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Online Appendix

Cutoff Equilibrium

Given a diffused policy J , a cutoff equilibrium specifies a threshold signal ŝj for
any j = 1, 2 . . . J , such that an agent i in group j attacks the regime that passes
the jth viability test iff si < ŝj .

This implies that for any θ, the aggregate attack from any group j is αP(si <
ŝj |θ) = αF (

√
τ(ŝj−θ)), which is decreasing in θ. Define θj−1 such that if θ ≥ θj−1,

then the regime will pass the j-th viability test. Conversely, if θ < θj−1, then the
regime will fail at or before group j. Then θj−1 is such that

(PNV) θj−1 − α
j−1∑
j′=1

F (
√
τ(ŝj′ − θj−1)) = 0.

Note that θ0 = 0 and define

(A.1) θJ = θ̂.

This means when θ = θ̂, the regime has the exact strength to meet the aggregate
attack from all the groups. Hence, any regime with θ ≥ θ̂ will survive.

Since viability tests remove the lower dominance region, it is always possible
that in equilibrium the agents stop attacking a viable regime after the j-th test,
for some j = 1, 2, . . . , J . Suppose that in equilibrium the agents attack a viable
regime until group j ≤ J , for some j. j = 0 means no agent attacks the regime. If
j > 0, then θj−1 does not change after j, i.e., once the regime survives the attack

from the first j groups, it survives in the end. Then, any agent i in group j ≤ j
who receives the cutoff signal ŝj must be indifferent between attacking and not
attacking - i.e.,

(Iv) P(θ ≥ θ̂|ŝj , θ ≥ θj−1) =

´ θ
θ̂ π(θ)f(

√
τ(ŝj − θ))dθ´ θ

θj−1
π(θ)f(

√
τ(ŝj − θ))dθ

= p.

Thus, {ŝj}Jj=1 constitutes a Perfect Bayesian Equilibrium in monotone strate-

gies if there exists j ≤ J such that
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1) for all j > j, ŝj = θj−
σ
2 and consequently, it follows from Condition (PNV)

that θj = θj+1 = . . . = θJ ;

2) for all j ≤ j, ŝj satisfies the indifference condition (Iv), where the cutoffs

{θj−1}J+1
j=1 satisfy condition (PNV) and θ̂ satisfies equation (A.1).

Log-concavity

Lemma A.1 (MLRP) If f is log-concave then it satisfies the monotone likelihood
ratio property - for any s1 > s2,

p(s1|θ)
p(s2|θ)

=
f(
√
τ(s1 − θ))

f(
√
τ(s2 − θ))

is increasing in θ.

PROOF:

Log-concavity of f means f ′

f is decreasing. Differentiating the above expression

with respect to θ and using the fact that f ′

f is decreasing, we get the above result.
�

Lemma A.2 If f is log-concave, then for A > B ≥ 0, P (θ ≥ A|s, θ ≥ B) is
(weakly) increasing in s for all s ∈ [−σ

2 , 1 + σ
2 ].

PROOF:

For any s ≥ A+ σ
2 , this probability is 1 and thus the weak monotonicity always

holds. Let us consider any s ∈ [−σ
2 , A+ σ

2 ),

P (θ ≥ A|s, θ ≥ B) =

´ s+σ
2

A π(θ)f(
√
τ(s− θ))dθ´ s+σ

2

max{s−σ
2
,B} π(θ)f(

√
τ(s− θ))dθ

=
1

1 +

´A
max{s−σ2 ,B}

π(θ)f(
√
τ(s−θ))dθ

´ s+σ
2

A π(θ)f(
√
τ(s−θ))dθ

Consider any s1 and s2 such that −σ
2 ≤ s2 < s1 < A+ σ

2 , we want to show that

P (θ ≥ A|s1, θ ≥ B) > P (θ ≥ A|s2, θ ≥ B)

First of all, since f(
√
τ(s1 − θ)) = 0 for all θ ∈ [s2 − σ

2 , s1 − σ
2 ),

ˆ A

max{s1−σ2 ,B}
π(θ)f(

√
τ(s1 − θ))dθ =

ˆ A

max{s2−σ2 ,B}
π(θ)f(

√
τ(s1 − θ))dθ.
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Moreover, based on Lemma A.1,

ˆ A

max{s2−σ2 ,B}
π(θ)f(

√
τ(s1 − θ))dθ

=

ˆ A

max{s2−σ2 ,B}
π(θ)f(

√
τ(s2 − θ))

(
f(
√
τ(s1 − θ))

f(
√
τ(s2 − θ))

)
dθ

<

(
f(
√
τ(s1 −A))

f(
√
τ(s2 −A))

)
·
ˆ A

max{s2−σ2 ,B}
π(θ)f(

√
τ(s2 − θ))dθ.

On the other hand, since s1 + σ
2 > s2 + σ

2 , we have

ˆ s1+σ
2

A
π(θ)f(

√
τ(s1 − θ))dθ ≥

ˆ s2+σ
2

A
π(θ)f(

√
τ(s1 − θ))dθ.

Based on Lemma A.1, we have

ˆ s2+σ
2

A
π(θ)f(

√
τ(s1 − θ))dθ =

ˆ s2+σ
2

A
π(θ)f(

√
τ(s2 − θ))

(
f(
√
τ(s1 − θ))

f(
√
τ(s2 − θ))

)
dθ

>

(
f(
√
τ(s1 −A))

f(
√
τ(s2 −A))

)
·
ˆ s2+σ

2

A
π(θ)f(

√
τ(s2 − θ))dθ.

The above inequalities implies that

´ A
max{s1−σ2 ,B}

π(θ)f(
√
τ(s1 − θ))dθ

´ s1+σ
2

A π(θ)f(
√
τ(s1 − θ))dθ

<

´ A
max{s2−σ2 ,B}

π(θ)f(
√
τ(s2 − θ))dθ

´ s2+σ
2

A π(θ)f(
√
τ(s2 − θ))dθ

,

and thus, for any −σ
2 < s2 < s1 < A+ σ

2 ,

P (θ ≥ A|s1, θ ≥ B) > P (θ ≥ A|s2, θ ≥ B).

�

Violation of Acharya and Ramsay (2013) sufficient condition

Acharya and Ramsay (2013) (henceforth AR) consider a global game of regime
change game with one-sided dominance. The model in AR can be mapped to
our setting by interpreting Cooperate as Attacking (ai = 1) and Defect as Not
Attacking (ai = 0). In AR, there is no dominance region where an agent will
Cooperate regardless of the opponent’s action. Hence, it is similar with PNV
which eliminates the dominance region of attacking. Also, in AR, a lower signal
will encourage the agents to Defect while in our setting a higher signal encourages
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agents to Not attack. Hence, the actual inequality in Condition (AR) below is
reverse in their paper. Finally, the payoff specification is such that their bi

bi+wi
= p

in out setting.

Mapping AR’s Assumption A1(ii) to our model, we have the following condition.
For any ŝ,

(AR) P(s−i ≥ ŝ|si = ŝ, θ ≥ 0) > p

which guarantees that no attack is the unique cutoff equilibrium when there are
two players. The intuition is simple. Let us define the set of private signal for
which an agent may attack -

Ai = {si| Attacking (ai(si) = 1) is not eliminated as never best response}.

Take ŝ = supi ∪Ai. Then for any agent receiving private information s > ŝ will
not attack because attacking is eliminated as a dominated strategy. Think about
any agent with private information ŝ. Given Condition (AR), the probability that
the other agent receives a signal higher than ŝ and thus does not attack is higher
than p. Thus, not attacking is strictly preferred, which violates the definition of
ŝ. That is why no attacking is the only possible equilibrium.

We take the standard global game information structure and assume that F
is log-concave. We did not assume the Condition (AR). In our setting, what we
need is that for any ŝ,

(CI) P(regime survives when agents follow cutoff strategy ŝ|si = ŝ, θ ≥ 0) > p,

We argue in lemma 1 that when α is small enough, the above inequality (CI)
holds. However, as shown below, condition (AR) may not hold true under the
assumption of small group size. For simplicity, let us assume that the prior is
uniform.

Lemma A.3 For any α and p > 1/2, there exists ŝ < α+ σ/2 such that

P(s−i ≥ ŝ|si = ŝ, θ ≥ 0) ≤ p.

PROOF:

P(s−i ≥ ŝ|si = ŝ, θ ≥ 0) =

ŝ+σ/2ˆ

max{0,ŝ−σ/2}

P(s−i ≥ ŝ|θ)dP(θ|si = ŝ, θ ≥ 0).
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Given uniform prior, this simplifies to

=

ŝ+σ/2ˆ

max{0,ŝ−σ/2}

(1− F (
√
τ(ŝ− θ))) · d

(
1− F (

√
τ(ŝ− θ))

F (
√
τ ŝ)

)

=
1

2F (
√
τ ŝ)
·
[
(1− F (

√
τ(ŝ− θ)))2

]ŝ+σ/2
max{0,ŝ−σ/2}

=

{
1
2 , for ŝ ∈ [σ/2, 1 + σ/2]

1− F (
√
τ ŝ)

2 for ŝ ∈ [−σ/2, σ/2]

When p > 1/2, there is some ŝ ∈ [σ/2, α + σ/2] for which condition (AR) is
violated.1 It holds true only when ŝ < σF−1(2(1− p)). �

In the absence of viability test, an agent believes that half of the agents have
received higher signal than him and the other half has received lower signals than
him. PNV does not change this belief uniformly. For an agent who receives a low
private signal, PNV convinces him that there is a larger fraction of other agents
who receive higher signals than him. For example, consider the extreme case - an
agent who receives signal si = −σ/2. Upon receiving the PNV, he understands
that θ = 0 and all other agents will receive higher private signals. On the other
hand, PNV will not have an impact on the belief of an agent with private signal
si ≥ σ/2 regarding other agents’ signals. He always believes that 1/2 mass of
agents have received higher signal. Thus, the Condition (AR) is restrictive and
does not hold for all ŝ when p > 1/2.

It is important to point out that a small group size α does not affect agent
i’s belief about the private signal of agent j. As discussed in Section II, a small
group size α reduces the survival criteria. The combined effect of a sufficiently
small group size and the PNV makes condition (CI) satisfied.

Time varying fundamental

In our model, nature chooses the fundamental θ at time 0 and θ can only
decreases from time 0 to 1 if there are endogenous attacks. We show that sufficient
diffusion can dissuade the agents from attacking. In practice, the fundamental θ
can vary over time. In particular, if the agents are worried that the regime may
not survive because of some negative shocks in future, then persuading them not
to attack will be more difficult.

For simplicity, we work with uniform prior. Let Zt be the number of nega-
tive shocks that can arrive by time t. Zt follows a Poisson arrival process with

1Note that if agents receive private information s ≥ α+σ/2, he understands that θ ≥ α and thus the
regime succeeds even if all agents (with measure α) attack. In this case, the condition AR is redundant.
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parameter λ - i.e.,

P(Zt = n) =
(λt)n

n!
e−λt,

where λ is the arrival rate of shock. We assume that λ is sufficiently small.

Assumption A.1 e−λ > p.

For simplicity, we further assume that the shocks are large enough in size in the
sense that once a shock hits, the regime cannot survive no matter what agents do.
This means that when the regime passes the jth viability test, the agents know
that a shock has not arrived yet. Note that, given these assumptions, if no agent
attacks a viable regime from time 0 to 1, the probability the regime will survive
is greater than p. In other words, if Assumption A.1 is violated, even if all agents
decided not to attack, the probability that a viable regime will succeed is lower
than p, independent of the realization of θ. Hence, attacking is the dominant
action, regardless of agents’ information about the underlying fundamental θ and
past actions. Thus, there is no room for persuasion. Below, we show that viability
tests with sufficient frequency could persuade the agents not to attack under these
assumptions (whenever there is some room for persuasion).

Claim A.1 Under Assumption A.1, there exists α∗(eλp, τ) > 0 such that a dif-
fused policy J > 1

α∗(eλp,τ)
is persuasive.

PROOF:
We will show the induction statement Nj holds true as in Lemma 3. Then

following the same inductive steps as in Theorem 1 we can arrive at the result.
For any group j, the probability that no shock will arrive until 1 is

P(Z1 = Z(j−1)α) = P(Z1 − Z(j−1)α = 0) = P(Z1−(j−1)α = 0) = e−λ(1−(j−1)α)).

Consider the agent in group j who receives the cutoff signal ŝj (as in Lemma 3).
As before, he believes that the regime passes the jth viability test if θ ≥ θj−1

and it will survive the attacks from group j if θ ≥ Aj(ŝj , α, θj−1) (Aj is defined
as in Condition (Aαj )). The statement Mj is the same as in the paper. Under

Mj , no one in group j′ > j attacks a regime that passes the j + 1th viability
test (independent of the cutoff strategies played by agents in early groups), which
means a viable regime can only fail if the negative shock arrives after time jα.

Given Mj holds true, this means that if θ ≥ Aj(ŝj , α, θj−1), then in the absence
of any future shock, the regime will succeed. Therefore, after receiving PNV, he
believes that the regime will succeed with probability at least

P(No future shock) ·
P(θ ≥ Aj(ŝj , α, θj−1))|ŝj ,No future shock)

P(θ ≥ θj−1|ŝj ,No future shock)

= e−λ(1−(j−1)α)) · F (
√
τ(ŝj −Aj))

F
(√
τ(ŝj − θj−1)

) .
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Substituting the Aggregate Condition, we get

e−λ(1−(j−1)α)) ·

(
Aj−θj−1

α

)
F
(
F−1

(
Aj−θj−1

α

)
+ α
√
τ
(
Aj−θj−1

α

))
= e−λ(1−(j−1)α)) ·Gu

((
Aj − θj−1

α

)
, α

)
.

If α < α∗(eλp, τ), then Gu(x, α) > eλp for all x ∈ [0, 1]. Therefore, the agent
who receives the cutoff signal ŝj believes that the regime will succeed with prob-
ability strictly higher than

e−λ(1−(j−1)α)) · eλp = e(j−1)αp ≥ p.

Therefore, the marginal agent who receives the cutoff signal strictly prefers not
attacking. This implies that there is no cutoff equilibrium in which an agent in
group j will attack the regime that passes the jth viability test. Given MJ is
true, it follows that no agent will attack a viable regime as in Theorem 1. �

Due to the exogenous negative shocks, the regime could fail with a higher
probability. However, this claim shows that, if the probability of having such
shock is small, our diffused policy could still guarantee that, for any regime that
passes the viability test, there is no endogenous attack against a viable regime.

Arrival of new information

In our baseline model, we assume that the agents move sequentially, but they
do not know the past actions by other agents. Agents have some private infor-
mation about the underlying fundamental θ. It is the principal who dynamically
discloses some partial information based on the fundamental and the past attacks,
to dissuade the agents from attacking.

However, in practice, the agents may get some new private signals on their
own, while the principal runs the viability tests. This may make it harder to
persuade the agents to ignore their private information and follow the principal’s
recommendation. Below we investigate whether sufficient diffusion will still be
persuasive.

To keep it analytically tractable, we assume that the agents have improper
prior over θ and the noise ε follows a standard normal distribution. This satisfies
log-concavity, but the support is not bounded as we assumed in the main paper.
This assumption is conventional in the global game literature (See Morris and Shin
(2003) or Angeletos, Hellwig and Pavan (2006)). Under these two assumptions,
by replacing the F by Φ in the definition of G (see equation (G)), we can define
α∗Φ(p, τ) and prove the main result as we did in the paper.
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Recall the diffused policy can work as long as J > 1
α∗Φ(p,τ) , in which the critical

group size α∗Φ depends on the precision of private information τ . As we have
shown in the comparative statics in the discussion section, α∗Φ decreases with τ .
If new noisy private signals arrive over time, then the agents who move later will
be more informed about θ. With normal distribution of noises, the precision of
private information that consists of multiple pieces of noisy signals is just the
summation of the precision of each signal. If the arrival of new information
is independent of the diffused policy, then the principal can design the policy
targeting at the most informed agent, who has the highest precision of private
information τmax. A diffused policy with J > 1

α∗Φ(p,τmax) is persuasive.

The above argument is not necessarily true when the precision of the best
informed agent’s private information depends on the policy J . Below, we consider
a simple example and show that it will be more difficult to persuade the agents
if they become better informed about the underlying fundamental θ when the
policy becomes more diffused. Nevertheless, they can be persuaded.

Precision increases with diffusion.– Suppose that the principal adopts a dif-
fused policy J . Then, when the principal runs the jth viability test, for any j > 1,
each agent i receives an additional noisy private signal

sji = θ + σεji ,

where εji ∼ N(0, 1). Note that the first viability test does not disclose anything
new about the past attacks. We use the convention s1

i = si, where si is the initial
noisy private signal as in our baseline model.

Thus, the agents in group j receive j different noisy private signals. Given the
improper prior and Normal error, the updated belief of an agent i in group j is

θ|{sli}
j
l=1 ∼ N

(∑j
l=1 τs

l
i∑j

l=1 τ
,

1∑j
l=1 τ

)
= N

(
1

j

j∑
l=1

sli,
1

jτ

)
.

This shows that that the later groups are better informed about θ. More impor-
tantly, as the policy becomes more diffused (J increases and α decreases), the
precision of this private information can become as high as Jτ = τ

α .
For a policy to be persuasive without new arrival of private signals, we need α <

α∗Φ(p, τ). Hence, it is possible that α > α∗Φ(p, τα), which means, with new arrivals
of private signals, the group size may not be small enough to make G(x, α) > p
for all x ∈ [0, 1]. Thus, this type of diffused policy may no longer be persuasive
when agents have additional private information. But is this true for any α? If
so, then our main result will be violated.

In the above simple example, we can show there exists α̌(p, τ) such that a
diffused policy with J > 1

α̌ is persuasive.
To understand this, let us consider the last group who is the best informed
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one. Agents in group J have private information with precision τ
α . Following the

arguments in the proof of Lemma 3, we need the group size α to be sufficiently
small so that the agent in group J who receives the cutoff signal believes that

min
x∈[0,1]

x

Φ(Φ−1(x) +
√
α
√
τx)

> p

Recall that x =
AJ−θJ−1

α ∈ [0, 1]. The above probability is still decreasing in α.

Hence, it is easy to see that whenever α < (α∗Φ(p, τ))2,

min
x∈[0,1]

x

Φ(Φ−1(x) +
√
α
√
τx)

> min
x∈[0,1]

x

Φ(Φ−1(x) + α∗
√
τx)

= p.

Therefore, there exists α̌ = (α∗Φ)2 such that for any α < α̌, argument NJ is
true. For j < J , since the precision is smaller, α < α̌ can guarantee Nj is true.
Hence, we can apply the inductive argument from MJ and show that the diffused
policy J > 1

α̌ is persuasive.

In this example, when J increases, the precision of accumulated information
Jτ also increases at a rate proportional to J . One can see from the proof that as
long as the precision of the accumulated private information is growing at a rate
lower than J2 (or O(J2)), a sufficiently diffused policy (or a sufficiently high J)
can still be persuasive.

When the precision of private signal increases at a sufficiently high rate as more
diffused policy is adopted, then no matter how frequent the principal runs the
viability tests, the PNV cannot be effective enough to overcome the effect of more
precise private information. Below, we use a simple example to confirm this logic.

A Counter Example.– Consider the case in which the agents not only receive
additional information, but the additional information becomes more precise over
time. Let us assume that τ > 1 and the jth private signal precision is τ j .

sji = θ +
1√
τ j
εji ,

Then the updated belief

θ|{sli}
j
l=1 ∼ N

(∑j
l=1 τ

lsli∑j
l=1 τ

l
,

1∑j
l=1 τ

l

)
= N

(
ξji ,

1

τ̂ j

)
,

where τ̂ j ≡
j∑
l=1

τ l =
τ j+1 − τ
τ − 1

, and ξji ≡
j∑
l=1

τ j

τ̂ j
sji .

Following the same steps as in the previous example, we can say that agent in
group J who receives the cutoff signal believes that the regime will succeed with
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probability
x

Φ(Φ−1(x) + α
√
τ̂Jx)

.

It is easy to check that α2τ̂J = τ
τ−1

τJ−1
J2 is increasing in J when J is sufficiently

large (or J > 2
ln τ ).

Hence, unlike in the previous example, when J increases and thus α decreases,
the marginal agent becomes more pessimistic about the success of the regime.
Thus, for any critical group size α̌, we can find α < α̌ such that there exist some
cutoff equilibrium in which the marginal agent believes the regime will succeed
with probability p. Accordingly, one can construct a cutoff equilibrium with
positive attack against a viable regime. Hence, the arrival of new information in
the dynamic setting may break our result. Our result is only robust to the case in
which the new arrival of information (induced by a more diffused policy) would
not increase the precision of agents’ private information very rapidly.
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