpt ¨xtq. Therefore,
(a.26) and (a.27) are su�cient to guarantee the optimality of xt in Btpetq. QED

Given the functional form of � (see (a.25)), conditions (i) to (iii) translate into a finite

set of inequalities that are bilinear in the unknowns t⇢1, ⇢2u and tūprqurPX . In the imple-

mentation of this test in Section IV, we let ⇢1 and ⇢2 take di↵erent values on a very fine
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Figure A.2: Test for concave RDU-rationalizability

grid in r0, 1s2, subject to (11), and (for each case) perform the corresponding linear test to

search for a solution in tūprqurPX ; Opeq is RDU-rationalizable if such a solution exists for

some value of p⇢1, ⇢2q.

As an illustration of how this test works, we consider the data set Opeq depicted in Figure

4a. (Recall that we also looked at this example when discussing concave EU-rationalizability

in Section III.) Given that the three observed choices are p2, 4q, p4, 3q, and p6, 1q and choosing

r̄ “ 10, we obtain X ˚˚ “ t0, 1, 2, 3, 4, 6, 10u. Letting X “ X ˚˚, the test involves setting

up a collection of inequalities that are bilinear in t⇢1, ⇢2u and tūprqurPX (corresponding to

conditions (i) to (iii)) and checking if it has a solution. Conditions (i) and (ii) are clear

enough, so let us explain condition (iii), which guarantees, for each t, the optimality of the

observed choice xt over a finite set of alternatives in the constraint set Btpetq. To be specific,

we consider its restrictions on the second observation.

Figure A.2 depicts B2pe2q, along with N and the 45 degree line, which are indicated

by dashed lines. These lines divide R2
` into sets (corresponding to W in the proof of

Proposition A.4) that are either boxes or right-angled triangles. There are nine bundles

in N X BB2ppt, e2pt ¨ xtq; these bundles along with the bundle m “ pm,mq on the 45 de-
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gree line are indicated by the little squares on the budget line; the coordinates of these

bundles could be computed from Opeq. Condition (iii) requires that V (computed with �

given by (a.25) and u “ ū`) satisfies the following: V px2q • V pmq and V px2q • V pxq for

x P N X BB2ppt, e2pt ¨ xtq. This translates into ten bilinear inequalities. Since x
2 is below

the 45 degree line, V px2q “ p1´ ⇢2qūp6q ` ⇢2ūp1q. As an illustration, we write out condition

(iii) for bundle m, a, and b. The condition V px2q • V pmq translates into

p1 ´ ⇢2qūp6q ` ⇢2ūp1q • ūpmq.

The bundle a “ p1, 2� ` 3p1 ´ �qq for some � P p0, 1q (which can be calculated). Since a is

above the 45 degree line and ū` is piecewise linear,

V paq “ ⇢1ū`p1q ` p1 ´ ⇢1qū`p2� ` p1 ´ �q3q “ ⇢1ūp1q ` p1 ´ ⇢1qr�ūp2q ` p1 ´ �qūp3qs.

Thus condition (iii) requires

p1 ´ ⇢2qūp6q ` ⇢2ūp1q • ⇢1ūp1q ` p1 ´ ⇢2q�ūp2q ` p1 ´ ⇢1qp1 ´ �qūp3q.

In the case of the bundle b “ p4,�1 ` p1 ´ �1q2q for some �1 P p0, 1q,

V pbq “ p1 ´ ⇢2qūp4q ` ⇢2�
1ūp1q ` ⇢2p1 ´ �1qūp2q

since b is below the 45 degree line and condition (iii) requires

p1 ´ ⇢2qūp6q ` ⇢2ūp1q • p1 ´ ⇢2qūp4q ` ⇢2�
1ūp1q ` ⇢2p1 ´ �1qūp2q.

A4.3 Concave EU- and RDU-rationalizability with multiple states

We are interested in testing the EU- or RDU-rationalizability of the modified data set

Opeq “ tpxt, BtpetqutPT (with Btpetq defined by (14)). Recall the definitions of X ˚˚, X ,

ū, and ū’s linear extension ū` in Section III. Given any Bernoulli function u, ū` is also a

Bernoulli function that is linear between adjacent values of X and satisfies ū`prq “ uprq for

all r P X ; furthermore, if u is concave then ū` is concave, with uprq • ū`prq for all r P r0, r̄s.
The last property guarantees that

�pupx1q, upx2q, . . . , upxs̄qq • �pū`px1q, ū`px2q, . . . , ū`pxs̄qq
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for any bundle x “ px1, x2, ..., xs̄q, so long as � is increasing. This holds, in particular, for

the EU and RDU models, where � is strictly increasing, provided ⇡ " 0 (see (3) and (a.7)).

Furthermore, at any observed choice x
t,

�pupxt
1q, upxt

2q, . . . , upxt
s̄qq “ �pū`pxt

1q, ū`pxt
2q, . . . , ū`pxt

s̄qq.

Thus if one replaces u with ū`, the utility of every chosen bundle xt stays the same, while the

utility of any bundle x is weakly lower. It follows that if Opeq is EU-rationalizable with the

concave Bernoulli function u, then it is also EU-rationalizable with the concave Bernoulli

function ū`. Similarly if Opeq is RDU-rationalizable with the transformation function ⇢

and the concave Bernoulli function u then it is RDU-rationalizable with the transformation

function ⇢ and the concave Bernoulli function ū`. Thus to determine whether a data set

is EU- or RDU-rationalizable, we can confine our search to piecewise linear extensions of

strictly increasing functions ū : X Ñ R` (where X is a finite subset of R` containing X ˚˚

(as defined by (15)).

We now describe in turn the tests for concave EU-rationalizability and for concave RDU-

rationalizability. Note that both tests use the GRID method: a data set is rationalizable by

a given model if and only if it is possible, within that model, to guaranteeing the superiority

of the chosen bundle against a carefully selected, finite set of alternatives in the budget set

(at every observation).

A4.3.1 Concave EU-rationalizability

Since ū` is linear between adjacent values of X , the utility function

V pxq “
s̄ÿ

s“1

⇡sū`pxsq (a.28)

is linear for x P W , where

W “ rr1, r1
1s ˆ rr2, r1

2s ˆ ....rrs̄, r1
s̄s, (a.29)

with rs and r1
s being adjacent values of X (for all s). Since W X BBppt, etpt ¨xtq is a convex

set and V is linear within this set, within this set V must be maximized at an extreme

point. Thus for any piecewise linear Bernoulli function ū`, the corresponding utility function
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V (defined by (a.28)) has the following property: there is x
˚ P BBppt, etpt ¨ xtq such that

V px˚q • V pxq for all x P BBppt, etpt ¨ xtq and x
˚ P St, where St is defined as follows:

x P St if there is W such that x is an extreme point of W X BBppt, etpt ¨ xtq.

Since W X BBppt, etpt ¨ xtq is a convex polytope, it has a finite number of extreme points;

with only finitely many distinct sets W , St is also a finite set. It follows that to check if ū`

generates V such that V pxtq • V pxq for all x P Btpetq it is necessary and su�cient to check

if this inequality holds for all x P St. Thus we have shown the following result.

Proposition A.5. Suppose the data set Opeq is EU-rationalizable with probability ⇡ " 0

by a concave Bernoulli function u. Let X be a finite set in R` containing X ˚˚
(as defined

by (15)). Then u’s restriction to X , ū : X Ñ R`, has the following properties:

(i) ūprq † ūpr1q for all r † r1
;

(ii) for any three adjacent points r † r1 † r2
in X ,

ūpr1q ´ ūprq
r1 ´ r

• ūpr2q ´ ūpr1q
r2 ´ r1

(iii) ū` : R` Ñ R`, the linear extension of ū, satisfies

s̄ÿ

s“1

⇡sū`pxt
sq •

s̄ÿ

s“1

⇡sū`pxsq for all x P St
, and for all t. (a.30)

Conversely, if there is ū : X Ñ R` with properties (i), (ii), and (iii), then its linear extension

ū` is a concave Bernoulli function that EU-rationalizes Opeq.

Proof. Clearly conditions (i) and (ii) are necessary because u is a concave Bernoulli function,

while (iii) holds because ū` also EU-rationalizes the data set. Conversely, if (i) and (ii) holds,

then its linear extension ū` is a concave Bernoulli function, and we have already explained

why condition (iii) is su�cient to guarantee that the data set is EU-rationalized with this

Bernoulli function. QED

Note that we have consciously stated this result in a way that it is analogous to Propo-

sition 1. Conditions (i) and (ii) are the same in both propositions, while condition (iii) in

this result generalizes condition (iii) in Proposition 1; indeed, when there are there are two

states, St “ N X BBppt, etpt ¨ xtq.
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A4.3.2 Concave RDU-rationalizability

In this case, the utility function V : Rs̄
` Ñ R` has the form V pxq “ ∞s̄

s“1 �pxqupxsq,
where � is defined by (a.6). We claim that we can partition the consumption space Rs̄

` such

that within each region, the probability weights are the same, i.e., for x1 and x
2 in the region,

�px1, sq “ �px2, sq for all s. Indeed, let ✓ : S Ñ S be a permutation of the set of states S

and X✓ “ tu P Rs̄
` : rpu, sq “ ✓psq for all s P Su, where r is the ranking function defined in

Section A2. For example, suppose there are three states and ✓̂p1q “ 2, ✓̂p2q “ 3 and ✓̂p3q “ 1.

Then p5, 4, 8q is in X✓̂ because consumption is highest in the third state, second highest in

the first state, and lowest in the second state. Similarly, one could check that the element

p1, 1, 5q P X✓̂ but p5, 1, 5q R X✓̂. Obviously, the regions X✓ associated with all possible

permutations ✓ partition the space Rs̄
`. For x

1 and x
2 in X✓, we have rpx1, sq “ rpx2, sq for

all s, which implies that �px1, sqq “ �px2, sq for all s.

Notice also that the closure of X✓, which we shall denote by sX✓ is an easily characterized,

finitely-generated convex cone. For example, sX✓̂ is the smallest cone containing p0, 0, 1q,
p1, 0, 1q and p1, 1, 1q; as another example, if the permutation is the identity map ◆, then X̄◆

is the smallest cone containing p1, 0, 0q, p1, 1, 0q, and p1, 1, 1q.

In the case where the Bernoulli function is ū`, the linear extension of some strictly

increasing function ū : X Ñ R`, the corresponding utility function V : R` Ñ R` given

by V pxq “ ∞s̄
s“1 �pxqū`pxsq is linear in W X X✓, where W is given by (a.29) and, by the

continuity of V , linear in W X sX✓. This is because ū` is linear in the set W and �p¨, sq is

constant for any two elements in X✓. Given that

W X sX✓ X BBppt, etpt ¨ xtq,

is a convex set, the maximum of V in this set is achieved at one of its extreme points. More

generally, there is x˚ P BBppt, etpt ¨ xtq such that V px˚q • V pxq for all x P BBppt, etpt ¨ xtq
and x

˚ P Ct, where Ct is defined as follows:

x P Ct if x is an extreme point of W X sX✓ X BBppt, etpt ¨ xtq for some W and ✓.

SinceW X sX✓XBBppt, etpt ¨xtq is a convex polytope, it has a finite number of extreme points.

Furthermore, there are only finitely many distinct sets W and finitely many permutations
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✓, which means that Ct is finite set. To check if ū` has the property that V pxtq • V pxq for

all x P Btpetq it is necessary and su�cient to check if this inequality holds for the finite set

of x P Ct.12 The following result summarizes our observations.

Proposition A.6. Suppose the data set Opeq is RDU-rationalizable with the transformation

function ⇢ and the concave Bernoulli function u. Let X be a finite set in R` that contains

X ˚˚
, where the latter is defined by (15) (in the main paper) and let

� “
#
r P R : r “

ÿ

sPS1
⇡s for some S 1 Ñ S “ t1, 2, . . . , s̄u

+
.

Then the restriction of ⇢ to �, ⇢̄ : � Ñ R, and the restriction of u to X , ū : X Ñ R` have

the following properties:

(i) ūprq † ūpr1q for all r † r1
;

(ii) for any three adjacent points r † r1 † r2
in X ,

ūpr1q ´ ūprq
r1 ´ r

• ūpr2q ´ ūpr1q
r2 ´ r1

(iii) ū` : R` Ñ R`, the linear extension of ū, satisfies

s̄ÿ

s“1

�pxt, sqū`pxt
sq •

s̄ÿ

s“1

�px, sqū`pxsq for all x P Ct
, and for all t (a.31)

(with � defined by (a.6)).

Conversely, if there are strictly increasing functions ⇢̄ : � Ñ R` (with ⇢̄p0q “ 0 and ⇢̄p1q “ 1)

and ū : X Ñ R` with properties (i), (ii), and (iii), then its linear extension ū` is a concave

Bernoulli function that RDU-rationalizes Opeq along with any transformation function ⇢

extending ⇢̄.

Proof. Conditions (i) and (ii) are clearly necessary because u is strictly increasing (by the

definition of a Bernoulli function) ad concave (by assumption), while (iii) is also necessary

because if u RDU-rationalizes Opeq then so does ū` (with the same transformation function).

Conversely, if (i) and (ii) holds, then its linear extension ū` is a concave Bernoulli function,

12 There are e�cient algorithms to find the extreme points of a convex polytope (see Matheiss and Rubin
(1980)).
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and we have already explained why condition (iii) is su�cient to guarantee that the data

set is RDU-rationalized with the Bernoulli function ū` and any transformation function that

extends ⇢̄. QED

This result generalizes Proposition A.4 to the case of multiple states. Conditions (i) and

(ii) are the same in both propositions, while condition (iii) in this result generalizes condition

(iii) in Proposition A.4; indeed, when there are there are two states, Ct consists precisely

of N X BBppt, etpt ¨ xtq and the point where the budget line BBppt, etpt ¨ xtq meets the 45

degree line.

Note that the inequality (a.31) in condition (iii) can be written as a bilinear inequality

in the unknowns t⇢̄p�qu�P� and tūprqurPX (and the number of unknowns is finite since both

� and X are finite sets). Thus the test provided by Proposition A.6 involves solving a finite

set of bilinear inequalities.

A5. Description of the GARP and F-GARP tests

In addition to the expected utility, disappointment aversion, and rank dependent utility

models, our empirical implementation in Section IV of the main text also implements the

(already known) rationalizability tests of two more basic utility models: locally nonsatiated

utility and stochastically monotone utility. In this section, we describe these models and

explain how they could be tested on classical data sets which have been modified by some

vector e P r0, 1sT , in the sense given by (14) in Section II.

A5.1 Locally nonsatiated utility (LNU)

In this section, we continue with the discussion of Section II in the main text. Our

discussion here partially overlaps with Section A1.1 of the Online Appendix but it could be

read independently of that section.

The locally nonsatiated utility (LNU) model is the most permissive of the models that we

consider in the empirical implementation in Section IV of the main text since all the other

models are special cases of this model. A utility function U : Rs̄
` Ñ R is locally nonsatiated

if at every open neighborhood N of x P Rs̄
`, there is y P N such that Upyq ° Upxq. Afriat’s

(1967) Theorem tells us that a classical data set O “ tpxt,ptquTt“1 is LNU-rationalizable if
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and only if it obeys a consistency condition known as the Generalized Axiom of Revealed

Preference (GARP). There is natural generalization of GARP (which we shall for convenience

also simply refer to as GARP) which characterizes the rationalizability of any modified data

set Opeq “ tpxt, BtpetquTt“1, where

e “ pe1, e2, ..., rT q P r0, 1sT

and Btpetq is given by (14).

Let D “ txt : t “ 1, 2, . . . , T u; in other words, D consists of those bundles that were

chosen by the subject at some observation in the data set. For bundles xt and x
t1
in D, xt

is said to be revealed preferred to x
t1
at the e�ciency vector e (we denote this by x

t •˚
e x

t1
)

if xt1 P Btpetq;13 x
t is said to be strictly revealed preferred to x

t1
(and we denote this by

x
t °˚

e x
t1
) if xt1 P Btpetq and p

t ¨ xt1 † et pt ¨ xt. Then the following extension of Afriat’s

Theorem holds: Opeq is rationalizable by a locally nonsatiated utility function if and only

if, whenever there are observations ppti ,xtiq (for i “ 1, 2, . . . , n) in O satisfying

x
t1 •˚

e x
t2 , x

t2 •˚
e x

t3 , . . . , xtn´1 •˚
e x

tn , and x
tn •˚

e x
t1 , (a.32)

then we cannot replace •˚
e with °˚

e anywhere in this chain (see Halevy, Persitz, and Zrill

(2018)). The latter property states that while there can be revealed preference cycles in O,

they cannot contain a strict revealed preference.14 This property is a generalization of GARP,

which is the special case where e “ p1, 1, . . . , 1q. We shall also refer to this generalization as

GARP, bearing in mind that it is always conditional on some e.15

From an empirical perspective, it is important to note that checking whether or not

GARP holds is computationally undemanding: the (strict) revealed preference relations on

13 Our terminology di↵ers a little from the standard, which refers to •˚
e as the direct revealed preference

relation and uses revealed preference to refer to the transitive closure of this relation. Since our exposition
avoids any discussion of the transitive closure, we have adopted the simpler terminology here.

14 To be specific: a modified data set Opeq “ tpxt, BtpetqquT
t“1 will obey this property whenever it is

rationalizable by an LNU function U , in the sense that Upxtq • Upxq for all x P Rs̄

` such that pt ¨x § etpt ¨xt

(whether or not U is continuous); conversely, whenever a modified data set Opeq obeys this property, then
Opeq is rationalizable by a continuous, strictly increasing, and concave utility function U .

15 We gave another generalization of GARP in Section A1.1 of this Appendix for general downward
comprehensive constraint sets. The two definitions are closely related. Note that Btpetq “ txtuYBppt,pt¨xtq
is not downward comprehensive for any et † 1; however its downward closure Btpetq “ tx P Rs̄

` : x §
x
tu Y Bppt,pt ¨ xtq is downward comprehensive. One could check that the data set tpxt, BtpetqquT

t“1 obeys
GARP in the sense defined in Section A1.1, if and only if the modified data set tpxt, BtpetqquT

t“1 obeys
GARP in the sense defined here.
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D can be easily constructed (for a fixed e); once this has been established, we can apply

Warshall’s algorithm to compute the transitive closure of the revealed preference relations

and then check for the absence of cycles containing strict revealed preferences. This is the

test of GARP we use in our empirical implementation.

A5.2 Stochastically monotone utility (SMU)

We discuss in greater detail the stochastically monotone utility (SMU) function model

introduced in Section IV and explain how rationalizability by this model of a modified data

set can tested.

For x and y in Rs̄
`, we write x •FSD y if x first order stochastically dominates y (given

the payo↵s and the objectively known probabilities) and write x °FSD y if x •FSD y and the

two distributions are distinct. One way of sharpening the locally nonsatiated utility model

is to require that the utility function U : Rs̄
` Ñ R be stochastically monotone. By this we

mean that Upxq ° p•qUpyq whenever x °FSD y (x •FSD y). Note that the rank dependent

utility, disappointment aversion, and expected utility models all obey this property. In the

Choi et al. (2007) experiment, there are two states; it is straightforward to check that when

⇡1 “ ⇡2 “ 1{2, a utility function is stochastically monotone if and only if it is strictly

increasing and symmetric; when ⇡1 ° ⇡2, a utility function U is stochastically monotone if

and only if it is strictly increasing and Upa, bq ° Upb, aq whenever a ° b.

Since a utility function U that is stochastically monotone is also strictly increasing, any

data set that is rationalizable by a stochastically monotone utility function is also rational-

izable by a locally nonsatiated utility function. However, the converse is not true; indeed,

the single observation given in Example 1 in the main text passes GARP trivially, but it

cannot be rationalized by any symmetric and strictly increasing utility function.

Nishimura, Ok, and Quah (2017) have developed a test for rationalizability by stochas-

tically monotone utility functions. The test can be thought of as a version of GARP, but

with suitably modified revealed preference relations. Let Opeq “ tpxt, BtpetquTt“1 be a mod-

ification by the vector e of a classical data set O “ tpxt,ptquTt“1. For bundles x
t and x

t1

in D “ txt : t “ 1, 2, . . . , T u, we say that x
t
is F-revealed preferred to x

t1
(at vector e) if

there is a bundle y such that y P Btpetq and y •FSD x
t1
; this revealed preference is strict
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if y can be chosen to satisfy either p
t ¨ y † et pt ¨ xt or y °FSD x

t. Nishimura, Ok, and

Quah (2017) show that Opeq is rationalizable by a stochastically monotone utility function

if and only if it does not admit F-revealed preference cycles (such as (a.32)) containing strict

F-revealed preferences; we call the latter property F-GARP (at the e�ciency threshold e),

where ‘F’ stands for first order stochastic dominance.16 Clearly this result is analogous to

the characterization of rationalizability by locally nonsatiated utility functions, except that

the revealed preferences are defined di↵erently.

It is not di�cult to see that in checking whether xt is F-revealed preferred or F-strictly

revealed preferred to x
t1
we can always choose the intermediate vector y, if it exists, to be

a permutation of xt1
. In particular, suppose that there are just two equiprobable states.

Then x
t is F-revealed preferred to x

t1 “ pa, bq if one of two conditions hold: either (i)

p
t ¨ pa, bq § etpt ¨ xt or (ii) p

t ¨ pb, aq § etpt ¨ xt (since pa, bq and pb, aq are stochastically

equivalent). In the case where there are two states and ⇡1 ° ⇡2, xt is revealed preferred to

x
t1 “ pa, bq if either one of two conditions hold: (i) p

t ¨ pa, bq § etpt ¨ xt or (ii) a § b and

p
t ¨ pb, aq § etpt ¨ xt (since pb, aq first order stochastically dominates pa, bq when a § b and

⇡1 ° ⇡2). All the experimental data analyzed in this paper involves just two states, so their

F-revealed preference relations are easily obtained in this manner. Once the relations are in

place, checking for the absence of cycles via Warshall’s algorithm is also straightforward.

A6. Empirical Application: More on Choi et al. (2007)

A6.1 Generating random data sets obeying GARP or F-GARP

The process of generating a random data set obeying GARP (F-GARP) at a given ef-

ficiency threshold is as follows. First, we generate 50 budget sets as in Choi et al. (2007).

Next, we select a budget line and randomly (uniformly) choose a bundle on that line. Then

we select a second budget line and randomly choose a bundle from that part of the line

which guarantees that this observation, along with the first, obeys GARP (F-GARP) at the

given e�ciency threshold. A third budget line is then selected and a bundle randomly chosen

16 The term F-GARP is ours and not found in Nishimura, Ok, and Quah (2017). Their result is applicable
to general data sets with compact constraint sets, and not just to modified data sets. Their result states
that if F-GARP holds then the data set can be rationalized by a stochastically monotone and continuous
utility function.
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from that part of the line so that all three observations together obey GARP (F-GARP).

Note that such a bundle must exist; indeed, the demand (on the third budget line) arising

from any locally nonsatiated (stochastically monotone) utility function rationalizing the first

two observations will have this property. We then choose a fourth budget line and a bundle

on that line randomly so that the first four observations obey GARP (F-GARP), and so

on. We generate 30,000 data sets (with 50 observations each) which pass (GARP) F-GARP

at each of the two e�ciency thresholds (0.9 and 0.95) in this manner. (So there are four

distinct collections of data sets, with each collection containing 30,000 data sets.) After that

we subject each data set to a test for a more specialized model (whether it is EU, DA, or

RDU). By the Azuma-Hoe↵ding inequality, in order to be 100p1 ´ �q percent confident that

the sample pass rate resulting from a simulation is within ✏ of the true probability of passing

the test, we require at least N “ p1{2✏2q log p2{�q samples; with 30,000 samples, we can be

99.5 percent sure that the estimates in Table 5 are within 0.01 of the true value.

(a) ⇡1 “ 1{2 (b) ⇡1 ‰ 1{2

Figure A.3: Distributions of e�ciency indices (Choi et al., 2007)

A6.2 Probability distortions in the RDU model

The RDU model generalizes the EU model by permitting a distortion of the objective

probabilities. With two states, the probability of the less favorable state is distorted to be

gp⇡q when ⇡ is the true probability. In the asymmetric treatment of Choi et al. (2007), ⇡ is

either 1/3 or 2/3. It turns out that, at the 0.9 threshold, all of the 15 subjects who fail EU but
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pass RDU (see Table 6 in the main text) continue to do so if we restrict gp2{3q P r0.55, 0.75s
and gp1{3q P r0.25, 0.45s. (Note that g may di↵er across subjects.) At the 0.95 threshold,

the same restrictions on the distorted probabilities capture 11 of the 12 subjects who pass

RDU and fail EU. So it seems that those who pass RDU do so with fairly modest distortions

of the true probabilities.

Furthermore, there is some evidence that subjects deflate the probability of the less

favorable state when it is objectively 2/3 and inflate the probability when it is 1/3, so

that the cumulative probability weighting function has the shape favored by cumulative

prospect theory. Indeed, if we restrict ourselves to choosing gp2{3q P r0.55, 2{3s and gp1{3q P
r1{3, 0.45s, we still manage to capture every subject who passes the RDU test at the 0.9

threshold and all but two who pass at the 0.95 threshold. On the other hand, the mirror

restriction performs very badly: if we insist on choosing gp2{3q P r2{3, 0.75s and gp1{3q P
r0.25, 1{3s, the RDU model captures no subject at either e�ciency threshold other than

those who are already EU-rationalizable. (Note that for any subject who passes RDU,

there will typically be more than one set of distorted probabilities at which the subject is

rationalizable.)

We know from Table 4 in the main text that, for the symmetric treatment the pass rates

of the EU and RDU/DA models di↵er only at the e�ciency threshold 0.95, where 5 subjects

pass RDU/DA but fail EU. All 5 subjects pass the RDU test for some gp1{2q † 0.5, which

is consistent with disappointment aversion, and 4 of them pass with values of gp1{2q chosen

from the interval r0.45, 0.5q.

A6.3 Distributions of e�ciency indices

Figure A.3 depicts the distributions of e�ciency indices, including the cRDU and cDA

models, thereby augmenting Figure 6 in the main text.

A7. Empirical Application: More on Choi et al. (2014)

As described in the main text, the experiment in Choi et al. (2014) was conducted on

1,182 CentERpanel adult members, which is a representative sample of the Dutch-speaking

population of the Netherlands. Each subject was asked to make allocation decisions on
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25 linear budget sets; price vectors were drawn randomly as in Choi et al. (2007) and

varied across rounds and subjects; income was normalized to one; and state probabilities

were symmetric (⇡1 “ ⇡2 “ 1{2) and commonly known. The distributions of critical cost

e�ciency indices corresponding to utility maximization (GARP), stochastically monotone

utility maximization (F-GARP), expected utility (EU) maximization, and concave expected

utility (cEU) maximization are all depicted in Figure 7 in the main text.

e “ 0.90 e “ 0.95 e “ 1.00

GARP 683/1,182 (58%) 535/1,182 (45%) 231/1,182 (20%)

F-GARP 396/1,182 (34%) 273/1,182 (23%) 14/1,182 (1%)

EU 384/1,182 (32%) 253/1,182 (21%) 12/1,182 (1%)

cEU 330/1,182 (28%) 205/1,182 (17%) 0/1,182 (0%)

Table A.1: Pass rates by e�ciency threshold (Choi et al., 2014)

e “ 0.9 e “ 0.95

Sample Prop. Conf. Interval Sample Prop. Conf. Interval

cEU 330/1,182 (0.279) [0.254, 0.306] 205/1,182 (0.173) [0.152, 0.196]

EU 384/1,182 (0.325) [0.298, 0.352] 253/1,182 (0.214) [0.191, 0.239]

EUzcEU 54/1,182 (0.046) [0.035, 0.059] 48/1,182 (0.041) [0.030, 0.053]

Table A.2: Confidence intervals on preference types (Choi et al., 2014)

In Tables A.1 and A.2, we display pass rates by e�ciency threshold and confidence

intervals on preference types for the Choi et al. (2014) data, as we did for the Choi et al.

(2007) data in the main text. It is worth reiterating some observations already made in

the main text: (1) the EU model performs well, at least in the sense that around half of

GARP-consistent subjects (at some given threshold) are also consistent with the EU model;

(2) because the pass rates of the EU model are so close to that for F-GARP, the contribution

of the RDU model to account for the behavior of subjects who are not EU-rationalizable

must be limited; and (3) unlike the other two experimental studies we analyze, imposing

concavity on the Bernoulli function does not significantly lower pass rates for the expected

utility model in this case.

Choi et al. (2014) related the e�ciency index for GARP to various covariates of interest,

including sex, age, education, income, work status, occupation, and wealth. We could extend

this analysis by relating these covariates with e�ciency indices for the other models. Figure
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A.4 is an exact replication of Figure 3 in Choi et al. (2014). It displays sample means and

95% confidence intervals for the e�ciency index in di↵erent subpopulations. Figures A.5,

A.6, and A.7 are new and display sample means and 95% confidence intervals in the same

subpopulations, but for the F-GARP, EU, and cEU e�ciency indices. While the confidence

intervals corresponding to F-GARP are necessarily lower, the patterns just described are

nonetheless the same; notice, however, that the 95% confidence intervals are wider, indicating

that the e�ciency indices corresponding to F-GARP are estimated with less precision. Lastly,

the indices corresponding to F-GARP and EU are virtually identical, and for cEU, the indices

are very slightly lower than for EU.

Figure A.4: Mean CCEI Scores (GARP)

In Table A.3, we replicate and extend Table 2 in Choi et al. (2014), which presents

the results of linear regressions between the e�ciency indices and a number of covariates of

interest. Columns (1) and (2) correspond to GARP and F-GARP, i.e., with the e�ciency

indices for GARP and F-GARP as the dependent variables, and are simple replications of

Choi et al. (2014); columns (3) and (4) apply the same linear regression analysis, but to

the EU and cEU indices that we have calculated. There are no major changes to the story

presented in Choi et al. (2014), which is that all else equal, there are (statistically significant)

34



Figure A.5: Mean CCEI Scores (F-GARP)

Figure A.6: Mean CCEI Scores (EU)

negative age e↵ects and positive education e↵ects on the various rationality indices.

Lastly, in Tables A.4–A.6, we replicate and extend Table 3 in Choi et al. (2014), which
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Figure A.7: Mean CCEI Scores (cEU)

contains the results from a set of linear regressions of wealth measures (assets net of liabilities)

on e�ciency indices plus a set of covariates. They consider three cases: log wealth with

sample restricted to households where the respondent is 35 years or older, log wealth with

no sample restrictions, and wealth with no sample restrictions (corresponding to columns

1, 2, and 3 respectively in their Table 3). In all three cases, Choi et al. (2014) find that

an increase in the e�ciency index corresponding to GARP is associated with an increase in

wealth, after controlling for other factors such as income. Tables A.4–A.6 indicate that this

positive association remains true if one uses the e�ciency index corresponding to F-GARP,

EU, and cEU, though the e↵ect is statistically weaker than if one uses the GARP e�ciency

index (compare column (1) with columns (2), (3), and (4) in Tables A.4–A.6).
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(1) (2) (3) (4)

Constant 0.887 0.735 0.735 0.725
p0.022q p0.037q p0.037q p0.036q

Female ´0.024 ´0.012 ´0.012 ´0.009
p0.009q p0.015q p0.015q p0.014q

Age
35–49 ´0.016 ´0.007 ´0.008 ´0.009

p0.011q p0.020q p0.019q p0.019q
50–64 ´0.052 ´0.077 ´0.078 ´0.082

p0.011q p0.020q p0.020q p0.019q
65+ ´0.051 ´0.081 ´0.082 ´0.087

p0.020q p0.032q p0.032q p0.031q
Education

Medium 0.009 0.021 0.021 0.021
p0.011q p0.017q p0.017q p0.016q

High 0.026 0.059 0.058 0.056
p0.011q p0.018q p0.018q p0.017q

Income
e2,500–3,499 0.026 0.026 0.027 0.028

p0.012q p0.019q p0.019q p0.018q
e3,500–4,999 0.020 0.005 0.006 0.001

p0.013q p0.020q p0.019q p0.019q
e5,000+ 0.033 0.016 0.017 0.015

p0.014q p0.022q p0.022q p0.022q
Occupation

Paid Work 0.028 0.030 0.029 0.026
p0.018q p0.026q p0.026q p0.026q

House Work 0.046 0.039 0.039 0.037
p0.021q p0.030q p0.030q p0.030q

Other 0.037 0.034 0.034 0.028
p0.019q p0.030q p0.030q p0.029q

Household Composition
Partner ´0.026 ´0.022 ´0.022 ´0.022

p0.011q p0.018q p0.018q p0.018q
Number of Children 0.001 0.001 0.001 0.001

p0.004q p0.007q p0.007q p0.007q
R2 0.068 0.057 0.058 0.061
Observations 1, 182 1, 182 1, 182 1, 182

Table A.3: CCEI Correlations (OLS)
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(1) (2) (3) (4)

GARP 1.343
p0.567q

F-GARP 0.558
p0.303q

EU 0.580
p0.307q

cEU 0.571
p0.314q

Log Income 0.584 0.595 0.594 0.594
p0.132q p0.131q p0.131q p0.131q

Female ´0.313 ´0.327 ´0.327 ´0.328
p0.177q p0.178q p0.178q p0.178q

Household Composition
Partner 0.652 0.653 0.654 0.654

p0.181q p0.181q p0.181q p0.181q
Number of Children 0.090 0.087 0.086 0.086

p0.093q p0.093q p0.093q p0.093q
Age ´0.303 ´0.299 ´0.299 ´0.300

p0.347q p0.345q p0.345q p0.346q
Age2 0.007 0.007 0.007 0.007

p0.006q p0.006q p0.006q p0.006q
Age3 0.000 0.000 0.000 0.000

p0.000q p0.000q p0.000q p0.000q
Education

Pre-Vocational 0.269 0.246 0.246 0.248
p0.464q p0.464q p0.464q p0.464q

Pre-University 0.634 0.609 0.609 0.616
p0.478q p0.478q p0.478q p0.478q

Senior Vocational 0.416 0.395 0.395 0.399
p0.474q p0.476q p0.476q p0.476q

Vocational College 0.490 0.471 0.472 0.477
p0.451q p0.452q p0.452q p0.452q

University 0.725 0.700 0.700 0.706
p0.473q p0.474q p0.474q p0.474q

Occupation
Paid Work 0.207 0.234 0.236 0.232

p0.322q p0.329q p0.329q p0.328q
House Work 0.552 0.606 0.606 0.602

p0.406q p0.415q p0.415q p0.414q
Retired 0.131 0.125 0.126 0.116

p0.318q p0.324q p0.324q p0.323q
Constant 6.308 6.950 6.920 6.972

p6.419q p6.432q p6.430q p6.437q
R2 0.204 0.198 0.199 0.198
Observations 517 517 517 517

Table A.4: CCEI Scores and Log Wealth (age 35 and above)
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(1) (2) (3) (4)

GARP 1.103
p0.535q

F-GARP 0.508
p0.285q

EU 0.533
p0.287q

cEU 0.532
p0.294q

Log Income 0.606 0.616 0.615 0.615
p0.127q p0.126q p0.126q p0.126q

Female ´0.356 ´0.366 ´0.365 ´0.367
p0.164q p0.165q p0.165q p0.165q

Household Composition
Partner 0.595 0.598 0.599 0.600

p0.171q p0.171q p0.171q p0.172q
Number of Children 0.109 0.105 0.105 0.104

p0.086q p0.085q p0.085q p0.085q
Age ´0.008 ´0.003 ´0.003 ´0.004

p0.208q p0.206q p0.205q p0.205q
Age2 0.002 0.002 0.002 0.002

p0.004q p0.004q p0.004q p0.004q
Age3 0.000 0.000 0.000 0.000

p0.000q p0.000q p0.000q p0.000q
Education

Pre-Vocational 0.246 0.225 0.225 0.226
p0.462q p0.462q p0.462q p0.462q

Pre-University 0.562 0.538 0.538 0.544
p0.476q p0.477q p0.477q p0.477q

Senior Vocational 0.421 0.402 0.402 0.406
p0.468q p0.470q p0.470q p0.470q

Vocational College 0.527 0.505 0.505 0.509
p0.449q p0.449q p0.449q p0.449q

University 0.685 0.662 0.661 0.666
p0.465q p0.466q p0.466q p0.466q

Occupation
Paid Work 0.227 0.252 0.254 0.250

p0.321q p0.327q p0.327q p0.326q
House Work 0.604 0.640 0.640 0.635

p0.413q p0.419q p0.419q p0.419q
Retired 0.191 0.187 0.188 0.179

p0.318q p0.322q p0.322q p0.321q
Constant 0.476 0.907 0.888 0.921

p3.598q p3.565q p3.564q p3.554q
R2 0.239 0.236 0.237 0.237
Observations 566 566 566 566

Table A.5: CCEI Scores and Log Wealth
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(1) (2) (3) (4)

GARP 101, 018.2
p52, 669.0q

F-GARP 47, 934.5
p34, 707.4q

EU 50, 981.1
p35, 188.0q

cEU 51, 377.3
p35, 928.7q

Log Income 1.775 1.792 1.791 1.789
p0.353q p0.354q p0.354q p0.354q

Female ´32, 484.4 ´34, 186.3 ´34, 151.2 ´34, 273.8
p17, 523.6q p17, 635.0q p17, 629.3q p17, 647.3q

Household Composition
Partner 46, 193.4 45, 674.5 45, 776.0 45, 901.9

p17, 172.5q p17, 171.2q p17, 162.9q p17, 161.5q
Number of Children 14, 094.0 13, 804.6 13, 749.5 13, 682.4

p8, 353.9q p8, 416.9q p8, 416.8q p8, 421.1q
Age ´19, 199.0 ´18, 243.8 ´18, 094.1 ´18, 159.3

p30, 167.8q p30, 091.1q p30, 050.2q p30, 084.5q
Age2 469.5 450.9 449.1 449.8

p523.7q p521.6q p520.7q p521.6q
Age3 ´2.9 ´2.8 ´2.8 ´2.8

p2.9q p2.9q p2.9q p2.9q
Education

Pre-Vocational 14, 151.0 10, 648.6 10, 483.9 10, 806.9
p43, 449.1q p43, 652.8q p43, 689.0q p43, 652.2q

Pre-University 59, 056.5 55, 270.8 55, 068.3 55, 574.2
p44, 747.8q p44, 981.1q p45, 012.0q p44, 976.8q

Senior Vocational 28, 328.7 25, 421.0 25, 316.7 25, 599.8
p42, 419.1q p42, 953.3q p42, 994.4q p42, 937.2q

Vocational College 31, 402.7 28, 377.5 28, 228.3 28, 725.9
p42, 048.1q p42, 454.9q p42, 477.9q p42, 396.6q

University 77, 652.0 74, 224.2 73, 980.6 74, 548.6
p47, 707.2q p47, 801.5q p47, 831.9q p47, 814.5q

Occupation
Paid Work ´12, 600.7 ´10, 779.3 ´10, 670.8 ´10, 862.2

p26, 603.1q p26, 982.1q p26, 981.7q p26, 931.9q
House Work 16, 923.7 21, 259.1 21, 220.4 21, 008.1

p31, 113.5q p31, 765.7q p31, 760.8q p31, 722.8q
Retired 16, 729.7 16, 143.8 16, 261.0 15, 597.9

p35, 168.0q p35, 546.6q p35, 533.4q p35, 445.1q
Constant 77, 961.5 118, 492.1 112, 639.1 114, 680.700

p559, 749.6q p556, 893.4q p556, 328.3q p556, 381.8q
R2 0.211 0.209 0.210 0.210
Observations 568 568 568 568

Table A.6: CCEI Scores and Wealth
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A8. Empirical Application: More on Halevy, Persitz, and Zrill (2018)

A8.1 Afriat e�ciency indices

In Tables A.7 and A.8 we display pass rates by e�ciency threshold and confidence inter-

vals on preference types for the Halevy, Persitz, and Zrill (2018) data, as we did for the Choi

et al. (2007) data in the main text. These tables confirm the observations we have already

made in the main text: (1) more than half of subjects who pass GARP are also compatible

with the EU model; (2) whether or not concavity is imposed on the Bernoulli function, the

rank-dependent model explains only a modest fraction of the population not consistent with

the EU model; and (3) the pass rates of the parametric versions of the rank-dependent and

expected utility models have distinctly lower pass rates, suggesting a high level of parametric

mis-specification.

e “ 0.90 e “ 0.95 e “ 1.00

GARP 194/207 (94%) 178/207 (86%) 92/207 (44%)

F-GARP 170/207 (82%) 155/207 (75%) 63/207 (30%)

RDU 170/207 (82%) 155/207 (75%) 62/207 (30%)

EU 170/207 (82%) 153/207 (74%) 59/207 (29%)

cRDU 152/207 (73%) 114/207 (55%) 26/207 (13%)

cEU 151/207 (73%) 103/207 (50%) 18/207 (9%)

RDU-CRRA 120/207 (58%) 78/207 (38%) 7/207 (3%)

EU-CRRA 94/207 (45%) 45/207 (22%) 7/207 (3%)

Table A.7: Pass rates by e�ciency threshold (Halevy, Persitz, and Zrill, 2018)

e “ 0.9 e “ 0.95

Sample Prop. Conf. Interval Sample Prop. Conf. Interval

cEU 151/207 (0.729) [0.664, 0.789] 103/207 (0.498) [0.428, 0.568]

EU 170/207 (0.821) [0.762, 0.871] 153/207 (0.739) [0.674, 0.798]

EUzcEU 19/207 (0.092) [0.056, 0.140] 50/207 (0.242) [0.185, 0.306]

RDUzEU 0/207 (0.000) [0.000, 0.018] 2/207 (0.010) [0.001, 0.034]

cRDUzcEU 1/207 (0.005) [0.000, 0.027] 11/207 (0.053) [0.027, 0.093]

Table A.8: Confidence intervals on preference types (Halevy, Persitz, and Zrill, 2018)
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A8.2 Varian e�ciency indices

In the analysis of the data from their experiments, Halevy, Persitz, and Zrill (2018)

measured departures from exact rationalizability, not with Afriat’s e�ciency index, but

with Varian’s inconsistency index. As we have pointed out in Section II of the main text,

calculating Varian’s index is computationally a lot more demanding than Afriat’s index,

because one would have to search across all e�ciency vectors e. Since Halevy, Persitz,

and Zrill (2018) only calculated Varian indices for GARP and the parametric models they

consider, they did manage to calculate the indices for the vast majority of their subjects.

(For a handful of subjects, Halevy, Persitz, and Zrill (2018) did not manage to calculate the

index for GARP but only obtained an approximation.)

We have avoided the use of Varian’s index, partly because it is still less commonly used

than Afriat’s index, but also because calculating this index for all the nonparametric models

we consider is not computationally feasible. However, we did calculate Varian-type indices

for GARP, F-GARP, and for the EU model, using a new algorithm described in Section A9.

Our algorithm works very well for GARP and F-GARP, giving exact answers for all subjects

in the Halevy, Persitz, and Zrill (2018) experiment. In the case of the EU model, it gives a

good approximation in the form of upper and lower bounds on the index.

Recall that Varian’s e�ciency index is given by

sup

$
&

%1 ´

d∞T
t“1p1 ´ etq2

T
: Opeq is rationalizable by U

,
.

- .

It is clear from the formula that this index varies between 0 and 1, with 1 being the value

when the subject is exactly U -rationalizable. For a given data set and model U , Afriat’s index

will always be lower than Varian’s, since it is the solution to the maximization problem with

the additional constraint that e1 “ e2 “ . . . “ eT .

The distributions of the Varian indices for di↵erent models are depicted in Figure A.8.

The distributions for GARP, F-GARP, and EU are obtained from our calculations. The

distributions for the parametric models – RDU-CRRA and EU-CRRA – are based on the

numbers reported in Halevy, Persitz, and Zrill (2018). Note that in the case of the EU model,

we assume that each subject’s Varian index is the midpoint between the upper and lower
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Figure A.8: Varian e�ciency distributions (Halevy et al., 2018)

bounds of the index. For the vast majority of subjects, the EU estimate we obtain is a good

one: the di↵erence between upper and lower bounds has a mean of 0.007 and a median lower

than 0.001, with 90% of subjects having a di↵erence smaller than 0.0253.

Comparing Figure A.8 with Figure 8 in the main text, one would notice that the Varian

indices are significantly higher than the Afriat indices for the same model. However, certain

qualitative features of the data are notably similar. In particular, (1) the nonparametric EU

model performs well, with well over half of subjects who pass GARP at some threshold (see

e “ 0.95 e “ 0.99 e “ 1.00

GARP 202/207 (98%) 176/207 (85%) 92/207 (44%)

F-GARP 190/207 (92%) 144/207 (70%) 63/207 (30%)

EU (AVG) 185/207 (89%) 130/207 (63%) 59/207 (29%)

EU (LB) 178/207 (86%) 127/207 (61%) 59/207 (29%)

RDU-CRRA 133/203 (66%) 50/203 (25%) 7/203 (3%)

EU-CRRA 109/203 (54%) 29/203 (14%) 7/203 (3%)

Table A.9: Pass rates by Varian e�ciency threshold (Halevy et al., 2018)
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Corr. Rank Corr.

GARP 0.989 0.999

F-GARP 0.975 0.998

EU(LB) 0.890 0.986

RDU-CRRA 0.966 0.982

EU-CRRA 0.961 0.974

Table A.10: Afriat/Varian correlations (Halevy, Persitz, and Zrill, 2018)

Table A.917) being EU-rationalizable as well. (2) Indeed the distribution for the EU model

is close to that for F-GARP which it cannot, by definition, surpass. Since the RDU model

respects first order stochastic dominance, its distribution (which we did not calculate) must

lie between the F-GARP and EU curves. In other words, echoing the analysis in the main

text using Afriat’s index, it appears that the RDU model does not explain the behavior of

a significant number of subjects not explained by the EU model. (3) The imposition of a

parametric form lowers pass rates quite sharply, suggesting that parametric misspecification

is significant. This observation echoes our analysis of the same data using Afriat’s index in

Section IV.A of the main text.

Lastly, we calculate the correlation and rank correlation between the Afriat and Varian

indices for the di↵erent models under consideration. There is a very high correlation between

the two ways of measuring inconsistency (see Table A.10) suggesting that, at least for certain

types of analysis, conclusions may not be sensitive to the index used.

A9. A new algorithm for calculating Varian’s efficiency index

As we explained in Section II of the main paper, calculating Varian’s index is compu-

tationally challenging and, in the case of the locally nonsatiated utility (LNU) model, it is

known to be an NP hard problem (Smeulders et al., 2014). In this section, we describe a new

algorithm for calculating Varian’s e�ciency index for the LNU (GARP), SMU (F-GARP)

and EU models. As far as we know there are no available algorithms for calculating Varian’s

index in the case of the SMU and EU models. For the LNU model, some other methods for

17 There are only 203 subjects for RDU-CRRA and EU-CRRA (as opposed to 207 for the other tests)
because results for those two models are taken from Halevy, Persitz, and Zrill (2018) where four of the
subjects were dropped from the study. Note that EU (LB) denotes the lower bound on Varian’s index and
EU (AVG) the midpoint of the upper and lower bounds.
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calculating Varian’s index are available; we discuss their relationship with ours in Section

A9.8. The Varian indices reported in Section A8 are calculated using the algorithm described

here.

A9.1 The relaxed Varian e�ciency problem

Let O “ tpxt,ptquTt“1 be a classical data set. As usual, we denote its modification by the

e�ciency vector e P r0, 1sT by Opeq “ tpxt, BtpetquTt“1, where Btpetq is given by (14). Given

a collection U of utility functions defined on Rs̄
`, we define

E “ te P r0, 1sT : Opeq is U -rationalizableu.

This set is nonempty since, for any family U , it follows immediately from the definition

of rationalizability that p0, 0, . . . , 0q P E. In the case where a data set O is (exactly) U -

rationalizable, p1, 1, . . . , 1q P E. Finally, note that this set is downward comprehensive in the

sense that if e P E, then e
1 † e is also in E.

Varian proposes to measure the degree of a data set O’s inconsistency with a particular

model, as captured by some collection of utility functions U , by looking at the Euclidean

distance between p1, 1, . . . , 1q and E. We generalize the measure proposed by Varian slightly.

We refer to a function f : r0, 1sT Ñ R such that fp1, 1, ..., 1q “ 1, with f continuous and

increasing, as an e�ciency index. Our objective is to find a way of solving the following

problem, which we shall refer to as the Varian e�ciency problem:

sup fpeq subject to e P E. (a.33)

Note that this problem includes as a special case the measure proposed by Varian, which

could be thought of as the case where

fpeq “ 1 ´

d∞T
t“1p1 ´ etq2

T
.

Afriat’s critical cost e�ciency index is also covered; in that case

fpeq “ maxte1, e2, . . . , eT u.

Instead of solving the Varian e�ciency problem, it is convenient to examine instead

a related problem where the constraint on e is relaxed. We say that Opeq is almost U-

rationalizable if there is a sequence of vectors en with the following properties:
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(i) en converges to e;

(ii) en is strictly below e in the sense that etn § et and etn † et whenever et ° 0; and

(iii) Openq is U -rationalizable.

We denote by Ē the set of e�ciency vectors where Opeq is almost U -rationalizable. Obviously

this set is weakly larger than E. By the relaxed Varian e�ciency problem, we refer to the

following:

sup fpeq subject to e P Ē. (a.34)

The advantage of this formulation is that the set Ē is somewhat better behaved than E.

Firstly, it is also downward comprehensive. Indeed suppose e P Ē and let e
1 † e. Let

dn be any sequence of vectors strictly below e
1 and converging towards e

1. Since e P Ē

there is another sequence of vectors en P E, strictly below e and converging to E such that

Openq is U -rationalizable. Then the sequence cn, where ctn “ mintetn, dtnu is strictly below

e
1 and converging towards e

1; furthermore, because E is downward comprehensive, Opcnq
is U -rationalizable. So we have shown that e1 P Ē. Secondly, Ē is a closed (and therefore,

compact) set. Suppose the sequence en in Ē converges to e. Then the sequence dn, where

dtn “ mintetn, etu also converges to e, with dn § e; furthermore, since Ē is downward

comprehensive, dn P Ē for all n. Obviously, we can then choose another sequence gn in E,

such that gn is strictly below dn for each n (hence strictly below e) and converging towards

e, which shows that e P Ē.

The following result is an immediate consequence of these observations; note that it holds

whatever the definition of U .

Lemma A.1. There is an e�ciency vector e
˚ P r0, 1sT that solves the relaxed Varian e�ciency

problem (a.34), and its value coincides with that of the Varian e�ciency problem (a.33).

Proof. The existence of e˚ is guaranteed since f is continuous and Ē is a compact set. Then

there is a sequence en P E that converges to e
˚. By the continuity of f , fpenq tends to fpe˚q.

So the problems (a.33) and (a.34) have the same value. QED
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A9.2 The Varian e�ciency problem for LNU functions

We now narrow our attention to the case where U is one of three cases: where it represents

the family of (i) locally nonsatiated utility (LNU) functions, (ii) stochastically monotone

utility (SMU) functions, and (iii) expected utility (EU) functions. We shall establish that

in each of these cases, we can find the solution to the relaxed Varian e�ciency problem,

and thus Varian e�ciency problem, by confining our search to a finite subset of Ē. In other

words, one could (in principle) always solve the Varian e�ciency problem by working out the

values of fpeq for di↵erent e in that finite set. As a practical matter, finding that subset in

Ē also requires us to check whether Opeq is almost U-rationalizable, so we shall also address

that issue, in the case where U belongs to any one of the three cases we listed.

We know (see Section A5) that Opeq is LNU-rationalizable if and only if it obeys GARP.

There is a closely related necessary and su�cient condition for Opeq to be almost LNU-

rationalizable.

A test for almost LNU-rationalizability Recall that for x
t and x

t1
in D “ txt : t “

1, 2, . . . , T u, xt is strictly revealed preferred to x
t1
(denoted by x

t °˚
e x

t1
) if pt ¨xt1 † et pt ¨xt.

We claim that Opeq is almost rationalizable by a locally nonsatiated utility function if and

only if °˚
e has no cycles, i.e., there does not exist observations ppti ,xtiq (for i “ 1, 2, . . . , n)

in O such that

x
t1 °˚

e x
t2 , x

t2 °˚
e x

t3 , . . . , xtn´1 °˚
e x

tn , and x
tn °˚

e x
t1 (a.35)

It is clear that this condition is necessary. To see that it is su�cient, notice that (crucially) D

is a finite set. Thus, we can always choose a sequence dn strictly below e and tending towards

e such that the only revealed preference relations in Opdnq are strict revealed preference re-

lations. (Note that, for any vector c, Opcq could have non-strict revealed preference relations

only if, for some xt and x
t1
, we have pt ¨xt1 “ ctpt ¨xt; we could always choose ct to avoid this

since D is a finite set.) When Opdnq has only strict revealed preference relations, GARP

would coincide with the absence of cycles involving these strict relations, and so we know

that Opdnq is LNU-rationalizable. We conclude that Opeq is almost LNU-rationalizable.

Let At be a set in r0, 1s defined in the following way:

a P At if pt ¨ x “ apt ¨ xt for some x P D. (a.36)
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Note by definition 1 P At and that At is finite since D is finite. The next result says that the

solution to (a.34) can be obtained by searching through the set

A “ A1 ˆ A2 ˆ . . . ˆ AT .

Proposition A.7. Suppose U is the collection of LNU functions. Then e
˚
is a solution to

the relaxed Varian e�ciency problem (a.34) if fpe˚q • fpeq for all e P A X Ē, where At

is given by (a.36) and Ē is the set of e�ciency vectors e that render Opeq almost LNU-

rationalizable.

Proof. Suppose that relaxed Varian e�ciency problem (a.34) is solved at ê “ pê1, ê2, . . . , êT q
and for some t “ t1, we have êt

1 R At1
. Then there must be ā in At1

such that êt
1 † ā. Observe

that ẽ P Ē, where ẽt
1 “ ā and ẽt “ êt for all t ‰ t1. This is because, the increase in the vector

from ê to ẽ does not alter the set of revealed preference relations generated at observation

t and, more generally, Opẽq and Opêq induce the same strict revealed preference relations.

Thus Opẽq, like Opêq, is almost LNU-rationalizable. Since f is increasing, ẽ must also solve

(a.34). Repeating this procedure if necessary, we eventually end up with an e�ciency vector

in A that solves (a.34). QED

This proposition gives a potentially practical way of solving the relaxed Varian e�ciency

problem (and thus the Varian e�ciency problem). We go through the elements of A and, for

each element, check if it is in Ē by implementing the relaxed version of the GARP test. If it

is work out fpeq; the highest value obtained in this manner will solve the Varian e�ciency

problem.

Suppose that At “ ta1, a2, a3, . . . , amptqu, with

1 “ a1 ° a2 ° a3 ° . . . ° amptq • 0.

Each value in At is associated with a constraint set Btpajq and hence a certain number of

strict revealed preference relations between x
t and elements of D in Btpajq. The values of

At are precisely those values at which the number of such relations drop. Thus the choice

of aj P At could be thought of as a choice over the number of strict revealed preference

relations to ignore. For instance, at a1 “ 1, we are retaining all the strict revealed preference

relations in the sense that xt is strictly revealed preferred to every element x P D for which
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p
t ¨x † p

t ¨xt; on the other hand, at a “ a2, xt is strictly revealed preferred to every element

x P D such that pt ¨ x † a2pt ¨ xt, which means that we are removing those elements x P D

(at least one and possibly more) for which p
t ¨ x “ a2pt ¨ xt. There is a one-to-one map

between the elements of At and the number of elements in D which are removed as strict

revealed preference relations. We define Ct “ tc1, c2, ..., cmptqu, such that

0 “ c1 † c2 † . . . † cmptq,

the following manner: for j • 1, cj is the di↵erence in the number of strict revealed preference

relations generated at observation t between a “ a1 “ 1 and a “ aj. We denote this

one-to-one and onto map from Ct and At by �. For example, suppose At “ t1, 0.9, 0.6u
and Ct “ t0, 2, 3u. This means that there are exactly three elements x P D such that

p
t ¨ x † p

t ¨ xt, with two elements satisfying p
t ¨ x “ 0.9pt ¨ xt and one element satisfying

p
t ¨x “ 0.6pt ¨xt. So as we ‘go’ from a “ 1 to a “ 0.9 to a “ 0.6, the budget shrinks at each

step, and number of revealed preference relations removed are 0, 2, and finally 3.

Defining C “ C1 ˆ C2 ˆ . . . CT , we can associate to each element c P C, the element

�pcq “ p�1pc1q,�2pc2q, . . . ,�T pcT qq P A.

Abusing notation, we shall write fpcq to mean fp�pcqq. Note that fpcq is decreasing in c

because f is increasing in the e�ciency vector. We shall refer to c as being almost LNU-

rationalizable when we mean that Op�pcqq is almost LNU-rtionalizable. We shall also refer

to c as being in Ē when we mean that �pcq is in Ē. The problem of solving the Varian

e�ciency problem can be understood as follows:

max fpcq subject to c P C being almost LNU-rationalizable.

A9.3 The Varian e�ciency problem for SMU functions

In the previous section, we explained that SMU-rationalizability can be characterized by

F-GARP. A closely related test could be used to check for almost SMU-rationalizability of

some modified data set Opeq.

A test for almost SMU-rationalizability Recall that for x
t and x

t1
in D, we had

defined x
t as being strictly revealed preferred to x

t1
if there is y P Btpetq such that either
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p
t ¨ y † et pt ¨ xt or p

t ¨ y “ et pt ¨ xt and y °FSD x
t, with either inequality strict. For

testing almost LNU-rationalizability, only one of these two types of strict revealed preference

relations are relevant. We define x
t as being type 1 strictly revealed preferred to x

t1
if there

is y such that p
t ¨ y † et pt ¨ xt and y •FSD x

t. (In fact, if y exists then we can always

choose it to be a permutation of xt.) We claim that Opeq is almost LNU-rationalizable if

and only if the type 1 strict revealed preference relations admit no cycles; in other words,

we cannot find observations ppti ,xtiq (for i “ 1, 2, . . . , n) in O such that we have a cycle like

(a.35), interpreting °˚
e to be a type 1 strict revealed preference relation. It is clear that this

condition is necessary. Indeed, if a type 1 strict revealed preference cycle exists, then for any

sequence dn strictly below e and tending towards e, Opdnq will violate F-GARP when n is

su�ciently large. Hence Opdnq will not be SMU-rationalizable and we conclude that Opeq
is not almost SMU-rationalizable. To see that this condition is also su�cient, let Gt be the

following set of vectors:

y P Gt if pt ¨ y § p
t ¨ xt and, for some x

1 P D, y solves minpt ¨ y1 subject to y
1 •FSD x

1.

In words, y P Gt if it is in the budget at observation t, it dominates some element in

x
1 P D, and (evaluated by p

t) it is the cheapest bundle to dominate x1. Hence we can always

choose a sequence dn strictly below e and tending towards e such that dtn does not satisfy

p
t ¨ y “ dtnp

t ¨ xt for some y P Gt (since D is a finite set). In this way, the only revealed

preference relations in Opdnq are type 1 strict revealed preference relations. Since there are

no cycles with these relations, Opdnq obeys F-GARP and is thus SMU-rationalizable. We

conclude that Opeq is almost SMU-rationalizable.

Let At be a set in r0, 1s defined in the following way:

a P At if a “ 1 or pt ¨ y “ apt ¨ xt for some y P Gt. (a.37)

At is finite since D is finite. The next result says that the solution to (a.34) can be obtained

by searching through the set A “ A1 ˆA2 ˆ . . .ˆAT . The proof is closely analogous to that

for Proposition A.7.

Proposition A.8. Suppose U is the collection of SMU functions. Then e
˚
is a solution to

the relaxed Varian e�ciency problem (a.34) if fpe˚q • fpeq for all e P A X Ē, where At
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is given by (a.37) and Ē is the set of e�ciency vectors e that render Opeq almost SMU-

rationalizable.

Proof. Suppose that the relaxed Varian e�ciency problem (a.34) is solved at ê “ pê1, ê2, . . . , êT q
and for some t “ t1, we have êt

1 R At1
. Then there must be ā in At1

such that êt
1 † ā. Observe

that ẽ P Ē, where ẽt
1 “ ā and ẽt “ êt for all t ‰ t1. This is because the absence of any y P Gt

with p
t ¨ y lying in the interval pêt1

, āq means that increase in the e�ciency vector from ê to

ẽ does not alter the set of revealed preference relations generated at observation t (and more

generally, at all observations). Thus Opẽq, like Opêq, is almost SMU-rationalizable. Since f

is increasing, ẽ must also solve (a.34). Repeating this procedure if necessary, we eventually

end up with an e�ciency vector in A that solves (a.34). QED

As in the LNU case, it is convenient to think of the process of choosing an element in

At with choosing the number of type 1 strict revealed preference relations to drop. In this

way (analogous to our discussion in the LNU case) there is a one-to-one map between At

and the set Ct, with the latter keeping count of the number of revealed preference relations

dropped as we move towards lower values of At. An example should su�ce to explain what

we mean. Suppose At “ t1, 0.9, 0.6u and Ct “ t0, 2, 3u. This means that there are exactly

three elements x P D to which x
t is type 1 strictly revealed preferred when et “ 1 (that is,

before the budget set is shrunk). Suppose the elements are x
1, x2, and x

3. When et “ 0.9,

two of those elements are removed, in the sense that xt is no longer type 1 strictly revealed

preferred to two of three elements. Suppose those elements are x1 and x
2 (with x

3 remaining).

This means there is y1 such that y1 ¨ pt “ 0.9xt ¨ pt and y
1 minimizes pt ¨ y among those y

satisfying y •FSD x
1. Similarly, there is y2 such that y2 ¨ pt “ 0.9xt ¨ pt and y

2 minimizes

p
t ¨ y among those y satisfying y •FSD x

2. Finally, when et “ 0.6, xt is no longer type 1

strictly revealed preferred to any element in D, so there is y3 such that y2 ¨ pt “ 0.6xt ¨ pt

and y
3 minimizes p

t ¨ y among those y satisfying y •FSD x
3. There is a one-to-one map

between the elements of C and of A and thus (analogous to the LNU case) the problem of

solving the Varian e�ciency problem can be understood as follows:

max fpcq subject to c P C being almost SMU-rationalizable.
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A9.4 The Varian e�ciency problem for EU functions

The test we developed for EU-rationalizability can be readily modified to test for almost

EU-rationalizability.

A test for almost EU-rationalizability We know that Opeq is EU-rationalizable if

and only if there is a strictly increasing function ū : X Ñ R` for which
∞s̄

s“1 ⇡
t
sūpxt

sq •
∞s̄

s“1 ⇡
t
sūpxsq for all x P Btpetq X G, with the inequality being strict if x P G satisfies

p
t ¨ x † etpt ¨ xt. We claim that this implies that Opeq is almost EU-rationalizable if

and only if there is a strictly increasing function ū : X Ñ R` satisfying

∞s̄
s“1 ⇡

t
sūpxt

sq ° ∞s̄
s“1 ⇡

t
sūpxsq for all x P G such that pt ¨ x † etpt ¨ xt. (a.38)

In other words, the test is the same as that for EU-rationalizability except that only the

strict revealed preference conditions at each observation are retained. This condition is

clearly necessary. To see that it is su�cient, we define Ht and At in the following way:

y P Ht if pt ¨ y § p
t ¨ xt and y P G.

(in order words, Ht are the elements of G which are a↵ordable at observation t) and

a P At if pt ¨ y “ apt ¨ xt for some y P Ht. (a.39)

Since x
t P Ht, 1 P At. Furthermore, since G is finite, so is At. Thus, we can always choose a

sequence dn strictly below e and tending towards e such that dtn R At for all n. In this way,

the only revealed preference conditions required for Opdnq to be EU-rationalizable are the

strict conditions, which for n su�ciently large, are identical with having a strictly increasing

function ū : X Ñ R` such that (a.38) holds. Thus Opdnq is EU-rationalizable and we

conclude that Opeq is almost EU-rationalizable.

Proposition A.9. Suppose U is the collection of EU functions. Then e
˚
is a solution to the

relaxed Varian e�ciency problem (a.34) if fpe˚q • fpeq for all e P AX Ē, where At
is given

by (a.39) and Ē is the set of e�ciency vectors e that render Opeq almost EU-rationalizable.

Proof. Suppose that relaxed Varian e�ciency problem (a.34) is solved at ê “ pê1, ê2, . . . , êT q
and for some t “ t1, we have êt

1 R At1
. Then there must be ā in At1

such that êt
1 † ā. Observe
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that ẽ P Ē, where ẽt
1 “ ā and ẽt “ êt for all t ‰ t1. This is because, the increase in the vector

from ê to ẽ notwithstanding, Opẽq and Opêq induce the same set strict revealed conditions

(a.38) since the set of elements in x P G such that pt1 ¨x † êt
1
p
t1 ¨xt1

is the same as the set of

x P G such that pt1 ¨x † āpt1 ¨xt1
. Thus Opẽq, like Opêq, is almost EU-rationalizable. Since f

is increasing, ẽ must also solve (a.34). Repeating this procedure if necessary, we eventually

end up with an e�ciency vector in A that solves (a.34). QED

As in the LNU and SMU cases, it is convenient to think of the process of choosing an

element in At with choosing the number of strict revealed preference comparisons to drop.

There is a one-to-one map between At and the set Ct, with the latter keeping count of the

number of revealed preference relations removed from consideration as we move towards

lower values of At. An example should su�ce to explain what we mean. Suppose At “
t1, 0.9, 0.6, 0u and Ct “ t0, 2, 3, 4u. This means that there are exactly four elements x P G

such that p
t ¨ x † p

t ¨ xt. Suppose the elements are x
1, x2, x3, and 0. (Note that, by

construction, 0 is always in G.) Then two of them – say x
1 and x

2 – must satisfy p
t ¨ x1 “

p
t ¨ x2 “ 0.9pt ¨ xt, while x

3 must satisfy p
t ¨ x3 “ 0.6pt ¨ xt. When a “ 1, the condition

(a.38) gives rise to four revealed preference conditions (in other words, four inequalities)

guaranteeing that xt is superior to x
1, x2, x3, and 0. When a “ 0.9, two of these conditions

are removed and we only require x
t is superior to be superior to x

1 and to 0. And so on.

Thus we can identify elements of C with elements of A, and thus the problem of solving the

Varian e�ciency problem can be understood as follows:

max fpcq subject to c P C being almost EU-rationalizable.

A.9.5 Three ways of expediting the search through C

To recap, we have shown that in the case of the LNU, SMU, and EU models, solving the

Varian e�ciency problem could be thought of as a search through some finite space C which

specifies the number of revealed preference relations to drop at each observation. This does

not in itself lead to a tractable way of solving the problem, since C can be a very large set,

even if it is finite. We now discuss several ways in which we can speed up the search across

the elements of C; these shortcuts are applicable to all the three models under consideration.

Shortcut 1. Does a subset fail the test?
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There is a one-to-one map between et P At and ct P Ct and thus a one-to-one map between

pctqtPT 1 and tpxt, BtpetqutPT 1 for any petqtPT 1 P pAtqtPT 1 , where T 1 is a subset of observations.

We say that pctqtPT 1 is almost U -rationalizable if its corresponding data set is almost U -

rationalizable. Note that a data set tpxt, BtpetqutPT cannot be almost U -rationalizable if a

subset of its observations, tpxt, BtpetqutPT 1 is not almost U -rationalizable. In terms of the

elements of C, this means that pc̄tqtPT 1 is not almost U -rationalizable if and only if c P C is

not in Ē whenever ct “ c̄t for t P T 1.

Illustrative data set. In all the examples considered in the rest of this section, we shall

refer to a data set with three observations, where C1 “ t0, 1, 2u, C2 “ t0, 1u, and C3 “ t0, 1u.

As an example of Shortcut 1 at work, suppose that the first observation, when considered

in isolation, is not almost U -rationalizable. (This is impossible if U is the family of LNU

functions, but it is possible if it is the family of SMU or EU functions (see Example 1 in

Section I.B of the main text).) This means that any modified data set that is almost U -

rationalizable will involve the first budget set shrinking. Put another way, we know that

c R Ē for all c such that c1 “ 0. Thus we can remove from consideration the following values

of c:

p0, 0, 0q, p0, 1, 0q, p0, 1, 1q, p0, 0, 1q.

Shortcut 2. Can we still improve on the optimal value?

This is best explained with our illustrative data set. Suppose we find that fp1, 0, 0q “ 0.9,

fp0, 1, 0q “ 0.7 and that p1, 0, 0q P Ē. Clearly then p0, 1, 0q cannot be a solution to the relaxed

Varian e�ciency problem. In addition, because f is decreasing in c, we may also remove the

following from consideration:

p1, 1, 0q, p0, 1, 1q, p1, 1, 1q, p2, 1, 1q, p2, 1, 0q

since these vectors are greater than p0, 1, 0q.

Shortcut 3. Is an observation involved in a violation?

Suppose that at some c we find that c R Ē. We say that observation t1 is not involved in

a violation at c if the following holds: if c̄ P Ē, then ĉ P Ē, where ĉt “ c̄t for all t ‰ t1 and

ĉt
1 “ ct

1
. In other words, if c R Ē then its entries will have to be altered for it to be in Ē but
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there is no alteration that crucially involves changing (in particular raising) the t1th entry of

c. Thus we need not consider any alteration of c with a higher value for ct
1
because this is

not crucial and could only lower the value of f . At c P C, we define V pcq as the subset of T
such that t̃ P V pcq if t̃ is involved in a violation at c. Returning to our illustrative data set, if

c “ p1, 0, 0q R Ē but the first observation is not involved in the violation (i.e., 1 R V p1, 0, 0q),
then we need not consider those values of c that removes more revealed preference relations

from observation 1, i.e., we need not consider

tp2, 0, 0q, p2, 1, 0q, p2, 0, 1q, p2, 1, 1qu.

To implement this shortcut, what is needed is some way of determining whether some obser-

vation is not in V pcq. In all the three families of utility functions we are considering, there

are simple su�cient conditions to guarantee that t1 R V pcq.

In the case where U is the collection of LNU or SMU functions, it is clear that t1 R V pcq
if none of the revealed preference relations generated by t1 are part of some strict revealed

preference cycle in the (unmodified) data set O “ tpxt,ptqu. This is an easy-to-check

condition. In the case where U is the family of EU functions, there is a similar su�cient

condition. Fishburn’s result (see Section A1.2) tells us that tpxt,ptqu is not almost EU-

rationalizable if and only if there are weights �j • 0 with
∞M

j“1 �
j “ 1, such that

Mÿ

j“1

�jgpajq “
Mÿ

j“1

�jgpbjq, (a.40)

where tpgpajq, gpbjqquMj“1 is the complete set of strict revealed preference relations. Within

this set are those elements generated by the observation t1 if its budget is shrunk by the

factor et
1
, i.e., the cases where aj “ x

t1
and bj P Bt1pet1q X G; let that subset of conditions

be denoted by J 1. If t1 P V pcq then, by definition, there are êt (for all t ‰ t1) such that

tpxt, BtpêtqqutPT zt1 is almost EU-rationalizable but tpxt, BtpêtqqutPT zt1 Y tpxt1
, Bt1pet1qqu is not

almost EU-rationalizable (where e “ petqtPT is the e�ciency vector associated with c). By

Fishburn’s condition, this implies that there are weights �j • 0 with
∞M

j“1 �
j “ 1, that solve

(a.40) with
∞

jPJ 1 �j ° 0. In other words, a su�cient condition for t1 R V pcq is the following:

for any �j • 0 such that
∞M

j“1 �
j “ 1 and (a.40) holds, we have

∞
jPJ 1 �j “ 0. This is

equivalent to the following easy-to-check condition: the solution to max
∞

jPJ 1 �j subject to

�j • 0,
∞M

j“1 �
j “ 1 and (a.40) is zero.
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Note that the condition we have identified in each case of U is su�cient but not necessary

to guarantee that t1 R V pcq. This does not mean that in applying this shortcut we miss out

on checking elements of C which should be checked (and potentially leading to a solution

lower than the true solution), but it does mean that the algorithm checks some elements of

C which a sharper criterion when applying Shortcut 2 would eliminate.18

A9.6 Example of the algorithm at work

Suppose we iterate over the elements of C in our illustrative data set in the following

order:

p0, 0, 0q, p1, 0, 0q, p2, 0, 0q, p2, 1, 0q, p2, 1, 1q, p2, 0, 1q,

p1, 1, 0q, p1, 1, 1q, p1, 0, 1q, p0, 1, 0q, p0, 1, 1q, p0, 0, 1q (a.41)

It is unimportant to understand at the moment how this ordering was chosen. The only

thing to note is that this list exhausts C. Suppose that the following values of c are in Ē:

p2, 1, 0q, p2, 1, 1q, p2, 0, 1q, p1, 1, 0q, p1, 1, 1q, p1, 0, 1q. (a.42)

Note that this implies that observation 1 is not involved in a violation at any c “ p1, v, wq
for pv, wq P C2 ˆ C3. Suppose also that

fp2, 1, 1q † fp2, 0, 1q † fp2, 1, 0q † fp2, 0, 0q † fp1, 1, 1q

† fp0, 1, 1q † fp1, 0, 1q † fp1, 1, 0q † fp1, 0, 0q † fp0, 1, 0q † fp0, 0, 1q (a.43)

which implies that p1, 1, 0q maximizes fpcq among elements of c P Ē.

The algorithm we propose proceeds as follows. The algorithm starts by creating a variable

s “ min f . The algorithm then sets b equal to the first element in the list (a.41). That is,

the algorithm sets c “ p0, 0, 0q. Next, we test to see if p0, 0, 0q P Ē. We have assumed this

18 For example, suppose we wish to solve the Varian e�ciency problem in the LNU case, for a data set
with three observations. Suppose also that x1 strictly revealed preferred to x

2, x2 strictly revealed preferred
to x

3, x3 strictly revealed preferred to x
1, and x

3 strictly revealed preferred to x
2, so there are two strict

revealed preference cycles. In this case, observation 1 is not involved in a violation according to our definition,
since the re-inclusion of that observation does not introduce a cycle so long as the revealed preference for x2

over x3, or vice versa is removed. However, the revealed preferences generated by observation 1 are part of
a strict cycle.
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is not the case (see (a.42)). Next, the algorithm sets c “ p1, 0, 0q which is the next item

on the list (a.41). We test if p1, 0, 0q P Ē. We have assumed that it is not. Before going

to the next element in the list in (a.41) the algorithm checks if observation 1 is involved in

the violation at p1, 0, 0q. We have assumed that it is not. As this is the case there will be

no optimum of the form p2, v, wq for any v and w. The algorithm then skips over p2, 0, 0q,
p2, 1, 0q, p2, 1, 1q, and p2, 0, 1q. So the algorithm goes on to the next element in the list which

is c “ p1, 1, 0q. The algorithm will then confirm that p1, 1, 0q P Ē. The algorithm then writes

s “ fp1, 1, 0q. The algorithm does not consider p1, 1, 1q as fp1, 1, 1q † fp1, 1, 0q because f

is strictly decreasing. (This is an implementation of Shortcut 2.) Next, the algorithm sets

c “ p1, 0, 1q. Before testing if it is in Ē the algorithm observes that s ° fp1, 0, 1q and skips

to c “ p0, 1, 0q (which is again Shortcut 2 at work). The algorithm then determines that

c1 “ 0 is not almost U -rationalizable; applying Shortcut 1, it skips the remaining elements

in the list in (a.41).

We next give the pseudocode to express the general idea of how the algorithm functions

(see Algorithm 1). This code will terminate having saved the optimal value for the VEP in

the variable s. It can be easily checked that this code will reproduce the flow expressed in

a.41.

Because the algorithm can run faster or slower depending on the order of the observations

we modify the above algorithm slightly. First, we shu✏e the dataset so that the observations

are in a random order. We then let the algorithm run until line 6 in Algorithm 1 is called

100 times. After this we record the highest solution value which the algorithm has found

thus far. We shu✏e the dataset again and repeat. We do this 20 times. We then put the

dataset in the order in which we found the highest solution value. We then run the above

algorithm on this dataset. This helps ensure that the solution space is searched in a more

e�cient manner.

A9.7 Approximate Algorithm

We are able to use the above algorithm to calculate Varian’s e�ciency index for the LNU

snd SMU models for all subjects in the data collected by Halevy, Persitz, and Zrill (2018).

However, the algorithm simply took too long for some subjects when determining the index
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Algorithm 1 Calculate Varian Index

1: function nextc(remainingobs)

2: finishedobs = list of obs not in remainingobs

3: while remainingobs not empty do

4: t = lowest observation number from remainingobs

5: if t P V pcq then ô Shortcut 3

6: ct “ ct ` 1

7: if fpcq ° s then ô Shortcut 2

8: nextc( remainingobs )

9: end if

10: ct “ ct ´ 1

11: end if

12: Remove observation t from remainingobs and add it to finishedobs

13: if pctqYtPfinishedobs is not almost U -rationalizable then ô Shortcut 1

14: Terminate Function

15: end if

16: end while

17: if fpcq ° s then

18: s “ fpcq
19: end if

20: end function

21: function VarianIndex

22: s “ inf f

23: remainingobs = t1, . . . , T u
24: nextc( remainingobs )

25: return best solution found

26: end function
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in the case of the EU model. The reason is two fold. First, checking for GARP or F-GARP

involves checking the acyclicality of graphs with at most T 2 directed edges. On the other

hand, the test for the EU model involves solving a linear programming problem with at most

T 3 variables. Solving this linear programming problem takes longer to solve than checking

the acyclicality conditions. Second, there are typically more revealed preference conditions

in the EU test, leading to a set C with a larger cardinality and thus more checks.

However, even for the EU model, we are able to calculate bounds for each subject’s Varian

e�ciency index. We now discuss how this was accomplished. First, we modify Algorithm 1

to make the order in which C is traversed random. To do this we make a shu✏ed copy of the

remainingobs variable just before line 3 is run. Line 3 is then changed to a while statement

which loops while this shu✏ed copy is not empty. This ensures that B is traversed in a

random order. This means that if the algorithm were called many times some of these times

would traverse more e�cient paths while others would be less e�cient. We shall refer to this

new algorithm as Algorithm 1 Shu✏e.

Often the space C is too large for the algorithm to traverse the solution space in a

reasonable time frame. To deal with this we turn the original solution space r0, 1sT in the

definition of the Varian e�ciency problem into a grid of points where each grid point is 2´k

away from its nearest neighbor for some non-negative integer k. We say that we are traversing

the k-grid when we search the grid whose points are separated by a distance of 2´k. We refer

to this new algorithm as Algorithm 2; note that the three shortcuts used in Algorithm 1 are

also applicable, when modified in the obvious way. Further, define Algorithm 2 Shu✏e to be

algorithm where we traverse the search space in a random order just as Algorithm 1 Shu✏e.

To explain further how we proceed we must first introduce some terminology. Every time

Algorithm 1 or 2 (or its shu✏e versions) runs line 6 we say that the algorithm steps down.

Every time the algorithm runs line 10 we say the algorithm steps up. Define an algorithm

which is identical to Algorithm 2 Shu✏e except that the algorithm terminates after it steps

up for the first time. We refer to this as the Drill Algorithm. Calling the drill algorithm

dives deep into the discretized space of e�ciency vectors (randomly) until it either finds a

single feasible solution or realizes there are no feasible solutions nearby which improve on

the current best solution.
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Algorithm 2 Calculate Approximate Varian Index

1: function nexte(remainingobs)

2: finishedobs = list of obs not in remainingobs

3: while remainingobs not empty do

4: t = lowest observation number from remainingobs

5: if t is involved in a violation at e then ô Shortcut 3

6: et “ et ´ 1{p1 ` kq
7: if fpeq ° s then ô Shortcut 2

8: nexte( remainingobs )

9: end if

10: et “ et ` 1{p1 ` kq
11: end if

12: Remove observation t from remainingobs and add it to finishedobs

13: if petqYtPfinishedobs is not almost U -rationalizable then ô Shortcut 1

14: Terminate Function

15: end if

16: end while

17: if fpeq ° s then

18: s “ fpeq
19: end if

20: end function

21: function VarianIndex2

22: s “ inf f

23: remainingobs = t1, . . . , T u
24: nexte( remainingobs )

25: return best solution found

26: end function
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We now describe the general approach we take to approximate the Varian index for the

expected utility model. First, we run Algorithm 1 Shu✏e until either it terminates or the

algorithm steps down 100 times; we include this stage to get an exact solution for those

cases where they are easy to calculate. If this algorithm has not terminated by then we set

a variable k to 5 and run the Drill Algorithm 50 times traversing the k-grid. Each time the

drill algorithm is run we wait until it terminates or we terminate it after it has taken 200

steps down. We repeat the process for k equal to 6, 7, 8, and 9. If for any k we do not

improve our solution but the algorithm steps up at least once (that is, the algorithm has

located a dead end in at least one of the 50 times) we skip over the remaining values of k

that we have yet to try. This stage allows us to get a lower bound for the optimal e�ciency

score. This lower bound is useful in its own right and also improves the performance of the

algorithm in the next stage.

In the next stage, we run Algorithm 2 Shu✏e traversing the k-grid for k equal to 5, 6,

7, 8, and 9. If the Algorithm fails to terminate after 500 steps down then we terminate the

algorithm and skip the remaining values of k. This step allows us to deduce an upper bound

for the optimal solution. Suppose Algorithm 2 Shu✏e successfully terminates and finds the

optimal e�ciency vector e˚ in the 5-grid. Then, we know that the true solution to the

Varian e�ciency problem must be no greater than fpe˚ ` p2´6, 2´6, . . . , 2´6qq, so long as f is

a symmetric function (which is true of Varian’s index). Lastly, we compare the upper bound

obtained in this way with the solution to the Varian e�ciency problem for SMU functions

(which can be calculated exactly for all subjects in the data of Halevy, Persitz, and Zrill

(2018)); this number also constitutes an upper bound since the family of SMU functions

contains the family of EU functions. The lower of these two numbers is then reported as the

upper bound for the solution to the Varian e�ciency problem for EU functions.

A9.8 Other Approaches to Estimating Varian’s E�ciency Index for the LNU case

The Varian E�ciency score for the LNU model (but not for the SMU and EU models)

is also calculated in Halevy, Persitz, and Zrill (2018). They employ three di↵erent methods

to calculate this index. The first method is an exact algorithm (delivers the exact value of

the index) but is potentially very computationally intense. The latter two methods provide
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approximations to the Varian e�ciency index. Let us refer to these methods as Method 1,

Method 2, and Method 3. Method 1 constructs a list of all violations of GARP. This means

making a list t`1, . . . , `Mu where each element of the list is an ordered sequence of observation

numbers where each observation is revealed preferred to its successor in the list and the last

element is revealed preferred to the first element. Method 1 then iterates over each element

of `1 ˆ . . . `M calculating Varian’s index corresponding to removing these revealed preference

relations. The algorithm outputs the best solution found. The method considers all possible

ways of resolving each violation of GARP and so will eventually calculate Varian’s e�ciency

index. However, this method will not be practicable if the number of ways of resolving

GARP violations is too large. In that case, Method 2 is considered. Method 2 creates a

list of violations of the Weak Axiom of Revealed Preference t`1, . . . , `Mu where each `m is

a pair of observations each revealed preferred to the other. The method iterates over each

element of `1ˆ . . . `M recording the Varian index associated with removing the corresponding

revealed preference relations. This method will calculate the Varian Index corresponding to

removing all violations of WARP. As noted by Halevy, Persitz, and Zrill (2018) this will be

an upper bound on the true Varian Index. If there are too many violations of WARP then

Method 3 is used. Method 3 is to run Algorithm 3 in Alcantud et al. (2010). This method

provides a heuristic for selecting one feasible solution to the Varian e�ciency problem and

is thus gives a lower bound to Varian’s e�ciency index.
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