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Figure A.1: Types of Connections between Neighboring Towns and Identification. The figure on the left
illustrates all the potential types of connections between towns: town i and town 0 are not connected by an observed network; town i and town 1
are connected by a direct rail link; town i and town 2 are connected through the telegraph, and town 2 also has railroad access; town i and town 3
are connected through the telegraph and town 3 does not have railroad access; town i and town 4 are connected both by a direct rail link and by the
telegraph. The figure to the right shows that e�ectively in our sample there are no pairs of towns like the pair (i, 4) from the left-hand side figure,
making the identification of interaction e�ects between rail and network-mediated information flows not possible using time series variation in rail
link activity.
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(a) Population Heterogeneity: Rail (b) Population Heterogeneity: Telegraph

(c) Schooling Heterogeneity: Rail (d) Schooling Heterogeneity: Telegraph

Figure A.2: The E�ect of Information along the Rail and Telegraph Networks: Allowing for hetero-
geneity along the Schooling and Population Gradients: The figure presents estimated heterogeneous e�ects from panel
IV models based on equation (1), using our benchmark lag-structure specification (first order lag for the railroad neighbors’ Crusade events, first
and second order lags for the telegraph neighbors’ Crusade events, and third order lag for the geographic neighbors’ Crusade events), including
interactions terms. The dependent variable is an indicator of crusading activity -meetings, petitions, or marches-. Sub-figures (a) and (b) correspond
to a model that includes interactions between log population and the first lags of rail and telegraph-mediated information. Sub-figures (c) and (d)
correspond to a model that includes interactions between average schooling and the first lags of rail and telegraph-mediated information. The implied
heterogeneous e�ects are represented in red. For ease of comparison, the corresponding homogeneous e�ect (from our benchmark estimates) are
represented in blue. All models include period fixed e�ects and town fixed e�ects, use the benchmark 50 km. radius definition of rail accidents for
the instruments, and use the 5-day interval period definition. Dashed curves represent 95 percent confidence intervals.
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Figure A.4: The figure illustrates the network of navigable rivers, canals, and waterways as of 1860 in the
United States, which we borrow from Atack, Bateman and Margo (2007).
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Causal E�ects of Crusade Signals along the Railroad and Telegraph Networks
Fully connected Rail Network under Alternative Lag Specifications

Dependent Variable: Any Crusade Activity ait -Meetings, Petitions, Marches-

Second stages: (1) (2) (3) (4) (5) (6)

First lag rail 0.0029 -0.0007
(ri,tat�1) (0.0005) (0.0006)

Second lag rail 0.0037 0.0023 0.0024 0.0007
(ri,t�1at�2) (0.0006) (0.0007) (0.0007) (0.0011)

Third lag rail 0.0031 0.0025
(ri,t�2at�3) (0.0006) (0.0011)

First lag telegraph 0.0985 0.0408 0.2185
(�iat�1) (0.0514) (0.0774) (0.1051)

Second lag telegraph 0.1383 0.1007 -0.1253
(�iat�2) (0.0613) (0.0591) (0.1152)

Third lag telegraph 0.1393 0.1563 0.1335
(�iat�3) (0.0533) (0.0533) (0.0660)

First lag distance -0.0003 0.0001
(diat�1) (0.0004) (0.0006)

Second lag distance 0.0001 -0.0009
(diat�2) (0.0004) (0.0010)

Third lag distance 0.0013 0.0019 0.0018 0.0016
(diat�3) (0.0004) (0.0005) (0.0005) (0.0007)

No. of towns 15,934 15,934 15,934 15,934 15,934 15,934
Max. no. of periods 16 16 16 16 16 16
Observations 267,247 267,247 267,247 267,247 267,247 267,247
Kleibergen-Paap Wald 30.2 26.7 20.7 8.8 51.4 5.3
J-test statistic 20.62 37.10 12.01 21.11 22.70 25.97
J-test p-value 0.000 0.000 0.017 0.001 0.000 0.011

Table A.8: The E�ect of Information along the Rail and Telegraph Networks: Fully Connected Rail
Network. The table presents panel IV estimates of equation (1) under the alternative fully-connected rail network described in page 24, for
a variety of lag specifications. The dependent variable is an indicator of crusading activity -meetings, petitions, or marches-. All models include
period fixed e�ects and town fixed e�ects. Standard errors are clustered at the town level. All columns use the benchmark 5-day interval period
definition. Appendix Table A.9 reports the first stage F-statistics and p-values corresponding to each endogenous regressor in the corresponding
column, from top to bottom.
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Causal E�ects of Crusade Signals along the Railroad and Telegraph Networks
Fully connected Rail Network under Alternative Lag Specifications, First Stage F-statistics

First stages: (1) (2) (3) (4) (5) (6)

First lag rail 1299.06 1137.07
(ri,tat�1) 0.000 0.000

Second lag rail 1192.32 927.92 1165.66 945.58
(ri,t�1at�2) 0.000 0.000 0.000 0.000

Third lag rail 1159.83 967.09
(ri,t�2at�3) 0.000 0.000

First lag telegraph 55.15 56.09 32.86
(�iat�1) 0.000 0.000 0.000

Second lag telegraph 55.33 41.21 29.5
(�iat�2) 0.000 0.000 0.000

Third lag telegraph 54.58 54.25 27.83
(�iat�3) 0.000 0.000 0.000

First lag distance 937.23 1208.91
(diat�1) 0.000 0.000

Second lag distance 925.55 1128.84
(diat�2) 0.000 0.000

Third lag distance 1088.08 798.95 1018.22 604.71
(diat�3) 0.000 0.000 0.000 0.000

Table A.9: The E�ect of Information along the Rail and Telegraph Networks: Fully Connected Rail
Network First Stages. The table presents the first-stage F-statistics and p-values corresponding to each column of the IV models reported
in Table A.8. The statistics for each first stage, from top to bottom, are reported in the same order as the endogenous regressors appear in Table A.8.
Following Angrist and Pischke (2008), the F-statistics are corrected for the presence of multiple endogenous regressors.
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The E�ect of Information along the Rail and Telegraph Networks
Robustness Exercise: Using the Entire Crusade Period

Dependent Variable: Any Crusade Activity ait

-Meetings, Petitions, Marches-

Instrument Variation: 50km accident radius 80km accident radius

Period Definition: 5 days 3 days 5 days 3 days

(1) (2) (3) (4)

First lag rail 0.113 0.078 0.142 0.114
(ri,tat�1) [0.035] [0.034] [0.023] [0.028]

(0.045) (0.056) (0.043) (0.058)

First lag telegraph 0.174 0.124 0.136 0.123
(�iat�1) [0.037] [0.044] [0.033] [0.037]

(0.073) (0.092) (0.057) (0.068)

Second lag telegraph -0.061 -0.021 -0.029 -0.012
(�iat�2) [0.031] [0.064] [0.029] [0.040]

(0.063) (0.116) (0.054) (0.064)

Third lag distance 0.000 -0.005 0.002 0.000
(diat�3) [0.001] [0.001] [0.001] [0.002]

(0.001) (0.002) (0.001) (0.002)

No. of towns 15,967 15,969 15,967 15,969
Max. no. of periods 38 66 38 66
Observations 612,539 1,052,681 612,539 1,052,681
Kleibergen-Paap Wald 9.6 14.9 10.8 118.1

Panel B: First Stages (F-statistics)

First lag rail 14.95 14.14 12.79 9.31
(ri,tat�1) 0.000 0.000 0.000 0.000

First lag telegraph 46.86 57.89 75.93 68.35
(�iat�1) 0.000 0.000 0.000 0.000

Second lag telegraph 85.65 36.94 69.44 61.10
(�iat�2) 0.000 0.000 0.000 0.000

Third lag distance 327.07 61.83 323.82 96.90
(diat�3) 0.000 0.000 0.000 0.000

Table A.10: The E�ect of Information along the Rail and Telegraph Networks: Entire Crusade Period.
The table presents IV estimates of equation (1) in a panel covering the full time period of Crusade activity (from day 1 to day 215). The dependent
variable is an indicator of crusading activity -meetings, petitions, or marches-. All models include period fixed e�ects and town fixed e�ects.
Standard errors in square brackets are robust and allow for spatial correlation between neighboring towns along the railroad network. Standard
errors in parentheses are clustered at the town level. All columns use the benchmark railroad link definition, and use the lag structure identified as
optimal by the Andrews and Lu (2001) test in Table A.3 (first order lag for the railroad neighbors’ Crusade events, first and second order lags for
the telegraph neighbors’ Crusade events, and third order lag for the geographic neighbors’ Crusade events). Columns (1)-(2) use the benchmark
50 km. radius definition of rail accidents for the instruments. Columns (3)-(4) use an alternative 80 km. radius definition of rail accidents for the
instruments. Columns (1) and (3) use the benchmark 5-day interval period definition. Columns (2) and (4) use an alternative 3-day interval period
definition. Panel B reports the first-stage F-statistics and p-values corresponding to each endogenous regressor in the corresponding column, from
top to bottom.
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The E�ect of Information along the Rail and Telegraph Networks
Additional Robustness to Alternative Information Networks

Dependent Variable: Any Crusade Activity ait -Meetings, Petitions, Marches-

Network: Benchmark Watercanals Network Hybrid Network

(1) (2) (3) (4) (5) (6) (7)

First lag rail 0.037 0.036 0.039 0.039 0.037 0.037 0.037
(ri,tat�1) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

First lag telegraph 0.171 0.178 0.156 0.131 0.171 0.171 0.171
(�iat�1) (0.061) (0.061) (0.058) (0.055) (0.061) (0.061) (0.061)

Second lag telegraph -0.068 -0.070 -0.051 -0.039 -0.068 -0.068 -0.068
(�iat�2) (0.076) (0.076) (0.073) (0.072) (0.076) (0.076) (0.076)

Third lag distance 0.006 0.008 0.006 0.003 0.006 0.006 0.006
(diat�3) (0.002) (0.002) (0.002) (0.001) (0.002) (0.002) (0.002)

First lag watercanals -0.0003 -0.0006 -0.0004
(wiat�1) (0.0001) (0.0001) (0.0001)

Second lag watercanals 0.0004 0.0005
(wiat�2) (0.0001) (0.0002)

Third lag watercanals -0.0001
(wiat�3) (0.0001)

First lag hybrid -0.038 -0.037 -0.038
(hi,tat�1) (0.015) (0.015) (0.015)

Second lag hybrid -0.008 -0.006
(hi,tat�2) (0.003) (0.003)

Third lag hybrid -0.012
(hi,tat�3) (0.004)
Observations 267,247 267,247 267,247 267,247 267,247 267,247 267,247
Kleibergen-Paap Wald 112.3 68.9 68.8 92.6 112.2 112.2 112.2
J-test statistic 2.16 5.62 7.15 15.57 2.16 2.16 2.16
J-test p-value 0.827 0.467 0.413 0.049 0.827 0.827 0.826

Table A.11: Additional Robustness to Alternative Information Networks. The table presents panel IV estimates of
equation (1) using alternative information networks. The dependent variable is an indicator of crusading activity -meetings, petitions, or marches-.
All models include period fixed e�ects and town fixed e�ects. Standard errors in parentheses are clustered at the town level. All columns use the
benchmark railroad link definition, and the lag structure identified as optimal by the Andrews and Lu (2001) test in Table A.3 (first order lag for the
railroad neighbors’ Crusade events, first and second order lags for the telegraph neighbors’ Crusade events, and third order lag for the geographic
neighbors’ Crusade events). All columns use the benchmark 50 km. radius definition of rail accidents for the instruments, and the benchmark
5-day interval period definition. Column (1) reports the benchmark estimates from column (2) in Table 2. Columns (2)-(4) progressively include
higher lags of waterway-mediated Crusade events, instrumenting them with the corresponding rail-link variation of neighbors. Columns (5)-(7)
progressively include higher lags of hybrid network-mediated Crusade events as exogenous control variables.
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The E�ect of Information along the Rail and Telegraph Networks
Robustness to Alternative Subsets of Instruments

Dependent Variable: Any Crusade Activity ait -Meetings, Petitions, Marches-

(1) (2) (3) (4) (5) (6) (7)

First lag rail 0.053 0.051 0.036 0.042 0.048 0.051 0.037
(ri,tat�1) [0.018] [0.018] [0.013] [0.014] [0.077] [0.018] [0.013]

(0.020) (0.021) (0.013) (0.014) (0.081) (0.021) (0.013)

First lag telegraph 0.177 0.164 0.179 0.171 0.166 0.165 0.171
(�iat�1) [0.046] [0.049] [0.039] [0.049] [0.044] [0.033] [0.033]

(0.059) (0.066) (0.061) (0.064) (0.070) (0.062) (0.061)

Second lag telegraph -0.086 -0.074 -0.076 -0.079 -0.065 -0.065 -0.068
(�iat�2) [0.038] [0.048] [0.035] [0.048] [0.034] [0.031] [0.031]

(0.091) (0.084) (0.080) (0.084) (0.078) (0.076) (0.076)

Third lag distance 0.007 0.006 0.007 0.007 0.006 0.006 0.006
(diat�3) [0.002] [0.003] [0.002] [0.003] [0.003] [0.002] [0.002]

(0.002) (0.003) (0.002) (0.003) (0.003) (0.002) (0.002)
Observations 267,247 267,247 267,247 267,247 267,247 267,247 267,247
Kleibergen-Paap Wald 130.8 59.9 125.4 66.0 3.2 71.4 112.3
J-test statistic – 1.10 1.28 1.08 1.38 1.44 2.16
J-test p-value – 0.295 0.257 0.299 0.710 0.838 0.827

Panel B: First Stages (F-statistics)

First lag rail 40.53 39.19 56.55 62.25 8.89 27.44 38.40
(ri,tat�1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

First lag telegraph 39.01 75.94 119.55 77.14 87.03 76.27 76.43
(�iat�1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Second lag telegraph 90.70 105.54 110.55 106.27 79.35 72.81 65.50
(�iat�2) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Third lag distance 258.05 190.48 194.57 189.39 217.71 196.67 174.94
(diat�3) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.12: The E�ect of Information along the Rail and Telegraph Networks: Robustness to alter-
native subsets of instruments. The table presents panel IV estimates of equation (1) using alternative subsets of instruments. The
dependent variable is an indicator of crusading activity -meetings, petitions, or marches-. All models include period fixed e�ects and town fixed
e�ects. Standard errors in square brackets are robust and allow for spatial correlation between neighboring towns along the railroad network.
Standard errors in parentheses are clustered at the town level. Columns (1)-(4) use the benchmark railroad link definition, and use the lag structure
identified as optimal by the Andrews and Lu (2001) test in Table A.3 (first order lag for the railroad neighbors’ Crusade events, first and second
order lags for the telegraph neighbors’ Crusade events, and third order lag for the geographic neighbors’ Crusade events). All columns use the
benchmark 50 km. radius definition of rail accidents for the instruments, and the benchmark 5-day interval period definition. Panel B reports the first
stage F-statistics and p-values corresponding to each endogenous regressor in the corresponding column, from top to bottom. Column (1) excludes
ri, t ◆, ri, tRt�1◆, �iRt�1◆, �iRt�2Rt�3◆ and diRt�3◆. Column (2) excludes ri, tRt�1Rt�2◆, �iRt�1Rt�2◆, �iRt�2Rt�3◆, and diRt�3Rt�4◆
from the instrument set. Column (3) excludes ri, t ◆, �iRt�1◆, �iRt�2◆, and diRt�3◆ from the instrument set. Column (4) excludes ri, tRt�1◆,
�iRt�1Rt�2◆,�iRt�2Rt�3◆, and diRt�3Rt�4◆ from the instrument set. Column (5) excludes ri, tRt�1◆ and ri, tRt�1Rt�2◆ from the instrument
set. Column (6) excludes ri, tRt�1Rt�2◆ from the instrument set. Column (7) includes all nine instruments for comparison.
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Weak Instruments Diagnosis: Exactly Identified Models
Endogenous Regressor Instrumented

(1) (2) (3) (4) (5)
First Lag of Rail First Lag of Telegraph Second Lag of Telegraph First Lag of Distance

ri,tat�1 �iat�1 �iat�2 diat�3 Kleibergen-Paap statistic

ri,t ◆

�iRt�1◆
�iRt�2◆

diRt�3◆ 0.1

diRt�3Rt�4◆ 0.7

�iRt�2Rt�3◆
diRt�3◆ 0.1

diRt�3Rt�4◆ 0.7

�iRt�1Rt�2◆
�iRt�2◆

diRt�3◆ 0.1

diRt�3Rt�4◆ 0.6

�iRt�2Rt�3◆
diRt�3◆ 0.1

diRt�3Rt�4◆ 0.6

ri,tRt�1◆

�iRt�1◆
�iRt�2◆

diRt�3◆ 46.4

diRt�3Rt�4◆ 10.7

�iRt�2Rt�3◆
diRt�3◆ 46.6

diRt�3Rt�4◆ 10.7

�iRt�1Rt�2◆
�iRt�2◆

diRt�3◆ 43.4

diRt�3Rt�4◆ 10.8

�iRt�2Rt�3◆
diRt�3◆ 44.7

diRt�3Rt�4◆ 10.8

ri,tRt�1Rt�2◆

�iRt�1◆
�iRt�2◆

diRt�3◆ 49.9

diRt�3Rt�4◆ 123.5

�iRt�2Rt�3◆
diRt�3◆ 49.9

diRt�3Rt�4◆ 121.6

�iRt�1Rt�2◆
�iRt�2◆

diRt�3◆ 53.5

diRt�3Rt�4◆ 130.8

�iRt�2Rt�3◆
diRt�3◆ 53.2

diRt�3Rt�4◆ 134.7

Table A.13: Weak Instrument Diagnosis across Exactly Identified Models: Kleibergen-Paap Wald rk
F statistics. The table presents the Kleibergen-Paap Wald rk F statistics corresponding to the twenty-four exactly identified models on the
benchmark specification with four endogenous regressors including the first lag of rail, first and second lags of telegraph, and third lag of distance.
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Newspaper Coverage along the Railroad and Telegraph Networks
Dependent variable: Dummy for town i newspaper

report about crusading town j

(1) (2) (3) (4)

Railroad network path length i ! j -0.117 -0.189
(0.050) (0.060)

Telegraph network path length i ! j -2.202 -5.180
(2.191) (0.814)

Geographic distance between towns i and j -0.152 0.539 -0.232 -2.120
(0.102) (0.214) (0.488) (1.530)

Newspaper town covariates

Railroad network betweenness centrality 0.0009 13.5
(0.0009) (9.81)

Telegraph network dummy 0.008
(0.009)

Crusading town covariates

Railroad network betweenness centrality -0.001 -0.329
(0.0002) (0.144)

Telegraph network dummy -0.013
(0.0016)

Newspaper town fixed e�ects No Yes No Yes
Crusading town fixed e�ects No Yes No Yes
R squared 0.004 0.32 0.05 0.62
No. of observations 50,076 50,076 402 402

Table A.15: Newspaper Coverage along the Railroad and Telegraph Networks: Path Lengths The table
presents OLS regression estimates on a panel of pairs of newspaper home towns-times-crusading towns. The dependent variable in all columns
is a dummy variable taking the value of one if the newspaper in town i reported on any Crusade activity of town j. Standard errors are robust
and clustered at the newspaper home-town level. The coe�cients and standard errors on the railroad and telegraph network path-length variables
are multiplied by 1000. The coe�cients and standard errors on the geographic distance between towns are in km. and multiplied by 105. The
coe�cients and standard errors on the betweenness centrality statistic are multiplied by 106.
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B Online Appendix: Selection and Mis-classification

Here we discuss formally the possibility (and the econometric implications) of measurement error
in our data on Temperance Crusade events. We then present some empirical evidence to assess
the quantitative e�ect measurement error may have on our main estimates. Two main issues are a
possibility in our setting: i) Selection into our data set, which, moreover, may be correlated with
the network structure. For example, some protests may have happened but were never recorded
in the sources that historians (and we) used to build our data set. If this is the case, we might
expect its likelihood to depend on railroad and telegraph access. As we will illustrate here, this
is a form of measurement error “from the right” (it may bias our IV estimates by generating mis-
classification in the explanatory variables).1 ii) Accidents and other exogenous disruptions in the
railroad network may be correlated with measurement error in our Crusade event data. For example,
the newspaper reporting of train accidents may have crowded out their reporting on simultaneous
Crusade events, subsequently reducing the likelihood that these events appear in our data set. As we
will illustrate here, this is a form of measurement error “from the left” (it may bias our IV estimates
by generating mis-classification in the outcome variable, i.e., it is a violation of the instrument
exclusion restriction).

To illustrate these econometric issues, we introduce some notation. Define a
⇤
i,t to be a dummy

variable taking the value of 1 if a crusade event took place in town i at time t. Define ai,t to be
a dummy variable taking the value of 1 if a crusade event is recorded in our data set for town
i at time t. In our setting, it is safe to assume that there is no “upwards mis-classification”:
P(ai,t = 1|a⇤

i,t = 0) = 0. This is, if a Crusade event did not happen, our data set will never record a
Crusade event as having happened. On the other hand, there may be “downward mis-classification”:
P(ai,t = 0|a⇤

i,t = 1) ⌘ ↵i � 0. This is, Crusade events that did happen may appear in our data set as
not having happened. We index the probability of downward mis-classification by i to emphasize
that towns with di�erent characteristics (i.e., network access) may have di�erent mis-classification
probabilities. We present our discussion (whose conclusions all generalize) in a simplified version
of equation (1), where only a railroad network is in place, town i has just two neighbors (Ri = { j, k}),
and railroad-mediated information matters only at lag 1. Because we estimate town-fixed e�ects
models that e�ectively average over the time series-variation town by town, consider the time-series
model for town i (because our panel is almost perfectly balanced, the coe�cient estimates from
the panel regression e�ectively weight each town’s “own regression” coe�cient estimate almost
uniformly):

a
⇤
i,t = �0 + �r(ri j,ta

⇤
j,t�1 + rik,ta

⇤
k,t�1) + ✏i,t(B.1)

1Notice that this is not an attrition problem, as our data set is a panel of all existing towns in 1870.
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The feasible regression, however, uses ah,t instead of a
⇤
h,t for h = i, j, k. Consider an IV estimator

of this model using (rj`,t�1 + rkm,t�1) as an instrument (suppose for simplicity that j has just one
other neighbor, `, other than i, and k has just one other neighbor, m, other than i). The probability
limit of the IV estimator is

�IV

r
=

Cov(ai,t, rj`,t�1 + rkm,t�1)
Cov(ri j,taj,t�1 + rik,tak,t�1, rj`,t�1 + rkm,t�1)

(B.2)

Denote as wit the random variable define by ai,t = a
⇤
i,t +wi,t . The conditional distribution of wit

is thus

P(wi,t = 0|a⇤
i,t = 0) = 1(B.3)

P(wi,t = 0|a⇤
i,t = 1) = 1 � ↵i(B.4)

P(wi,t = �1|a⇤
i,t = 1) = ↵i(B.5)

Consider first the numerator in equation (B.2). It is equal to

NiCov(a⇤
i,t, rj`,t�1) + NiCov(wi,t, rj`,t�1)(B.6)

where Ni is the number of rail neighbors of town i (in our example, Ni = 2), and j represents any
rail neighbor of town i. Notice that the first term in (B.6) is the covariance of i’s Crusade activity
with the rail link variation of i’s neighbors with their neighbors. The second term is the covariance
of i’s measurement error with rail link activity of i’s neighbors with their neighbors. Consider now
the first covariance in this expression, using equation (B.1):

Cov(a⇤
i,t, rj`,t�1) = �rCov(ri j,ta

⇤
j,t�1, rj`,t�1) + �rCov(rik,ta

⇤
k,t�1, rj`,t�1) + Cov(✏i,t, rj`,t�1)(B.7)

Our instrument exclusion restriction implies that the last covariance of this expression is zero. For
the first covariance of (B.7), using iterated expectations,

Cov(ri j,ta
⇤
j,t�1, rj`,t�1) = E

h
E
h
ri j,trj`,t�1a

⇤
j,t�1 |a⇤j,t�1

i i
� E

h
E
h
ri j,ta

⇤
j,t�1 |a⇤j,t�1

i i
E
⇥
rj`,t�1

⇤

Notice that for the first inner expectation, the covariation in rail link activity between contiguous
links does not depend on previous Crusade activity. For the second inner expectation, similarly,
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rail link activity does not depend on previous Crusade activity of neighbors. Thus, we have

Cov(ri j,ta
⇤
j,t�1, rj`,t�1) = E

⇥
ri j,trj`,t�1

⇤
E
h
a
⇤
j,t�1

i
� E

⇥
ri j,t

⇤
E
h
a
⇤
j,t�1

i
E
⇥
rj`,t�1

⇤
= Cov(ri j,t, rj`,t�1)P(a⇤j,t�1 = 1)
= ⇢1�rP(a⇤j,t�1 = 1)

where ⇢1 is defined as the correlation in rail link activity between pairs of contiguous links, and
�2

r
is the variance of rail link activity. For the second covariance in (B.7), an analogous argument

shows that

Cov(rik,ta
⇤
k,t�1, rj`,t�1) = ⇢2�rP(a⇤k,t�1 = 1)

where ⇢2 is defined as the correlation in rail link activity between pairs of links one link apart
(finally notice that j and k here stand for any two neighbors of i). Combining these results, we have
that

Cov(a⇤
i,t, rj`,t�1) = �rP(a⇤j,t�1 = 1)�r(⇢1 + ⇢2)

We can now look at the second term in (B.6):

Cov(wi,t, rj`,t�1) = E
⇥
wi,trj`,t�1

⇤
� E

⇥
wi,t

⇤
E
⇥
rj`,t�1

⇤

Using iterated expectations,

E
⇥
wi,trj`,t�1

⇤
= E

⇥
E
⇥
wi,trj`,t�1 |a⇤i,t

⇤ ⇤
= E

⇥
wi,trj`,t�1 |a⇤i,t = 0

⇤
P(a⇤

i,t = 0) + E
⇥
wi,trj`,t�1 |a⇤i,t = 1

⇤
P(a⇤

i,t = 1)
= E

⇥
wi,trj`,t�1 |a⇤i,t = 1

⇤
P(a⇤

i,t = 1)

where the last line follows by noticing that wi,t = 0 whenever a
⇤
i,t = 0. The same argument also

implies that
E
⇥
wi,t

⇤
= P(a⇤

i,t = 1)E
⇥
wi,t |a⇤i,t = 1

⇤
Putting these together,

Cov(wi,t, rj`,t�1) = P(a⇤i,t = 1)Cov(wi,t, rj`,t�1 |a⇤i,t = 1)

Collecting all these results, we conclude that the numerator of the IV estimator is

Ni�rP(a⇤j,t�1 = 1)�r(⇢1 + ⇢2) + NiP(a⇤i,t = 1)Cov(wi,t, rj,t�1 |a⇤i,t = 1).(B.8)
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Consider now the denominator of (B.2). It is equal to

Cov(ri j,taj,t�1, rj`,t�1) + Cov(ri j,taj,t�1, rkm,t�1) + Cov(rik,tak,t�1, rj`,t�1) + Cov(rik,tak,t�1, rkm,t�1)

Notice that the first and fourth terms represent the same covariance (between rail-mediated in-
formation about i’s neighbors’ Crusade activity and those neighbor’s rail link activity with their
own neighbors), and that the second and third terms represent the same covariance (between rail-
mediated information about i’s neighbors’ Crusade activity and i’s other neighbors’ rail link activity
with their own neighbors). Thus, assuming for simplicity (we will relax this assumption below)
that i’s neighbors mis-classification rates are the same (↵ j = ↵k), the denominator takes the form

NiCov(ri j,taj,t�1, rj`,t�1) + NiCov(ri j,taj,t�1, rkm,t�1)(B.9)

Using iterated expectations, the first covariance in this expression can be written as

E
h
E
h
ri j,taj,t�1rj`,t�1 |a⇤j,t�1

i i
� E

h
E
h
ri j,taj,t�1 |a⇤j,t�1

i i
E
⇥
rj`,t�1

⇤
=P(a⇤

j,t�1 = 1)E
h
ri j,trj`,t�1aj,t�1 |a⇤j,t�1 = 1

i
� P(a⇤

j,t�1 = 1)E
h
ri j,taj,t�1 |a⇤j,t�1 = 1

i
E
⇥
rj`,t�1

⇤
=P(a⇤

j,t�1 = 1)
⇣
E
h
ri j,trj`,t�1a

⇤
j,t�1 |a⇤j,t�1 = 1

i
+ E

h
ri j,trj`,t�1w j,t�1 |a⇤j,t�1 = 1

i ⌘

+ P(a⇤
j,t�1 = 1)

⇣
E
h
ri j,ta

⇤
j,t�1 |a⇤j,t�1 = 1

i
+ E

h
ri j,tw j,t�1 |a⇤j,t�1 = 1

i ⌘
E
⇥
rj`,t�1

⇤

where the second line follows because aj,t�1 = 0whenever a
⇤
j,t�1 = 0, and the third line follows from

the definition of w j,t . Notice now that whether a Crusade event was mis-classified in period t � 1

cannot depend on rail link activity of contemporary or subsequent periods (it can only depend on rail
link disruptions in previous periods). This implies that we can break the conditional expectations
involving w j,t�1 from the expression above to obtain

P(a⇤
j,t�1 = 1)

⇣
E
h
ri j,trj`,t�1 |a⇤j,t�1 = 1

i
� ↵ jE

h
ri j,trj`,t�1 |a⇤j,t�1 = 1

i ⌘

+ P(a⇤
j,t�1 = 1)

⇣
E
h
ri j,t |a⇤j,t�1 = 1

i
� ↵ jE

h
ri j,t |a⇤j,t�1 = 1

i ⌘
E
⇥
rj`,t�1

⇤
= P(a⇤

j,t�1 = 1)(1 � ↵ j)Cov(ri j,t, rj`,t�1)
= P(a⇤

j,t�1 = 1)(1 � ↵ j)⇢1�r

which follows from E
h
w j,t�1 |a⇤j,t�1 = 1

i
= �↵ j .

An analogous argument implies that the second covariance in (B.9) is

P(a⇤
j,t�1 = 1)(1 � ↵ j)⇢2�r .
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Putting these together, the denominator of (B.2) is

NiP(a⇤j,t�1 = 1)(1 � ↵ j)�r(⇢1 + ⇢2).(B.10)

Replacing (B.8) and (B.10) in (B.2), the IV estimator is

�IV

r
=

1

1 � ↵ j

�r +
Cov(wi,t, rj`,t�1 |a⇤i,t = 1)
(1 � ↵ j)�r(⇢1 + ⇢2)

Notice also that
Cov(wi,t, rj`,t�1 |a⇤i,t = 1) = ⇢wr�r

q
Var(wi,t |a⇤i,t = 1),

where ⇢wr is the correlation between mis-classification of Crusade events in our data and railroad
accidents. Moreover, Var(wi,t |a⇤i,t = 1) = ↵i(1�↵i). Recall that to simplify our derivation above we
assumed all neighbors of i had the same mis-classification rate ↵ j . More generally, these may vary
with town characteristics such as network access. Allowing for ↵ to vary across i’s neighbors, the
expression for the probability limit of �IV

r
depends instead on the average of these mis-classification

rates (↵i ⌘ (1/Ni)
Õ

j2Ri
↵ j). Thus, we obtain

�IV

r
= ⇡i�r +

⇢wr

⇢1 + ⇢2
⇡i

p
↵i(1 � ↵i)(B.11)

where ⇡i ⌘ 1/(1 � ↵i). Finally, averaging across i, the fixed e�ects IV estimator is

�IVFE

r
= ⇡�r +

⇢wr

⇢1 + ⇢2
⇡
p
↵i(1 � ↵i)(B.12)

Several points are worth discussing about equation (B.11), which clearly illustrate the potential
sources of bias in this setting: i) Notice that ⇡i � 1 is an inflation factor, and cannot switch
the sign of the IV estimator relative to the true coe�cient. This is the standard bias from mis-
classification of a binary regressor (see DiTraglia and García-Jimeno (2019)), and constitutes the
source of bias that arises if some of the Crusade activity failed to be recorded in our data set.
Variation in mis-classification rates across towns matters only insomuch as this changes the average
mis-classification rate across neighboring towns. Notice, however, that only the average of these
inflation factors across towns matters for the fixed e�ects IV estimator. Moreover, this inflation
factor will be bounded above by the largest mis-classification rate across all of i’s neighbors. ii)
The second term in (B.12) is the source of bias that arises from a particular form of violation of our
instrument exclusion restriction: when railroad accidents a�ect the likelihood that, for example,
the media reports on Crusade events, and this leads to those events not being recorded in our data
set, ⇢wr , 0. Notice, moreover, that we expect ⇢wr > 0: an active rail link (ri j,t�1 = 1) makes it
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more likely that a given Crusade event appears in our data set (wi,t = 0), while a disrupted rail link
(ri j,t�1 = 0) makes it more likely that a given Crusade event is not recorded (wi,t = �1). Below we
will present some indirect evidence suggesting that ⇢wr ⇡ 0. iii) We can compute estimates of ⇢1
and ⇢2 directly from our data: the correlation between rail activity of pairs of adjacent rail links is
⇢1 = 0.67, and the correlation between rail activity of pairs of rail links one link apart is ⇢2 = 0.52.
iv) Notice also that ⇤(⇡) ⌘

p
↵i(1 � ↵i) is also bounded above.

Thus, a lower bound for �r must be

�
r
=

1

⇡
�IVFE

r
� ⇤(⇡) ⇢wr

0.67 + 0.52
(B.13)

By pinning down the inflation factor ⇡ and the correlation between railroad access and mis-
classification ⇢wr , we can then bound the bias of our estimator.

B.1 Backing out mis-classification using newspaper reporting

We first discuss the possibility that Blocker (1985), our main source for Crusade activity information,
may have missed Crusade events based on his newspaper and archival research. We show that
under two mild assumptions we will make explicit below, we can pin down the average rate of
mis-classification of towns in our data (i.e., the fraction of towns that experienced Crusade activity
but were not classified by Blocker (1985) as Crusading towns) using information from newspaper
reports before and during the Temperance Crusade. The idea is as follows: we know with certainty
that the set of towns identified by Blocker (1985) as having experienced a Crusade are in fact all
Crusade towns. In what follows we refer to these as Blocker towns. In contrast, if mis-classification
is present, the remaining set of towns includes both towns that were truly not a�ected by Crusade
activity, and towns where Crusade events did take place. We refer to these as non-Blocker towns.
Prior to the beginning of the Crusade, truly Crusading towns (c), and truly non-crusading towns (n)
may have been reported on newspapers at di�erent baseline rates. With the onset of the Crusade,
newspaper coverage of Crusading towns should increase di�erentially more for Crusading towns.
Thus, comparing the overall rate of newspaper article mentions of Blocker towns gives us a measure
of the increase in the reporting rate. Part of this di�erential may entail a change in overall newspaper
behavior across all towns, and part may be in response to the Crusading activity. Consider now the
set of towns that did not experience Crusade activity. The di�erential rate at which they may have
been reported during the Crusade period should reflect the overall changes in newspaper behavior
during that period, but not the changes directly related to the Crusade. If the set of non-Blocker
towns contains a fraction of truly Crusading towns, then the increase in newspaper reporting for
this group of towns should partly reflect the increased coverage of the mis-classified towns. Put
another way, in the absence of mis-classification we should not expect to see a change in reporting
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Inferring Mis-Classification based on Rates of Newspaper Reporting
True unobserved average Observed average news

Period news reporting rates reporting rates under mis-classification
Type of town Crusade Non-Crusade Blocker Crusade Blocker non-Crusade

Jan, 1893- Dec,
1874

Non-unique
names

rc rn (A) rc = 0.021 (B) 1
1+↵rn +

↵
1+↵rc = 0.021

Unique
names

�ucrc �unrn (C) �ucrc = 0.004 (D) 1
1+↵ �unrn +

↵
1+↵ �ucrc = 0.002

Jan, 1874- Jul,
1874

Non-unique
names

�c�rc �rn (E) ��rc = 0.219 (F) 1
1+↵�rc +

↵
1+↵ �c�rc = 0.169

Unique
names

�u��ucrc ��unrn (G) �u��ucrc = 0.048 (H) 1
1+↵��unrn +

↵
1+↵ �u��ucrc = 0.017

Table B.1: Inferring Mis-classification: Average Newspaper Reporting Rates by Type of Town. The left
panel of the table presents average rates of news reporting for four groups of towns, before and during the Temperance Crusade: Truly crusading
towns with non-unique and unique names, and truly non-crusading towns with non-unique and unique names. These rates are unobserved in the
presence of mis-classification. rc is the baseline rate for truly crusading towns with non-unique names, rn is the baseline rate for truly non-crusading
towns with non-unique names, �uc is the di�erential rate of reporting for truly crusading towns with unique names, �cn is the di�erential rate of
reporting for truly non-crusading towns with unique names, � is the di�erential rate of reporting common to all towns during the Crusade period,
�c is the di�erential rate of reporting during the Crusade period for truly crusading towns with non-unique names, and �u is the di�erential rate
of reporting during the Crusade period for truly crusading towns with unique names. ↵ is the average mis-classification rate (the probability that
a truly crusading town was mis-classified by Blocker (1985) as non-crusading). The right panel of the table presents the corresponding observed
average rates of news reporting implied by mis-classification at rate ↵. Each cell presents the corresponding newspaper reporting rate estimated from
our text analysis exercise. Cells are labeled A through H for ease of reference. Reporting rates are computed as the fraction of newspaper articles
referring to Temperance-related topics mentioning a town in the corresponding group relative to all articles referring to Temperance-related topics.

on this set of towns beyond any overall di�erences specific to the Crusade period; the larger the
extent of mis-classification, the larger the signal we should detect in that group.

Comparing the newspaper reporting rates of Blocker and non-Blocker towns, however, faces a
di�culty: a significant fraction of 1870 towns in the US share a name. In fact, from the 15971
towns in the 1870 census, there are only 2386 unique town names. Despite our best e�orts, our
text-scraping code is likely to make errors when distinguishing between news articles reporting on
towns with the same name, either as a result of errors in the scraping itself, or because the article
text does not mention the state or county of the corresponding town. We leverage this di�culty,
however, by comparing news-reporting rates along a second dimension, by dividing towns into
those with a unique name and those with a non-unique name. This comparison is useful because
the set of towns with unique names should not face changes in its news reporting rate caused by the
increased reporting of homonym towns (as they have no homonym). This allows us to implement a
“triple-di�erences" comparison (pre-Crusade vs. during the Crusade, Blocker vs. non-Blocker, and
unique name vs. non-unique name). Under the assumptions that mis-classified towns faced similar
news coverage rates as correctly classified towns of similar characteristics (unique or non-unique
name) before the Crusade began, and that the mis-classification probability was similar for towns
with unique and non-unique names, we show that the mis-classification rate ↵ is identified.

Table B.1 illustrates our comparison groups and the underlying newspaper reporting rates.
The panel on the left presents the (unobserved) correctly classified groups, while the panel to
the right presents the resulting observed mixture rates from Blocker (1985)’s classification. For
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Figure B.1: Inferring Mis-classification: Rates of Newspaper Reporting over Time. The figure plots average
rates of newspaper reporting of towns in articles related to temperance, between January 1873 and December 1874, based on our text-scraping of the
Library of Congress’ online newspaper repository. The curves are 10-day moving averages. The red curve represents towns with non-unique names
classified in our data as having experienced Crusade activity. The blue curve represents towns with non-unique names classified in our data as not
having experienced Crusade activity. The green curve represents towns with unique names classified in our data as having experienced Crusade
activity. The purple curve represents towns with unique names classified in our data as not having experienced Crusade activity.

convenience, we have labeled the cells on the right with the letters A through H. The top panel
corresponds to the pre-Crusade period (we scraped the newspaper archive for all of 1873), while the
bottom panel corresponds to the Crusade period (covering the first semester of 1874). rc denotes
the baseline rate of news reporting of Crusading towns with non-unique names, and rn the baseline
rate of news reporting of non-Crusading towns with non-unique names. These are allowed to be
di�erent, as these two sets of towns likely di�ered along many dimensions. In turn, �uc denotes
the di�erential rate of baseline news reporting for Crusading towns with unique names, and �un

the di�erential rate of baseline news reporting of non-Crusading towns with unique names. � is
the overall di�erential rate of reporting during the Crusade period. �c is the di�erential rate of
reporting during the Crusade period for Crusading towns with non-unique names, while �u is the
di�erential rate of reporting during the Crusade period for Crusading towns with unique names.
Under mis-classification at rate ↵, the observed news reporting rates for the set of non-Blocker
towns are mixtures of the corresponding rates for truly Crusading and non-Crusading towns. The
right panel of Table B.1 also reports the corresponding rates we computed based on our text
scraping of the Library of Congress’s online newspaper archive averaging over the relevant time
period, while Figure B.1 presents the time series of these rates for each of the four groups of
towns. The news reporting process appears stationary before the Crusade began. Reassuringly,
average news reporting rates in this period are very similar for both types of towns with non-unique
names, suggesting the plausibility of the assumptions we pointed out above. Naturally, reporting of
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alcohol/temperance-related articles explodes with the onset of Crusade activity, which we can see
clearly in the figure. Although the increase in reporting of towns with non-unique names is much
larger than for towns with unique names, the proportionate increase is larger for Blocker towns
(green relative to red) compared to non-Blocker towns (purple relative to blue), suggesting a much
higher signal-to-noise ratio among the towns classified as Crusading by Blocker (1985). To assess
the extent of mis-classification consistent with this di�erence relative to the pre-Crusade period,
we turn to Table B.1, where we average each curve over the pre-Crusade and Crusade periods.

Our first observation is that A = rc = rn = B = 0.021, since any ↵ > 0 would otherwise
require cells A and B in Table B.1 to take di�erent values. Indeed, Figure B.1 illustrates that in
the pre-Crusade period, news reporting rates of Blocker and non-Blocker towns with non-unique
names (red and blue curves) are pretty much identical. Not surprisingly, the average news reporting
rates of towns with unique names are considerably lower. These do di�er between Blocker and
non-Blocker towns (although harder to see in the figure, the baseline rate for Blocker towns in green
is around twice as large as the baseline rate for non-Blocker towns in purple). Notice that the ratio
of A to C identifies �uc. Thus, from cell D we have

D

A
+
(D � C)

A
↵ = �un(B.14)

Replacing for �c�rc = E in the expression in cell F,

F =
1

1 + ↵
�A +

↵

1 + ↵
E

Solving for �,

� =
F

A
+

F � E

A
↵(B.15)

Finally, replacing for �u��ucrc = G in the expression for H,

H =
1

1 + ↵
��un A +

↵

1 + ↵
G

Replacing for �un from (B.14) and solving for �,

� =
H + (H � G)↵
D + (D � C)↵(B.16)

Equating (B.15) and (B.16), we obtain a quadratic equation in ↵ that depends only on the data
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moments:

(F � E)(D � C)↵2 + [F(D � C) + D(F � E) + A(G � H)]↵ + (FD � AH) = 0

The positive root is the relevant solution. Using the moments from Table B.1, we find

↵ = 0.05

We obtained this estimate under the assumption that mis-classified and correctly classified towns
faced similar news reporting rates. One may conjecture, however, that mis-classified towns may
have been so precisely because they were less prominent in the news. Notice from the expression
in cell B on Table B.1, that the smaller the rate multiplying ↵/(1 + ↵), the smaller ↵ must be to
rationalize A = B. Thus, our estimate of ↵ = 0.05 is an upper bound for mis-classification, implying
an upper bound for the inflation factor ⇡̄ of

⇡̄ <
1

1 � 0.05
= 1.05

Below we will consider the implications of this upper bound on the extent of mis-classification,
and further consider an extreme scenario where mis-classification is twice as large (↵ = 0.1).

B.2 Assessing the magnitude of the correlation between mis-classification
and railroad accidents

Our identification strategy relies on the existence of a (negative) relationship between railroad
accidents and observed Crusade activity, arising because accidents in the railroad lead to com-
munication disruptions reducing information flows fueling protest di�usion. In the presence of
mis-classification in our data set related to newspaper coverage of Crusade events, an alternative
channel leading to the same negative relationship between railroad accidents and observed Crusade
activity may arise, constituting a violation of the exclusion restriction: if a crowding-out e�ect
is present such that newspaper reports of railroad accidents lead to less newspaper reporting of
Crusade activity, the occurrence of railroad accidents will be negatively related to the recording of
Crusade events in our data set. Furthermore, it will imply a positive ⇢wr .

Because the existence of such a channel requires a crowding-out mechanism to be in place,
we begin this subsection implementing an indirect test of crowding out e�ects by looking at the
relationship between train accident reporting in newspapers and di�erential reporting of a battery
of di�erent topics commonly covered by newspapers. Our presumption is that if railroad accidents
induce crowding out e�ects, there is little reason to expect them to show up over some topics but
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News Topics Crowding-out E�ects from Railroad Accident News

Dependent Variable: Word Count of

Politics -0.036 Disasters -0.014
(0.034) (0.019)

Economics -0.051 Religion/Family 0.041
(0.032) (0.034)

Business -0.047 Health/Education 0.010
(0.032) (0.049)

Sports 0.013 World 0.015
(0.013) (0.029)

Farming 0.053 Entertainment -0.034
(0.034) (0.028)

Weather 0.050
(0.031)

Table B.2: Railroad Accident News Crowding-Out E�ects. The table presents estimates of equation (B.17) for each
of a batter of alternative news topics. Each coe�cient and associated standard error correspond to a di�erent regression. The main explanatory
variable in all cases is the count of railroad accident news reports. All models include newspaper and period fixed e�ects, the log word count of
the newspaper, the page count of the newspaper, a quadratic polynomial in the total count of keyword matches across all topics, and a constant. A
period is defined as a five-day interval, and the panel covers the period Jan. 1872 - Dec. 1874. The keywords included in each topic are described
in Table D.1. All regressions include 30, 141 observations and cover 282 newspapers.

not over others. We scraped the content of all articles in our data set of newspapers covering the
period Jan. 1872 - Dec. 1874, based on a list of keywords which we use as signals of coverage on a
host of di�erent topics. Table D.1 describes the set of keywords we used for each topic. Based on
this search, we created a count of mentions of each group of words in a given newspaper-period.
In parallel, we scraped the same set of newspaper articles based on a list of keywords signaling the
reporting of railroad-related accidents, and computed a count of the number of railroad accident
mentions in a given newspaper-period.2 For each topic of interest j we regress the count of keyword
matches y j

nt
on the count of railroad accident news rnt , newspaper and period fixed e�ects, and a

vector of control regressors that includes a fourth-order polynomial on the total number of keyword
matches across all topics (Ynt =

Õ
j y

j

nt
), the log word count of the newspaper, the number of pages

of the newspaper, and a constant:

y j

nt
= ↵n + ↵̃t + �rnt + �Log word count

nt
+ �Page count

nt
+ P(Ynt) + ✏nt(B.17)

We report the results of this exercise in Table B.2. Across all topics, we find no statistically

2A positive hit in our railroad accident search corresponds to the finding of an article where any word in the set {rail,
train, passenger car, engine car, locomotive, railroad, railway, wagon} appears simultaneously with any word in the
set {accident, break, broke, turned over, explosion, exploded, explode, derail, derailed, derailment, ran into, collision,
collided, obstruct, cattle on track, misplaced switch, defective wheel, defective frog, land slide, falling break-beam,
overloading car, burned, ran o� track, wreck, washed out, sink, demolish}.
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significant relationship between periods with higher than average railroad accident reports and
di�erential reporting of any of the news topics we considered. The sample size in these exercises
is large, so we do not believe this to be an under-powered test. Moreover, these results are robust
to alternative classifications of keywords into topics, and to the omission of alternative sets of
keywords from di�erent topics. Overall, we find no evidence of crowding-out e�ects from railroad
accident news reports. If anything, out of the 11 topics we considered, only the model for weather-
related topics shows a marginally significant coe�cient (at the 10 percent level). The e�ect is,
however, of positive sign.

We undertake a second empirical exercise to assess whether we can detect any change in the
underlying relationship between newspaper coverage of railroad accidents and the actual occurrence
of railroad accidents during the Temperance Crusade. If newspaper reporting behavior about rail
accidents is di�erent during the months of the Crusade (for example through a form of crowding
out), this could induce a correlation between the reporting of Crusade activity and railroad accidents.
Thus, we aggregate counts yst of newspaper mentions of rail accidents either at the state-month
level or at the state-half month level (matching newspaper locations to their corresponding states),
and counts xst of rail accident occurrences from the Railroad Gazettes for the period Jan.-1872-June
1874. We estimate models of the form

yst = ↵s + ↵̃t + �t xst + �xst + ✏st(B.18)

While � measures the average (across states and time) rate at which news article mentions are
generated per railroad accident happening, the �t captures any period-specific di�erence in this
rate. We can then compare the period-specific slope di�erences �t during the Crusade (Dec. 1873
to July 1874) to the period prior to its onset (Jan. 1872 to Nov. 1973). Each railroad accident
is reported an average of 1.5 times across all newspapers from the corresponding state during the
month of the accident (0.86 times within the two-week windows). Figure B.2 plots the �t coe�cient
estimates from (B.18) over time, aggregating the data either at the month level (left-hand side) or at
the half-month level (right-hand side), showing that the average rate at which newspapers reported
on railroad accidents was no di�erent before the Crusade began (white) or during the Crusade
period (pink), irrespective of the time period definition. Neither of the exercises we presented here
suggest a correlation between mis-classification of Crusade events and railroad accidents operating
through newspaper reporting.
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Figure B.2: Di�erences over Time in Newspaper Reporting of Railroad Accidents. �t coe�cients from
equation (B.18). The figures plot the coe�cients �t from (B.18) (and associated 95 percent confidence intervals), measuring the di�erence
over time (relative to November 1873) in the reporting rate of railroad accidents by newspapers of the state where the accident took place. The
left-hand side figure reports the results from a regression where accidents and news reports are aggregated at the monthly level. The right-hand side
figure reports the results from a regression where accidents and news reports are aggregated at the half-month level. The month-level regression
is based on 840 state-month observations. The half-month regression is based on 1680 state-half month observations. The pink shade denotes the
period of active Temperance Crusade activity.

B.3 Sensitivity Exercise: Lower Bounds on IV Estimates under alternative
Measurement Error Scenarios

The evidence from subsection B.1 suggests mis-classification, if present, is likely to be small.
Under plausible assumptions, it also suggests a 5% upper bound on the mis-classification rate.
The evidence from subsection B.2 similarly suggests that any correlation between measurement
errors and railroad accidents, if present, is likely to be small. Table B.3 reports lower bounds from
equation (B.13) for our causal e�ects of interest. These are based on the IV coe�cients from our
benchmark specification (column 2 from Table 2), in a sensitivity analysis where we allow the key
parameters governing the IV bias, ↵ and ⇢wr , to take values in the sets {0.05, 0.1} and {0.01, 0.05}.
Notice that under this sensitivity analysis we are allowing for values larger than the upper bounds
we estimated above.

The first panel of Table B.3 reports lower bounds for the e�ect of the first lag of rail-mediated
signals. The first row considers an extremely large mis-classification rate of 10 percent –twice as
large as the upper bound we estimated–. Compared to our point estimate of 0.037, we find lower
bounds of 0.012 or 0.029 depending on whether ⇢wr is 0.05 or 0.01. When we instead consider
a mis-classification rate of 5 percent –the upper bound we estimated for mis-classification–, we
find lower bounds for the causal e�ect of 0.014 and 0.031 depending on whether ⇢wr is 0.05 or
0.01. Across all of these scenarios, the lower bounds we obtain are positive. The second panel
then reports lower bounds for the e�ect of the first lag of telegraph-mediated e�ect signals, across
the same range of scenarios. We find lower bounds between 0.13 and 0.16, all positive and close
to out point estimate of 0.172. Finally, the third panel reports lower bounds for the e�ect of the
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Sensitivity of IV Estimates to Mis-classification of Crusade Events

Extent of mis-classification Implied Inflation Factor ⇡
⇢wr

Lower Bounds on Casual E�ects
�0
r

�0� �2
d

0.05 0.01 0.05 0.01 0.05 0.01

Extreme: 10% 1.11 0.012 0.029 0.134 0.151 -0.016 0.001
un-reported

Upper bound: 5% 1.05 0.014 0.031 0.143 0.160 -0.015 0.002
un-reported

Point estimates 0.037 0.172 0.006

Table B.3: Sensitivity of IV Estimates to Mis-classification of Crusade Events. The table reports lower bounds
for the benchmark social interaction e�ects using equation (B.13), for alternative values of the mis-classification rate (↵) and the correlation between
mis-classification and rail link variation (⇢wr ). The columns under panel �0

r report lower bounds for the first lag of rail-mediated signals. The
columns under panel �0

� report lower bounds for the first lag of telegraph-mediated signals. The columns under panel �2
d report lower bounds for

the third lag of distance-mediated signals.

third lag of distance-mediated signals, across the same range of scenarios. In this case, the small
magnitude of our point estimate (0.006) leads to negative lower bounds when ⇢wr is very large. For
the scenarios where ⇢wr = 0.01, however, the lower bounds are positive even under the extreme case
where ↵ = 0.1. All together, this table considers very conservative scenarios, strongly suggesting
that the causal e�ects of rail and telegraph-mediated information flows are positive, and that bias
caused by the two measurement-error channels considered in this appendix is small.
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C Online Appendix: Aggregate Dynamics: Testing Models of
Social Interactions

In this appendix, we evaluate whether the patterns of spread of the Temperance Crusade across
towns are consistent with the aggregate implications of any of the basic di�usion mechanisms
suggested by Young (2009). In that article, he discusses how to distinguish between alternative
mechanisms of di�usion in a population –inertia, contagion, social influence, and social learning–.
Each of these, under general conditions, leaves distinguishing signatures on the aggregate path of
the di�usion process. Albeit only suggestive, and similar to his analysis of the adoption of hybrid
corn in the 1930s, we find evidence favoring social learning over alternative mechanisms.

Let p(t) be the adoption curve: the fraction of the population who has adopted the behavior
under study by time t. An adoption process driven by inertia is one where at any given time,
players who have not yet adopted do so at some exogenous rate. As a result, any such process
must be characterized by a concave adoption curve.3 The top left panel in Figure C.1 presents the
di�usion curves of the Temperance Crusade. Eventually, 5 percent of all U.S. towns experienced
some Crusade-related event, as the blue line illustrates. The figure also depicts the adoption curves
separately for meetings (red line), petitions (green line), and marches (purple line). Petitions were
the least frequent type of event, eventually occurring in 1.5 percent of all towns, while meetings
and marches eventually took place in around 3 percent of towns. Either aggregated or separately,
all adoption curves are clearly S-shaped, suggesting that inertia alone cannot explain the di�usion
of the Crusade.

Contagion is a popular alternative type of adoption process, frequently used in the epidemiology
literature. Under contagion dynamics, players adopt when others they are in touch with have
adopted.4 In contrast to an inertial model, models of contagion have S-shaped adoption curves.
Because agents adopt when more agents have adopted, there must be a period where di�usion
is fast, generating the steep region of the adoption curve. While other models of di�usion also
generate S-shaped adoption curves, in any process driven only by contagion, however, the relative
hazard rate, €p(t)/p(t)(1� p(t)), must be non-increasing (see Young (2009)). As a way to indirectly
probe this aggregate implication, in the first column of Table C.1 we report the estimates of an OLS
regression of the relative hazard rate of the adoption curve for all types of events, on a fifth-order

3The simplest such inertial process is characterized by the di�erential equation €p(t) = �(1 � p(t)), where each
instant a fraction � of the population that has not yet adopted does so. Young (2009) demonstrates that the adoption
curve will not be S-shaped even if there is heterogeneity in the �s across the population.

4Contagion of behaviors can be micro-founded with preferences for conformity. Young (2009) shows that a simple
such model is given by the di�erential equation €p(t) = (ap(t) + �)(1 � p(t)). The share of non-adopters adopting at a
given instant has both an inertial component and a component proportional to the share who have already adopted.
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Evaluating Alternative Protest Di�usion Signatures, based on Young (2009)
Contagion: Social Influence: Social Learning: Schennach-Wilhelm (2017)

Relative Hazard Rate Slope of the Adoption Curve Slope of the Adoption Curve Model Selection Test
Monotonically Decreasing Proportional to its Level Proportional to its Integral

€p(t)/[p(t)(1 � p(t))] ln[ €p(t)] ln[ €p(t)] Ho: (2) = (3)
(1) (2) (3) Ha: (3) � (2)

t -0.0095 ln[p(t)] -174.7 ln[
Ø
t

0
p(s)ds] -0.933 t-statistic: 6.834

(0.0016) (18.3) (0.045)
p-value: 0.000

t
2 0.00039 (ln[p(t)])2 -57.9 (ln[

Ø
t

0
p(s)ds])2 -0.744

(0.00007) (6.64) (0.034)

t
3 -6.62E-06 (ln[p(t)])3 -9.27 (ln[

Ø
t

0
p(s)ds])3 -0.139

(1.49E-06) (1.16) (0.020)

t
4 4.92E-08 (ln[p(t)])4 -0.72 (ln[

Ø
t

0
p(s)ds])4 -0.012

(1.30E-08) (0.10) (0.004)

t
5 -1.34E-10 (ln[p(t)])5 -0.022 (ln[

Ø
t

0
p(s)ds])5 -0.00044

(4.09E-11) (0.003) (0.00022)
R squared 0.74 0.79 0.90
Observations 123 177 177

Table C.1: Alternative Protest Di�usion Signatures. Column (1) presents OLS results from a regression of the relative
hazard rate of the adoption curve on a fifth-order polynomial in time, between the beginning of the Crusade and day 124. Column (2) presents OLS
results from a regression of the log slope of the adoption curve on a fifth-order polynomial in the log of the level of the adoption curve. Column (3)
presents OLS results from a regression of the log slope of the adoption curve on a fifth-order polynomial in the log of the integral of the adoption
curve. In all models, the adoption curve is based on all types of Temperance Crusade events –meetings, petitions, and marches–. Standard errors are
robust to arbitrary heteroskedasticity. The last column presents the test statistic and associated p-value of the model selection test from Schennach
and Wilhelm (2017), comparing the models from columns (2) and (3).

polynomial in time.5 Similar to the result of an exercise by Young (2009) on hybrid corn adoption,
we find a non-monotonic relative hazard rate. Indeed, the top-right panel of Figure C.1 depicts
both the relative hazard rate (in blue), and the fitted values based on the estimates from the model
in column (1) of Table C.1. This curve is initially decreasing but subsequently increases reaching a
local maximum before starting to decrease again, easily ruling out a non-increasing relative hazard
rate.6

Young (2009) also considers models of social influence and social learning. In a social influence
model, such as the classic threshold model of Granovetter (1978), agents are heterogeneous in the
threshold fraction of other agents that must have adopted before they are willing to adopt. As
a result, the dynamics of these models depend closely on the distribution F of thresholds in
the population. The simplest model of social influence is described by the di�erential equation
€p(t) = �[F(p(t))�p(t)]. Models of social learning are varied, depending on the specific assumptions
made about the informational environment and the information-processing abilities of agents. The

5Because the adoption curve is almost flat after around 125 days into the Crusade, we estimate this regression for
the first 125 days of the Crusade only.

6As Young (2009) points out, this finding does not imply the absence of contagion dynamics, but it strongly suggests
that contagion by itself cannot explain the di�usion of the Crusade.
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simplest such model, where risk-neutral and myopic agents observe others’ outcomes –besides
others’ choices–, turns out to have a structure similar to that of a social influence model. However,
in this case the individual thresholds depend not on how many others have adopted, but on
how much information has been generated by the adoption decisions of others. Young (2009)
shows that the di�erential equation characterizing a social-learning di�usion process is given by
€p(t) = �

h
F

⇣Ø
t

0
p(s)ds

⌘
� p(t)

i
.

The area under the adoption curve captures the amount of information that has been generated
up to time t. It is much harder to distinguish between social influence and social learning based
on the aggregate patterns of the adoption curve alone. Its shape will depend on the distribution
of thresholds and on subtle features of the informational environment. When social learning is
present, however, two key signatures should be observed: first, because information is scarce early
on, most social learning processes should exhibit a rocky beginning with slow growth. In fact,
they should exhibit deceleration in their early phase.7 In Figure 1 we already illustrated the slow
and bumpy start of the Crusade. In the bottom left panel of Figure C.1 we reiterate this point by
graphing the second derivative of the adoption curve for all events during the first 45 days of the
movement. Overall, the rate of change of the slope of the adoption curve decreases in this period,
and moreover, the acceleration is negative for around half the time span under consideration.

The second distinguishing signature of social learning emphasized by Young (2009) follows
directly from the equations describing social influence and social learning: under social influence,
the slope of the adoption curve should be proportional to its level. Under social learning, in
contrast, the slope of the adoption curve should be proportional to its integral. Taking logs of both
equations, we approximate the right-hand side functions as fifth-order polynomials of either the
adoption curve or its integral, and estimate them by OLS. We report the results in columns (2) and
(3) of Table C.1. Naturally, both polynomials fit the log slope of the adoption curve quite well, but
the model based on the integrals under the adoption curve has an R squared of 0.9 compared to an
R squared of only 0.79 for the model based on the levels.

We go further in the last column of the table, by performing a model selection test based on
Schennach and Wilhelm (2017). This parametric test compares the fit of the models by building a
t-statistic that has a normal limiting distribution centered at zero under the null hypothesis that both
models are equally good at fitting the data. We easily reject the null in favor of the social learning
model, with a t-statistic of 6.83 and an associated p-value of 0 to twelve decimal places.8 The
much better fit of the model in column (3) of the table can also be seen graphically. In the bottom

7The reason for this, in Young (2009)’s words is that “... the initial block of optimists... exerts a decelerative drag
on the process: they contribute at a decreasing rate as their numbers diminish, while the information generated by the
new adopters gathers steam slowly because there are so few of them to begin with” (p. 1913)

8The Schennach and Wilhelm (2017) test requires providing a tuning parameter "n. We follow their advice and
compute "n based on their suggested optimal choice.
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right panel of Figure C.1 we plot the log slope of the adoption curve (blue curve), together with
the predicted values from the social influence model (green curve) and the social learning model
(red line), using the estimated coe�cients from Table C.1. The picture shows the much better fit of
the social learning model, despite both being polynomials of the same order. The social influence
model under-predicts the slope of the adoption curve between days 100 and 150 into the Crusade,
and over-predicts it after that. In contrast, the flexible polynomial in ln(

Ø
t

0
p(s)ds) easily follows the

observed rate of change of the adoption curve. Taken together, we see these pieces of evidence to
strongly suggest that social learning across towns was at the heart of the spread of the Temperance
Crusade.9

9The adoption models in Young (2009) are all based on the assumption that agents are matched randomly in the
population. He points out that when interaction in the population is mediated by a network, the signature patterns on
the aggregate adoption curve may be di�erent because the network constrains how agents can interact. Although in
our setting, towns were embedded in several networks –rail and telegraph foremost–, we find it encouraging that all of
the footprints from the adoption curve analysis point strongly to social learning as a key driver of protest di�usion.
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D Online Appendix: Supplementary Data Description

D.1 Newspaper Articles Data Construction

We collected newspaper data from the “Chronicling of America” Newspaper database of the Library
of Congress. The archive contains images of historical newspapers from 1690 to present. The
archive’s interface allows a researcher to carry out keyword searches.

We searched for the following keywords (or combination of keywords, when a keyword is likely
to generate numerous false positives) to identify mentions of events related to the Temperance
Crusade: Crusade; Dio Lewis; Saloon pledge; Temperance; Temperance & Women; War &
Whisky; Women & Protest; Women & War. The output of any keyword search is an image of a
newspaper page containing one or more of these keywords. The text generated by processing this
image can be downloaded. We downloaded any text that contained any of these keywords in its
body. We also downloaded meta-information about the newspaper publishing the text - such as its
name and location. This step resulted in several thousand articles which contained at least one of
these keywords, some of which may be duplicates.

To reduce problems due to image-to-text processing, we implemented the following steps:

1. We removed punctuation and signs that were likely to be included in the output due to
imperfect image processing, such as \ or |.

2. We searched for words which may have been unintentionally separated, creating two con-
secutive unintelligible words. For example, if word “development” was separated into two
consecutive words like “deve” and “lopment,” we tried to combine them since this would
result in a meaningful new word. Unfortunately, while these steps reduce errors, they can
also generate combination words which were not in the original text. For example, if two
words “up” and “date” were consecutively available in the text, we would form the word
“update”. This is an unavoidable trade-o� in our search heuristic.

To reduce the number of false positive mentions of town names, we tried to identify the text of
any article mentioning a Crusade event in a newspaper and then carried out the search of census town
names only in this text. Unfortunately, in addition to the problems generated by imagine-to-text
processing, working with historical newspapers is challenging because they rarely have indicators
for where an article begins and where it ends. To cover the approximate body of an article, we used
the following steps. If several consecutive pages turned up in the keyword search from the same
date and newspaper, we assumed they were coming from the same article spread across multiple
pages. We combined such texts on consecutive pages to form an article. If there are multiple hits
from the same newspaper on the same day, but they on nonconsecutive pages, we assumed they
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belong to multiple articles. In this combined body, we then treated the locations of the very first and
the very last keyword hits as indicators of where an article may lie. It is unlikely that these words
coincide with the exact first and last words of any article, so we supplemented the text between
these two keywords with an additional text of 100 words before and after, to increase the chance of
covering the full article. We carried out a town name search in this large combined text by looking
for a match to any of the nearly 15,000 towns in the U.S., as we detail next.

Searching for the Names of Towns

We searched for mentions of towns within the above-mentioned combined text that is likely to
capture an article body. We matched the list of recovered town names from all articles to our list of
Crusading towns.

This procedure can generate false positives for two reasons. First, some town names can
correspond to words with alternative meanings. For example, “Union” is a town in NY, as well as
an English word. To reduce such false positives, we checked if the word indicating the town name
started with a capital letter. Second, there may be multiple towns in the US with the identical name
in di�erent counties or states. To deal with such cases, we checked if any state names are mentioned
in the article text. If only one state was mentioned, we marked the town in this state as mentioned
in our dataset. If there were multiple states with a possible match, we assigned a probability equal
to 1/number of mentioned towns. If there were, for example, five towns with identical names in
the 800+ towns in our search, and three of them whose states were mentioned, we assigned a 1/3
probability. For each article, each town in the US was coded as unmentioned (0), town + state
name mentioned or unique town (1), or as partial information or multiple town/town+state names
mentioned as a possible match (a number between 0 and 1).

Because newspapers were smaller in page sizes and had fewer pages for the duration of interest,
newspapers’ likelihood of publishing multiple articles on the same topic on any given day is small.
However, our approach may still generate town names that are not relevant to the women’s protests.
Unfortunately, after these steps, there were still some town names with false positives. To reduce
the likelihood of misclassification, we checked if articles which cover stories about the Crusade
mention the U.S. Census towns which were not mentioned by Blocker (1985). For the articles that
did not contain a town reported by Blocker to have a Crusade event, but included a subset of the
keywords listed related to the Crusade, we carried out a manual text search in the retained text. Four
research assistants manually checked the text to ensure that the articles mentioned of the Crusade
events and retained those relevant to the Crusade.

Using this output we created a town-to-town mention matrix for each day in our study. In the
rows we report the newspapers’ town location and in the rows the Crusade town mention. Thus, we
mark whether a town –through its own newspaper– hears about the events in another town.
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D.2 Newspaper Search for Crowding Out of Topics

To identify the news articles on di�erent topics, we first generated a list of topics which were
commonly reported in the newspapers of the Crusade period: politics, economics, business, sports,
farming, weather, disasters, religion and family, health and education issues, world news, and
finally news on entertainment. We created an extensive list of keywords, provided in Table D.1, to
detect the mention of each topic. We searched for these keywords in the “Chronicling of America”
Newspaper database of the Library of Congress, for each day, going back to January 1st of 1872
to June 30th of 1874. We downloaded all articles related to the keywords, along with the number
of times each keyword is mentioned, and retained the metadata about the newspaper - such as its
name and location.

Keywords by Topic

Topic Keywords

Politics election, party, Republican, Democrat, general, captain, president, politics,
legislative, council, elector, congress, mayor, municipality, governor

Economics price/prices, economy, economics, industrial, industry, gold, silver, coal

Business restaurant, store, shop, butcher, o�ce, business, goods, sale, hotel,
insurance, assurance, shoes, boots

Sports sport/sports, sportive, player, cricket

Farm livestock, crop/crops, wheat, corn, drought, farm/farming, animal/animals,
veterinary, cattle, cow/cows, chicken/chickens, horse/horses, mill, furnace

Weather storm, rain, rainy, thunder, wind, snow, snowy, freezing, heat, ice, icy

Disasters earthquake, tornado, fire, burned down, collapse, mudslide, people, gathering,
meeting

Religion/Family church, reverend, synagogue, temple, pastor, bible, religion, father, children, child,
baby, mother, family, marriage, wedding, divorce, parent

Health/Education medical, doctor, disease, contagion, sickness, illness, health, nurse, school, university,
college, teacher, student, educate, education, learning

World England, France/French, Germany, Japan, Europe, Asia, Britain/British, war

Entertainment theater, festival, tournament, game, saloon

Table D.1: List of Keywords Used to Construct News Topics for the Crowding Out Exercise. The table
lists the keywords used to classify newspaper articles into topics, for the railroad accident crowding out exercise reported in table Table B.2.
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D.3 Search of the Railroad Accident Coverage in Newspapers

We search for railroad accident mentions in the “Chronicling of America” newspaper database of
the Library of Congress, for each day, between the dates of Jan 1st, 1872 to June 30th of 1874.

We searched for two groups of keywords – first group indicating an event around railroads and
the second indicating forms of accidents – and retained the article if a newspaper article contains
at least one keyword from each group:

Group 1: “rail”, “train”, “passenger car”, “engine car”, “locomotive”, “railroad”, “railway”,
“wagon”.

Group 2: “accident”, “break”, “broke”, “turned over”, “explosion”, “explode”, “derail”, “de-
railed”, “derailment”, “ran into”, “collision”, “collided”, “ cattle on track”, “misplaced switch”,
“defective”, “wheel”, “defective frog”, “land slide”, “falling brake-beam”, “overloading car ”,
“burned”, “ran o� track”, “wreck”, “washed out”, “sink”, “demolish”.

We downloaded all of the articles that were identified to mention a railroad accident, along
with a dummy indicating which keywords are mentioned, and retained the metadata about the
newspapers, including their name and locations.

D.4 Search of the Railroad Accident Records

We search for railroad accidents reported in the monthly Railroad Gazette between Jan 1st, 1872
and June 30th of 1874. Railroad Gazette volumes were accessible via Hathitrust.org and Google-
books.com. In the monthly gazette volumes, there is a reporting of accidents that took place within
the month. We recorded all accidents mentioned in the gazettes, along with date, location, and
railroad company information if they were reported. This search resulted in 2,186 accident data
points.

There were no accidents reported for two months in the gazettes: January and April 1872. To
address the possibility that this was a reporting oversight, for these months, we carried out a search
in newspaper archives. For 12 accidents, gazettes only provided the year of the accident, but no
other date. We removed these accidents from our analyses.

For other accidents reported in the gazette volumes, the location information was missing, or
it was provided, but it did not correspond to any of the town names from the 1870 Census, or it
corresponded to multiple town names. To identify the location of each accident using the 1870
railroad map, we use the following procedure on the Railroad Gazette accident data and Jeremy
Atack’s railroad archive10:

1. Search the town and state name in Atack’s 1870 railroad map.

10We use Atack’s 1870 ArcGIS shape files from the Vanderbilt University which cover all rail lines in the continental
U.S. as of 1870. The collection can be accessed at https://my.vanderbilt.edu/jeremyatack/data-downloads/
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Figure D.1: Travelers’ Guide Example

• If there is a unique town identified in a state, we search for the name of the railroad
company in the Travelers’ O�cial Railway Guide for the United States and Canada from
1870 (Vernon, 1870). A page from the guide is provided as an example in Figure D.1.
We find the starting station and the end station of the railroad path on which the town
is located to confirm the town location and state.

For example, if a Railroad Gazette record states that “An accident took place on the
Chicago & Northwestern Railway in Chicago, IL on 1873-01-24", we search in the
Travelers’ Guide information about the railroad company “Chicago & Northwestern
Railway". Figure D.1 shows detailed information about “Chicago & Northwestern
Railway.” If we find Chicago as a station listed on this railroad’s path, we confirm
“Chicago" "IL" as the town and state where the accident took place.

• If the town location and railroad company do not match, we undertake a second search
in historical newspaper archives, detailed in Step 4.

2. If the accident town is not in Atack’s 1870 railroad map, but there is a station with the
identical name in the Travelers’ Guide, then we try to identify the railroad path that this town
is on. To do this, using the Travelers’ Guide, we first locate the nearest towns before and
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after this town, go back to the railroad map, and check if there are other towns between these
towns.

• If there is one town between the nearest towns, we set accident location to this town.

• If there are multiple towns between the nearest towns, we choose the town with the
largest population among them and set it as the accident location.

• If there are no towns, we find the town that is the closest in distance to this segment of
railroad path and mark it as the town of the accident location.

3. If an accident town is found in neither the 1870 map nor the Travelers’ Guide:

• if accident location refers to a river, lake, mountain, mill, valley or another landform,
then we search in the railroad map the location of the mentioned landform and search
nearby towns. If there is a unique town near the landform (e.g., a town nearby a
mountain), we set this town as the accident town. If there are multiple towns nearby the
landform (e.g., a river may go through multiple towns), we set the nearby town with the
highest population as the accident location.

• If the accident location refers to a village, city, neighborhood, area rather than a town, we
find the nearest town in our database to this location and set it to the accident location.

4. Additional Search on Newspaper Archives:

Even after Steps 1-3, the town and state of some accidents could not be identified. To find
the location of these remaining accidents, we searched the Newspaper Archive database
accessible at https://access.newspaperarchive.com/.

Specifically, if the accident location does not match any of the towns through which the
railroad company of the accident is going through; or if the date and the railroad company of
the accident are reported in the Railroad Gazette without an accident location:

• We search for mentions of railroad accidents using the phrases “railroad accident,”
“railway accident,” and “train accident” in the Newspaper Archive. We check if there
is a mention of an accident matching the name of the accident railroad company or
the state where the accident took place published within three days of the accident
date reported in the Gazette. If we find a newspaper article matching the accident
description, we record the mentioned town as the town of accident. Otherwise, we
record “NOT FOUND.”
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Note that no accidents were reported in the Railroad Gazette for January and April 1872.
Since this may be a reporting error, we searched for railroad accident records for these two
months in Newspaper Archive and recorded all accidents found as well.
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Illustration of a Telegraph Map from WesternUnion (1874)

Figure D.2 reproduces the Western Union telegraph lines map in WesternUnion (1874) for the states
of Connecticut and Rhode Island as an illustration. We geo-referenced these maps for all states,
using GIS software to create the telegraph network data.

J

Generated for IGLESIAS DIAZ, ANGEL P (University of Pennsylvania) on 2014-10-03 19:41 GMT  /  http://hdl.handle.net/2027/nyp.33433020633305
Public Domain, Google-digitized  /  http://www.hathitrust.org/access_use#pd-google

Figure D.2: The Telegraph Network in Connecticut and Rhode Island, 1874. The figure reproduces the Western
Union telegraph lines map in WesternUnion (1874) for the states of Connecticut and Rhode Island.
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