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OA1 Model

OA1.1 Firms’ decisions

We use Vn(e) to denote the expected NPV of future cash flows to firm n in state e at the
beginning of the period and Un(e

′) to denote the expected NPV of future cash flows to
firm n in state e′ after pricing decisions but before exit and entry decisions are made. The
price-setting phase determines the value function Vn along with the policy function pn with
typical element Vn(e), respectively, pn(e); the exit-entry phase determines the value function
Un along with the policy function φn with typical element Un(e

′), respectively, φn(e
′).

If firm n is a potential entrant, then we set its price to infinity so that Dn(p) = 0. To
facilitate the analysis of the remaining decisions, we focus on firm 1; the derivations for firm
2 are analogous.

Exit decision of incumbent firm. If incumbent firm 1 exits the industry, it receives the
scrap value X1 in the current period and perishes. If it does not exit, its expected NPV is

X̂1(e
′) = β

[
V1(e

′)(1 − φ2(e
′)) + V1(e

′
1, 0)φ2(e

′)
]
.

The probability of incumbent firm 1 exiting the industry in state e′ is therefore φ1(e
′) =

EX

[
1
[
X1 ≥ X̂1(e

′)
]]

= 1 − FX(X̂1(e
′)), where 1 [·] is the indicator function and X̂1(e

′) is

the critical level of the scrap value above which exit occurs. Specifically,

φ1(e
′) = 1− FX(X̂1(e

′))
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=





1 if X̂1(e
′) < X −∆X ,

1
2 −

[X̂1(e′)−X]
2∆X

if X̂1(e
′) ∈ [X −∆X ,X +∆X ],

0 if X̂1(e
′) > X +∆X .

Moreover, the expected NPV of incumbent firm 1 in the exit-entry phase is given by the
Bellman equation

U1(e
′) = EX

[
max

{
X̂1(e

′),X1

}]

= (1− φ1(e
′))β

[
V1(e

′)(1 − φ2(e
′)) + V1(e

′
1, 0)φ2(e

′)
]
+ φ1(e

′)EX

[
X1|X1 ≥ X̂1(e

′)
]
,

(OA1)

where EX

[
X1|X1 ≥ X̂1(e

′)
]
is the expectation of the scrap value conditional on exiting the

industry. Specifically,

EX

[
X1|X1 ≥ X̂1(e

′)
]

=

∫ X+∆X

F−1
X

(1−φ1(e
′))
X1dFX(X1)

φ1(e
′)

=
1

φ1(e
′)

[
ZX (0)− ZX

(
1− φ1(e

′)
)]
,

where

ZX (1− φ) =
1

∆2
X





−1
6

(
X −∆X

)3
if 1− φ ≤ 0,

1
2

(
∆X −X

) (
F−1
X (1− φ)

)2
+ 1

3

(
F−1
X (1− φ)

)3
if 1− φ ∈

[
0, 12
]
,

1
2

(
∆X +X

) (
F−1
X (1− φ)

)2 − 1
3

(
F−1
X (1− φ)

)3 − 1
3X

3
if 1− φ ∈

[
1
2 , 1
]
,

1
6

(
X +∆X

)3 − 1
3X

3
if 1− φ ≥ 1

and

F−1
X (1− φ) = X +∆X





−1 if 1− φ ≤ 0,

−1 +
√

2 (1− φ) if 1− φ ∈
[
0, 12
]
,

1−
√
2φ if 1− φ ∈

[
1
2 , 1
]
,

1 if 1− φ ≥ 1.

Entry decision of potential entrant. There is a large queue of potential entrants.
Depending on the number of incumbent firms, up to two potential entrants can enter the
industry in each period. If a potential entrant does not enter, it perishes. If it enters, it
becomes an incumbent firm without prior experience in the subsequent period. Hence, upon
entry, the expected NPV of potential entrant 1 is

Ŝ1(e
′) = β

[
V1(1, e

′
2)(1− φ2(e

′)) + V1(1, 0)φ2(e
′)
]
.

In addition, potential entrant 1 incurs the setup cost S1 in the current period. The prob-
ability of potential entrant 1 not entering the industry in state e′ is therefore φ1(e

′) =

ES

[
1
[
S1 ≥ Ŝ1(e

′)
]]

= 1 − FS(Ŝ1(e
′)), where Ŝ1(e

′) is the critical level of the setup cost

below which entry occurs. Specifically,

φ1(e
′) = 1− FS(Ŝ1(e

′))
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=





1 if Ŝ1(e
′) < S −∆S,

1
2 −

[Ŝ1(e′)−S]
2∆S

if Ŝ1(e
′) ∈ [S −∆S , S +∆S ],

0 if Ŝ1(e
′) > S +∆S.

Moreover, the expected NPV of potential entrant 1 in the exit-entry phase is given by the
Bellman equation

U1(e
′) = ES

[
max

{
Ŝ1(e

′)− S1, 0
}]

= (1− φ1(e
′))
{
β[V1(1, e

′
2)(1 − φ2(e

′)) + V1(1, 0)φ2(e
′)]− ES

[
S1|S1 ≤ Ŝ1(e

′)
] }

, (OA2)

where ES

[
S1|S1 ≤ Ŝ1(e

′)
]
is the expectation of the setup cost conditional on entering the

industry. Specifically,

ES

[
S1|S1 ≤ Ŝ1(e

′)
]

=

∫ F−1
S

(1−φ1(e
′))

S−∆S
S1dFS(S1)

(1− φ1(e
′))

=
1

φ1(e
′)

[
ZS

(
1− φ1(e

′)
)
− ZS (1)

]
,

where

ZS (1− φ) =
1

∆2
S





−1
6

(
S −∆S

)3
if 1− φ ≤ 0,

1
2

(
∆S − S

) (
F−1
S (1− φ)

)2
+ 1

3

(
F−1
S (1− φ)

)3
if 1− φ ∈

[
0, 12
]
,

1
2

(
∆S + S

) (
F−1
S (1− φ)

)2 − 1
3

(
F−1
S (1− φ)

)3 − 1
3S

3
if 1− φ ∈

[
1
2 , 1
]
,

1
6

(
S +∆S

)3 − 1
3S

3
if 1− φ ≥ 1

and

F−1
S (1− φ) = S +∆S





−1 if 1− φ ≤ 0,

−1 +
√

2 (1− φ) if 1− φ ∈
[
0, 12
]
,

1−
√
2φ if 1− φ ∈

[
1
2 , 1
]
,

1 if 1− φ ≥ 1.

Pricing decision of incumbent firm. In the price-setting phase, the expected NPV of
incumbent firm 1 is

V1(e) = max
p1

D1(p1, p2(e))(p1 − c(e1)) +

2∑

n=0

Dn(p1, p2(e))U1

(
en+

)

= max
p1

D1(p1, p2(e))(p1 − c(e1)) + U1(e) +
2∑

n=1

Dn(p1, p2(e))
[
U1

(
en+

)
− U1(e)

]
, (OA3)

where we let e0+ = e and use the fact that
∑2

n=0Dn(p) = 1. Because the maximand on the
right-hand side of Bellman equation (OA3) is strictly quasiconcave in p1 (given p2(e)), the
pricing decision p1(e) of incumbent firm 1 in state e is uniquely determined by the first-order
condition

p1(e)−
σ

1−D1(p(e))
−c(e1)+

[
U1

(
e1+
)
− U1(e)

]
+Υ(p2(e))

[
U1(e)− U1

(
e2+
)]

= 0 (OA4)
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(equation (2) in the main paper) and the probability of firm 2 making a sale conditional on
firm 1 not making a sale is

Υ(p2(e)) =
D2(p(e))

1−D1(p(e))
=

exp
(
−p2(e)

σ

)

exp
(
−p0

σ

)
+ exp

(
−p2(e)

σ

) .

OA1.2 Equivalence to a model that switches the price-setting and exit-

entry phases

We show that our model is equivalent to a model that switches the order of the price-
setting and exit-entry phases. During the exit-entry phase, the state changes from e to e′;
during the price-setting phase, the state changes from e′ to e′′. Discounting occurs after the
price-setting phase. The exit-entry phase determines the value function Ûn along with the
policy function φ̂n with typical element Ûn(e

′), respectively, φ̂n(e
′); the price-setting phase

determines the value function V̂n along with the policy function p̂n with typical element
V̂n(e), respectively, p̂n(e).

We work backwards from the price-setting phase to the exit-entry phase.

Pricing decision of incumbent firm. In the price-setting phase, the expected NPV of
incumbent firm 1 is

V̂1(e
′) = max

p1
D1(p1, p̂2(e

′))(p1− c(e′1))+βÛ1(e
′)+

2∑

n=1

Dn(p1, p̂2(e
′))β

[
Û1

(
e′n+

)
− Û1(e

′)
]
.

(OA5)
The pricing decision p̂1(e

′) is uniquely determined by the first-order condition

p̂1(e
′)− σ

1−D1(p̂(e′))
−c(e′1)+β

[
Û1

(
e′1+

)
− Û1(e

′)
]
+Υ(p̂2(e

′))β
[
Û1(e

′)− Û1

(
e′2+

)]
= 0.

(OA6)

Exit decision of incumbent firm. In the exit-entry phase, if incumbent firm 1 exits the
industry, it receives the scrap value X1 in the current period and perishes. If it does not
exit, its expected NPV is

̂̂
X1(e) =

[
V̂1(e)(1− φ̂2(e)) + V̂1(e1, 0)φ̂2(e)

]
.

The probability of incumbent firm 1 exiting the industry in state e is therefore φ̂1(e) =

1− FX(
̂̂
X1(e)) and the expected NPV of incumbent firm 1 in the exit-entry phase is given

by the Bellman equation

Û1(e) = (1− φ̂1(e))
[
V̂1(e)(1 − φ̂2(e)) + V̂1(e1, 0)φ̂2(e)

]
+ φ̂1(e)EX

[
X1|X1 ≥ ̂̂

X1(e)

]
.

(OA7)
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Entry decision of potential entrant. If a potential entrant does not enter, it perishes.
If it enters, it becomes an incumbent firm without prior experience in the subsequent period.
Hence, upon entry, the expected NPV of potential entrant 1 is

̂̂
S1(e) =

[
V̂1(1, e2)(1 − φ̂2(e)) + V̂1(1, 0)φ̂2(e)

]
.

The probability of potential entrant 1 not entering the industry in state e is therefore

φ̂1(e) = 1− FS(
̂̂
S1(e)) and the expected NPV of potential entrant 1 in the exit-entry phase

is given by the Bellman equation

Û1(e) = (1− φ̂1(e))
{
[V̂1(1, e2)(1 − φ̂2(e)) + V̂1(1, 0)φ̂2(e)]− ES

[
S1|S1 ≤ ̂̂S1(e)

]}
. (OA8)

Equivalence. Let V1, U1, p1, and φ1 solve equations (OA1), (OA2), (OA3), and (OA4).
Define

V̂1 = βV1,

Û1 =
1

β
U1,

p̂1 = p1,

φ̂1 = φ1.

It is straightforward to verify that V̂1, Û1, p̂1, and φ̂1 solve equations (OA5), (OA6), (OA7),
and (OA8). This establishes the equivalence between the models.

OA1.3 Equivalence to a model with per-period, avoidable fixed costs

We show that our model with scrap values is equivalent to a model with per-period, avoidable
fixed costs but without scrap values. For simplicity, we focus on the special case of mixed
exit and entry strategies (∆X = ∆S = 0).1

Incumbent firm. First consider incumbent firm 1. In the exit-entry phase in state e′

with e′1 > 0, the Bellman equation (OA1) becomes

U1(e
′) = max

{
X̂1(e

′),X
}
, (OA9)

where

X̂1(e
′) = β

[
V1(e

′)(1 − φ2(e
′)) + V1(e

′
1, 0)φ2(e

′)
]
.

In the price-setting phase in state e with e1 > 0, the Bellman equation (OA3) becomes

V1(e) = max
p1

D1(p1, p2(e))(p1 − c(e1))− F + U1(e) +

2∑

n=1

Dn(p1, p2(e))
[
U1

(
en+

)
− U1(e)

]
,

(OA10)

1As ∆X → 0 and ∆S → 0, the scrap value is fixed at X and the setup cost at S and we revert to
mixed exit and entry strategies (Ulrich Doraszelski & Mark Satterthwaite 2010, Ulrich Doraszelski & Juan F.
Escobar 2010).
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where F ≥ 0 is per-period, avoidable fixed costs. Note that incumbent firm 1 can avoid the
fixed costs for the subsequent period by deciding to exit the industry in the current period.

Potential entrant. Next consider potential entrant 1. In the exit-entry phase in state e′

with e′1 = 0, the Bellman equation (OA2) becomes

U1(e
′) = max

{
Ŝ1(e

′)− S, 0
}
, (OA11)

where

Ŝ1(e
′) = β[V1(1, e

′
2)(1− φ2(e

′)) + V1(1, 0)φ2(e
′)].

Equilibrium. Let V
(X,S,F )
1 , U

(X,S,F )
1 , p

(X,S,F )
1 , and φ

(X,S,F )
1 denote the value and policy

functions of firm 1 in a symmetric equilibrium for given values of
(
X,S, F

)
; these solve the

Bellman equations (OA9), (OA10), and (OA11) along with the corresponding optimality
conditions.

Equivalence. Our model sets X ≥ 0 and F = 0. We show that our model is equivalent

to an alternative model that sets X
′
= 0 and F

′ ≥ 0. To this end, we show that if V
(X,S,0)
1 ,

U
(X,S,0)
1 , p

(X,S,0)
1 , and φ

(X,S,0)
1 solve the Bellman equations (OA9), (OA10), and (OA11)

given
(
X,S, 0

)
, then

V
(0,S

′
,F

′
)

1 = V
(X,S,0)
1 − X

β
,

U
(0,S

′
,F

′
)

1 (e) =

{
U

(X,S,0)
1 (e) if e1 = 0,

U
(X,S,0)
1 (e)−X if e1 > 0,

p
(0,S

′
,F

′
)

1 = p
(X,S,0)
1 ,

φ
(0,S

′
,F

′
)

1 = φ
(X,S,0)
1

solve these equations given
(
0, S

′
= S −X,F

′
= (1−β)X

β

)
.

Starting with incumbent firm 1, plugging in the Bellman equations (OA9) and (OA10)

given
(
0, S

′
= S −X,F

′
= (1−β)X

β

)
reduce to those under

(
X,S, 0

)
. Turning to potential

entrant 1, the Bellman equation (OA11) given
(
0, S

′
= S −X,F

′
= (1−β)X

β

)
similarly re-

duces to that under
(
X,S, 0

)
.

OA2 First-best planner, welfare, and deadweight loss

OA2.1 First-best planner

We use V FB(e) to denote the expected NPV of total surplus in state e at the beginning of
the period and UFB(e′) the expected NPV of total surplus in state e′ after pricing decisions
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but before exit and entry decisions are made. The price-setting phase determines the value
function VFB along with the policy functions pFB

n for n ∈ {1, 2}; the exit-entry phase
determines the value function UFB along with the policy functions ψFB

ι
for ι ∈ {0, 1}2. We

refer to ι = (ι1, ι2) as the operating decisions of the first-best planner and let ψFB
1,1 (e

′) denote
the probability that the planner in state e′ decides to operate both firms in the subsequent
period, ψFB

1,0 (e
′) the probability that the planner decides to operate only firm 1, ψFB

0,1 (e
′)

the probability that the planner decides to operate only firm 2, and ψFB
0,0 (e

′) the probability

that the planner decides to operate neither firm. Note that
∑

ι∈{0,1}2 ψ
FB
ι

(e′) = 1 and that

the probability that firm 1 does not operate in state e′ is φFB
1 (e′) =

∑1
ι2=0 ψ

FB
0,ι2 (e

′). Note

further that, by construction, TSFB
β = V FB(0, 0).

Operating decisions. Define

UFB
ι

(e′,X,S) =





βV FB(e′1ι1, e
′
2ι2) +X1(1− ι1) +X2(1− ι2) if e′1 6= 0, e′2 > 0,

βV FB(ι1, e
′
2ι2)− S1ι1 +X2(1− ι2) if e′1 = 0, e′2 > 0,

βV FB(e′1ι1, ι2) +X1(1− ι1)− S2ι2 if e′1 > 0, e′2 = 0,
βV FB(ι1, ι2)− S1ι1 − S2ι2 if e′1 = 0, e′2 = 0

(OA12)
to be the expected NPV of total surplus in state e′ given operating decisions ι ∈ {0, 1}2,
scrap values X = (X1,X2), and setup costs S = (S1, S2). Equation (OA12) distinguishes
between firm n actively producing in the current period (e′n > 0) and it being inactive
(e′n = 0). If firm n is active, then the first-best planner receives the scrap value Xn upon
deciding not to operate it in the subsequent period (ιn = 0); if firm n is inactive, then the
planner incurs the setup cost Sn upon deciding to operate it (ιn = 1). The optimal operating
decisions are

UFB
(
e′,X,S

)
= max

ι∈{0,1}2
UFB
ι

(e′,X,S),

with associated operating probabilities

ψFB
ι

(
e′
)
= EX,S

[
1
[
UFB

(
e′,X,S

)
= UFB

ι
(e′,X,S)

]]
(OA13)

for ι ∈ {0, 1}2. Finally, the Bellman equation in the exit-entry phase is

UFB(e′) = EX,S

[
UFB

(
e′,X,S

)]
. (OA14)

Pricing decisions. In the price-setting phase, the expected NPV of total surplus is

V FB(e) = max
p

CS(p) +
2∑

n=1

Dn(p)(pn − c(en)) +
2∑

n=0

Dn(p)U
FB
(
en+

)
, (OA15)

where the first term is consumer surplus and the second term is the static profit of incumbent
firms.2 Because the outside good is priced at cost, its profit is zero.

2If firm n is inactive, then we again set its price to infinity so that Dn(p) = 0 and its contribution to
CS(p) is zero.
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The solution to the maximization problem on the right-hand side of Bellman equation
(OA15) can be shown to exist and to be unique, and it is given by

pFB
n (e) = c(en)−

[
UFB

(
en+

)
− UFB(e)

]

for n ∈ {1, 2}. The pricing decision pFB
n (e) reflects the marginal cost of production c(en) of

incumbent firm n net of the marginal benefit to society of moving the firm down its learning
curve.

Solution. Without loss of generality, we take the first-best planner solution to be sym-
metric in that V FB(e) = V FB(e2, e1), U

FB(e) = UFB(e2, e1), p
FB
1 (e) = pFB

2 (e2, e1), and
ψFB
ι

(e) = ψFB
ι2,ι1(e2, e1) for ι ∈ {0, 1}2.

We solve the first-best planner problem using value function iteration combined with
quasi-Monte Carlo integration (Halton sequences of length 10, 000) to evaluate the operating
probabilities in equation (OA13) and the Bellman equation (OA14).

OA2.2 Welfare and deadweight loss

Under centralized exit and entry, producer surplus in state e is

PSFB(e) =

2∑

n=1

Dn

(
pFB(e)

) (
pFB
n (e)− c(en)

)
+

2∑

n=0

Dn

(
pFB(e)

)

×
{
ψFB
1,1

(
en+

)
EX,S

[
−1 [e1 = 0]S1 − 1 [e2 = 0]S2|UFB

(
en+,X,S

)
= UFB

1,1

(
en+,X,S

)]

+ψFB
1,0

(
en+

)
EX,S

[
−1 [e1 = 0]S1 + 1 [e2 > 0]X2|UFB

(
en+,X,S

)
= UFB

1,0

(
en+,X,S

)]

+ψFB
0,1

(
en+

)
EX,S

[
1 [e1 > 0]X1 − 1 [e2 = 0]S2|UFB

(
en+,X,S

)
= UFB

0,1

(
en+,X,S

)]

+ψFB
0,0

(
en+

)
EX,S

[
1 [e1 > 0]X1 + 1 [e2 > 0]X2|UFB

(
en+,X,S

)
= UFB

0,0

(
en+,X,S

)] }
,

where pFB(e) =
(
pFB
1 (e), pFB

2 (e)
)
.

OA3 Is dynamic competition necessarily fully efficient?

In contrast to rent-seeking models, firms in our learning-by-doing model jostle for competitive
advantage by pricing aggressively rather than by engaging in socially wasteful activities. To
the extent that rents can be efficiently transferred from firms to consumers, one may thus
conjecture that dynamic competition is necessarily fully efficient. This conjecture, however,
overlooks that dynamic competition extends beyond pricing into exit and entry. We highlight
distortions in exit and entry and demonstrate that dynamic competition is not necessarily
fully efficient in an analytically tractable special case of our model with a two-step learning
curve, homogeneous goods, and mixed exit and entry strategies:

Assumption 1 (Two-step learning curve)

1. M = m = 2;
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2. σ = 0;

3. ∆X = ∆S = 0.

Because goods are homogeneous by part (2) of Assumption 1, the firm that sets the lowest
price makes the sale.3 Moreover, aggregate demand for the inside goods is inelastic at prices
below p0. There are therefore no distortions in pricing.

To rule out uninteresting scenarios we further assume:

Assumption 2 (Parameter restrictions)

1. p0 ≥ κ;

2. S > X ≥ 0;

3. β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
> S.

By part (1) of Assumption 2, the marginal cost of the outside good p0 = c0 is at least as
high as the marginal cost c(1) = κ of an incumbent firm at the top of its learning curve. By
part (2), the setup cost is positive and partially sunk and the scrap value is nonnegative.
By part (3), operating a single firm forever is socially beneficial.

First-best planner solution. The first-best planner solution is straightforward:

Proposition 1 (First-best planner solution) Under Assumptions 1 and 2, there exists
the first-best planner solution shown in Table OA1.4

We prove Proposition 1 below after first describing its implications.
Because goods are homogeneous and product variety is not socially beneficial, the planner

operates the industry as a natural monopoly. In state (0, 0) in period 0, the planner decides
to operate a single firm (say firm 1) in the subsequent period. In state (1, 0) in period 1, firm
1 charges just below p0, makes the sale, and moves down its learning curve. The industry
remains in state (2, 0) in period t ≥ 2 and firm 1 again makes the sale. The expected NPV
of total surplus is thus5

TSFB
β = v−p0+β (v − κ)+

β2

1− β
(v − ρκ)−S =

v − p0

1− β
+β

(
p0 − κ+

β

1− β
(p0 − ρκ)

)
−S,

and the maximum value added by the industry is

V Aβ = β

(
p0 − κ+

β

1− β
(p0 − ρκ)

)
− S.

3If there is more than one such firm, each of them makes the sale with equal probability.
4Note that while there exist asymmetric solutions, we focus on the symmetric solution. In particular, we

set ψFB
1,0 (e) = ψFB

0,1 (e) =
1
2
in state e = (e, e). Note also that while firm n may charge any price below p0, we

arbitrarily set pn(e) = p−0 in state e ≥ (0, 0).
5The term v − p0 arises because the consumer purchases the outside good in state (0, 0).
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e pFB
1 (e) pFB

2 (e) ψFB
0,0 (e) ψFB

1,0 (e) ψFB
0,1 (e) ψFB

1,1 (e) V FB(e) UFB(e)

(0, 0) ∞ ∞ 0 1
2

1
2 0 v − p0 + β(v − κ) + β2

1−β (v − ρκ)− S β(v − κ) + β2

1−β (v − ρκ)− S

(0, 1) ∞ p−0 0 0 1 0 v − κ+ β
1−β (v − ρκ) β(v − κ) + β2

1−β (v − ρκ)

(0, 2) ∞ p−0 0 0 1 0 1
1−β (v − ρκ) β

1−β (v − ρκ)

(1, 0) p−0 ∞ 0 1 0 0 v − κ+ β
1−β (v − ρκ) β(v − κ) + β2

1−β (v − ρκ)

(1, 1) p−0 p−0 0 1
2

1
2 0 v − κ+ β

1−β (v − ρκ) +X β(v − κ) + β2

1−β (v − ρκ) +X

(1, 2) p0 p−0 0 0 1 0 1
1−β (v − ρκ) +X β

1−β (v − ρκ) +X

(2, 0) p−0 ∞ 0 1 0 0 1
1−β (v − ρκ) β

1−β (v − ρκ)

(2, 1) p−0 p0 0 1 0 0 1
1−β (v − ρκ) +X β

1−β (v − ρκ) +X

(2, 2) p−0 p−0 0 1
2

1
2 0 1

1−β (v − ρκ) +X β
1−β (v − ρκ) +X

Table OA1: First-best planner solution. Two-step learning curve. In columns labelled pFB
n (e), superscript − indicates that firm

n charges just below the price stated.
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Proof of Proposition 1. The proof proceeds in two steps. First, we show that given
the policy functions, the value functions solve the Bellman equations (OA14) and (OA15).
Second, we show that there is no profitable one-shot deviation in any state of the industry.

Plugging in the policy functions, the Bellman equations (OA14) and (OA15) become:

UFB(0, 0) = −S + β

(
1

2
V FB(0, 1) +

1

2
V FB(1, 0)

)
,

UFB(0, 1) = βV FB(0, 1),

UFB(0, 2) = βV FB(0, 2),

UFB(1, 0) = βV FB(1, 0),

UFB(1, 1) = X + β

(
1

2
V FB(0, 1) +

1

2
V FB(1, 0)

)
,

UFB(1, 2) = X + βV FB(0, 2),

UFB(2, 0) = βV FB(2, 0),

UFB(2, 1) = X + βV FB(2, 0),

UFB(2, 2) = X + β

(
1

2
V FB(0, 2) +

1

2
V FB(2, 0)

)
,

V FB(0, 0) = v − p0 + UFB(0, 0),

V FB(0, 1) = v − κ+ UFB(0, 2),

V FB(0, 2) = v − ρκ+ UFB(0, 2),

V FB(1, 0) = v − κ+ UFB(2, 0),

V FB(1, 1) = v − κ+
1

2
UFB(1, 2) +

1

2
UFB(2, 1),

V FB(1, 2) = v − ρκ+ UFB(1, 2),

V FB(2, 0) = v − ρκ+ UFB(2, 0),

V FB(2, 1) = v − ρκ+ UFB(2, 1),

V FB(2, 2) = v − ρκ+ UFB(2, 2).

It is easy but tedious to show that the value functions solve the Bellman equations.
We proceed state-by-state to show that there is no profitable one-shot deviation. It

suffices to consider deviations in pure strategies.

1. Exit-entry phase in state e = (0, 0): Deviating to ψFB
0,0 (e) = 1 yields βV FB(e) <

UFB(e) by part (iii) of Assumption 2 because

β

(
v − p0 + β(v − κ) +

β2

1− β
(v − ρκ)− S

)
< β(v − κ) +

β2

1− β
(v − ρκ)− S

⇔ (1− β)S < (1− β)β(p0 − κ) + β2(p0 − ρκ)

⇔ S < β

(
p0 − κ+

β

1− β
(p0 − ρκ)

)
.
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Deviating to ψFB
1,0 (e) = 1 yields −S+βV FB(1, 0) = UFB(e). Deviating to ψFB

0,1 (e) = 1

yields−S+βV FB(0, 1) = UFB(e). Deviating to ψFB
1,1 (e) = 1 yields−2S+βV FB(1, 1) <

UFB(e) by part (ii) of Assumption 2 because

−2S + β

(
v − κ+

β

1− β
(v − ρκ) +X

)
< β(v − κ) +

β2

1− β
(v − ρκ)− S

⇔ βX < S.

2. Exit-entry phase in state e = (0, 1): Deviating to ψFB
0,0 (e) = 1 yields X+βV FB(0, 0) <

UFB(e) by parts (ii) and (iii) of Assumption 2. Deviating to ψFB
1,0 (e) = 1 yields

X −S+βV FB(1, 0) < UFB(e) by part (ii) of Assumption 2. Deviating to ψFB
1,1 (e) = 1

yields −S + βV FB(1, 1) < UFB(e) by part (ii) of Assumption 2.

3. Exit-entry phase in state e = (0, 2): Deviating to ψFB
0,0 (e) = 1 yields X+βV FB(0, 0) <

UFB(e) by parts (ii) and (iii) of Assumption 2. Deviating to ψFB
1,0 (e) = 1 yields

X −S+βV FB(1, 0) < UFB(e) by part (ii) of Assumption 2. Deviating to ψFB
1,1 (e) = 1

yields −S + βV FB(1, 2) < UFB(e) by part (ii) of Assumption 2.

4. Exit-entry phase in state e = (1, 0): Analogous to exit-entry phase in state e = (0, 1).

5. Exit-entry phase in state e = (1, 1): Deviating to ψFB
0,0 (e) = 1 yields 2X+βV FB(0, 0) <

UFB(e) by parts (ii) and (iii) of Assumption 2. Deviating to ψFB
1,0 (e) = 1 yields

X+βV FB(1, 0) = UFB(e). Deviating to ψFB
0,1 (e) = 1 yieldsX+βV FB(0, 1) = UFB(e).

Deviating to ψFB
1,1 (e) = 1 yields βV FB(e) < UFB(e).

6. Exit-entry phase in state e = (1, 2): Deviating to ψFB
0,0 (e) = 1 yields 2X+βV FB(0, 0) <

UFB(e) by parts (ii) and (iii) of Assumption 2. Deviating to ψFB
1,0 (e) = 1 yields

X + βV FB(1, 0) < UFB(e). Deviating to ψFB
1,1 (e) = 1 yields βV FB(1, 2) < UFB(e).

7. Exit-entry phase in state e = (2, 0): Analogous to exit-entry phase in state e = (0, 2).

8. Exit-entry phase in state e = (2, 1): Analogous to exit-entry phase in state e = (1, 2).

9. Exit-entry phase in state e = (2, 2): Deviating to ψFB
0,0 (e) = 1 yields 2X+βV FB(0, 0) <

UFB(e) by parts (ii) and (iii) of Assumption 2. Deviating to ψFB
1,0 (e) = 1 yields

X+βV FB(2, 0) = UFB(e). Deviating to ψFB
0,1 (e) = 1 yieldsX+βV FB(0, 2) = UFB(e).

Deviating to ψFB
1,1 (e) = 1 yields βV FB(e) < UFB(e).

10. Price-setting phase in state e = (0, 0): By default.

11. Price-setting phase in state e = (0, 1): Deviating to firm 2 matching the outside good
(pFB

2 (e) = p0) yields

1

2
(v − p0) +

1

2
(v − κ) +

1

2
UFB(e) +

1

2
UFB(0, 2) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 2 being undercut by the outside good
(pFB

2 (e) > p0) yields v − p0 + UFB(e) ≤ V FB(e) by part (i) of Assumption 2.
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12. Price-setting phase in state e = (0, 2): Deviating to firm 2 matching the outside good
(pFB

2 (e) = p0) yields

1

2
(v − p0) +

1

2
(v − ρκ) + UFB(e) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 2 being undercut by the outside good
(pFB

2 (e) > p0) yields v − p0 + UFB(e) ≤ V FB(e) by part (i) of Assumption 2.

13. Price-setting phase in state e = (1, 0): Analogous to price-setting phase in state e =
(0, 1).

14. Price-setting phase in state e = (1, 1): Deviating to firm 1, say, matching the outside
good and firm 2 undercutting the outside good (pFB

1 (e) = p0 and pFB
2 (e) = p−0 ) yields

v − κ+ UFB(1, 2) = V FB(e). Deviating to firm 1, say, being undercut by the outside
good and firm 2 undercutting the outside good (pFB

1 (e) > p0 and pFB
2 (e) = p−0 ) yields

v− κ+UFB(1, 2) = V FB(e). Deviating to firm 1 matching the outside good and firm
2 matching the outside good (pFB

1 (e) = p0 and pFB
2 (e) = p0) yields

1

3
(v − p0) +

2

3
(v − κ) +

1

3
UFB(e) +

1

3
UFB(2, 1) +

1

3
UFB(1, 2) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 1, say, being undercut by the outside
good and firm 2 matching the outside good (pFB

1 (e) > p0 and pFB
2 (e) = p0) yields

1

2
(v − p0) +

1

2
(v − κ) +

1

2
UFB(e) +

1

2
UFB(1, 2) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 1 being undercut by the outside good
and firm 2 being undercut by the outside good (pFB

1 (e) > p0 and pFB
2 (e) > p0) yields

(v − p0) + UFB(e) ≤ V FB(e) by part (i) of Assumption 2.

15. Price-setting phase in state e = (1, 2): Deviating to firm 1 undercutting the outside
good and firm 2 undercutting the outside good (pFB

1 (e) = p−0 and pFB
2 (e) = p−0 ) yields

1

2
(v − κ) +

1

2
(v − ρκ) +

1

2
UFB(2, 2) +

1

2
UFB(e) ≤ V FB(e).

Deviating to firm 1 being undercut by the outside good and firm 2 undercutting the
outside good (pFB

1 (e) > p0 and pFB
2 (e) = p−0 ) yields v − ρκ + UFB(e) = V FB(e).

Deviating to firm 1 undercutting the outside good and firm 2 matching the outside
good (pFB

1 (e) = p−0 and pFB
2 (e) = p0) yields v−κ+UFB(2, 2) ≤ V FB(e). Deviating to

firm 1 matching the outside good and firm 2 matching the outside good (pFB
1 (e) = p0

and pFB
2 (e) = p0) yields

1

3
(v − p0) +

1

3
(v − κ) +

1

3
(v − ρκ) +

2

3
UFB(e) +

1

3
UFB(2, 2) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 1 being undercut by the outside good
and firm 2 matching the outside good (pFB

1 (e) > p0 and pFB
2 (e) = p0) yields

1

2
(v − p0) +

1

2
(v − ρκ) + UFB(e) ≤ V FB(e)
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by part (i) of Assumption 2. Deviating to firm 1 undercutting the outside good and
firm 2 being undercut by the outside good (pFB

1 (e) = p−0 and pFB
2 (e) > p0) yields

v− κ+UFB(2, 2) ≤ V FB(e). Deviating to firm 1 matching the outside good and firm
2 being undercut by the outside good (pFB

1 (e) = p0 and pFB
2 (e) > p0) yields

1

2
(v − p0) +

1

2
(v − κ) +

1

2
UFB(e) +

1

2
UFB(2, 2) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 1 being undercut by the outside good
and firm 2 being undercut by the outside good (pFB

1 (e) > p0 and pFB
2 (e) > p0) yields

(v − p0) + UFB(e) ≤ V FB(e) by part (i) of Assumption 2.

16. Price-setting phase in state e = (2, 0): Analogous to price-setting phase in state e =
(0, 2).

17. Price-setting phase in state e = (2, 1): Analogous to price-setting phase in state e =
(1, 2).

18. Price-setting phase in state e = (2, 2): Deviating to firm 1, say, matching the outside
good and firm 2 undercutting the outside good (pFB

1 (e) = p0 and pFB
2 (e) = p−0 ) yields

v − ρκ + UFB(e) = V FB(e). Deviating to firm 1, say, being undercut by the outside
good and firm 2 undercutting the outside good (pFB

1 (e) > p0 and pFB
2 (e) = p−0 ) yields

v − ρκ+ UFB(e) = V FB(e). Deviating to firm 1 matching the outside good and firm
2 matching the outside good (pFB

1 (e) = p0 and pFB
2 (e) = p0) yields

1

3
(v − p0) +

2

3
(v − ρκ) + UFB(e) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 1, say, being undercut by the outside
good and firm 2 matching the outside good (pFB

1 (e) > p0 and pFB
2 (e) = p0) yields

1

2
(v − p0) +

1

2
(v − ρκ) + UFB(e) ≤ V FB(e)

by part (i) of Assumption 2. Deviating to firm 1 being undercut by the outside good
and firm 2 being undercut by the outside good (pFB

1 (e) > p0 and pFB
2 (e) > p0) yields

(v − p0) + UFB(e) ≤ V FB(e) by part (i) of Assumption 2.

Equilibrium. Even if pricing is efficient, exit and entry may not be:

Proposition 2 (Equilibrium.) Under Assumptions 1 and 2, there exists the equilibrium
shown in Table OA2. The deadweight loss is

DWLβ =
φ1(0, 0)(1 − β)

1− βφ1(0, 0)
2
V Aβ +

(1− φ1(0, 0))
2

1− βφ1(0, 0)
2

(
S − βX

)
(OA16)

and the relative deadweight loss is

DWLβ

V Aβ
=
φ1(0, 0) − βφ1(0, 0)

2

1− βφ1(0, 0)
2

. (OA17)

14



Moreover,
d(1−φ1(0,0)

2)
dρ < 0 and

d(DWLβ/V Aβ)
dρ > 0: as learning economies strengthen, the

probability 1 − φ1(0, 0)
2 that the industry “takes off” increases and the relative deadweight

loss
DWLβ

V Aβ
decreases.

We prove Proposition 2 below.
The deadweight loss arises because the entry process is decentralized and uncoordinated.

The industry can therefore suffer from over-entry and under-entry. To illustrate, we sketch
out the evolution of the industry in the equilibrium shown in Table OA2. In state (0, 0) in
period 0, a single firm enters the industry with probability 2(1−φ1(0, 0))φ1(0, 0), both firms
enter with probability (1 − φ1(0, 0))

2, and no firms enter with probability φ1(0, 0)
2. The

industry continues to evolve as follows:

• Case 1. If a single firm (say firm 1) enters, then in state (1, 0) in period 1 it charges a
price just below the price of the outside good p0, makes the sale, and moves down its
learning curve. In state (2, 0) firm 1 remains in the industry (φ1(2, 0) = 0) and firm 2
does not enter (φ1(0, 2) = 1). The industry remains in state (2, 0) in period t ≥ 2, and
firm 1 again makes the sale.

• Case 2: Over-entry. If both firms enter, then in state (1, 1) in period 1 they charge
a price less than static marginal cost κ. One of the firms (say firm 1) makes the sale
and moves down its learning curve. In state (2, 1), the leader (firm 1) remains in the
industry (φ1(2, 1) = 0) and the follower (firm 2) exits (φ1(1, 2) = 1). The industry
moves to—and remains in—state (2, 0) in period t ≥ 2. Note that pricing in state

(1, 1) is so aggressive that both firms incur a loss of −
(

β
1−β (p0 − ρκ)−X

)
that fully

dissipates any future gains from monopolizing the industry.

• Case 3: Under-entry. If no firm enters, then the above process repeats itself in state
(0, 0) in period 1.

In short, the intuition that dynamic competition is necessarily fully efficient is incomplete.
In the equilibrium shown in Table OA2, while the industry evolves towards the monopolistic
structure that the first-best planner operates, this may happen slowly over time due to
either over-entry or under-entry.6 Wasteful duplication and delay (Patrick Bolton & Joseph
Farrell 1990) are both integral parts of the equilibrium.

The equilibrium shown in Table OA2 further entails a war of attrition (J. Maynard
Smith 1974, Jean Tirole 1988, Jeremy Bulow & Paul Klemperer 1999) in state (2, 2), although
state (2, 2) is off the equilibrium path starting from state (0, 0). The war of attrition arises
because a firm is better off staying in the industry if its rival exits but worse off if its rival
stays. As a firm hopes to outlast its rival, it clings to the industry. The resulting non-

operating probability is φ1(2, 2) = (1−β)X
β

1−β
(p0−ρκ)−βX

∈ (0, 1), whereas the first-best planner

6The first term in equation (OA16) is due to under-entry and the “discount factor”
φ
1
(0,0)(1−β)

1−βφ
1
(0,0)2

captures

the stochastic length of time over which under-entry may occur; the second term is due to over-entry and

the “discount factor” (1−φ
1
(0,0))2

1−βφ
1
(0,0)2

captures the stochastic length of time over which over-entry can occur after

potentially many periods of under-entry.
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e p1(e) φ1(e) V1(e) U1(e)

(0, 0) ∞ S−βX

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

– 0

(0, 1) ∞ 1 – 0
(0, 2) ∞ 1 – 0

(1, 0) p−0 0 p0 − κ+ β
1−β (p0 − ρκ) β

(
p0 − κ+ β

1−β (p0 − ρκ)
)

(1, 1) κ−
(

β
1−β (p0 − ρκ)−X

)
(1−β)X

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

X X

(1, 2) κ 1 X X

(2, 0) p−0 0 p0−ρκ
1−β

β
1−β (p0 − ρκ)

(2, 1) κ− 0 (1− ρ)κ+ β
1−β (p0 − ρκ) β

1−β (p0 − ρκ)

(2, 2) ρκ
(1−β)X

β
1−β

(p0−ρκ)−βX
X X

Table OA2: Equilibrium. Two-step learning curve. In column labelled p1(e), superscript − indicates that firm 1 charges just
below the price stated.

16



ceases to operate one of the two firms in state (2, 2). Because the exit process is decentralized
and uncoordinated, the industry can suffer not only from over-exit but also from under-exit.7

Proof of Proposition 2. The proof proceeds in two steps. First, we show that given the
policy functions, the value functions solve the Bellman equations (OA1), (OA2), and (OA3).
Second, we show that there is no profitable one-shot deviation in any state of the industry.

Plugging in the policy functions, the Bellman equations (OA1), (OA2), and (OA3) be-
come:

U1(0, 0) =


1− S − βX

β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
− βX




×


−S +

S − βX

β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
− βX

βV1(1, 0) +


1− S − βX

β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
− βX


 βV1(1, 1)


 ,

U1(0, 1) = 0,

U1(0, 2) = 0,

U1(1, 0) = βV1(1, 0),

U1(1, 1) =
(1− β)X

β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
− βX

X +


1− (1 − β)X

β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
− βX




×


 (1− β)X

β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
− βX

βV1(1, 0) +


1− (1− β)X

β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
− βX


 βV1(1, 1)


 ,

U1(1, 2) = X,

U1(2, 0) = βV1(2, 0),

U1(2, 1) = βV1(2, 0),

U1(2, 2) =
(1− β)X

β
1−β (p0 − ρκ)− βX

X +

(
1− (1− β)X

β
1−β (p0 − ρκ)− βX

)

×
(

(1− β)X
β

1−β (p0 − ρκ)− βX
βV1(2, 0) +

(
1− (1− β)X

β
1−β (p0 − ρκ)− βX

)
βV1(2, 2)

)
,

V1(1, 0) = p0 − κ+ U1(2, 0),

V1(1, 1) = −1

2

(
β

1− β
(p0 − ρκ)−X

)
+

1

2
U1(1, 2) +

1

2
U1(2, 1),

V1(1, 2) = U1(1, 2),

V1(2, 0) = p0 − ρκ+ U1(2, 0),

V1(2, 1) = κ(1− ρ) + U1(2, 1),

7Coordination failures in exit and entry may be exacerbated if there are more than two firms (Luis M.B.
Cabral 1993, Nikolaos Vettas 1998). Intuitively, the support of the binomial distribution becomes more spread
out with more draws.
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V1(2, 2) = U1(2, 2),

where we omit the Bellman equation (OA3) for state e if e1 = 0. Recall that the firm that
sets the lowest price makes the sale for sure and that, if there is more than one such firm,
each of them makes the sale with equal probability. It is easy but tedious to show that the
value functions solve the Bellman equations.

We proceed state-by-state to show that there is no profitable one-shot deviation. It
suffices to consider deviations in pure strategies.8

1. Exit-entry phase in state e = (0, 0): Deviating to φ1(e) = 0 yields

−S +
S − βX

β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
− βX

βV1(1, 0) +


1− S − βX

β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
− βX


 βV1(1, 1)

= 0 = U1(e).

Deviating to φ1(e) = 1 yields 0 = U1(e).

2. Exit-entry phase in state e = (0, 1): Deviating to φ1(e) = 0 yields −S + βV1(1, 1) <
U1(e) by part (ii) of Assumption 2.

3. Exit-entry phase in state e = (0, 2): Deviating to φ1(e) = 0 yields −S + βV1(1, 2) <
U1(e) by part (ii) of Assumption 2.

4. Exit-entry phase in state e = (1, 0): Deviating to φ1(e) = 1 yields X < U1(e) by parts
(ii) and (iii) of Assumption 2.

5. Exit-entry phase in state e = (1, 1): Deviating to φ1(e) = 0 yields

(1− β)X

β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
− βX

βV1(1, 0) +


1− (1− β)X

β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
− βX


 βV1(1, 1)

= X = U1(e).

Deviating to φ1(e) = 1 yields X = U1(e).

6. Exit-entry phase in state e = (1, 2): Deviating to φ1(e) = 0 yields βV1(e) = βX <

X = U1(e).

7. Exit-entry phase in state e = (2, 0): Deviating to φ1(e) = 1 yields X < U1(e) by parts
(ii) and (iii) of Assumption 2.

8. Exit-entry phase in state e = (2, 1): Deviating to φ1(e) = 1 yields X < U1(e) by parts
(ii) and (iii) of Assumption 2.

8Note that in the price-setting phase in state e > (0, 0), the outside good remains priced out of the market
even after a deviation by parts (i), (ii), and (iii) of Assumption 2.
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9. Exit-entry phase in state e = (2, 2): Deviating to φ1(e) = 0 yields

(1− β)X
β

1−β (p0 − ρκ)− βX
βV1(2, 0) +

(
1− (1− β)X

β
1−β (p0 − ρκ)− βX

)
βV1(2, 2)

= X = U1(e).

Deviating to φ1(e) = 1 yields X = U1(e).

10. Price-setting phase in state e = (0, 0): By default.

11. Price-setting phase in state e = (0, 1): By default.

12. Price-setting phase in state e = (0, 2): By default.

13. Price-setting phase in state e = (1, 0): Deviating to match the outside good (p1(e) =
p0) yields

1

2
(p0 − κ) +

1

2
U1(2, 0) +

1

2
U1(e) < V1(e).

Deviating to be undercut by the outside good (p1(e) > p0) yields U1(e) < V1(e).

14. Price-setting phase in state e = (1, 1): Deviating to undercut firm 2 (p1(e) =
(
κ−

(
β

1−β (p0 − ρκ)−X
))−

)

yields

−
(

β

1− β
(p0 − ρκ)−X

)
+ U1(2, 1) = V1(e).

Deviating to be undercut by firm 2 (p1(e) > κ−
(

β
1−β (p0 − ρκ)−X

)
) yields U1(1, 2) =

V1(e).

15. Price-setting phase in state e = (1, 2): Deviating to match firm 2 (p1(e) = κ−) yields

1

2
U1(e) +

1

2
U1(2, 2) = V1(e).

Deviating to undercut firm 2 (p1(e) = κ−−, where κ−− is the price just below κ−)
yields U1(2, 2) = V1(e).

16. Price-setting phase in state e = (2, 0): Deviating to match the outside good (p1(e) =
p0) yields

1

2
(p0 − ρκ) + U1(2, 0) < V1(e).

Deviating to be undercut by the outside good (p1(e) > p0) yields U1(e) < V1(e).

17. Price-setting phase in state e = (2, 1): Deviating to match firm 2 (p1(e) = κ) yields

1

2
(1− ρ)κ+

1

2
U1(e) +

1

2
U1(2, 2) < V1(e)

by parts (ii) and (iii) of Assumption 2. Deviating to be undercut by firm 2 (p1(e) > κ)
yields U1(2, 2) < V1(e) by parts (ii) and (iii) of Assumption 2.
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18. Price-setting phase in state e = (2, 2): Deviating to undercut firm 2 (p1(e) = ρκ−)
yields U1(e) = V1(e). Deviating to be undercut by firm 2 (p1(e) > ρκ) yields U1(e) =
V1(e).

Additional equilibria. Under Assumptions 1 and 2, there exist two other equilibria,
shown in Tables OA3 and OA4, in addition to the one in Table OA2.9 Even in this special
case of our model, multiple equilibria are endemic. These equilibria differ from the one in
Table OA2 only in the exit-entry phase in state (1, 0). In the first equilibrium, the incumbent
firm exits the industry and the potential entrant enters (φ1(1, 0) = 1 and φ1(0, 1) = 0); in
the second equilibrium, the incumbent firm and the potential entrant play mixed strategies

(φ1(1, 0) =
S−βX

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

∈ (0, 1) and φ1(0, 1) =
(1−β)X

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

∈ (0, 1)).

Because the exit-entry phase in state (1, 0) is off the equilibrium path starting from state
(0, 0), however, these equilibria give rise to the deadweight loss in equations (OA16) and
(OA17).

Equilibrium with cost-inefficient exit. Under the additional assumption that X ≥
β

1−βκ(1 − ρ), there exists the equilibrium, shown in Table OA5, with cost-inefficient exit.10

In state (2, 1), the incumbent firms play mixed strategies. Hence, the lower-cost firm may
exit the industry while the higher-cost firm does not. Note that this equilibrium entails cost-
inefficient exit not only in an ex post sense but also in an ex ante sense as the lower-cost firm
exits the industry with higher probability than the higher-cost firm (φ1(2, 1) > φ1(1, 2)).

OA4 Numerical analysis and equilibrium

OA4.1 Parameterization and computation

Figure OA1 shows the number of equilibria that we have computed for six two-dimensional
slices through the equilibrium correspondence along (ρ, σ), (ρ, p0), (ρ,X), (σ, p0), (σ,X),
and (p0,X). White indicates a unique equilibrium at a parameterization and darker shades
of blue indicate larger numbers of equilibria. A red cross indicates a paramaterization where
we have been unable to compute an equilibrium.

Figure OA2 shows the probability 1 − φ1(0, 0)
2 that the industry “takes off”, averaged

across equilibria within parameterizations, for the six slices through the equilibrium corre-
spondence. A blue circle indicates that at the parameterization under consideration there
exists an equilibrium with 1−φ1(0, 0)2 < 0.01 that we exclude from the subsequent analysis.
Darker shades of blue indicate higher probabilities.

OA4.2 Equilibrium and first-best planner solution

Aggressive and accommodative equilibria. The upper panels of Figure OA3 show the
aggressive equilibrium at the baseline parameterization in Table 1 in the main paper and
the lower panels the accommodative equilibrium. The left panels show the pricing decision

9The proof is similar to that of Proposition 2 and therefore omitted.
10The proof is similar to that of Proposition 2 and therefore omitted.
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e p1(e) φ1(e) V1(e) U1(e)

(0, 0) ∞ S−βX

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

– 0

(0, 1) ∞ 0 – β
(
p0 − κ+ β

1−β (p0 − ρκ)
)
− S

(0, 2) ∞ 1 – 0

(1, 0) p−0
S−βX

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

p0 − κ+ β
1−β (p0 − ρκ) X

(1, 1) κ−
(

β
1−β (p0 − ρκ)−X

)
(1−β)X

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

X X

(1, 2) κ 1 X X

(2, 0) p−0 0 p0−ρκ
1−β

β
1−β (p0 − ρκ)

(2, 1) κ− 0 (1− ρ)κ+ β
1−β (p0 − ρκ) β

1−β (p0 − ρκ)

(2, 2) ρκ
(1−β)X

β
1−β

(p0−ρκ)−βX
X X

Table OA3: Additional equilibrium 1. Two-step learning curve. In column labelled p1(e), superscript − indicates that firm 1
charges just below the price stated.

e p1(e) φ1(e) V1(e) U1(e)

(0, 0) ∞ S−βX

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

– 0

(0, 1) ∞ (1−β)X

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

– 0

(0, 2) ∞ 1 – 0

(1, 0) p−0
S−βX

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

p0 − κ+ β
1−β (p0 − ρκ) X

(1, 1) κ−
(

β
1−β (p0 − ρκ)−X

)
(1−β)X

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

X X

(1, 2) κ 1 X X

(2, 0) p−0 0 p0−ρκ
1−β

β
1−β (p0 − ρκ)

(2, 1) κ− 0 (1− ρ)κ+ β
1−β (p0 − ρκ) β

1−β (p0 − ρκ)

(2, 2) ρκ
(1−β)X

β
1−β

(p0−ρκ)−βX
X X

Table OA4: Additional equilibrium 2. Two-step learning curve. In column labelled p1(e), superscript − indicates that firm 1
charges just below the price stated.
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e p1(e) φ1(e) V1(e) U1(e)

(0, 0) ∞ S−βX

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

– 0

(0, 1) ∞ 1 – 0
(0, 2) ∞ 1 – 0

(1, 0) p−0 0 p0 − κ+ β
1−β (p0 − ρκ) β

(
p0 − κ+ β

1−β (p0 − ρκ)
)

(1, 1) κ
(1−β)X

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

X X

(1, 2) κ
(1−β)X−β(1−ρ)κ

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

X X

(2, 0) p−0 0 p0−ρκ
1−β

β
1−β (p0 − ρκ)

(2, 1) κ−
(1−β)X

β
(
p0−κ+ β

1−β
(p0−ρκ)

)
−βX

(1− ρ)κ+X X

(2, 2) ρκ
(1−β)X

β
1−β

(p0−ρκ)−βX
X X

Table OA5: Equilibrium with cost-inefficient exit. Two-step learning curve. In column labelled p1(e), superscript − indicates
that firm 1 charges just below the price stated.
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Figure OA1: Number of equilibria. Slices through equilibrium correspondence. Red cross
indicates computation failure.
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Figure OA2: Probability 1−φ1(0, 0)2 that industry “takes off”. Equilibria within parameter-
izations weighted equally. Slices through equilibrium correspondence. Blue circle indicates
non-viable industry. Red cross indicates computation failure.
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of firm 1, the middle panels the non-operating probability of firm 2, and the right panels the
time path of the probability distribution over industry structures (empty, monopoly, and
duopoly).

First-best planner solution. Figure OA4 shows the first-best planner solution at the
baseline parameterization in Table 1 in the main paper; it is analogous to Figure OA3.

Industry structure, conduct, and performance metrics. The expected short-run
and long-run number of firms is

N1 =
∑

e

µ1 (e)N(e), N∞ =
∑

e

µ∞ (e)N(e),

where number of firms in state e is

N(e) =

2∑

n=1

1 [en > 0] .

The expected short-run and long-run average price is

p1 =
∑

e≥(0,0)

µ1 (e)

1− µ1(0, 0)
p(e), p∞ =

∑

e≥(0,0)

µ∞ (e)

1− µ∞(0, 0)
p(e),

where (share-weighted) average price in state e is

p(e) =

2∑

n=1

Dn(p1(e), p2(e))

1−D0(p1(e), p2(e))
pn(e).

The expected time to maturity is

Tm = E [min {t ≥ 0|et ∈ Ω}| e0 = (0, 0)] ,

where et is the state of the industry in period t and

Ω = {(m, 0), . . . , (M, 0), (0,m), . . . , (0,M), (m,m), . . . , (M,M)}

is the set of states in which the industry is either a mature monopoly or a mature duopoly.
min {t ≥ 0|et ∈ Ω} is the so-called first passage time into the set of states Ω. It can be
shown that Tm is the solution to a system of linear equations (Vidyadhar G. Kulkarni 1995,
equation (4.72)).

The expected NPV of consumer surplus CSβ is defined analogously to the expected NPV
of total surplus TSβ in equation (3) in the main paper.

OA5 Does dynamic competition lead to low deadweight loss?

Complementing Figure 1 and Result 1 in the main paper, Figure OA5 shows the relative
deadweight loss

DWLβ

V Aβ
, averaged across equilibria within parameterizations, for the six slices

through the equilibrium correspondence. Darker shades of blue indicate larger losses.
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Figure OA3: Aggressive (upper panels) and accommodative (lower panels) equilibrium. Pric-
ing decision of firm 1 (left panels), non-operating probability of firm 2 (middle panels), and
time path of probability distribution over industry structures (right panels). Dots above
the surface in left panels are p1(e1, 0) for e1 > 0 and dots in middle panels are φ2(0, e2) for
e2 > 0 and φ2(e1, 0) for e1 ≥ 0. Baseline parameterization.

26



1
5

10
15

20
25

30

0
5

10
15

20
25

30
0

2

4

6

8

10

e
1e

2

p 1(e
)

0
5

10
15

20
25

30

0
5

10
15

20
25

30
0

0.2

0.4

0.6

0.8

1

e
1e

2

φ 2(e
)

0 20 40
0

0.2

0.4

0.6

0.8

1

T

pr
ob

.

 

 
empty
monopoly
duopoly

Figure OA4: First-best planner solution. Pricing decision of firm 1 (left panel), non-
operating probability of firm 2 (middle panel), and time path of probability distribution
over industry structures (right panel). Dots beside the surface in left panel are p1(e1, 0) for
e1 > 0 and dots in middle panel are φ2(0, e2) for e2 > 0 and φ2(e1, 0) for e1 ≥ 0. Baseline
parameterization.

OA5.1 Deadweight loss in perspective: static non-cooperative pricing

counterfactual and collusive solution

Static non-cooperative pricing counterfactual. In the price-setting phase, incumbent
firm 1 maximizes static profit

max
p1

D1(p1, p
SN
2 (e))(p1 − c(e1)),

and the pricing decision pSN1 (e) is uniquely determined by the first-order condition

pSN1 (e) = c(e1) +
σ

1−D1(pSN (e))
,

where pSN (e) =
(
pSN1 (e), pSN2 (e)

)
. The expected NPV of incumbent firm 1 is

V SN
1 (e) = D1(p

SN (e))(pSN1 (e)− c(e1))

+USN
1 (e) +

2∑

n=1

Dn(p
SN (e))

[
USN
1

(
en+

)
− USN

1 (e)
]

and, in contrast to the pricing decision, accounts for the impact of a sale on the value of
continued play. The exit-entry phase is as described in Section OA1.1.11 Our computations
always led to a unique solution.

11Our static non-cooperative pricing counterfactual loosely corresponds to the version of the war of attrition
presented in Tirole (1988), with the addition of learning-by-doing and product differentiation.
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Figure OA5: Relative deadweight loss
DWLβ

V Aβ
. Equilibria within parameterizations weighted

equally. Slices through equilibrium correspondence. Blue circle indicates non-viable industry.
Red cross indicates computation failure.
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Figure OA6: Deadweight loss ratio
DWLSN

β

DWLβ
. Static noncooperative pricing counterfactual.

Equilibria within parameterizations weighted equally. Slices through equilibrium correspon-
dence. Blue circle indicates non-viable industry. Red cross indicates computation failure.
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Complementing Figure 2 and Result 3 in the main paper, Figure OA6 shows the dead-

weight loss ratio
DWLSN

β

DWLβ
, averaged across equilibria within parameterizations, for the six

slices through the equilibrium. Red, green, and blue indicates negative, zero, and positive
values, respectively, and darker shades indicate larger values (in absolute value).

We note that DWLSN
β is smaller than DWLβ in a number of parameterizations that

mostly involve an unattractive outside good (p0 ≥ 15). The outside good constrains pricing
decisions and profitability much more in a monopolistic than in a duopolistic industry. A
less attractive outside good lifts this constraint and sharpens the incentive to monopolize
the industry in equilibrium. But if firms ignore the investment role of price in the static
non-cooperative pricing counterfactual, then a duopolistic industry with a lower deadweight
loss emerges.

Collusive solution. In the price-setting phase, the expected NPV of producer surplus is

V CO(e) = max
p

2∑

n=1

Dn(p)(pn − c(en)) +

2∑

n=0

Dn(p)U
CO
(
en+

)

and the pricing decisions pCO(e) =
(
pCO
1 (e), pCO

2 (e)
)
are uniquely determined by the first-

order conditions

pCO
n (e)− σ

1−Dn(pCO(e))
− c(en) +

[
UCO

(
en+

)
− UCO(e)

]
= 0

for n ∈ {1, 2}. The exit-entry phase is as described in Section OA2.1. The collusive solution
exists and is unique by the contraction mapping theorem; without loss of generality, we take
it to be symmetric.

Complementing Figure 2 and Result 4 in the main paper, Figure OA7 shows the dead-

weight loss ratio
DWLCO

β

DWLβ
, averaged across equilibria within parameterizations, for the six

slices through the equilibrium. Red, green, and blue indicates negative, zero, and positive
values, respectively, and darker shades indicate larger values (in absolute value).

OA5.2 Differences between equilibria and first-best planner solution

There are typically substantial differences between the equilibria and the first-best planner
solution. We first compare the expected short-run and long-run number of firms between
the equilibria and the first-best planner solution. Recall that the first-best planner does not
necessarily operate the industry as a natural monopoly, in particular if the degree of product
differentiation—and thus the social benefit of product variety—is sufficiently large.

Figure OA8 shows the expected short-run number of firms N1, averaged across equilibria
within parameterizations, for the six slices through the equilibrium correspondence. Darker
shades of blue indicate larger numbers. Figure OA9 analogously shows the expected short-
run number of firms NFB

1 under the first-best planner solution.
Figure OA10 shows the distribution of N1 − NFB

1 as a solid line and breaks out the
best equilibrium as a dotted line and the worst equilibrium as a dashed line. Result OA1
highlights some findings:
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Figure OA7: Deadweight loss ratio
DWLCO

β

DWLβ
. Collusive solution. Equilibria within parameter-

izations weighted equally. Slices through equilibrium correspondence. Blue circle indicates
non-viable industry. Red cross indicates computation failure.
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Figure OA8: Expected short-run number of firms N1. Equilibria within parameterizations
weighted equally. Slices through equilibrium correspondence. Blue circle indicates non-viable
industry. Red cross indicates computation failure.
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Figure OA9: Expected short-run number of firms NFB
1 . First-best planner solution. Slices

through solution correspondence. Blue circle indicates non-viable industry. Red cross indi-
cates computation failure.
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1 . All equilibria (solid line), best equilibrium (dotted

line), and worst equilibrium (dashed line). Parameterizations and equilibria within param-
eterizations weighted equally.

Result OA1 N1 is larger than NFB
1 in 76.15% of parameterizations and smaller than NFB

1

in 1.33% of parameterizations. The median of N1 −NFB
1 is 0.6567.12

Thus, the equilibria typically have too many firms in the short run, consistent with over-
entry. They very rarely have too few firms in the short run. Figure OA10 also breaks out
the best equilibrium as a dotted line and the worst equilibrium as a dashed line. Similar to
our examples in Section 4.2 in the main paper, there is no discernible difference between the
best and the worst equilibrium.

Figure OA11 shows the expected long-run number of firmsN∞, averaged across equilibria
within parameterizations, for the six slices through the equilibrium correspondence. Darker
shades of blue indicate larger numbers. Figure OA12 analogously shows the expected long-
run number of firms NFB

∞ under the first-best planner solution.
Figure OA13 shows the distribution of N∞ − NFB

∞ as a solid line and breaks out the
best equilibrium as a dotted line and the worst equilibrium as a dashed line. Result OA2
summarizes:

Result OA2 (1) N∞ is larger than NFB
∞ in 53.77% of parameterizations and smaller than

NFB
∞ in 5.07% of parameterizations. The median of N∞ − NFB

∞ is 0.0038. (2) For the
best equilibrium, N∞ is larger than NFB

∞ in 59.21% of parameterizations and smaller than
NFB

∞ in 0.94% of parameterization. The median of N∞−NFB
∞ is 0.1327. (3) For the worst

equilibrium, N∞ is larger than NFB
∞ in 58.77% of parameterizations and smaller than NFB

∞

in 6.27% of parameterizations. The median of N∞ −NFB
∞ is 0.0167.

12In stating Result OA1, we take N1 to be equal to NFB
1 if

∣

∣N1 −NFB
1

∣

∣ < 0.0001 to account for the limited
precision of our computations. We proceed analogously in stating Result OA2.
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Figure OA11: Expected long-run number of firms N∞. Equilibria within parameterizations
weighted equally. Slices through equilibrium correspondence. Blue circle indicates non-viable
industry. Red cross indicates computation failure.
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Figure OA12: Expected long-run number of firms NFB
∞ . First-best planner solution. Slices

through solution correspondence. Blue circle indicates non-viable industry. Red cross indi-
cates computation failure.
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Figure OA13: Distribution N∞ −NFB
∞ . All equilibria (solid line), best equilibrium (dotted

line), and worst equilibrium (dashed line). Parameterizations and equilibria within param-
eterizations weighted equally.

Thus, the equilibria regularly have too many firms in the long run, consistent with under-
exit. This tendency is exacerbated in the best equilibrium. The equilibria very rarely have
too few firms in the long run.

We next turn to the speed at which firms move down their learning curves. Recall that
the expected time to maturity Tm depends on both the number of incumbent firms and
their pricing decisions. Figure OA14 shows the expected time to maturity Tm, averaged
across equilibria within parameterizations, for the six slices through the equilibrium corre-
spondence. Darker shades of blue indicate larger values. Figure OA15 analogously shows
the expected time to maturity Tm,FB under the first-best planner solution.

Figure OA16 shows the distribution of Tm − Tm,FB as a solid line and breaks out the
best equilibrium as a dotted line and the worst equilibrium as a dashed line. Result OA3
summarizes:

Result OA3 (1) Tm is larger than Tm,FB in 90.69% of parameterizations and smaller than
Tm,FB in 8.35% of parameterizations.13 The median of Tm − Tm,FB is 5.2502. (2) For the
best equilibrium, Tm is larger than Tm,FB in 91.97% of parameterizations and smaller than
Tm,FB in 6.46% of parameterization. The median of Tm − Tm,FB is 11.3581. (3) For the
worst equilibrium, Tm is larger than Tm,FB in 90.49% of parameterizations and smaller than
Tm,FB in 8.69% of parameterizations. The median of Tm − Tm,FB is 6.6216.

The speed of learning in the equilibria is generally too slow. Moreover, the best equilibrium
exhausts learning economies even more slowly than the worst equilibrium. This is because
pricing is initially less aggressive and more firms split sales in an accommodative equilibrium
than in an aggressive equilibrium.

13In stating Result OA3, we take Tm to be equal to Tm,FB if
∣

∣Tm
− Tm,FB

∣

∣ < 0.1.
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Figure OA14: Expected time to maturity Tm. Equilibria within parameterizations weighted
equally. Slices through equilibrium correspondence. Blue circle indicates non-viable industry.
Red cross indicates computation failure.
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Figure OA15: Expected time to maturity Tm,FB. First-best planner solution. Slices through
solution correspondence. Blue circle indicates non-viable industry. Red cross indicates
computation failure.
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Figure OA16: Distribution of Tm − Tm,FB. All equilibria (solid line), best equilibrium
(dotted line), and worst equilibrium (dashed line). Parameterizations and equilibria within
parameterizations weighted equally.

OA5.3 Discounting

Comparative statics. As β → 0 and firms become myopic, wells and trenches vanish. In
the limit of β = 0, equation (OA6) for the equivalent model that switches the price-setting
and exit-entry phases implies that the equilibrium entails static non-cooperative pricing.
Conversely, as β → 1, wells and trenches deepen. More patient firms have a stronger
incentive to cut prices in the present so as to seize the leadership position in the future. We
refer the reader to Section 8.1 of David Besanko, Ulrich Doraszelski, Yaroslav Kryukov &
Mark Satterthwaite (2010) and the accompanying Online Appendix for further details.

Turning from the equilibria to the first-best planner solution, as β → 1, the perpetual
social benefit of product variety looms larger relative to the one-time setup cost of operating
both firms. At the baseline parameterization in Table 1 in the main paper, the first-best
long-run industry structure switches from monopoly to duopoly between β = 0.965 and
β = 0.97.

Social vs. private discount factor. In the main paper, we use the same discount factor
for firms and the first-best planner. We now explore what happens if the social discount
factor βFB ∈ [β, 1) diverges from the private discount factor β, thus rendering the planner
more patient than firms. In doing so, we hold fixed the aggressive and accommodative
equilibria that arise at the baseline parameterization in Table 1 in the main paper, including
the private discount factor β, and re-compute the first-best planner solution using the social
discount factor βFB. Deadweight loss is given by

DWLβFB,β = TSFB
βFB − TSβFB,β
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βFB aggr. eqbm. accom. eqbm.

0.9524 13.06% 4.54%
0.96 12.53% 2.62%
0.965 12.20% 1.31%
0.97 12.20% 0.30%
0.98 14.02% 0.19%
0.985 15.05% 0.19%
0.99 16.13% 0.18%
0.995 17.24% 0.14%

Table OA6: Relative deadweight loss
DWL

βFB,β

V A
βFB

for aggressive and accommodative equilib-

rium and social discount factor βFB. Baseline parameterization.

=

∞∑

t=0

(
βFB

)t∑

e

µFB
t

(
e;βFB

)
TSFB(e;βFB)−

∞∑

t=0

(
βFB

)t∑

e

µt (e;β)TS(e;β)

and the maximum value added of the industry by V AβFB = TSFB
βFB −TS∅

βFB with TS∅

βFB =
v−p0

1−βFB . Our notation makes explicit that µt(e;β) is the probability that the industry is in

state e in period t and that TS(e;β) is the total surplus in state e as derived from the
equilibrium for the private discount factor β, whereas µFB

t (e;βFB) and TSFB(e;βFB) are
derived from the first-best planer solution for the social discount factor βFB. We compute
TSβFB,β using the social discount factor βFB as if the more patient planner evaluates the
behavior of less patient firms given by µt(e;β) and TS(e;β).

Table OA6 shows relative deadweight loss
DWL

βFB,β

V A
βFB

for various values of the social

discount factor βFB.14 For the aggressive equilibrium,
DWL

βFB,β

V A
βFB

increases as βFB increases,

albeit modestly. This is consistent with the bound on the pricing distortion in Proposition

2 in the main paper. For the accommodative equilibrium,
DWL

βFB,β

V A
βFB

decreases as βFB

increases, dropping well below 1% between βFB = 0.965 and βFB = 0.97. This reflects not
only the bounded pricing distortion in Proposition 1 in the main paper but also the above
noted fact that first-best long-run industry structure switches from monopoly to duopoly.
The non-pricing distortion thus becomes very small.
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Figure OA17: Scaled pricing distortion
DWLPR

β

DWLβ
. Equilibria within parameterizations

weighted equally. Slices through equilibrium correspondence. Blue circle indicates non-
viable industry. Red cross indicates computation failure.
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Figure OA18: Scaled exit and entry distortion
DWLEE

β

DWLβ
. Equilibria within parameterizations

weighted equally. Slices through equilibrium correspondence. Blue circle indicates non-viable
industry. Red cross indicates computation failure.
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Figure OA19: Scaled market structure distortion
DWLMS

β

DWLβ
. Equilibria within parameteri-

zations weighted equally. Slices through equilibrium correspondence. Blue circle indicates
non-viable industry. Red cross indicates computation failure.
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Figure OA20: Scaled non-pricing distortion
DWLNPR

β

DWLβ
. Equilibria within parameterizations

weighted equally. Slices through equilibrium correspondence. Blue circle indicates non-viable
industry. Red cross indicates computation failure.
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OA6 Why does dynamic competition lead to low deadweight

loss?

OA6.1 Decomposition

Complementing Results 5–7 in the main paper, Figures OA17–OA20 show the scaled pric-

ing distortion
DWLPR

β

DWLβ
, scaled exit and entry distortion

DWLEE
β

DWLβ
, scaled market structure

distortion
DWLMS

β

DWLβ
, and scaled non-pricing distortion

DWLNPR
β

DWLβ
, averaged across equilibria

within parameterizations, for the six slices through the equilibrium correspondence. Red,
green, and blue indicates negative, zero, and positive values, respectively, and darker shades
indicate larger values (in absolute value).

OA6.2 Why is the best equilibrium so good?

Linear demand. Consider a representative consumer who allocates her income I among
the inside goods that are offered by the incumbent firms at prices p = (p1, p2), an outside
good at an exogenously given price p0, and a numeraire good. Substituting the budget
constraint into the utility function, the maximization problem of the representative consumer
is

max
Q0,Q1,Q2

2∑

n=0

anQn − b

2

2∑

n=0

Q2
n − θb (Q0Q1 +Q0Q2 +Q1Q2) + I −

2∑

n=0

pnQn,

where a0 > 0, a1 > 0, a2 > 0, b > 0, and θ ∈ [0, 1) are parameters. The parameter θ governs
the degree of product differentiation, with higher values of θ corresponding to weaker product
differentiation.

The first-order conditions in matrix form are:



1 θ θ

θ 1 θ

θ θ 1





Q0

Q1

Q2


 =




a0−p0
b

a1−p1
b

a2−p2
b


 .

Solving yields the demand functions

Q0 = D0(p) =
1

b(2θ + 1)(1− θ)
((1 + θ) a0 − θa1 − θa2 − (1 + θ)p0 + θp1 + θp2) ,

Q1 = D1(p) =
1

b(2θ + 1)(1− θ)
(−θa0 + (1 + θ) a1 − θa2 + θp0 − (1 + θ)p1 + θp2) ,

Q2 = D2(p) =
1

b(2θ + 1)(1− θ)
(−θa0 − θa1 + (1 + θ) a2 + θp0 + θp1 − (1 + θ)p2) .

The aggregate demand for the inside goods is

DT (p) =

2∑

n=1

Dn(p) =
1

b(2θ + 1)(1− θ)
[−2θa0 + a1 + a2 + 2θp0 − (p1 + p2)] .

14In contrast to
DWL

βFB,β

V A
βFB

, DWLβFB ,β increases mechanically as βFB increases and is therefore difficult

to compare across values of βFB.
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To prevent DT (p) < 0, we maintain −2θa0 + a1 + a2 + 2θp0 > 0. We compute the price
elasticity of aggregate demand as the percentage change in aggregate demand DT (p) that
from results a one-percent change in prices p:

ηT (p) =
∂DT (λp)

∂λ

λ

DT (λp)

∣∣∣∣
λ=1

=
−(p1 + p2)

−2θa0 + a1 + a2 + 2θp0 − (p1 + p2)
.

Note that the absolute value |ηT (p)| of this price elasticity increases in p1 + p2. Moreover,
the quantity of the outside good demanded D0(p) increases in p1 + p2. Thus, as the prices
of the inside goods decrease, the aggregate demand for the inside goods becomes less price
elastic, and at the same time, the quantity of the outside good demanded decreases.

OA6.3 Aggressive and accommodative equilibria

Complementing the classification of equilibria in Appendix B in the main paper, Figures
OA21–OA23 show the share of aggressive, accommodative, and unclassified equilibria, re-
spectively, for the six slices through the equilibrium correspondence. Darker shades of blue
indicate larger shares.
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Figure OA21: Share of aggressive equilibria. Slices through equilibrium correspondence.
Blue circle indicates non-viable industry. Red cross indicates computation failure.
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Figure OA22: Share of accommodative equilibria. Slices through equilibrium correspon-
dence. Blue circle indicates non-viable industry. Red cross indicates computation failure.
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Figure OA23: Share of unclassified equilibria. Blue circle indicates non-viable industry. Red
cross indicates computation failure.
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