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A Alternative Ability Distributions

In this section, we consider alternative continuous ability distributions and a
model with binary ability and quality. We show numerically that a belief reversal
does not occur in the correctly specified model, and therefore, an analogue of
Proposition 2 in the manuscript holds for these alternative ability distributions.

A.1 Continuous Ability Distributions

Suppose a worker has ability distributed according to a ∼ fa,µ(a) with parameter
µ, and assume that the family of distributions {fa,µ(a)}µ∈R satisfies the monotone
likelihood ratio property in µ. We will show that if there is a single type of
evaluator with prior belief that males have a higher parameter µ than females,
i.e. µ̂M > µ̂F and it is common knowledge that all evaluators share these prior
beliefs, then both the first and the second period evaluations are higher for males.
In other words, no discrimination reversal occurs between the first and second
period.

As before, each task has hidden quality qt = a + εt, where εt ∼ N(0, 1/τε).
Evaluator t observes the evaluations on past tasks and signal st = qt + ηt of
the quality of the current task, where ηt ∼ N(0, 1/τη), then reports evaluation
v(ht, st, µ) ≡ Eµ[q|ht, st].

∗Bohren: University of Pennsylvania, 133 South 36th Street, Philadelphia, PA 19104,
abohren@sas.upenn.edu. Imas: Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,
PA 15213, aimas@andrew.cmu.edu. Rosenberg: CarGurus, 2 Canal Park, Cambridge, MA
02141, rosenberg.michael.m@gmail.com.
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We first show that the first period evaluation is increasing in µ. The prior
distribution of quality, denoted fq,µ(q), is the convolution of the normally dis-
tributed prior distribution of ability and a normally distributed error term. The
MLRP is preserved under convolution with a log-concave density and the normal
distribution is log-concave. Therefore, the prior distribution of quality also sat-
isfies the MLRP in µ. Suppose that the evaluator observes signal s1. Then the
posterior belief about quality conditional on signal s1 is

fq,µ(q|s1) =
fs(s1|q)fq,µ(q)∫

Q
fs(s1|q)fq,µ(q)dq

. (1)

The MLRP is preserved under Bayesian updating when the likelihood function
is independent of µ. Since fs(s1|q) is independent of µ, the posterior fq,µ(q|s1)
satisfies the MLRP in µ. By FOSD, v(h1, s1, µ) = Eµ[q|s1] is increasing in µ.

Note that the initial evaluation v(h1, s1, µ) is strictly increasing in s1, and
therefore, each signal s1 maps to a unique evaluation. Further,

v(h1, s1, µ) = Eµ[q|s1]

=

∫
Q

qfq,µ(q|s1)dq

=

∫
Q

∫
A
qfs(s1|q)fq,µ(q|a)fa,µ(a)dadq∫

Q
fs(s1|q)fq,µ(q)dq

(2)

where the third line follows from (1) and fq,µ(q) =
∫
A
fq,µ(q|a)fa,µ(a)da. Let

s(v, µ) be the signal required to receive initial evaluation v, i.e. the solution to

v =

∫
Q

∫
A
qfs(s(v, µ)|q)fq,µ(q|a)fa,µ(a)dadq∫

Q
fs(s(v, µ)|q)fq,µ(q)dq

. (3)

We next characterize how the evaluator in period two updates her belief about
ability following history h2 = (v1). Consider an evaluator with prior fa,µ(a) who
believes the first period evaluator had the same prior. The distribution of ability
conditional on h2 is

fa,µ(a|h2) =
fs(s(v1, µ)|a)fa,µ(a)∫

A
fs(s(v1, µ)|a)fa,µ(a)da

. (4)

Suppose that fa,µ(a|h2) satisfies the MLRP in µ. Then by the same reasoning
as above, fq,µ(q|h2, s2) satisfies the MLRP in µ and the second period evalu-
ation v(h2, s2, µ) = Eµ[q|h2, s2] is increasing in µ. Therefore, if the first and
second period evaluators have common belief µ̂M > µ̂F , both the first and the
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second period evaluations are higher for males, v(h1, s1, µ̂M) > v(h1, s1, µ̂F ) and
v(h2, s2, µ̂M) > v(h2, s2, µ̂F ), and no discrimination reversal occurs.

By the above analysis, establishing that fa,µ(a|h2) satisfies the MLRP in µ
is sufficient to rule out a reversal between the first and second period. This
is equivalent to showing ∂2

∂µ∂a
log fa,µ(a|h2) > 0 for all a, µ, h2. Given that the

denominator
∫
A
fs(s(v1, µ)|a)fa,µ(a)da is independent of a, this is equivalent to

∂2

∂µ∂a
(log fs(s(v1, µ)|a) + log fa,µ(a)) > 0

i.e.
∂2

∂µ∂a

(
− τετη

2(τε + τη)
((s(v1, µ)− a)2 + log fa,µ(a)

)
> 0

i.e.
τετη
τε + τη

∂s(v1, µ)

∂µ
+

∂2

∂µ∂a
log fa,µ(a) > 0 (5)

where the second line follows from the signal distribution s|a ∼ N(a, τε+τη
τετη

). The

first term ∂s(v1,µ)
∂µ

is negative, since when µ is higher, a lower signal is required to

receive a given evaluation. The second term ∂2

∂µ∂a
log fa,µ(a) is positive, since by

assumption fa,µ(a) satisfies the MLRP.
We numerically show that (5) holds for several classes of distributions by (i)

numerically solving (3) for s(v1, µ), and (ii) numerically calculating ∂s(v1,µ)
∂µ

.

Exponential Distribution. The exponential distribution has density fa,µ(a) =
1
µ
e−a/µ, where a ∈ [0,∞) and E[a] = µ. Therefore, ∂2

∂µ∂a
log fa,µ(a) = 1/µ2 > 0

and the prior distribution satisfies the MLRP in µ. We show that (5) holds numer-
ically for all parameters µ ∈ {.01, .02, ..., 2.99, 3} and v ∈ {−2,−1.99, ..., 5.99, 6}.
Given that ∂2

∂µ∂a
log fa,µ(a) is independent of a, (5) is also independent of a and

the simulation holds for all a ∈ [0,∞]. This numerically rules out a reversal
when the prior distribution of ability follows the exponential distribution. See
the Supplemental Appendix for the Matlab code to generate this simulation.

Beta Distribution. The beta distribution has density fa,α(a) = 1
B(α,β)

aα−1(1−
a)β−1, where a ∈ [0, 1] and E[a] = α/(α+β). Therefore, ∂2

∂α∂a
log fa,α(a) = 1/a >

0 and the prior distribution satisfies the MLRP in α. Letting µ correspond to α,
note that for any β, the expected ability is increasing in α. We show that (5)
holds numerically for all parameters α ∈ {1, 1.05, ..., 2.95, 3}, β ∈ {1.5, 2, 2.5},
a ∈ {.02, .04, ..., .96, .98} and v ∈ {−2,−1.98, ..., 2.98, 3}. This numerically rules
out a reversal when the prior distribution of ability follows the beta distribution.
See the Supplemental Appendix for the Matlab code to generate this simulation.

Gamma Distribution. The gamma distribution has density fa,k(a) = 1
Γ (k)θk

ak−1e−a/θ,

where a ∈ (0,∞) and E[a] = kθ. Therefore, ∂2

∂k∂a
log fa,k(a) = 1/a > 0 and the
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prior distribution satisfies the MLRP in k. Letting µ correspond to k, note that
for any θ, the expected ability is increasing in k. This case is slightly different,
as (5) does not hold for all a, k, θ and v. Since (5) is sufficient, but not neces-
sary, for a reversal, we can also show that Ek[a|h2] is increasing in k, i.e. the
posterior average ability is increasing in the parameter of interest k. We show
that this holds numerically for all parameters k ∈ {1.1, 1.2, ..., 2.9, 3}, θ = 1,
a ∈ {0.1, 0.2, ..., 5.9, 6} and v ∈ {−2,−1.9, ..., 7.9, 8}. This numerically rules out
a reversal when the prior distribution of ability follows the gamma distribution.
See the Supplemental Appendix for the Matlab code to generate this simulation.

A.2 Binary Ability and Quality Distributions

In this section we consider a model in which ability and quality are binary. Sup-
pose a worker has ability a ∈ {L,H} with p0 = Pr(H). Each task has hidden
quality qt ∈ {l, h}, where ρa = Pr(h|a) and ρH > ρL. Let φ(p) ≡ Pr(h) =
ρHp+ ρL(1− p) denote the probability of high quality, given belief p about abil-
ity. As before, evaluator t observes the evaluations on past tasks and signal st
of the quality of the current task. Assume st ∼ N(µ, 1) when the quality is h
and st ∼ N(0, 1) when the quality is l, where the latter mean is a normalization.
Assume µ > 0. The evaluator reports the probability that the quality is high,
vt = Pr(qt = h|st, ht).

Given belief p that the worker has high ability, after observing signal s, the
evaluator reports evaluation v(s, p), where

v(s, p)

1− v(s, p)
=

fh(s)

f l(s)
∗ φ(p)

1− φ(p)
. (6)

The probability of high quality φ(p) is strictly increasing in p, and therefore, the
evaluation v(s, p) is strictly increasing in p. Therefore, for a given signal, a higher
belief about ability leads to a higher evaluation. The evaluation v(s, p) is also
strictly increasing in s. Therefore, each signal s maps to a unique evaluation
v(s, p). Let s(v, p) be the signal required to receive evaluation v, given belief p
that the worker is high ability. Given v(s(v, p), p) = v and

log
fh(s)

f l(s)
= s2/2− (s− µ)2/2 = µs− µ2/2,

from (6),

log
v

1− v
= log

fh(s(v, p))

f l(s(v, p))
+ log

φ(p)

1− φ(p)
= µs(v, p)− µ2/2 + log

φ(p)

1− φ(p)
.
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Solving for s(v, p) yields

s(v, p) =
1

µ
log

v

1− v
− 1

µ
log

φ(p)

1− φ(p)
+ µ/2.

After observing evaluation v, the distribution of ability updates to

B(v, p)

1−B(v, p)
=
fh(s(v, p))ρH + f l(s(v, p))(1− ρH)

fh(s(v, p))ρL + f l(s(v, p))(1− ρL)
∗ p

1− p
. (7)

By this reasoning, the initial evaluation v(s, p0) is increasing in p0. Given
posterior p1 = B(v, p0), the next period evaluation v(s, p1) is increasing in p1.
Suppose that B(v, p) is increasing in p, i.e. d

dp
B(v, p) > 0. Then the next

period evaluation v(s, B(v, p0)) is also increasing in p0. Therefore, both the initial
evaluation and the second period evaluation are increasing in p0. This rules out
the possibility of a reversal: if pM0 > pF0 for males and females, then following
the same evaluation, B(v, pM0 ) > B(v, pF0 ). Therefore, v(s, pM0 ) > v(s, pF0 ) and
v(s, B(v, pM0 )) > v(s, B(v, pF0 )). By recursive reasoning, this implies that there is
no evaluation reversal between any periods t and t+ 1.

Therefore, to rule out reversals, it is sufficient to show that d
dp
B(v, p) > 0.

This is equivalent to showing that d
dp

log B(v,p)
1−B(v,p)

> 0, which from (7) is equivalent
to

d

dp
[logPr(v|H)− logPr(v|L) + log p+ log(1− p)] > 0 (8)

where Pr(v|a) = fh(s(v, p))ρa + f l(s(v, p))(1− ρa). This is equivalent to showing

d
dp
Pr(v|H)

Pr(v|H)
−

d
dp
Pr(v|L)

Pr(v|L)
+

1

p
+

1

1− p
> 0, (9)

where, given dfh

ds
= fh(s)(µ− s) and df l

ds
= −f l(s)s,

d

dp
Pr(v|a) =

ds(v, p)

dp

[
dfh(s(v, p))

ds
ρa +

df l(s(v, p))

ds
(1− ρa)

]
=

ds(v, p)

dp

[
fh(s(v, p))(µ− s(v, p))ρa − f l(s(v, p))s(v, p)(1− ρa)

]
and

ds(v, p)

dp
= − ρH − ρL

µφ(p)(1− φ(p))
.

We show that (9) holds numerically for all parameters ρL ∈ {.02, .04, ..., .96},
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ρH ∈ {ρL + .02, ..., .98}, µ ∈ {0.5, 0.55, ..., 2.5}, p ∈ {.01, .02, ..., .99} and v ∈
{.01, .02, ..., .99}. This numerically rules out reversals in the binary model. See
the Supplemental Appendix for the Matlab code to generate this simulation.

B Alternative Models

In this section, we explore two alternative models: (i) coarse evaluations and
(ii) shifting standards. We show that our main results from Section I in the
manuscript extend to these settings.

B.1 Coarse Evaluations

Set-up. Suppose that the set-up is identical to Section I.A in the manuscript,
except that evaluations are binary – the evaluator chooses to either upvote or
downvote a post, vt ∈ {0, 1}. The evaluator receives a payoff of q − cg from
upvoting a task from a worker of gender g and quality q, where, as before, cg
is a taste parameter with cM = 0 and cF ≥ 0, and receives a payoff of 0 from
downvoting a task.

The definitions of preference-based and belief-based partiality remain the
same. We slightly adjust the definition of discrimination to account for the bi-
nary action space. A voting strategy specifies the set of signals that map into
each type of vote. We say discrimination occurs at history h if there exists a set
of signals on which females and males receive different votes. As before, define

D(h, s) ≡ v(h, s,M)− v(h, s, F ).

Definition 1 (Discrimination). A female (male) faces discrimination at history
h if D(h, s) ≥ 0 (D(h, s) ≤ 0) for all s, with a strict inequality for a positive
measure of signals.

Decision Rule. The evaluator maximizes her expected payoff by choosing
vt = 1 iff

E[qt|ht, st, g] ≥ cg, (10)

where the expectation is taken with respect to the posterior distribution of qual-
ity, conditional on (ht, st, g). Note that E[qt|st, ht, g] is strictly increasing in st,
since fs|q satisfies the MLRP with respect to q. Therefore, the optimal evaluation
strategy can be represented as a cut-off rule on the signal. A task gets an upvote
if the signal st ≥ s(ht, g) for some cut-off s(ht, g). Discrimination can be repre-
sented in terms of the signal cut-off: a female faces discrimination at history ht
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if s(ht, F ) > s(ht,M), with an analogous definition for males. The set of signals
on which discrimination occurs is an interval with measure s(ht, F )− s(ht,M).

Initial Discrimination. As in Section I in the manuscript, the posterior belief
about quality after observing signal s1 is normal,

q1|s1 ∼ N

(
τqµ̂g + τηs1
τq + τη

,
1

τq + τη

)
.

The evaluator chooses v1 = 1 if

µ̂gτq + s1τη
τq + τη

≥ cg,

or

s1 ≥ s(µ̂g, cg) ≡ cg

(
τq + τη
τη

)
− µ̂g

(
τq
τη

)
.

The cut-off is increasing in cg and decreasing in µ̂g. All of the initial discrimination
results easily extend to the coarse evaluation setting. In particular, initial dis-
crimination occurs if and only if cF > 0 or µ̂M > µ̂F . As τη →∞, s(h1, g)→ cg.
Therefore, initial discrimination persists as evaluations become perfectly objec-
tive if and only if evaluators have preference-based partiality, cF > 0.

Impossibility of Reversal. For simplicity, we focus on how workers are evalu-
ated in period t = 2, conditional on receiving an accept vote in period t = 1. We
first consider a setting in which all evaluators have identical preferences and prior
beliefs about ability, and have accurate beliefs about the preferences and prior
beliefs of other evaluators. In the second period, the evaluator chooses v2 = 1 if
E[q2|v1 = 1, s2, g] ≥ cg. Computing E[q2|v1 = 1, s2, g] is more challenging than
in the first period, as the posterior belief about ability is no longer normally
distributed, and therefore, neither is the posterior belief about quality q2. By
Lemma 1, we know that the belief about ability conditional on an upvote in the
first period, {fµ̂(a|v1 = 1)}µ̂∈R, satisfies the MLRP in the prior µ̂. By Lemma 2,
the MLRP is preserved under convolution with a normal error term, and hence,
Eµ̂[q2|v1 = 1, s2, g] is increasing in µ̂. Therefore, when evaluators have belief-
based partiality and a worker receives an upvote in the first period, there is no
belief reversal in ability or expected quality in the second period, and hence, no
discrimination reversal.

Proposition 1. Suppose all evaluators have the same prior beliefs about the
distributions of ability, a correct model of the beliefs and preferences of other
evaluators, and belief-based partiality. Then there is no discrimination reversal
in the second period, following an upvote in the first period.
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Therefore, the impossibility of a reversal also holds when evaluations are coarse.

Proof of Proposition 1. Suppose a worker has prior expected average ability
µ̂g = µ. Let fµ(a) denote the prior distribution of ability for this worker, and
let fµ(a|v1 = 1) denote the posterior distribution, conditional on observing an
upvote on the first post, v1 = 1. By assumption, fµ(a) is the normal distribution
with mean µ and precision τa. After observing v1 = 1, the public belief about
ability is updated to

fµ(a|v1 = 1) =
Pµ(v1 = 1|a)fµ(a)∫∞

∞ Pµ(v1 = 1|a)fµ(a)da
,

where Pµ(v1 = 1|a) is the likelihood function that determines the informativeness
of an upvote in the first period. This likelihood function is an equilibrium object
that depends on gender and prior beliefs. �

Lemma 1. The family of posterior beliefs about ability following an upvote in
the first period, {fµ(a|v1 = 1)}µ∈R, satisfies the MLRP in µ.

Proof. Since the prior belief about ability is normal, fµ(a) =
√
τaφ(
√
τa(a −

µ)), where φ is the p.d.f. of the standard normal distribution. Therefore,
{fµ(a)}µ∈R is MLR ordered in µ, by property of the normal distribution. The
likelihood function depends on the cut-off rule s,

Pµ(v1 = 1|a) = Pµ(s1 ≥ s|a)

= Pµ(a+ ε1 + η1 ≥ s|a)

= Pµ(ε1 + η1 ≥ s− a|a)

= Pµ(ε1 + η1 ≥ s− a) since ε1, η1 ⊥ a

= 1− Φ
(√

τεη(s− a)
)

since ε1 + η1 ∼ N(0, 1/τεη)

= Φ
(√

τεη(a− s)
)

since 1− Φ(x) = Φ(−x)

where Φ is the c.d.f of the standard normal distribution, and τεη ≡ τετη
τε+τη

. There-

fore, for cut-off rule s(µ, c), the likelihood ratio of the posterior distribution of
ability is

fµ(a|v1 = 1)

fµ(a′|v1 = 1)
=

Pµ(v1 = 1|a)

Pµ(v1 = 1|a′)
· fµ(a)

fµ(a′)

=
Φ
(√

τεη(a− s(µ, c))
)

Φ
(√

τεη(a′ − s(µ, c))
) · φ(

√
τa(a− µ))

φ(
√
τa(a′ − µ))

. (11)
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The goal is to show that (11) is increasing in µ for a > a′, i.e. the posterior belief
satisfies the MLRP. The first term on the RHS is decreasing in µ, since an upvote
is more informative for lower µ (or higher c), and the second term on the RHS
is increasing in µ, since the prior belief satisfies the MLRP in µ. The posterior
belief will satisfy the MLRP iff for all a and µ,

∂2

∂a∂µ
logPµ(v1 = 1|a) + log fµ(a) ≥ 0. (12)

Recall s(µ, c) = c
(
τq+τη
τη

)
− µ

(
τq
τη

)
. Computing the first term of (12),

∂2

∂a∂µ
logPµ(v1 = 1|a) =

∂2

∂a∂µ
logΦ

(√
τεη(a− s(µ, c))

)
=

∂

∂a

φ
(√

τεη(a− s)
)

Φ
(√

τεη(a− s)
) × (− ∂s

∂µ

)
√
τεη

=
−Φ(x)φ(x)x− φ(x)2

Φ(x)2
×
(
− ∂s
∂µ

)
τεη

= −
(
φ(x)x

Φ(x)
+
φ(x)2

Φ(x)2

)(
τqτεη
τη

)
,

where x ≡ √τεη(a − s(µ, c)) and − ∂s
∂µ

= τq/τη. Computing the second term of

(12)

∂2

∂a∂µ
log fµ(a) =

∂2

∂a∂µ
log φ(

√
τa(a− µ))

=
∂

∂a

τa(a− µ)φ(
√
τa(a− µ))

φ(
√
τa(a− µ))

=
∂

∂a
τa(a− µ)

= τa.

Therefore, need to show that for all x,

τa −
(
φ(x)x

Φ(x)
+
φ(x)2

Φ(x)2

)(
τqτεη
τη

)
≥ 0

⇔ τx −
(
φ(x)x

Φ(x)
+
φ(x)2

Φ(x)2

)
≥ 0, (13)
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where τx ≡ τaτη
τqτεη

. From Stack Exchange1, we know that(
φ(x)x

Φ(x)
+
φ(x)2

Φ(x)2

)
≤ 1.

From the definition of τx,

τx ≡
τaτη
τqτεη

=
(τa + τε)(τη + τε)

τ 2ε

=
τaτη
τ 2ε

+
τη
τε

+
τa
τε

+ 1

≥ 1.

Therefore, (13) holds for all x. Therefore, for all a > a′, (11) is increasing in µ
and {fµ(a|v = 1)}µ∈R satisfies the MLRP. �

Given Lemma 1, for µ > µ′, fµ(a|v = 1) first-order stochastically dominates
fµ′(a|v = 1). Therefore, Eµ[a|v1 = 1] is increasing in µ, and there is no belief re-
versal about ability in the second period. Lemma 2 establishes that the posterior
distribution of quality following an upvote in the first period and signal s2 in the
second period, gµ(q2|v1 = 1, s2), also satisfies the MLRP in the prior belief µ.

Lemma 2. The posterior distribution of quality, following an upvote in the first
period and signal s2 in the second period, {gµ(q2|v1 = 1, s2)}µ∈R, satisfies the
MLRP in µ.

Proof. From Lemma 1, {fµ(a|v1 = 1)}µ∈R satisfies the MLRP. Since q2 = a+
ε2, the prior distribution of second period quality, gµ(q2|v1 = 1), is the convolution
of fµ(a|v1 = 1) and fε(ε), where fε denotes the density of ε. From Theorem 2.1(d)
in ?, the MLRP is preserved when an independent random variable with a log-
concave density function is added to a family of random variables that satisfy the
MLRP. Since a ⊥ ε and fε is a log-concave density (the normal distribution is
log concave), the family of distributions {gµ(q2|v1 = 1)}µ∈R satisfies the MLRP.
Therefore,

∂2

∂q∂µ
log gµ(q2|v1 = 1) > 0,

1https://math.stackexchange.com/questions/2337419/property-of-standard-normal
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which also means that

∂2

∂q∂µ
log gµ(q2|v1 = 1, s2) > 0,

since the likelihood function (the distribution of s2|q2) is independent of µ, and
the denominator is independent of q2. Therefore, for any signal s2, the posterior
belief about quality {gµ(q2|v1 = 1, s2)}µ∈R also satisfies the MLRP. �

The MLRP implies FOSD, which implies that for any signal s2, Eµ[q2|v1 =
1, s2] is increasing in µ. Therefore, there is no belief reversal about quality in
the second period. Hence, discrimination does not reverse between the first and
second period.

B.2 Shifting Standards

Suppose that the evaluator’s payoff also depends on the seniority of the worker,
as measured by the worker’s reputation r(ht) ≡

∑t−1
n=1 vn, which is the sum of

the worker’s past evaluations. She receives a payoff of (v − (q − c(r) − cg))
2

from reporting evaluation v on a task of quality q from a worker of gender g and
reputation r, where c : R→ R+ is the benchmark of evaluation for a worker with
reputation r and, as above, cg is a taste parameter with cM = 0. Assume that c(r)
is weakly increasing in r to capture the idea that as reputation increases, a worker
receives additional privileges or promotions, and the benchmark to promote the
worker increases with the worker’s seniority. Normalize the initial benchmark to
c(0) = 0, and assume that c(r) = 0 for all r < 0, so that workers who produce
negative quality do not receive a more lenient benchmark.

The optimal evaluation strategy is to report

v(ht, st, g) =
τq,tµ̂g(ht) + τηst

τq,t + τη
− c(r(ht))− cg, (14)

where µ̂g(ht) is the expected ability of the worker, conditional on history ht.
Fixing µ̂g(ht) and st, as the worker’s reputation increases, he or she receives a
lower evaluation for the same expected quality. Note that shifting standards will
have no effect on discrimination, since the benchmark of evaluation term cancels

between females and males, D(ht, st) =
(

τq,t
τq,t+τη

)
(µ̂M(ht)− µ̂F (ht)) + cF .

A positive initial evaluation (i.e. above average, v1 > µ̂g) impacts the stan-
dard faced by a worker – the signal required to receive a given evaluation – in two
ways: it increases the evaluator’s belief about the worker’s ability, and it increases
the benchmark of evaluation. A positive evaluation is good news about ability:
the distribution of ability following a positive evaluation first order stochastically
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dominates the prior distribution of ability. Since expected quality is equal to
expected ability, and the signal required to earn a given evaluation is decreasing
in expected quality, increasing the expected ability while holding reputation con-
stant results in a lower standard. However, a positive evaluation also increases
the worker’s reputation, and therefore, the benchmark of evaluation. Holding
the belief about ability fixed, higher reputation workers face stricter standards.
Therefore, the overall effect of a positive evaluation on standards is ambiguous.

We say a worker faces shifting standards if, conditional on receiving a positive
initial evaluation, the worker faces a stricter standard in period 2 – a higher signal
is required to receive any evaluation, relative to the signal required for the same
evaluation in period 1. Let s(v, h, g) denote the signal required for a worker with
history h and gender g to receive evaluation v.

Definition 2. A worker faces shifting standards following evaluation v1 if the
initial evaluation is positive, v1 > µ̂g, but the worker subsequently faces a stricter
standard, s(v, v1, g) > s(v, ∅, g) for all v ∈ R.

Shifting standards implies that the positive evaluation’s negative impact on the
benchmark of evaluation outweighs the positive impact on the belief about the
worker’s expected quality. Note that the definition is required to hold at all eval-
uations v ∈ R, but this is not restrictive, as given h2 ⊃ h1, s(v, h2, g)− s(v, h1, g)
is independent of v. Therefore, the definition either holds at all evaluations or
at no evaluations. For any positive initial evaluation v1, it is straightforward to
show that there exists a cut-off c such that if the new benchmark of evaluation
exceeds this cut-off, c(v1) > c, a worker faces shifting standards.

Standards unambiguously rise after a negative initial evaluation, v1 < µ̂g. A
negative evaluation is bad news about the worker’s ability, and either raises or
maintains the initial benchmark of evaluation.

12



C Additional Empirical Analysis

C.1 Example Question and Answer Posts

The following screenshots of a randomly selected question and answer post illus-
trate how users create content on the forum. These posts are not part of our
experiment.

Figure 1. Question Post

Figure 2. Answer Post
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C.2 Robustness

Upvotes Only. The following tables present analogous regressions to Tables 1 and
2 in the manuscript, using number of upvotes as the dependent variable.

Table 1. Subjectivity: Effect of Gender on Evaluation of Novice Answers and Ques-
tions (Upvotes Only)

Answers Questions Answers & Questions
(1) (2) (3)

Male -0.20 0.57 -0.20
(.17) (.27) (.23)

Question 0.17
(.23)

Male*Question 0.77
(.32)

Constant 0.81 0.97 0.81
(.12) (.19) (.16)

# Obs 135 135 270

Standard errors from OLS regressions reported in parentheses; Male=1 if
male username, 0 otherwise; Question=1 if question post, 0 if answer; Novice
accounts only.

Table 2. Dynamics: Effect of Gender on Evaluation of Novice and Advanced Questions
(Upvotes Only)

Novice Advanced Novice & Advanced
(1) (2) (3)

Male 0.57 -0.64 0.57
(.27) (.27) (.27)

Advanced 0.45
(.27)

Male*Advanced -1.20
(.38)

Constant 0.97 1.42 0.97
(.19) (.19) (.19)

# Obs 135 138 273

Standard errors from OLS regressions reported in parentheses; Male=1
if male username, 0 otherwise; Advanced=1 if Advanced account, 0 oth-
erwise.
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First Vote Only. The following tables present parallel regressions to Tables 1 and
2 in the manuscript, using only the first vote on a post in our experiment from
each evaluator.

Table 3. Subjectivity: Effect of Gender on Evaluation of Novice Answers and Ques-
tions (First Vote Only)

Answers Only Questions Only Answers & Questions
∆ Rep Net Votes ∆ Rep Net Votes ∆ Rep Net Votes

(1) (2) (3) (4) (5) (6)

Male −1.15 −0.28 2.17 0.44 −1.15 −0.28
(.82) (.16) (1.07) (.22) (.96) (.19)

Question −0.42 −0.13
(.96) (.19)

Male*Question 3.32 0.72
(1.35) (.27)

Constant 3.55 0.70 3.13 0.57 3.55 0.70
(.58) (.12) (.76) (.15) (.68) (0.14)

# Obs 135 135 135 135 270 270

Standard errors from OLS regressions reported in parentheses; Male=1 if male username, 0 otherwise;
Question=1 if question post, 0 if answer; Novice accounts only.

Table 4. Dynamics: Effect of Gender on Evaluation of Novice and Advanced Questions
(First Vote Only)

Advanced Novice & Advanced
∆ Rep Net Votes ∆ Rep Net Votes Binary

(1) (2) (3) (4) (5)

Male −2.58 −0.51 2.17 0.44 0.10
(1.14) (.23) (1.12) (.23) (.08)

Advanced 1.64 0.35 0.02
(1.11) (.22) (0.08)

Male*Advanced −4.75 −0.95 −0.28
(1.57) (.32) (.11)

Constant 4.77 0.93 3.13 0.57 0.44
(0.81) (.16) (.79) (.16) (.06)

# Obs 138 138 273 273 273

Standard errors from OLS regressions reported in parentheses; Male=1 if male username,
0 otherwise; Advanced=1 if Advanced account, 0 otherwise.
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C.3 Voter Characteristics

Table 5. Voter Characteristics by Post Type

Voter Reputation Voter Gender: % Female
(1) (2)

Answers 16679 0.14
(2040) (.04)

Questions: All 18836 0.10
(1254) (.02)

Questions: Novice 17957 0.11
(1684) (.03)

Questions: Advanced 19839 0.09
(1877) (.03)

Note: Standard errors reported in parentheses; voter reputation winsorized at 90
percent.

C.4 Observational Data Analysis

We next present the analysis of the observational data described in Section II.D
in the manuscript.

C.4.1 Description of Algorithm to Code Gender.

? developed the algorithm to code gender and validated its accuracy through
secondary data collection on online Q&A forums. The algorithm uses look-up
tables with the frequencies of first names by gender and country. For example,
while John and Claire are common male and female names, respectively, across
countries, Andrea is a common male name in Italy and a common female name
in Germany. We preprocessed the data to obtain (name, country) tuples for
each user when such information is available. The preprocessed data is then
fed into a Python tool that classifies the tuple as ‘male,’ ‘female,’ or ‘x’ (when
gender cannot be inferred). The tool uses an iterative process that first employs
country-specific look-up tables, and if that does not lead to a resolution, switches
to common conventions for usernames (?). ? collected additional data from users
on the forum to validate the tool, demonstrating a level of precision greater than
90%. The algorithm and associated data files are publicly available on GitHub
at https://github.com/tue-mdse/genderComputer.
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C.4.2 Attrition

In the following analysis, we use the logged measure of the reputation earned on
a post for interpretability. All results also hold with the unlogged measure.

In Table 6, we run a probit regression, regressing a dummy for whether a user
generated a second post on the inferred gender of the username, the log of the
reputation earned on the first post and their interaction. Column (1) presents
the results pooling question and answer first posts, and also includes a dummy
for whether the first post was a question, Column (2) presents the results for
question first posts only and Column (3) does the same for answers first posts
only. Neither the gender variable nor the interaction is significant in any of the
specifications.

Table 6. Likelihood of Generating a Second Post

Pooled Questions Answers
(1) (2) (3)

Male -0.10 0.15 -0.53
(.23) (.28) (.42)

Reputation First Post 0.58 0.62 0.51
(.05) (.06) (.09)

Reputation First Post * Male 0.03 -0.03 0.13
(.05) (.07) (.10)

First Post Question -0.13
(.01)

Constant -2.47 -2.76 -2.18
(.21) (.25) (.39)

# Obs 85,354 71,868 13,486

Standard errors from probit regressions reported in parentheses; Second Post=1
if user posts a second time, 0 otherwise; Male=1 if male username, 0 otherwise;
First Post Question = 1 if the first post was an question, 0 otherwise.

In Table 7, we split the reputation earned on the first post into quartiles. We
again run a probit regression, regressing a dummy for whether a user generated
a second post on the inferred gender of the username, a dummy for the quartile
of reputation earned on the first post, and the interaction of the gender dummy
with each quartile dummy. We again do not observe a significant main effect of
gender nor of the interaction with reputation quartile.2

2The results are robust to different size reputation bins. Coefficients on gender and the inter-
actions are not significant for alternative numbers of bins. When a coefficient does approach
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Table 7. Likelihood of Generating a Second Post (Quartiles)

Pooled Questions Answers
(1) (2) (3)

Male 0.03 0.09 0.01
(.05) (.06) (.14)

Reputation First Post Q2 0.24 0.20 0.49
(.05) (.06) (.14)

Reputation First Post Q3 0.36 0.31 0.68
(.05) (.05) (.14)

Reputation First Post Q4 0.54 0.47 0.93
(.05) (.06) (.14)

Reputation First Post Q2 * Male -0.06 -0.10 -0.05
(.06) (.06) (.15)

Reputation First Post Q3 * Male -0.02 -0.08 0.05
(.06) (.06) (.15)

Reputation First Post Q4 * Male 0.02 -0.05 0.06
(.06) (.06) (.15)

First Post Question -0.17
(.01)

Constant -0.38 -0.49 -0.70
(.05) (.05) (.13)

# Obs 85,354 71,868 13,486

Standard errors from probit regressions reported in parentheses; Second Post=1 if
user posts a second time, 0 otherwise; Male=1 if male username, 0 otherwise; First
Post Question = 1 if the first post was a question, 0 otherwise. The first reputation
quartile is the omitted variable across all specifications.

In Table 8, we repeat the analysis from Table 6 for the likelihood of generating
a third through tenth post, pooling questions and answers. Column (t) presents
the results for the probit regression that regresses whether a user generated a
post t on the gender dummy, log of reputation earned on the previous post (post
t− 1), their interaction, and whether the previous post was a question. Neither
the coefficient on the gender dummy nor the interaction is significant in any of
the specifications t = 3, ..., 10.

significance, if anything, its sign suggests that women who earned a low initial reputation are
more likely to generate a second post than males who earned a low initial reputation – a form
of differential attrition that would generate larger subsequent discrimination against females,
not the reversal that we observe.
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Finally, in Table 9, we pool all posts in the same regression. Column (1)
presents the results for the probit regression that regresses whether a user gen-
erated a post t on the gender dummy, log of total reputation earned on all pre-
vious posts, their interaction, and whether the previous post was a question. In
Columns (2) and (3), we include dummies for the post number in the sequence
– this controls for how many posts it took to generate the total reputation. In
Column (3), we also control for the log of reputation earned on the previous post
and its interaction with gender. This allows for the possibility that the evaluation
of a user’s most recent post is more salient for his or her decision to post again
relative to earlier performance. Standard errors are clustered at the individual
level. As can be seen from Table 9, neither the coefficient on the gender dummy
nor on the interaction with total reputation is significant in any of the specifica-
tions. In Column (3), the coefficient on the interaction of gender and reputation
earned on previous post also is not significant.

Table 9. Likelihood of Generating Next Post

(1) (2) (3)

Male 0.01 0.02 0.02
(.01) (.01) (.17)

Total Reputation 0.05 0.24 0.11
(.00) (.01) (.01)

Total Reputation * Male 0.00 -0.00 0.00
(.00) (.00) (.00)

Reputation Previous Post 0.49
(.04)

Reputation Previous Post * Male -0.00
(.04)

Previous Post Question -0.31 -0.21 -0.18
(.01) (.01) (.01)

Constant 0.04 -0.98 -2.50
(.01) (.03) (.16)

Post Number Dummies No Yes Yes

# Obs 235,354 235,354 235,354

Standard errors from probit regressions reported in parentheses, clustered at the
user level; Next Post=1 if user posts a subsequent post, 0 otherwise; Male=1
if male username, 0 otherwise; Previous Post Question = 1 if the previous post
was an question, 0 otherwise. Post Number refers to whether or not dummies
corresponding to the post’s position in the sequence are included.
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C.4.3 Autocorrelation in Error Process for Quality

Suppose individual i has ability ai. From Section I.A in the manuscript, i’s answer
in period t has quality

qi,t = ai + εi,t,

and µg denotes the population average ability for a new user of gender g. Negative
autocorrelation in the error process corresponds to Cor(εi,t, εi,t+1) < 0. If there
is sufficiently negative autocorrelation, then observing above average quality in
period t (i.e. q1 > µg) leads to expected quality that is below average in period
t+ 1 (i.e. E[q2|q1] < µg). If females have lower expected ability than males, then
observing above average quality in t + 1 is more informative about ability and
could possibly generate a belief reversal in expected ability. This is because a
given level of high quality in the subsequent period is more informative for females
than males following a previous observation of similar high quality. Note that
an error process with negative autocorrelation is distinct from mean-reverting
quality. For any form of correlation in εi,t (e.g. positive, negative or none), if qi,t >
µgi , then E[qi,t+1|qi,t] < qi,t and lower quality is expected in the subsequent period.
Therefore, negative autocorrelation in the errors is not required to generate mean-
reverting quality.

Answers. If answer quality is observable, then each evaluation corresponds to
the report of quality, vi,t = qi,t for answer post t from user i. We can write the
quality as

qi,t = µgi + (ai − µgi) + εi,t.

Consider the following random effects regression:

vi,t = β0 + β1 ∗ 1gi=M + ui + ei,t, (15)

where gender gi is the gender of user i. Then µF = β0, µM = β0+β1, ai−µgi = ui
and εi,t = ei,t.

We use the Wooldridge test for serial correlation in panel data to test for
serial correlation in the error εi,t (?). We compiled a panel dataset consisting
of all answer posts from users with reputation 1 to 250, which is the relevant
reputation range for our experiment. Following specification (15), we first ran
a random effects regression of the reputation earned on an answer post on a
dummy for gender. We then tested the estimated residuals êi,t for autocorrelation
using the xtserial program in Stata. Under the null hypothesis of no first-order
autocorrelation, we found an F-statistic of F (1, 7972) = 0.277 and Prob > F =
0.5988. Therefore, we do not observe significant autocorrelation in the error
process for the quality of answer posts.
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Questions. Question posts have an added layer of complication, as the reported
evaluation vi,t is a combination of the signal of quality of question post t and the
current belief about the ability of user i when he or she posts question t, which
we denote by µgi,t. From (A5) in the manuscript,

vi,t =
1

τq(t) + τη
(τq(t)µgi,t + τηsi,t)

=
1

τq(t) + τη
(τq(t)µgi,t + τηai + τη(εi,t + ηi,t))

where τq(t) ≡ τa(t)τε/(τa(t) + τε) and the second line follows from signal si,t =
ai+εi,t+ηi,t. From (A8) in the manuscript, the current belief µgi,t is an additively
separable function of past evaluations and the prior belief µg. We do not directly
observe µgi,t, but we can proxy the past evaluations component of it with the
current reputation score. Consider the following random effects regression:

vi,t = β0 + β1 ∗ 1gi=M + β2 ∗Ri,t + β3 ∗Ri,t ∗ 1gi=M

+β4 ∗NumPostsi,t + β5 ∗NumPostsi,t ∗ 1gi=M + ui + ei,t, (16)

where Ri,t is cumulative reputation of user i when he/she posts question t and
NumPostsi,t is the number of posts (questions and answers) that generated Ri,t.
Note that index t refers to question t, not post t, since we are restricting attention
to questions. Similar to the case of answers, the random effect is the difference
between individual and population ability (i.e. the prior µg), β0 is a function
of the prior belief about average female ability and β0 + β1 is a function of the
prior belief about average male ability. The reputation terms capture the past
evaluation component of current beliefs, while β0 and β1 capture the prior belief
component of current beliefs (recall the current belief is an additive function of
these two components).

As in the case of answers, we ran a random effects regression on questions posts
using specification (16), then tested the estimated residuals for autocorrelation.
Under the null hypothesis of no first-order autocorrelation, we found an F-statistic
of F (1, 7972) = 51.947 and Prob > F = 0.0000. Therefore, we reject the null
hypothesis of no first-order autocorrelation. Next, we use the estimated residuals
to run the regression:

êi,t = ρêi,t−1 + errori,t,

in order to determine the direction of autocorrelation. The estimated correlation
is positive, with coefficient ρ̂ = .076 and standard error .003. Therefore, this is
not consistent with an error process that exhibits negative autocorrelation.
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C.4.4 Gender Differences in Evaluations.

Next, we examine gender differences in evaluations in the observational dataset.
As in our experiment, we focus on the evaluation of questions posted to novice
and advanced accounts, and the evaluation of answers posted to novice accounts.
We define posting to novice and advanced accounts similar to the experiment. A
novice post corresponds to posting a question or answer to an account with no
prior reputation or posts. An advanced post corresponds to posting a question
to an account that has attained a reputation of at least 100 points but not more
than 240 (the approximate range in our experiment); importantly, the question
has to be the first post to the account once it reaches this reputation threshold.

This analysis comes with several important caveats that are discussed in the
text, including that the number of posts that generated a user’s reputation is
relevant for inferring ability, as different numbers of posts can result in similar
reputations. We control for this issue in our experiment through randomization;
it is less straightforward to control for in the observational data. We attempt to
address the issue by running specifications where the advanced accounts required
20 or fewer posts to reach their respective reputation levels. A user earning
the average number of upvotes per post would need to post approximately 20
questions to attain 100 reputation points.3

We find that the evaluation patterns by gender across the different types of
posts are similar to those documented in the experiment, although the effect sizes
vary and are often smaller. For the evaluation of answers (Table 10), we regress
reputation points earned per answer post (∆Rep) on inferred gender. We restrict
attention to answers posted to accounts with a reputation less than 240 (Column
(1)), answers posted to novice accounts (Column (2)), and answers posted to
novice accounts during the timeframe of the experimental study (Column (3)).
Across these three specifications, we find no significant evidence of gender dis-
crimination.

For the evaluation of novice questions (Table 11), we regress reputation points
earned per question post (∆Rep) on inferred gender for questions posted by
novice users. We run the analysis on questions posted to all novice accounts
(Column (1)), questions posted to novice accounts during the timeframe of the
experimental study (Column (2)) and questions posted to novice accounts for
users who also posted after reaching at least 100 reputation points (Column
(3)). Restricting attention to users who eventually earn at least 100 reputation
points allows us to focus on users who are presumably posting higher quality

3The results are robust to limiting the analysis to 10 or fewer posts, which is the number of
answers an average user would need to post to attain 100 reputation points. Increasing or
decreasing the number of posts, including the variable in the regression, or not controlling for
it at all does not qualitatively change the results.
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Table 10. Evaluation of Answers: ∆Rep

Reputation < 240 Novice Novice - Experiment Window
(1) (2) (3)

Male 0.09 0.23 -0.66
(.28) (.33) (.46)

Constant 7.44 7.94 6.32
(.26) (.31) (.42)

# Obs 19,983 10,760 3,533

Standard errors from OLS regressions reported in parentheses; Male=1 if male user-
name, 0 otherwise.

content, given the reputation they eventually earn.4 Across all specifications, we
find that questions posted by novice accounts with female usernames earn fewer
reputation points than those posted by novice accounts with male usernames. The
magnitude of this difference is larger for the specifications that restrict attention
to the users who eventually reach 100 reputation points.

Table 11. Evaluation of Questions Posted by Novice Users: ∆Rep

All Experiment Window Reach 100
(1) (2) (3)

Male 0.58 0.30 3.56
(.11) (.14) (2.04)

Constant 7.92 5.05 20.58
(.10) (.12) (1.85)

# Obs 72,896 26,092 5,927

Standard errors from OLS regressions reported in parentheses;
Male=1 if male username, 0 otherwise.

Lastly, we look at questions posted to advanced accounts (Table 12). We
regress reputation points earned per question post (∆Rep) on inferred gender
for questions posted to all advanced accounts (Column (1)), questions posted
to advanced accounts that required 20 or fewer posts to reach their respective

4The specification in (3) lifts the restriction of the user attaining a maximum reputation of
240, since this additional restriction cuts the sample substantially. The results reported in
specifications (1) and (2) are robust to lifting this restriction as well, with coefficients on the
Male dummy increasing to 1.33 and 0.45, respectively.
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reputation levels (Column (2)), and questions posted to advanced accounts during
the timeframe of the experimental study (Column (3)). Across all specifications
we find that questions posted to advanced accounts with female usernames are
favored over those posted to advanced accounts with male usernames.

Table 12. Evaluation of Questions Posted by Advanced Users: ∆Rep

All < 20 Posts Experiment Window
(1) (2) (3)

Male -0.88 -1.58 -1.63
(.55) (.68) (.88)

Constant 9.3 10.59 7.65
(.49) (.61) (.75)

# Obs 2,123 1,599 531

Standard errors from OLS regressions reported in parentheses;
Male=1 if male username, 0 otherwise.

D Stereotyping

In Section I in the manuscript, we established that a dynamic reversal of dis-
crimination can arise when some evaluators hold beliefs that females are of lower
average ability than they actually are, and other evaluators are aware of these
incorrect beliefs. In this section, we use publicly available statistics from the
observational dataset to explore one potential mechanism that could lead to such
biased beliefs.

? develop a framework in which biased stereotypes arise and persist due
to ‘representativeness’, a well-documented cognitive heuristic used to simplify
complex probability judgments (?). When assessing the frequency of a type in
a particular group, an individual who uses this heuristic focuses on the relative
likelihood of that type with respect to a reference group, rather than assessing
the absolute frequency of the type. The type that is most frequently found in one
group relative to another, e.g. the frequency of Floridians over 65 relative to the
frequency of people over 65 in the rest of the country, is representative of that
group. The heuristic exaggerates the perceived frequency of the representative
type in the respective group, and as a result, distorts beliefs about the associated
type distribution. Specifically, a ‘kernel of truth’ in the relative frequency – that
the proportion of seniors is higher amongst Floridians than in the rest of the
US – may lead to a biased stereotype about absolute frequencies – that most
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Floridians are seniors.5

Let t represent a user’s quintile in the ability distribution, t ∈ T = {1st, ..., 5th}.
A type t is ‘representative’ of group g, in relation to the comparison group −g, if
the likelihood ratio πt,g/πt,−g is high, where πt,g is the probability that a worker
from group g is in quantile t. The ‘representative’ type corresponds to the most
salient difference between groups; it is the first type to come to mind when using
the heuristic to form beliefs, and leads to overweighting of the perceived frequency
of the type within the group. Specifically, ? define the stereotyped belief as

πstt,g ≡ πt,g

( πt,g
πt,−g

)θ∑
s∈T πs,g

( πs,g
πs,−g

)θ , (17)

where θ ≥ 0 corresponds to the extent of the belief distortion. Incorrect stereo-
types are most likely to form when there are group differences in the frequency
of a particular type, but the overall type distributions are largely the same. This
is consistent with recent empirical work that finds support for the model (???).

Here, we explore how ‘representativeness’ can lead to biased beliefs in our
setting. We examine the distribution of users’ reputation earned per answer post
over the entire range of reputations at time of posting. Since we do not observe
evidence for discrimination on answers posted to low reputation accounts in either
the experiment or the observational data, we use the evaluation of answers as a
proxy for ability. We divide the distribution of reputation earned per answer
post into quintiles by gender. The distributions are fairly similar across male and
female usernames: the median corresponds to the 3rd quintile for both male and
female users, with the mean equal to 2.97 for males and 2.87 for females. The
difference in means is fairly small, representing 6% of a standard deviation of
the average quintile position, and is only marginally significant. However, using
these means as estimates of the perceived means of ability (µ̂F and µ̂M from the
theory model), we see that even mild belief distortions due to ‘representativeness’
quickly exacerbate this small underlying difference.

Figure 3 illustrates the difference between perceived means of males and fe-
males as a function of the degree of distortion θ caused by the stereotype heuristic.
While the perceived means are fairly similar when the distortion is minimal (θ=0),
under moderate levels of distortion (for example, θ = 2.5 estimated in prior stud-
ies (?)), the difference in perceived means triples to nearly half a quintile. As
shown in Section I in the manuscript, if even a small proportion of individuals
hold such distorted beliefs, this can lead to a dynamic reversal of discrimination.

5This stereotype is incorrect – the overall age distribution of Floridians is quite similar to the
rest of the country, and the majority of Floridians are under 65.
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Figure 3. Subjective average ability by gender µ̂g as function of θ.
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