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Proof of Lemma B0
A direct computation yields the following expressions for the conditional probabilities

Ψ(σ ,B) =
eR2(σ−s)− eR1(σ−s)

eR2(S−s)− eR1(S−s)
=

1

e(S−s)
eR2(σ−s)− eR1(σ−s)

e(R2−1)(S−s)− e(R1−1)(S−s)

= e−(S−s) eR2(σ−s)− eR1(σ−s)

e−R1(S−s)− e−R2(S−s)
= eσ−S e−R1(σ−s)− e−R2(σ−s)

e−R1(S−s)− e−R2(S−s)
= eσ−S

Ψ(σ ,G)

and

ψ(σ ,B) =
e−(1−R2)(S−σ)− e−(1−R1)(S−σ)

e−(1−R2)(S−s)− e−(1−R1)(S−s)
=

e−S+σ+R2(S−σ)− e−S+σ+R1(S−σ)

e−S+s+R2(S−s)− e−S+s+R1(S−s)

=
eσ−S

e−(S−s)
eR2(S−σ)− eR1(S−σ)

eR2(S−s)− eR1(S−s)
= eσ−s

ψ(σ ,G).

This establishes parts (1) and (2) of Lemma B0.
Taking the derivative of Ψ(σ ,G) with respect to s and rearranging terms we obtain

∂Ψ(σ ,G)

∂ s
=(R1−R2)

e−R1(S−s)−R2(σ−s)−e−R2(S−s)−R1(σ−s)

(e−R1(S−s)−e−R2(S−s))
2 = (R1−R2)e

s−σ e−R1(S−σ)−e−R2(S−σ)

(e−R1(S−s)−e−R2(S−s))
2

=
(R1−R2)e

s−σ ψ(σ ,B)

e−R1(S−s)− e−R2(S−s)
=

(R1−R2)ψ(σ ,G)

e−R1(S−s)− e−R2(S−s)
= aψ(σ ,G),

where a< 0, since e−R1(S−s)−e−R2(S−s) > 0 and R1−R2 < 0, and a is independent of σ . Similarly,
for ψ(σ ,G) we have

∂ψ(σ ,G)

∂ s
=−

(
−R2eR2(S−s)+R1eR1(S−s)

)(
eR2(S−σ)− eR1(S−σ)

)
(
eR2(S−s)− eR1(S−s)

)2

=
R2eR2(S−s)−R1eR1(S−s)

eR2(S−s)− eR1(S−s)
ψ(σ ,G) = bψ(σ ,G).

where b> 0, since both eR2(S−s)−eR1(S−s)> 0 and R2eR2(S−s)−R1eR1(S−s)> 0, and b is independent
of σ . This proves parts (3) and (4).

Finally, taking the derivative of Ψ(σ ,G) with respect to S we obtain

∂Ψ(σ ,G)

∂S
=−

(
e−R1(σ−s)− e−R2(σ−s)

)(
−R1e−R1(S−s)+R2e−R2(S−s)

)
(
e−R1(S−s)− e−R2(S−s)

)2

=
R1e−R1(S−s)−R2e−R2(S−s)

e−R1(S−s)− e−R2(S−s)
Ψ(σ ,G) = f Ψ(σ ,G),
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where f < 0, since e−R1(S−s)−e−R2(S−s) > 0 and R1e−R1(S−s) < 0< R2e−R2(S−s), and f is indepen-
dent of σ . Similarly, we have

∂ψ(σ ,G)

∂S
= (R2−R1)

eR1(S−σ)+R2(S−s)−eR2(S−σ)+R1(S−s)

(eR2(S−s)−eR1(S−s))
2 = (R2−R1)

eS−σ(eR2(σ−s)−eR1(σ−s))

(eR2(S−s)−eR1(S−s))
2

=
(R2−R1)e

S−σ Ψ(σ ,B)

eR2(S−s)− eR1(S−s)
=
(R2−R1)Ψ(σ ,G)

eR2(S−s)− eR1(S−s)
= gΨ(σ ,G)> 0.

where g> 0, since both R2−R1 > 0 and eR2(S−s)− eR1(S−s) > 0, and g does not depend on σ . This
completes the proof of Lemma B0.

Proof of Lemma B1
We provide the most general characterization for the upper best reply B j(s) for a player j who

gets a payoff vG
j (vB

j ) in the good (bad) state and pays a cost of research c j per unit of time.

(i) First-Order Condition for the Upper Best Reply. By parts (1) and (2) of Lemma B0 player
j’s expected payoff u j(σ) can be written as

u j(σ) =−
c j

r
+

eσ Ψ(σ ,G)

1+ eσ

[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
+

eσ

1+ eσ
ψ(σ ,G)(1+ e−s)

c j

r
. (12)

By parts (5) and (6) of Lemma B0, taking the derivative with respect to S then yields

∂u j(σ)

∂S
=

eσ Ψ(σ ,G)

1+ eσ

{
f ·
[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
− e−S

(
vB

j +
c j

r

)
+g · (1+ e−s)

c j

r

}
,

(13)
which implies that, at an interior solution, the following first-order condition must be satisfied

f ·
[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
= e−S

(
vB

j +
c j

r

)
−g · (1+ e−s)

c j

r
. (14)

Equation (14) establishes that B j(s) is independent of σ in the log-odds space, or, equivalently,

that B j(s) is independent of q in the regular space. Furthermore, it implies that vG
j + e−SvB

j +(
1+ e−S

) c j

r
> 0 must hold at S= Bi(s). Two cases can, in fact, be distinguished: if e−S

(
vB

j +
c j

r

)
≥

0, then vG
j + e−S

(
vB

j +
c j

r

)
+

c j

r
> 0 simply follows from vG

j > 0 and
c j

r
> 0. If e−S

(
vB

j +
c j

r

)
<

0, then f

[
vG

j + e−S
(

vB
j +

c j

r

)
+

c j

r

]
< 0 must hold, since g · (1+ e−s) > 0 and f < 0, so that

vG
j + e−S

(
vB

j +
c j

r

)
+

c j

r
> 0 is again satisfied.

In the case of the evaluator, where ce = 0, (14) simplifies into vG
e + e−SvB

e =
e−SvB

e

f
.

Second-Order Condition for the Upper Best Reply. Differentiating (13) with respect to S we
have

∂ 2u(σ)

∂S2
=

eσ

1+ eσ

{
∂Ψ(σ ,G)

∂S { f · [vG
j + e−SvB

j +(1− e−S)
c j

r
]− e−S(vB

j +
c j

r
)+g · (1+ e−s)

c j

r
}

+Ψ(σ ,G)
{

∂ f

∂S [v
G
j + e−SvB

j +(1+ e−S)
c j

r
]+ e−S(vB

j +
c j

r
)(1− f )+ ∂g

∂S(1+ e−s)
c j

r

} } .
Equation (14) then implies

∂ 2u(σ)

∂S2

∣∣∣∣
S=B j(s)

=
eσ Ψ(σ ,G)

1+ eσ

{
e−S

(
vB

j +
c j

r

)[
∂ f

∂S

1

f
+(1− f )

]
+

(
∂g

∂S
− ∂ f

∂S

g

f

)
(1+ e−s)

c j

r

}
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=
eσ Ψ(σ ,G)

1+ eσ

{
e−S

(
vB

j +
c j

r

)[
∂ f

∂S

1

f
+(1− f )

]
+g ·

(
∂g

∂S

1

g
− ∂ f

∂S

1

f

)
(1+ e−s)

c j

r

}
Some algebra yields

1− f =
e−R1(S−s)− e−R2(S−s)−R1e−R1(S−s)+R2e−R2(S−s)

e−R1(S−s)− e−R2(S−s)

=
R2e−R1(S−s)−R1e−R2(S−s)

e−R1(S−s)− e−R2(S−s)
=

R2eR2(S−s)−R1eR1(S−s)

eR2(S−s)− eR1(S−s)
=−∂g

∂S

1

g
.

Substituting for
∂g

∂S
1
g

in the above expression and rearranging terms we have

∂ 2u(σ)

∂S2

∣∣∣∣
S=Bi(s)

=
eσ Ψ(σ ,G)

1+ eσ

{
e−S

(
vB

j +
c j

r

)[
∂ f

∂S

1

f
+(1− f )

]
+g

[
−(1− f )− ∂ f

∂S

1

f

]
(1+ e−s)

c j

r

}
=

eσ Ψ(σ ,G)

1+ eσ

[
∂ f

∂S

1

f
+(1− f )

][
e−S

(
vB

j +
c j

r

)
−g · (1+ e−s)

c j

r

]
which, by equation (14), can be rewritten as

∂ 2u(σ)

∂S2

∣∣∣∣
S=B j(s)

=
eσ Ψ(σ ,G)

1+ eσ

[
∂ f

∂S
+ f · (1− f )

][
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
.

Recalling from above that vG
j + e−SvB

j +
(
1+ e−S

) c j

r
> 0 at S= B j(s), we conclude that

∂ 2u(σ)

∂S2

∣∣∣∣
S=B j(s)

< 0 (15)

if and only if
∂ f

∂S <− f (1− f ), i.e.,

(R2−R1)
2e−(S−s)(

e−R1(S−s)− e−R2(S−s)
)2
<

(
R2

2+R2
1

)
e−(S−s)−R1R2

(
e−2R1(S−s)+ e−2R2(S−s)

)
(
e−R1(S−s)− e−R2(S−s)

)2
,

which always holds being equivalent to 2e−(S−s) < e−2R1(S−s) + e−2R2(S−s) ⇔ 0 < (e−R1(S−s) −
e−R2(S−s))2.

(ii) We now examine the slope of the upper best reply. First, we show that B j(s) > s if s< σ̂ j

and B j(s) = s otherwise. We start with computing the limit of
∂u j(σ)

∂S as S→ s. Recall that

∂u j(σ)

∂S
=

eσ Ψ(σ ,G)

1+ eσ

{
f ·
[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
− e−S

(
vB

j +
c j

r

)
+g · (1+ e−s)

c j

r

}
and focus on the last term of the product. A simple calculation gives

lim
S→s

{
f ·
[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
− e−S

(
vB

j +
c j

r

)
+g · (1+ e−s)

c j

r

}
= lim

S→s
f ·
[
vG

j + e−svB
j

]
− e−s

(
vB

j +
c j

r

)
+ lim
S→s

( f +g) · (1+ e−s)
c j

r
.
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Because lim
S→s

f = −∞ and lim
S→s

( f +g) = 0, one sees that the sign of the limit above depends on

the sign of vG
j + e−svB

j . Specifically, we have

lim
S→s

{
f ·
[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
− e−S

(
vB

j +
c j

r

)
+g · (1+ e−s)

c j

r

}
= ∞

if s< σ̂ j, in which case vG
j + e−svB

j < 0, and

lim
S→s

{
f ·
[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
− e−S

(
vB

j +
c j

r

)
+g · (1+ e−s)

c j

r

}
=−∞

otherwise. Since lim
S→s

eσ

1+eσ Ψ(σ ,G) = ∞, overall we have lim
S→s

∂u j(σ)
∂S = ∞ if s< σ̂ j and lim

S→s
∂u j(σ)

∂S =

−∞ if s≥ σ̂ j.

Next, we compute the limit of
∂u j(σ)

∂S as S→∞. We have

lim
S→∞

∂u j(σ)

∂S

= lim
S→∞

eσ Ψ(σ ,G)

1+ eσ

{
f ·
[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
− e−S

(
vB

j +
c j

r

)
+g · (1+ e−s)

c j

r

}
.

Focusing on the second term of the product, we obtain

lim
S→∞

{
f ·
[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
− e−S

(
vB

j +
c j

r

)
+g · (1+ e−s)

c j

r

}
= lim

S→∞

f ·
[
vG

j +
c j

r

]
+ lim
S→∞

g · (1+ e−s)
c j

r
.

Since lim
S→∞

eσ

1+eσ Ψ(σ ,G) = 0, lim
S→∞

f = R1 < 0 and limS→∞ g= 0, we have that overall lim
S→∞

∂u j(σ)
∂S =

0−.
Having computed the limits at the two extremes of the domain of S, we now consider two dif-

ferent cases. First, assume s< σ̂ e. Then, since lim
S→s

∂u j(σ)
∂S = ∞ and lim

S→∞

∂u j(σ)
∂S = 0−, by continuity

there must exist a solution to
∂u j(σ)

∂S = 0, implying that in this case B j(s)> s. Next, suppose s≥ σ̂ j.

In this case we show that
∂u j(σ)

∂S < 0. To see this assume by contradiction that there exists S̃ such

that
∂u j(σ)

∂S

∣∣∣
S=S̃
≥ 0. Since lim

S→s
∂u j(σ)

∂S =−∞ and lim
S→∞

∂u j(σ)
∂S = 0−, by continuity there must exist an

interior solution S∗≤ S̃ to
∂u j(σ)

∂S = 0 such that
∂ 2u j(σ)

∂S2

∣∣∣
S∗=B j(s)

≥ 0, a contradiction. This establishes

that B j(s)> s if s< σ̂ j and B j(s) = s otherwise.

Proof of Lemma B2
We provide the most general characterization for the lower best reply b j(S) for a player j who

gets a payoff vG
j (vB

j ) in the good (bad) state and pays a cost of research c j per unit of time.

(i) First-Order Condition for the Lower Best Reply. By parts (3) and (4) of Lemma B0, taking
a derivative of (12) with respect to s yields

∂u j(σ)

∂ s
=

eσ ψ(σ ,G)

1+ eσ

{
a

[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
+

c j

r

[
b(1+ e−s)− e−s

]}
. (16)
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Hence, player j’s first order condition is

vG
j + e−SvB

j +
(

1+ e−S
) c j

r
=−1

a

c j

r

[
b(1+ e−s)− e−s

]
(17)

which establishes that b j(S) is independent of σ in the log-odds space and, thus, that b j(S) is inde-

pendent of q in the regular space. In the case of the informer, assuming vG
i = vB

i = vi, the first order
condition (17) simplifies into

a

(
1+ e−S

)(
vi+

c

r

)
+

c

r

[
b(1+ e−s)− e−s

]
= 0. (18)

Second Order Condition for the Lower Best Reply. Taking a derivative with respect to s of
(16) gives

∂ 2u j(σ)

∂ s2

=
eσ

1+ eσ

∂ψ(σ ,G)

∂ s

{
a

[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
+

c j

r

(
b(1+ e−s)− e−s

)}
+

eσ ψ(σ ,G)

1+ eσ

{
∂a

∂ s

[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
+

c j

r

∂b

∂ s
(1+ e−s)+

c j

r
(1−b)e−s

}
.

For values of s that satisfy the first order condition (17), we have

∂ 2u j(σ)

∂ s2

∣∣∣∣
s=b j(S)

=
eσ ψ(σ ,G)

1+ eσ

c j

r

{
−∂a

∂ s

1

a

[
b(1+ e−s)− e−s

]
+

∂b

∂ s
(1+ e−s)+(1−b)e−s

}
.

Using

1−b =
eR2(S−s)− eR1(S−s)−R2eR2(S−s)+R1eR1(S−s)

eR2(S−s)− eR1(S−s)

=
R1eR2(S−s)−R2eR1(S−s)

eR2(S−s)− eR1(S−s)
=

R1e−R1(S−s)−R2e−R2(S−s)

e−R1(S−s)− e−R2(S−s)
=−∂a

∂ s

1

a
,

the above expression simplifies to

∂ 2u j(σ)

∂ s2

∣∣∣∣
s=b j(S)

=
eσ

1+ eσ
ψ(σ ,G)(1+ e−s)

c j

r

[
b(1−b)+

∂b

∂ s

]
,

which is negative if and only if ∂b
∂ s <−b(1−b), i.e.,

(R2−R1)
2e(S−s)(

eR2(S−s)− eR1(S−s)
)2
<

(
R2

2+R2
1

)
e(S−s)−R1R2

(
e2R1(S−s)+ e2R2(S−s)

)
(
eR2(S−s)− eR2(S−s)

)2

which always holds being equivalent to 2e(S−s) < e2R1(S−s)+ e2R2(S−s). Thus,

∂ 2u j(σ)

∂ s2

∣∣∣∣
s=b j(S)

< 0. (19)
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(ii) Turn to the slope of the lower best reply. First, we show that b j(S) < S if S> σ̂ j and

b j(S) = S otherwise. We start with computing the limit of
∂u j(σ)

∂ s as s→ S. Recall that

∂u j(σ)

∂ s
=

eσ ψ(σ ,G)

1+ eσ

{
a

[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
+

c j

r

[
b(1+ e−s)− e−s

]}
and focus on the last term of the product. A simple calculation gives

lim
s→S

{
a

[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
+

c j

r

[
b(1+ e−s)− e−s

]}
= lim

s→S
a ·
[
vG

j + e−SvB
j

]
− e−S

c j

r
+ lim
s→S

(a+b) · (1+ e−S)
c j

r
.

Because lim
s→S

a = −∞ and lim
s→S

(a+b) = 0, one sees that the sign of the limit above depends on the

sign of vG
j + e−SvB

j . Specifically, we have

lim
s→S

{
a

[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
+

c j

r

[
b(1+ e−s)− e−s

]}
=−∞

if S> σ̂ j, in which case vG
j + e−SvB

j > 0, and

lim
s→S

{
a

[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
+

c j

r

[
b(1+ e−s)− e−s

]}
=+∞

otherwise. Since lim
s→S

eσ

1+eσ ψ(σ ,G)=∞, overall we have lim
s→S

∂u j(σ)
∂ s =−∞ if S> σ̂ j and lim

s→S
∂u j(σ)

∂ s =

∞ if S≤ σ̂ j.
Next,

lim
s→−∞

∂u j(σ)

∂ s
= lim
s→−∞

eσ

1+ eσ
ψ(σ ,G)

{
a

[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
+

c j

r

[
b(1+ e−s)− e−s

]}
Focusing on the second factor, we obtain

lim
s→−∞

{
a

[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
+

c j

r

[
b(1+ e−s)− e−s

]}
= lim

s→−∞
a ·
[
vG

j + e−SvB
j +
(

1+ e−S
) c j

r

]
+ lim
s→−∞

b · c j

r
+ lim
s→−∞

(b−1)e−s
c j

r
.

Since lim
s→−∞

eσ

1+eσ ψ(σ ,G) = 0, lim
s→−∞

b= R2 > 0 and lim
s→−∞

a= 0, overall we have lim
s→−∞

∂u j(σ)
∂ s = 0+.

Having computed the limits at the two extremes of the domain of s, we now consider two differ-

ent cases. First, assume S> σ̂ j. Then, since lim
s→S

∂u j(σ)
∂ s =−∞ and lim

s→−∞

∂u j(σ)
∂ s = 0+, by continuity

there must exist a solution to
∂u j(σ)

∂ s = 0, implying that in this case b j(S)< S. Next, suppose S≤ σ̂ j.

In this case we show that
∂u(σ)

∂ s > 0. To see this, assume by contradiction that there exists s̃ such

that
∂u j(σ)

∂ s

∣∣∣
s=s̃
≤ 0. Since lim

s→S
∂u j(σ)

∂ s = ∞ and lim
s→−∞

∂u j(σ)
∂ s = 0+, by continuity there must exist an

interior solution s∗ ≥ s̃ to
∂u j(σ)

∂ s = 0 such that
∂ 2u j(σ)

∂ s2

∣∣∣
s∗=b(S)

≥ 0, a contradiction. This establishes

that b j(S)< S if S> σ̂ j and B j(S) = S otherwise.

Proof of Proposition 0
The Wald solution is characterized by the interior intersection of Bw(s) and bw(S), which always

exists by the properties established in Lemmas B1 and B2.
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C Supplementary Appendix C: Technical Results

Lemma C1 The evaluator’s marginal value of anticipating rejection increases in the initial belief,

∂ 2ue

∂ s∂σ
> 0. (20)

Proof of Lemma C1
Using equation (16) from Appendix B for c j = 0 we have

∂ue(σ)

∂ s
=

eσ

1+ eσ
ψ(σ ,G)a

[
vG

e + e−SvB
e

]
,

so that, since a does not depend on σ ,

∂ 2ue

∂ s∂σ
=

∂

(
eσ

1+eσ ψ(σ ,G)
)

∂σ
a

[
vG

e + e−SvB
e

]
. (21)

Furthermore

∂

(
eσ

1+eσ ψ(σ ,G)
)

∂σ
=

eσ ψ(σ ,G)+(1+ eσ )eσ ψσ (σ ,G)

(1+ eσ )2

and

ψσ (σ ,G) =
−R2eR2(S−σ)+R1eR1(S−σ)

eR2(S−s)− eR1(S−s)
< 0.

From

−ψσ (σ ,G) =
R2eR2(S−σ)−R1eR1(S−σ)

eR2(S−s)− eR1(S−s)
>

eR2(S−σ)− eR1(S−σ)

eR2(S−s)− eR1(S−s)
= ψ(σ ,G)

we have

∂

(
eσ

1+eσ ψ(σ ,G)
)

∂σ
=

eσ ψ(σ ,G)+(1+ eσ )eσ ψσ (σ ,G)

(1+ eσ )2
< 0.

Overall, replacing in equation (21), and using a< 0, we obtain (20).

Lemma C2 The evaluator’s marginal value of delaying approval increases in the initial belief,

∂ 2ue

∂S∂σ

∣∣∣∣
s=bi(S)

> 0. (22)

Proof of Lemma C2
Using (8) from Appendix B we have

∂ 2ue

∂S∂σ
=

∂

∂σ

(
eσ

1+ eσ
Ψ(σ ,G)

)[
f

(
vG

e + e−SvB
e

)
− e−SvB

e

]
,

given that f is independent of σ . Thus,

∂

(
eσ

1+eσ Ψ(σ ,G)
)

∂σ
=

eσ Ψ(σ ,G)+(1+ eσ )eσ Ψσ (σ ,G)

(1+ eσ )2
> 0.
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Furthermore, for S< Sn we have ∂ue

∂S (bi(S),S)> 0, so that

f

(
vG

e + e−SvB
e

)
− e−SvB

e > 0.

Overall we obtain (22).

Lemma C3 The evaluator’s marginal value of delaying approval decreases in the approval stan-

dard,

∂ 2ue

∂S2

∣∣∣∣
s=bi(S)

< 0 for S≤ Sn. (23)

Proof of Lemma C3
From

∂ue

∂S

∣∣∣∣
s=bi(S)

=
∂ue

∂ s

∂bi(S)

∂S
+

∂ue

∂S

we have

∂ 2ue

∂S2

∣∣∣∣
s=bi(S)

=
∂ 2ue

∂ s2

(
∂bi(S)

∂S

)2

+
∂ue

∂ s

∂ 2bi(S)

∂S2
+2

∂ 2ue

∂S∂ s

∂bi(S)

∂S
+

∂ 2ue

∂S2
. (24)

Using the expression for the evaluator’s expected payoff (12) for c j = 0 and j = e, we now show
that the four terms in (24) are negative so that we have (23):

• Term 1: ∂ 2ue

∂ s2

(
∂bi(S)

∂S

)2

< 0. From

∂ 2ue

∂ s2
=

eσ

1+ eσ
ψ(σ ,G)

(
∂a

∂ s
+ab

)(
vG

e + e−SvB
e

)
< 0

Simple computations yield ∂a
∂ s +ab= a e−R1(S−s)−e−R2(S−s)

e−R1(S−s)−e−R2(S−s)
, from which the claim follows.

• Term 2: ∂ue

∂ s
∂ 2bi(S)

∂S2 < 0. The evaluator’s expected payoff is decreasing in s since the evaluator

does not pay for research. The claim then follows from
∂ 2bi(S)

∂S2 > 0.

• Term 3: 2 ∂ 2ue

∂S∂ s
∂bi(S)

∂S < 0. Using the fact that f
(
vG

e + e−SvB
e

)
−e−SvB

e > 0 for S< Sn, we have

∂ 2ue

∂S∂ s
=

eσ

1+ eσ
ψ(σ ,G)

(
f a

(
vG

e + e−SvB
e

)
−ae−SvB

e

)
< 0.

Given that bi(S) is increasing in S, the claim follows.

• Term 4: ∂ 2ue

∂S2 < 0. From derivations above, we have

∂ue

∂S
=

eσ

1+ eσ
Ψ(σ ,G)

(
f

(
vG

e + e−SvB
e

)
− e−SvB

e

)
,

so that

∂ 2ue

∂S2
=

eσ Ψ(σ ,G)

1+ eσ

[(
f 2+

∂ f

∂S

)(
vG

e + e−SvB
e

)
+(−2 f +1)e−SvB

e

]
=

eσ Ψ(σ ,G)

1+ eσ

{
f

[
f

(
vG

e + e−SvB
e

)
− e−SvB

e

]
+

∂ f

∂S

(
vG

e + e−SvB
e

)
+(1− f )e−SvB

e

}
.
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Using the fact that f
(
vG

e + e−SvB
e

)
− e−SvB

e > 0 for S < Sn and that f < 0, we conclude

f
(

f
(
vG

e + e−SvB
e

)
− e−SvB

e

)
< 0. Given that

∂ f

∂S < 0 and 1− f > 0 as shown above, (23)
follows.
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