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1 Proofs of Lemmas A1 and A2

1.1 Proof of Lemma A1

Define y(X, a, b) := f (X, a) + g (b) . The conclusion of the lemma will follow
from a series of claims.

Claim 1 The principal obtains a strictly positive profit by contracting with
the agent.

Proof. Fix X ′ ∈ (X,X), a′, and b′ s.t. y(X ′, a′, b′) > v (which is feasible
because v(X) > v) and then pick T ′ > 0 s.t. e−rT

′
v(X)−(1−e−rT ′)c(a′+b′) >

v(X ′). Now consider the contract where the principal pays 0 wages, brings the
agent’s knowledge up toX ′ at time 0, and asks them to maintain efforts (a′, b′)
until time T ′, at which point the principal brings the agent’s knowledge up to
X. This contract satisfies the agent’s participation and liquidity constraints,
and gives the principal a positive payoff.
This proves part 1 of the lemma.

Claim 2 Any contract where W∞ > 0 is strictly dominated by some finite-
duration contract where W∞ = 0.

Proof. If contract C with potentially infinite graduation date T prescribes
W∞ > 0 and is not strictly dominated, by the previous claim it must have
Π0(C) > 0, so U0 (C) < 1

r
v (X∞). Now let T ′ ∈ (0, T ) satisfy(

e−rT
′ − e−rT

) 1

r
v (X∞) +

∫ T

T ′
e−rtc (at + bt) dt = W∞,

and consider a new contract C ′ where the agent earns zero wages, graduates
at date T ′ with knowledge X∞, and for t < T ′,

X ′t, a
′
t, b
′
t = Xt, at, bt.
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By construction,

U0 (C ′) = e−rT
′ 1

r
v (X∞)−

∫ T ′

0

e−rtc (at + bt) dt

= e−rT
1

r
v (X∞) +W∞ −

∫ T

0

e−rtc (at + bt) dt = U0 (C) .

In addition, for t < T ′,

Ut (C ′)− Ut (C) =
(
e−r(T

′−t) − e−r(T−t)
) 1

r
v (X∞)

+

∫ T

T ′
e−r(τ−t)c (aτ + bτ ) dτ −

∫ T

t

e−r(τ−t)wτdτ

= ert
[
W∞ −

∫ T

t

e−rτwτdτ

]
≥ 0.

As a result, since the original contract satisfied the participation and liquidity
constraints, the new contract satisfies them as well.
Finally, we have

Π0 (C ′) + U0 (C ′)− [Π0 (C) + U0 (C)]

≥
∫ T

T ′
e−rt [v (X∞)− v (Xt)] dt > 0,

where the strict inequality follows from the facts that v is strictly increasing
and that Xt < X∞ for all t ∈ (T ′, T ) . Since U0 (C ′) = U0 (C) , it follows that
Π0 (C ′) > Π0 (C) , so C ′ strictly dominates C.
This proves the first clause in part 2 of the lemma.

Claim 3 Any infinite-duration contract is strictly dominated by some finite-
duration contract with W∞ = 0.

Proof. In any infinite-duration contract, the initial participation constraint
requires W∞ ≥ 1

r
max {v, v (X)} > 0, so from by the previous claim the

contract is strictly dominated.

Claim 4 Any finite-duration contract with W∞ = 0 and XT < X is strictly
dominated by some finite-duration contract with W∞ = 0 and XT = X.
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Proof. If a finite-duration contract with W∞ = 0 has XT < X, then there
is a time interval ∆ and effort levels a′, b′ such that y(X ′, a′, b′) > v and
e−r∆v(X)− (1− e−r∆)c(a′ + b′) > v(XT ), and so the principal could obtain
strictly higher profits by extending the agent’s contract to T ′ = T +∆ paying
no additional wages, setting Xt = XT and (at, bt) = (a′, b′) for t ∈ [T, T ′),
and setting XT ′ = X.
Claims 3 and 4 prove the second clause in part 2 of the lemma.

Claim 5 Any contract is weakly dominated by some finite-duration contract
with XT = X and zero wages.

Proof. From Claims 3 and 4, we can restrict to finite-duration contracts
such that XT = X and W∞ = 0. Let S be one such contract, and consider
an alternative contract S ′ that is identical to S except for the fact that wages
are 0 at all times. The two contracts deliver identical profits. In addition,
for all t,

e−rt [Ut (C)− Ut (C ′)] =

∫ T

t

e−rτwτdτ

= W∞ −Wt ≤ 0,

where the inequality follows from the fact that Wt ≥ 0 and W∞ = 0. As a
result, Ut (C ′) ≥ Ut (C) and therefore C ′ satisfies the participation constraint.

This proves the third clause in part 2 of the lemma and so completes its
proof.

1.2 Proof of Lemma A2

We will show each clause of the lemma in turn.

Claim 6 Any contract is weakly dominated by a contract that sets the agent’s
participation constraints to hold with equality.

Proof. In a contract with zero wages, Ut = e−r(T−t) 1
r
v
(
X
)
−
∫ T
t
e−r(τ−t)c (aτ + bτ ) dτ ,

which is strictly increasing (because v(X) > 0) and continuous. Thus if
Ut >

1
r
v(Xt) for some times t, the contract with the same effort path and

terminal date, and X
′
t = max{Xt, v

−1 (rUt)} at all times will satisfy the par-
ticipation constraints and give the principal a weakly higher payoff at each
date. Moreover, if the times where Ut > 1

r
v(Xt) had positive measure, the

new contract would give the principal a strictly higher payoff overall.
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Claim 7 Any contract is weakly dominated by a contract where at each t
total effort at + bt is allocated across tasks to maximize output.

Proof. Given any contract where at some times yt 6= y∗(Xt, (at + bt)), con-
sider the alternative contract where the time paths of knowledge and total
effort are the same but effort is allocated to maximize output at each time.
Since the agent’s knowledge stock and effort cost are the same, the participa-
tion constraints are still satisfied, and the principal does at least as well, and
strictly better if the times where yt 6= y∗(Xt, (at + bt)) had positive measure.

This completes the proof of the lemma.

2 Training certificates

Suppose the principal has the ability to grant the agent a certificate worth
∆ > 0 in flow terms. The agent’s outside option is v (Xt) with the certificate,
and v (Xt)−∆ without it, and so the certificate is worth∆/r in present value.
The agent’s productivity inside the relationship is independent of the agent
being certified. The principal has the option of granting the certificate at any
time, but it is without loss to assume that she grants it at the end of the
contract, as doing so relaxes the agent’s dynamic participation constraint.

Lemma S1 Every contract is strictly dominated by a contract where:

1. The agent earns zero overall wages, that is W∞ = 0.

2. The agent receives all knowledge in finite time.

3. At all times where Xt < X, the agent’s participation constraint holds
with equality.

4. At (almost all) times, total effort is allocated to maximize total output.

Proof. The proof is a straightforward extension of the proof of Lemmas A1
and A2.

Lemma S2 Every optimal contract has two phases. Phase 1: over time
interval [0, T ], with T ≥ 0, the agent’s participation constraints hold
with equality, knowledge is strictly increasing, and XT = X. Phase
2: over time interval (T, T ′] , with T ′ > T, the agent’s participation
constraints are slack and the certificate is granted at time T ′.
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Proof. Let T ′ denote the terminal time when the agent receives the certifi-
cate. Lemma S1 implies that the participation constraint for time t ≤ T ′

is
1

r
[v (Xt)−∆] ≤ e−r(T

′−t) 1

r
v
(
X
)
−
∫ T ′

t

e−r(τ−t)c (qτ ) dτ ,

with equality whenever Xt < X. Since the right-hand side is increasing and
continuous in t, there is a time T ≤ T ′ such that XT = X and Xt < X for all
t < T. Therefore, between times 0 and T the participation constraint holds
with equality and knowledge is strictly increasing. Moreover, the participa-
tion constraint for time t ≥ T is

1

r

[
v
(
X
)
−∆

]
≤ e−r(T

′−t) 1

r
v
(
X
)
−
∫ T ′

t

e−r(τ−t)c (qτ ) dτ .

Since this constraint holds with equality for t = T, and ∆ > 0, it follows that
T ′ > T. And since the right-hand side is strictly increasing in t, it follows
that the participation constraint is slack for all t > T .

The principal’s problem is

max
u0,T,T ′,(qt)

T ′
t=0

∫ T

0

e−rt y∗ (φ (ut) , qt) dt︸ ︷︷ ︸
phase 1 profits

+

∫ T ′

T

e−rt y∗
(
X, qt

)
dt︸ ︷︷ ︸

phase 2 profits

subject to constraints

u0 ∈
[
max {v (X) , v + ∆} , v

(
X
)]
, uT = v

(
X
)
, (1)

·
ut = r [ut −∆ + c (qt)] for 0 < t < T,

where ut := v (Xt) , and subject to the time T participation constraint

1

r

[
v
(
X
)
−∆

]
= e−r(T

′−T ) 1

r
v
(
X
)
−
∫ T ′

T

e−r(t−T )c (qt) dt. (2)

Since the choice of T ′, (qt)
T ′

t=T does not affect phase 1 profits or constraints
(1), for any given T the optimal such choice solves

max
T ′,(qt)

T ′
t=T

e−rT
∫ T ′

T

e−r(t−T ) y∗
(
X, qt

)
dt︸ ︷︷ ︸

phase 2 profits

subject to (2).
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Lemma S3 For any given T, the optimal T ′ and effort path (qt)
T ′

t=T uniquely
satisfy (up to a zero-measure subset of times)∫ T ′

T

e−r(t−T ) y∗
(
X, q∗

(
X
))
dt = ∆/r and (qt)

T ′

t=T =
(
q∗
(
X
))T ′
t=T

.

Therefore, the optimized phase 2 profits are e−rT∆/r.

Proof. After manipulation, constraint (2) is∫ T ′

T

e−r(t−T ) y∗
(
X, qt

)
dt = ∆/r+

∫ T ′

T

e−r(t−T )
[
y∗
(
X, qt

)
− c (qt)− v

(
X
)]
dt.

Since the left-hand side is the principal’s objective (measured in period T
dollars) and y∗

(
X, qt

)
− c (qt) is uniquely maximized at qt = q∗

(
X
)
, the

unique solution (up to a zero-measure subset of times) is to set (qt)
T ′

t=T =(
q∗
(
X
))T ′
t=T

and therefore
∫ T ′
T
e−r(t−T ) y∗

(
X, qt

)
dt = ∆/r.

Having solved for T ′ and (qt)
T ′

t=T , the principal’s problem simplifies to

max
u0,T,(qt)

T
t=0

∫ T

0

e−rt y∗ (φ (ut) , qt) dt︸ ︷︷ ︸
phase 1 profits

+ e−rT∆/r︸ ︷︷ ︸
phase 2 profits

subject to (1).

Other that the second term in the objective and the modified constraints (1)
on the state, this problem is identical to the original one. We now solve it
by treating T as the terminal time.

Lemma S4 In the model with a certificate, except for the new constraints (1)
on the state variable, and the first-order condition for T , the conclusion
in Lemma A3 remains valid. The first-order condition for T now takes
the more general form

HT = e−rT∆.

Proof. Define φ (T ) := e−rT∆/r, ψ (u0) := u0 − max {v (X) , v + ∆} and
Φ (u0, T ) := φ (T ) + λ0ψ (u0) . The only difference relative to the proof of
Lemma A3 is that Chachuat (2007) Theorem 3.18 now requires that HT =
−ΦT (u0, T ) = e−rT∆.
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Lemma S5 In the model with a certificate, the conclusions in Lemmas A4
and A5 in the main appendix remain valid.

Proof. From Lemma S4, the first-order condition for T is

e−rTy∗
(
X, qT

)
− λT r

[
v
(
X
)
−∆ + c (qT )

]
= e−rT∆,

and the first-order condition for qT implies that λT r =
[
e−rT ∂y

∗

∂q

(
X, qT

)
− ηT

]
/c′ (qT ) .

By combining these two equalities we obtain

c′ (qT ) y∗
(
X, qT

)
− ∂y∗

∂q
(φ (uT ) , qT )

[
v
(
X
)

+ c (qT )
]

=

∆

[
c′ (qT )− ∂y∗

∂q
(φ (uT ) , qT )

]
− erTηT

[
v
(
X
)

+ c (qT )
]
.

Since the left-hand side is strictly increasing in qT , and equal to zero when
qT = q∗

(
X
)
, the unique solution is ηT = 0, qT = q∗

(
X
)
, and erTλT = 1

r
.

The proof is otherwise identical to that of Lemmas A4 and A5.

Proposition S1 In the model with a certificate, for phase 1 of the contract
the conclusions in Theorem 1 and 2 remain valid, but with state equa-
tion

1

r

d

dt
v (Xt) = v (Xt)−∆ + c (qt) ,

and with the optimal initial knowledge level X0 and contract length T
now satisfying either:

X0 > max
{
X, v−1 (v + ∆)

}
and

∫ T

0

ρtdt =
1

r
(positive knowledge gift);

or

X0 = max
{
X, v−1 (v + ∆)

}
and

∫ T

0

ρtdt ≤
1

r
(zero knowledge gift).

Proof. The proof is identical to the proofs of Theorems 1 and 2, but with
state equation

·
ut = r [ut −∆ + c (qt)] and with the ex-ante outside option

max {v (X) , v + ∆} taking the place of v (X).
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3 Training costs

Here we derive the optimal contract in the extended model with training
costs.

Lemma S6 In the model with training costs, the conclusions in Lemmas A1
and A2 remain valid.

Proof. With the exception of Claims 1 and 4, it is easy to see that the
proofs of Lemmas A1 and A2 extend to this case. Claim 1 states that the
principal obtains a strictly positive profit by contracting with the agent. To
see why this is still true, consider a contract in which X0 = X and XT = X,
and at any time 0 ≤ t ≤ T effort is qt = q∗ (Xt) , wages are zero, and the
agent receives training dXt/dt such that

v′ (Xt)
dXt

dt
= r [v (Xt) + c (q∗ (Xt))] = ry∗ (Xt, q

∗ (Xt)) .

This contract satisfies the agent’s participation constraints with equality at
all times and delivers profits

T∫
0

e−rt
[
y∗ (Xt, q

∗ (Xt))− k
1

r
v′ (Xt)

dXt

dt

]
dt =

T∫
0

e−rt (1− k) y∗ (Xt, q
∗ (Xt)) dt > 0.

Claim 4 states that any finite-duration contract with W∞ = 0 and XT <
X is strictly dominated by some finite-duration contract with W∞ = 0 and
XT = X. To see why this is still true, notice that if a finite-duration contract
with W∞ = 0 had XT < X, then the principal could obtain strictly higher
profits by extending the contract to date T ′ > T, setting XT ′ = X, and for
all T < t ≤ T ′ offering the same arrangement as above.
It follows from this lemma that with the exception of the principal’s

objective, the optimal control problem is the same as in the original model.
The principal’s objective is now

T∫
0

e−rt
[
y∗ (φ (ut) , qt)− k

1

r

·
ut

]
dt− k1

r
[u0 − v (X)] ,

where the second term in the objective is the cost of the initial gift. The
Hamiltonian is now H = e−rt

[
y∗ (φ (ut) , qt)− k 1

r

·
ut

]
− λt

·
ut, with

·
ut =
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r [ut + c (qt)]. Assign to the ex-ante participation constraint u0 ≥ v (X)
multiplier ζ.

Lemma S7 In the model with training costs, except for the transversal con-
dition, the conclusion in Lemma A3 remains valid. The transversal
condition is now HT = 0, λ0 = −1

r
k+ ζ, ζ ≥ 0, and ζ [u0 − v (X)] = 0.

Proof. Define ϕ (u0) := −k 1
r

[u0 − v (X)] , ψ (u0) := u0−v (X) and Φ (u0) :=
ϕ (u0)+ζψ (u0) . The only difference relative to the proof of Lemma A3 is that
Chachuat (2007) Theorem 3.18 now requires that λ0 = Φ′ (u0) = −1

r
k + ζ.

Lemma S8 In the model with training costs, the conclusions in Lemmas A4
and A5 remain valid, but with co-state equation

λt = e−rt
[
erTλT −

∫ T

t

[ρτ − k] dτ

]
,

and with λT = e−rT [1− k] /r.

Proof. The co-state evolution equation is
·
λt = −rλt+e−rt [ρt − k] , the first-

order condition for T is e−rT y∗ (φ (uT ) , qT )−
(
λT r + e−rTk

)
[uT + c (qT )] = 0

and the first-order condition for qT implies that λT r+e−rTk =
[
e−rT ∂y

∗

∂q

(
X, qT

)
− ηT

]
/c′ (qT ) .

Therefore, after replacing λT r with λT r + e−rTk, the proof of this lemma is
identical to the proofs of Lemmas A4 and A5.

Proposition S2 In the model with training costs, the conclusions in Theo-
rems 1 and 2 remain valid, but with

∂y∗

∂q
(Xt, qt) /c

′ (qt) = max

{
1− r

∫ T

t

[ρτ − k] dτ ,
∂y∗

∂q
(Xt, 1) /c′ (1)

}
and with the optimal initial knowledge level X0 and contract length T
now satisfying either

X0 > X and
∫ T

0

[ρt − k] dt =
1

r
(positive knowledge gift)

or

X0 = X and
∫ T

0

[ρt − k] dt ≤ 1

r
(zero knowledge gift).
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Proof. We begin with two observations. First, Lemma S8 implies that
the co-state evolution equation is λt = e−rt

[
1
r

[1− k]−
∫ T
t

[ρτ − k] dτ
]
, and

therefore the effort path satisfies, for all s ≥ 0,

c′ (qT−s) =

 min

{
∂y∗
∂q

(XT−s,qT−s)

1−r
∫ s
0 [ρT−τ−k]dτ

, c′ (1)

}
when r

∫ s
0

[
ρT−τ − k

]
dτ ≤ 1,

c′ (1) otherwise.

Second, whenever the ex-ante participation constraint is slack (ζ = 0),
Lemma S7 implies that λ0 = −1

r
k, and so the co-state evolution equation im-

plies that λ0 = 1
r

[1− k] −
∫ T

0
[ρt − k] dt = −1

r
k. Consequently, the optimal

unconstrained terminal date T satisfies
∫ T

0
[ρt − k] dt = 1

r
.

It follows from these two observations that after replacing ρt with [ρt − k]
for all t, the proof of the present proposition is identical to the proofs of
Theorems 1 and 2.

4 Multiplicative output

Here we show that the optimal contract prescribes qt ≥ q∗
(
X
)
for all t when

y∗ (X, q) = Xq, c (q) = q2/2, and the effort upper bound is suffi ciently large.
Notice that q∗ (X) = X, v (X) = X2/2, and ρ(X, q) = q/X. Moreover

from Theorem 2, when the effort constraint is slack,

dy∗

dq
(Xt, qt)

c′ (qt)
=
Xt

qt
= 1− r

∫ T

t

ρτdτ .

Because ρt = ρ(Xt, qt) = qt/Xt, this equality implies 1/ρt = 1 − r
∫ T
t
ρτdτ ,

and so ρT = 1 and
·
ρt = −rρ3

t . Thus ρt = [1− 2r (T − t)]−
1
2 .

Next, the ongoing participation constraint implies
·
ut = r [ut + c (qt)] ,

which specializes to
·
X t = r

2
[1 + ρ2

t ]Xt. As a result

Xt = Xe−r
∫ T
t [ 1−r(T−τ)1−2r(T−τ) ]dτ ,

and since qt = ρtXt,

qt =
X

[1− 2r (T − t)]
1
2

e−r
∫ T
t [ 1−r(T−τ)1−2r(T−τ) ]dτ .
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Note that dqt/dt is

−r
(
Xe−r

∫ T
t [ 1−r(T−τ)1−2r(T−τ) ]dτ

)
[1− 2r (T − t)]−

1
2

[
[1− 2r (T − t)]−1 − 1− r (T − t)

1− 2r (T − t)

]
,

which is strictly negative, and so qt ≥ qT = q∗
(
X
)
. Notice moreover that

moving backward in time, Xt goes to 0 as t goes to T − 1/ (2r) . Because
the participation constraint requires that Xt ≥ X > 0 at all times, it follows
that the effort upper bound does not bind whenever this bound is suffi ciently
large. Thus the solution to the relaxed program is optimal.
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