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A Data and Summary Statistics

As in Haggag and Paci (2014), we first process the data by dropping data errors including
those resulting from electronic tests.

1. If the drop-off time is before the pick-up time in a trip, then we swap the drop-off time
and pick-up time: 0.01 percent of the trips.

2. If the same driver or the same car’s drop-off time is after the pick-up time of a subsequent
trip, then we set the drop-off time to be equal to the pick-up time of the subsequent
trip: 0.06 percent of the trips.

We flag trips that have any of the inconsistencies outlined below:

1. Trips that have non-positive distance or distance exceeding 100 miles: 0.65 percent of
the trips.

2. Trips that have non-positive ride duration or ride duration exceeding 180 minutes:
0.30 percent of the trips.

3. Trips with payment type recorded as “No Charge” or “Dispute”: 0.42 percent of trips.

4. When fare is too high or too low compared to distance and time and locations: 0.16 per-
cent of the trips.

5. Trip time as indicated by the pick-up and drop-off timestamps and the recorded ride
duration do not match: 0.20 percent of the trips.

6. Trip between Manhattan and JFK International Airport in under 5 minutes: 0.07 percent
of the trips.

7. Trip between Manhattan and JFK International Airport in under 10 miles: 0.06 percent
of the trips.

8. When a ride lasts fewer than ten seconds, or fewer than one minute and costs over $10:
0.68 percent of the trips.

9. When a ride lasts fewer than ten seconds, or fewer than one minute and costs over $10:
0.49 percent of the trips.

10. When average speed during a trip exceeds 80 miles per hour: 0.39 percent of the trips.
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11. Trips belonging to truncated shifts (those that start before the first day or end after
the last day of the year): 0.09 percent of the trips.

We define a shift as a sequence of consecutive trips that are not more than six hours apart
from each other (Haggag and Paci, 2014). We remove shifts with trips that have been flagged
with errors or shifts that are are outliers:

1. More than one car in the same shift: 0.40 percent of the shifts.

2. Shifts that are longer 18 hours: 1.12 percent of the shifts.

3. Shifts that are shorter than two hours: 2.31 percent of the shifts.

4. Shifts by drivers with under 100 rides on record (may be electronic tests sent by TLC
or the vendors): 0.12 percent of the shifts.

5. Shifts with fewer than three trips: 1.5 percent of the shifts.

We also remove trips for which we cannot obtain reliable weather data, those that are more
than 50 kilometers from the nearest weather station, consisting of 4.25 percent of the trips.
As many of the analyses require that trips are in successive order, we remove the whole shift
when one trip is questionable, and the process reduces our sample by 26.74 percent. After
cleaning out shifts, we remove drivers with under ten shifts, or an additional 0.1 percent of the
observations. We are left with a sample of 127 million observations from over 37,000 drivers
in over 5.8 million shifts. Finally, we restrict our sample to shifts that stay within the five
boroughs in NYC, and we remove outlier shifts in which minutes of work during the first hour
exceeds 55 minutes or minutes of work during the second hour is less than 10 minutes, thus
minimizing situations in which drivers work one long planned trip at the beginning of a shift
without continuing to work a regular shift, consisting of 94 percent of the remaining shifts.

The local linear regressions following Equation (TT) (e.g., column 1 of Table 1) puts
nonzero weight on 2,269,437 trips from 37,081 drivers. The regressions following Equations (F-
1) to (F-3) (e.g., columns 2 to 4 of Table 1) takes a two-fifteenths sample of trips to get
13,823,524 trips in 4,310,730 shifts for 37,513 drivers.

Appendix Table A1 provides summary statistics at the trip level and at the shift level for
all 127 million NYC taxi trips in 2013 in the cleaned data. Over 85 percent of all trips start
and end in Manhattan, and the median ride takes 10 minutes. Cabdrivers earn a median fare
of about $9.50, with 90 percent of fares falling below $22. We observe tips for the 55 percent
of fares paid using a credit card.

A driver collects an average of $2.48 in tips per trip, but there is substantial variation
in the rate of tipping as the scatterplot in Appendix Figure A4 shows. Given any fare
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between the minimum fare of $2.50 and $60, the figure shows the density of tips between
$0.50 and $20. We see higher concentrations at round numbers and fixed fractions of the
fare, between 10 percent and 35 percent. The vertical line at $54 fares corresponds to trips
between Manhattan and JFK international Airport, where we also see substantial variation
in tips. Around 65 percent of shifts contain a tip of at least $5, and 20 percent of shifts
contain a tip of between $10 and $20. Haggag and Paci (2014) provide further evidence on
variation in the rate of tipping.1

1For cabs that are equipped with credit-card machines from the largest vendor (accounting for 50 percent
of cabs in NYC), there is a discontinuity in suggested tips when the fare reaches $15; Haggag and Paci (2014)
exploit this discontinuity to show that default suggestions influence passenger tipping behavior.
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B Elasticity Estimates

In this section, we discuss how the wage profile can potentially lead to mechanical biases of
wage-elasticity estimates. To illustrate how elasticities can be biased in the positive direction,
consider a hypothetical driver who supplies labor inelastically, with some noise around the
optimal stopping time. If the wage increases throughout each shift, then a regression of log
hours on log wages will have a positive coefficient on log wages since longer shifts mechanically
have higher average earnings.

We provide suggestive evidence that this bias might be present in the setting of cabdrivers
in NYC by estimating elasticities on subgroups of shifts with different wage patterns. To
estimate wage elasticities, we follow the approach by Camerer et al. (1997) and Farber (2015),
regressing the logarithm of the total working hours in a shift on the logarithm of the average
earnings per hour in that shift, with time controls (indicators for day of week, week of
year, and federal holidays) and driver fixed effects. We also use average market wage of a
non-overlapping sample of drivers to instrument for a driver’s wage.

Appendix Figure A3 displays the pattern of average wages on weekdays and on weekends.
Though the patterns are similar across am shifts, they diverge significantly between 10 pm
and 1:30 am when the average wage is rising for weekend shifts but falling for weekday
shifts. As around half of the cabdrivers who work during the pm shift stop during this period,
this distinction may have a nontrivial impact on the elasticity estimates. For each type of
shift (day or night), we estimate the wage elasticity of weekday shifts and weekend shifts
separately, restricting the sample to drivers who appear in both groups to avoid compositional
differences in responsiveness to wage changes. The estimates in Appendix Table A2 confirm
that while wage elasticities across weekdays and weekends are similar for am shifts, they are
substantially higher during weekends for pm shifts, consistent with the pattern of increasing
average wages on weekend nights. Instrumental-variable estimates would imply striking
differences in behavior between weekdays and weekends for pm shifts, with an elasticity of
0.2825 on weekends and 1.2797 on weekdays. As the direction of these estimates coincides
with predictions based on daily wage patterns, our results suggest that within-day variation
in wages can lead to biases in elasticity estimates.
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C Model and Simulation

C.1 A Model of Daily Labor Supply

We present a neoclassical model of intertemporal utility maximization with time-separable
utility following Farber (2005) and formulate testable predictions about daily labor-supply
decisions.

An individual maximizes lifetime utility given by

U =
N∑
n=0

ρnu(cn, hn),

where ρ is the discount factor, cn is consumption in period n, hn is hours worked in period n,
and u(·) is a per-period utility function which is increasing in consumption, decreasing in
hours worked, and concave in both arguments. The lifetime budget constraint is given by

N∑
n=0

(1 + r)−1(yn(hn)− pncn) = 0,

where pn denotes the price of consumption, r denotes the interest rate, and daily earnings yn(·)
is an increasing function of labor supply. The first-order conditions for this intertemporal
maximization problem equate the marginal utility of lifetime income with the marginal utility
of consumption and the marginal disutility of effort per unit of wage.

The problem of maximizing lifetime utility is equivalent to that of maximizing a static
one-period objective function

v(hn) = λyn(hn)− g(hn, λpn), (1)

where the monetary equivalent of the disutility of effort g(·) is convex and λ is the lifetime
marginal utility of income along the optimal path. See the online appendix of Fehr and
Goette (2007) for a derivation following Browning et al. (1985).

Taking one period to be a shift, we model the decision of a driver to continue working or
to stop working at the end of each trip. As in Farber (2005, 2008, 2015), this discrete-choice
formulation can be thought of as representing a reduced form of a forward-looking dynamic
optimization model based on hours worked so far on the shift, expectations about future
earnings possibilities, and other variables that could affect preferences for work. To evaluate
whether to continue working, drivers must form expectations about the additional income
earned from and the additional time spent on a prospective trip. After completing t trips
in hint hours, driver i decides to end shift n if v(hint) exceeds the value v(hint+1) + εint of
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continuing to work for one more trip, where the error terms εint are independently drawn from
a distribution F . We define d∗int = v(hint+1) + εint − v(hint) as the latent value of continuing
for another trip and let dint = 1{d∗

int<0} indicate the decision to stop working.
A key prediction of the model is that there are no daily income effects: cumulative

daily earnings yint := yn(hint) do not affect the decision to end a shift. Taking a reduced-
form approximation for the value of continuing, we test the prediction that daily income
effects are inconsequential by expressing the probability that driver i ends shift t at trip n
non-parametrically as

Pr(dint = 1) = f(hint) + γ(hint)yint +Xintβ(hint) + µi(hint) + εint, (TT)

where f(·) represents the baseline hazard; X consists of controls that can potentially be
related to variation in earnings opportunities from continuing to work, such as location, time,
and weather; and µ absorbs differences in drivers’ baseline stopping tendencies. This additive
hazards model (Aalen, 1989) has an intuitive interpretation that the effect of each control
variable can be expressed in monetary-equivalent terms in the driver’s optimization problem.
In a proportional hazards model, by contrast, the effect of a unit increase in a covariate
would be multiplicative with respect to the hazard rate.

The model predicts that γj = 0 for all j, i.e., that the decision to end a shift is unrelated
to cumulative daily earnings.

C.2 Simulation Exercise

To evaluate various approaches for estimating stopping behavior, we conduct a set of empirical
Monte Carlo studies (Stigler, 1977; Huber et al., 2013). The data for our simulations consists
of a sample of over 3 million trips from 1,000 drivers. The first set of simulations considers
stopping decisions that do not depend on earnings. The second set of simulations considers
stopping decisions that depend on cumulative daily earnings but not on the timing of earnings.
We find that the non-parametric approach in the present paper produces the expected result
across all of the simulations, whereas alternative approaches from the literature may yield a
significant positive or negative effect of earnings (and the timing of earnings) on stopping.

We follow the notation in Appendix C.1, where dint denotes the decision to stop working,
yint denotes cumulative earnings, and hint denotes the number of hours driver i has worked
at the end of t trips in shift n. Letting Φ denote the standard normal cumulative distribution
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function, we consider regression equations of the following forms:

Pr(dint = 1) =
∑
j

[
(αjhint + γjyint + µi,j)1{hint∈Hj}

]
+ εint (TT)

Pr(dint = 1) = Φ(αhint + γyint + µi) (F-1)

Pr(dint = 1) = Φ
∑

j

αj1{hint∈Hj} + γyint + µi

 (F-1*)

Pr(dint = 1) = Φ
∑

j

αj1{hint∈Ĥj} +
∑
j

γj1{yint∈Ŷj} + µi

 (F-2)

Pr(dint = 1) = Φ
∑

j

αj1{hint∈Ĥj} +
∑
j,`

δj,`1{hint∈Ĥj}1{yint∈Ŷ`} + µi

. (F-3)

These correspond to the analogous equations in the main text, except with the control
variables omitted. We take Hj to partition the shift into 10-minute intervals so that Equa-
tion (TT) above corresponds to the analogous specification in the main text with uniform
weights over a 10-minute window of time during the shift as Section II.A discusses. Equa-
tion (F-1) resembles the probit model from Farber (2005) and Crawford and Meng (2011),
in which income and hours are constrained to enter linearly. Equation (F-1*) relaxes the
constraint by allowing for a non-parametric relationship between hours and the probability of
stopping. Equation (F-2) corresponds to the alternative specification in Farber (2005) when
we take Ĥ and Ŷ to partition the shift at {180, 360, 420, 480, 540, 600, 660, 720} minutes
and {25, 50, 75, 100, 125, 150, 175, 200, 225} dollars, respectively. The main specification in
Farber (2015) corresponds to Equation (F-2) and the more flexible specification in Farber
(2015) corresponds to Equation (F-3) (both estimated as linear probability models) when we
take Ĥ and Ŷ to partition the shift at {180, 360, 420, 480, 540, 600, 660, 720, 780} minutes
and {100, 150, 200, 225, 250, 275, 300, 350, 400} dollars, respectively.

We consider the following stopping rules in which decisions do not depend on earnings:

Simulation 1: End the shift with certainty at the end of a trip if hours exceeds 9.5, and
stop with independent probability 0.05 at the end of any given trip that ends before
9.5 hours.

Simulation 2: Driver i ends the shift with certainty at the end of a trip if hours exceeds a
driver-specific level of hours H̄i, and stops with independent probability 0.05 at the
end of any given trip that ends before H̄i hours, where we define H̄i as one less than
the mean hours across all of driver i’s shifts in the data.

Appendix Table A3 reports the estimated income effects in both simulations from Equa-

10



tion (TT), from Equations (F-1) to (F-3) estimated as linear probability model, and from
Equations (F-1) to (F-2) estimated as a probit model. We refer to the specification in Farber
(2005) as F-2a, and the specification in Farber (2015) as F-2b. Equation (TT) produces the
expected result in both simulations that we cannot reject the null hypothesis that the income-
related coefficients are jointly zero. Using Equation (F-1), Equation (F-2), or Equation (F-3)
leads to the incorrect conclusion in both simulations that income significantly influences the
probability of stopping, even though the data are generated precisely so that income has
no effect. By controlling flexibly for hours in Equation (F-1*), we cannot reject the null
hypothesis of no income effects in Simulation 1 since the probability of ending a shift as a
function of hours is generated to be identical across drivers; in Simulation 2, however, we
incorrectly reject the null hypothesis.

We repeat the exercise 1,000 times for each simulation. While the parametric specifications
overwhelmingly produce false positives by incorrectly rejecting the null hypothesis of no
income effects, Equation (TT) rejects this null hypothesis at the x percent significance level
about in about x percent of simulations for all x ∈ (0, 1). Appendix Figure A5 shows this
by plotting the distribution of p-values from the non-parametric specification, and we find a
uniform distribution as expected.

Next, we extend Equation (TT) to allow for the probability of stopping to depend on the
timing of earnings, analogous to Equation (1):

Pr(dint = 1) =
∑
j

[(
αjhint + γj,k

∑
k

yint,k + µi,j

)
1{hint∈Hj}

]
+ εint (TT∗)

We simulate a stopping rule in which income does affect stopping decisions, but the
within-day timing of income is irrelevant (i.e., money is fungible within the shift).

Simulation 3: End the shift with certainty at the end of a trip if hours exceeds 9.5, and
stop with independent probability 0.05 · yint at the end of any given trip that ends
before 9.5 hours, where yint denotes cumulative daily earnings.

Appendix Table A4 reports the estimated effects of earnings in each hour from Equa-
tion (TT). An F -test rejects the hypothesis that the income-related coefficients are jointly
zero (i.e., γj,k = 0 for all j, k) but fails to reject the hypothesis that the timing of income is
irrelevant (i.e., γj,k1 = γj,k2 for all j, k1, k2).
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D Reduced-Form Analysis and Robustness

D.1 Variation in Earnings and Instrumental-Variables Approach

This section discusses the sources of variation in earnings. After controlling for time of day,
location, and weather, about 80 percent of the residual variation in cumulative daily earnings
can be accounted for by variation in distance (which influences the meter fare), tips, airport
fares (fixed rate between Manhattan and JFK), and the number of trips (fixed cost per
ride). A positive correlation between the residual variation and effort would challenge the
interpretation of the effect of additional accumulated earnings on the probability of stopping
as evidence of a daily income effect. Effort can arise in various forms. Drivers may increase
effort in their interactions with riders to influence tips, or they may drive more aggressively
to cover greater distance. They may also choose to pursue strategies to pick up different
types of passengers, such as those who might be heading to the airport or those who might
be heading a shorter distance.

First, although these factors may not be exogenous to the driver’s stopping decision,
we can assess the role of effort by analyzing whether these factors operate as intervening
pathways connecting additional accumulated income to stopping decisions. We find that
adding any subset of these variables as control variables in the reduced-form stopping model
does not change the estimated magnitude of the relationship between accumulated earnings
and quitting. If these sources of variation in earnings constitute different measures of effort
and the quitting response to additional earnings operated through the effort channel, then
we might expect that controlling for them would reduce the estimated effect of additional
earnings on quitting.

Second, we isolate variation in income that arises due to differences in driving speed. We
instrument for accumulated earnings in each hour using the average driving speed of other
drivers’ that pick up a passenger from the same NTA in the same quarter of an hour, which
has a sufficiently large F-statistic for the first-stage regressions. We restrict to trips that stay
within Manhattan, where variation in driving speed plausibly arises due to traffic conditions
unrelated to the driver’s decisions to exert additional effort. Appendix Table A9 presents
both least-squares estimates and IV estimates. Even though the baseline estimates (Table 1)
contain an extensive set of controls for location (195 NTA fixed effects), the least-squares
estimates on the Manhattan subsample (Appendix Table A9 column 1) confirms that income
effects do not only appear when drivers end a trip in one of the outer boroughs (e.g., near
the garage where they return the cab or their home). The IV estimates (Appendix Table A9
column 2) corroborate the finding that earnings in the most recent hour significantly increase
the probability of ending a shift.
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D.2 Learning

Within-day learning

The results in Figures 3 and 4 suggest that drivers react differently to money earned in
different hours of the shift, which we interpret as a violation of fungibility. Differences in
behavior due to timing of payment could also result from learning. To explain the timing
pattern with a learning story, we would have to assume that drivers tend to ignore recent
experiences in the market and instead rely on earnings earlier in the shift to predict future
opportunities. The data do not support the view that more recent market conditions are less
relevant for predicting future market conditions (see Appendix Figure A7).2 Instead, a more
plausible learning effect would bias the results away from finding stronger effects on stopping
in response to more recent earnings. Insofar as within-day learning influences behavior, the
estimated violation of fungibility understates the true effect.

Across-day learning

In the model from Appendix C.1, earnings on one day convey no information about earnings
on another day, so intertemporal optimization is equivalent to maximization of a static
one-period objective function. If higher earnings correlate with plentiful opportunities on
the next day, then a driver may decide to work less on one day to conserve energy to work
more on the next day. The insignificant autocorrelation in the transitory component to daily
wages in Appendix Figure A8 suggests little scope for this type of intertemporal substitution
to drive the relationship between earnings and quitting.

In a related setting, Agarwal et al. (2015) find that daily income distributions for Singa-
porean cabdrivers are independent of income shocks in the previous days, which suggests
that intertemporal substitution does not play an important role.

D.3 Liquidity Constraints

Liquidity constraints often pose a challenge for identifying income effects. Johnson et al.
(2006) and Parker et al. (2013), for example, find that household consumption exhibits excess
sensitivity to small changes in wealth due to fiscal stimulus, but their results suggest an
important role for liquidity constraints. Our work, by contrast, detects persistent income
effects in labor-supply decisions at a high frequency, which limits the plausibility of an
explanation based on liquidity constraints. Dupas et al. (2019) argue that bicycle-taxi drivers

2We compute an autocorrelation using market wages, as driver-specific wages are endogenous to their
stopping decisions.
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in Kenya set income targets as a commitment device to exert enough effort to meet daily
needs, also pointing toward liquidity constraints. Such explanations in our setting would
necessitate a consistent inability of NYC cabdrivers to smooth consumption across days.
Camerer et al. (1997) argue that this seems unlikely because almost all lease-drivers pay their
weekly fees in advance, and fleet drivers pay their daily fees at the end of the day or can pay
late. The result that drivers react differently to earnings accumulated over different hours of
the shift would be particularly difficult to rationalize based on liquidity constraints.

Although such effects are less plausible in our setting, we replicate our analysis on a
sample of drivers for whom liquidity constraints likely do not bind. Specifically, we estimate
the stopping model restricted to owner-drivers, as such drivers possess enough borrowing
power or wealth to purchase an independent medallion to operate a taxicab.3 Although our
data do not include information on ownership, we classify a driver as an owner-driver if (i) the
driver operates exactly one cab, and (ii) no other driver shares that cab. Our classification
yields a subsample of owner-drivers, as we exclude those who lease to another driver.

The estimates in column (3) of Appendix Table A7 suggest that liquidity constraints do
not confound the income effects we observe. In fact, owner-drivers exhibit stronger income
effects. This is also consistent with Appendix Table A6, which shows stronger income effects
for drivers with more flexibility in their hours decisions.

D.4 Experience

To investigate the effects of experience, we separate drivers into two groups: a less experienced
group of 2,361 drivers who first appear in the data in April 2013 and drive at least 50 shifts
until December 2013, and a more experienced group of 32,551 drivers who first appear in the
data before April 2013.

Appendix Table A10 uses the across-driver definition of experience above and presents
evidence against the hypothesis that our estimated positive effect of accumulated earnings on
quitting represents the behavior of inexperienced drivers. In fact, the point estimates appear
larger for the more experienced group of drivers.

Appendix Table A11 provides a complementary analysis using an within-driver definition
of experience to analyze how the income effects vary with experience for the less experienced
drivers. We define experience in three different ways: the number of months since the driver
started, the number of shifts since the driver started, and an indicator variable which is equal
to one for half of each driver’s shifts, those that occur later in the year. We do not find
consistent evidence that income effects diminish as drivers begin to gain experience, though

3The average price of an independent medallion in 2013 was approximately $967,000. Source: http:
//www.nyc.gov/html/tlc/downloads/pdf/2014_taxicab_fact_book.pdf.
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the estimates are noisy due to the small sample size. While we also find that the income effect
and recency effect do not decrease over time for the more experienced group, we exclude
them from our analysis in Appendix Table A11. Prior work documents significant learning
among cabdrivers early in their experience profile, with productivity differences between new
and experienced drivers vanishing after 17 to 62 shifts (Haggag et al., 2017). Thus, finding
no effect for the more experienced group may mask learning effects that arise early in the
experience profile.

D.5 Measurement of Hours

Observability of shift ending

Our empirical approach reveals a decrease in labor supply under the assumption that all shifts
end as soon as the driver drops off the last passenger. However, the data do not distinguish
between a driver who ends a shift immediately after dropping off their last passenger and a
driver who spends time searching for another fare unsuccessfully. The conclusion that drivers
respond to higher cumulative earnings with a reduction in labor supply might be overstated
if drivers spend relatively more time searching before quitting in high-income shifts.

Explaining the patterns in our data by the fact that drivers may spend unrecorded
amounts of time searching before quitting would require that finding a passenger is more
difficult at the end of a shift in which the driver earns more. However, a high-income shift is
more likely to be one in which the driver generally spends less time searching for passengers.
The negative correlation between the share of working hours spent searching for passengers
and total earnings in a shift provides suggestive evidence that drivers are unlikely to spend
relatively more time searching for a passenger before ending a shift when earnings are high.
As an alternative measure of the difficulty of searching at the end of a shift, we use the
amount of time that the driver spent searching for the last passenger. Indeed we find a
similar pattern: drivers spend an average of 11.2 minutes searching for their last passenger
among shifts in the bottom decile of earnings, compared with only 10.1 minutes among shifts
in the top decile. The result is similar if we measure the difficulty of finding a passenger after
a given trip by computing the number of minutes spent searching averaged across drivers
whose trips end in the same minute.

The evidence suggests that the income effect does not emerge from the fact that our
dataset does not report the amount of time that a driver spends working at the end of a shift.
If anything, drivers may spend relatively more minutes working after dropping off the last
passenger on a low-wage shift, which would imply that the reduction in labor supply that we
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observe in response to higher cumulative earnings underestimates the true income effect.4

Taking breaks

Appendix Figure A9 classifies breaks as long periods of time without a passenger and presents
estimates of the stopping model from Equation (1) with additional controls for minutes spent
on break. Farber (2005) uses the following thresholds to classify waiting times as breaks: 30
minutes between Manhattan fares; 60 minutes between non-airport, non-Manhattan fares;
90 minutes between airport fares. We test the sensitivity of the income effect by uniformly
adjusting the thresholds of waiting time for defining breaks by 15 minutes in either direction.
Appendix Figure A9 verifies that the results remain unchanged using these definitions of
breaks.

Instead of directly controlling for break time as in Farber (2005) (e.g., if taking breaks
constitutes an outcome of earnings), we can re-estimate the stopping model using breaks
as the dependent variable. A decrease in the probability of taking a break in response to
additional earnings might lead to concerns that the stopping model incorrectly attributes
the effect of hours worked to the effect of income, but the evidence points against this. We
find that an additional 10 percent in earnings corresponds to an increase of 0.0072 to 0.0756
percentage points in the probability of taking a break at 8.5 hours. We find an increase in
the probability of taking a break at earlier hours of the shift and no significant change in the
probability of taking a break at later hours of the shift.

4The concern that shift ending times are unobservable might be more relevant for elasticity-based analyses
of daily labor-supply decisions, since the fact that drivers spend more unrecorded minutes searching for
passengers during shifts with lower average wages could bias elasticity estimates in the positive direction.
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E Additional Results for Structural Estimation

E.1 Calibration of Risk Aversion

This section obtains a conservative estimate of the degree of risk aversion over annual income
implied by the daily income effect. We define utility over annual income as u(I) = I1−ρ

1−ρ . Our
structural estimates imply a decrease in the marginal utility of income of at least 50 percent
from the beginning of a day to the end of the day (see Table 3). Taking a cabdriver’s annual
earnings to be $25,000 and daily earnings to be $150, we obtain 25150−ρ

25000−ρ = 1
2 or ρ ≈ 115. This

likely understates the degree of risk aversion required to rationalize our results. First, with
average net earnings in our sample around $280 and leasing fees around $130, daily earnings
would likely fall below $150 due to gasoline costs. Second, net annual earnings likely exceed
$25,000. Third, the drop in the marginal utility of income is closer to 60 percent. Each of
these factors would lead to an increase in our estimate of ρ.

E.2 Jump at the Target

This section provides suggestive evidence that drivers use an updated income target which
incorporates more information from earlier in the shift. We estimate the reduced-form
stopping model allowing for jumps at the shift-level expected income target Ir0 and targets
that differentially incorporate gains and losses accumulated in the earliest several hours or
latest several hours of the shift. Across specifications, we find that the probability of stopping
significantly increases when income passes the target that updates more in response to earlier
experiences.

In an analysis based on Table 3 from Crawford and Meng (2011), Appendix Table A12
presents the estimated effect of earnings or hours exceeding their targets on the probability of
ending a shift. Let I0 denote the daily-level income target from (Crawford and Meng, 2011).
Let ∆4 denote the difference between realized and expected earnings in the first four hours of
the shift, and let ∆8 denote the difference between realized and expected earnings in the first
eight hours of the shift. Define updated reference point Ri,j = I0 + i ·∆4 + j · (∆8 −∆4). We
consider various cases: i, j ∈ {0, 50, 100}, i, j ∈ {0, 33, 66, 100}, i, j ∈ {0, 25, 50, 75, 100}, and
i, j ∈ {0, 10, 25, 50, 75, 90, 100}. We denote Iearly>late = ∑

i>j Ri,j and Iearly<late = ∑
i<j Ri,j.

Across all specifications, we find Iearly>late significantly exceeds both I0 and Iearly<late,
providing evidence that points towards an updated reference point that incorporates earlier
earnings to a greater extent than later earnings. By contrast, we find a significant effect for
Iearly<late and I0 in only one out of four specifications. In addition, we find a statistically
significant coefficient on cumulative earnings in all specifications, suggesting that the significant
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effect of earnings may not arise entirely due to whether income is above or below the target.
The effect of passing the updated income target Iearly>late on the probability of stopping
ranges between one-third and three-fourths of the effect of passing the hours target, in line
with the relative comparison between the income and hours targets in Table 3 of Crawford
and Meng (2011), although we find smaller magnitudes for both.

E.3 Separating Gain-Loss Utility from Consumption Utility

Based on Crawford and Meng (2011), given choices to continue or stop working after each
trip, we define

a1,it = 1{Ii,t+1≤Iri,t}
(
Ii,t+1 − Iri,t

)
− 1{Ii,t≤Iri,t}

(
Ii,t − Iri,t

)
a2,it = 1{Ii,t+1>Iri,t}

(
Ii,t+1 − Iri,t

)
− 1{Ii,t>Iri,t}

(
Ii,t − Iri,t

)
b1,it(ν) = 1{Hi,t+1≤Hr

i,t}
(
Hν+1
i,t+1 − (Hr

i )ν+1
)
− 1{Hi,t≤Hr

i,t}
(
Hν+1
i,t − (Hr

i )ν+1
)

b2,it(ν) = 1{Hi,t+1>Hr
i,t}
(
Hν+1
i,t+1 − (Hr

i )ν+1
)
− 1{Hi,t>Hr

i,t}
(
Hν+1
i,t − (Hr

i )ν+1
)

and obtain likelihood functions of the form

Φ
(

(1− η + ηλ)a1,it + a2,it − (1− η + ηλ) ψ

1 + ν
b1,it(ν)− ψ

1 + ν
b2,it(ν)

)
. (2)

The general formulation allows for separate coefficients of loss aversion over income and hours,
as in Appendix E.6 and column (2) of Appendix Table A14. The case ΛI = ΛH corresponds
to the loss-aversion model with the same coefficient of loss aversion on each dimension of
utility, as Kőszegi and Rabin (2006) suggest. The case ΛH = 0 corresponds to having loss
aversion only over income, as we discuss in the main text (e.g., Table 3).

We now discuss why the relative importance of gain-loss utility η and the degree of loss
aversion λ are not separately identified. The choice to continue or stop does not change the
reference point relative to which the decision maker assesses concurrent gains or losses (note
that both a1,it and a2,it depend on the same Irt ). In other words, the decision maker uses a
reference point inherited from past behavior, as in the case of the choice-acclimating personal
equilibrium (CPE) from Kőszegi and Rabin (2007). Thus, despite adding two parameters
to Equation (3), the model consists of only one additional degree of freedom since behavior
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depends only on the ratio between utility from losses and gains, namely

Λ = (1− η) + ηλ

(1− η) + η

= 1 + (λ− 1)η.

As Barseghyan et al. (2013) note, although the model contains two parameters λ and η, these
parameters always appear as the product η(λ− 1) under CPE.

E.4 Identification of Structural Parameters

In a model without reference dependence, the first-order condition for the optimal stopping
problem would state that a driver stops working if E[w] < ψHν or logw < logψ + ν logH.
This equation highlights that variation in wages and variation in work hours both contribute
to the identification of ν. It also highlights that the two moments react differently to changes
in the two parameters. For example, the marginal effect of an increase in w on ν depends on
H, but not the effect of an increase in w on ψ. Adding reference dependence over income
changes the marginal benefit of continuing (the left-hand side of the first-order condition
above) when accumulated earnings exceeds the target. This observation clarifies why a larger
effect of accumulated earnings on quitting would tend to increase the estimate of Λ but also
decrease the estimates of ψ and ν. The data appear to exhibit enough independent variation
in the timing of income that the ratio between the effect of recent earnings to earlier earnings
primarily identifies θ.

Appendix Figure A10 elucidates the link between the structural parameters and the
sources of variation in the data. Each panel plots the relationship between a moment of the
data and the parameters of the structural model. Each parameter varies within one standard
deviation of its estimated value (i.e., one unit on the horizontal axis corresponds to one-tenth
of a standard deviation).

We estimate the parameters jointly using maximum likelihood. We find a strong link
between the structural parameters and the associated moments of the data, providing
important sources of identification.

Panel (a) shows how increasing the disutility of effort ψ parameter would increase the
effect of working for an additional 10 minutes on quitting. Increasing ν would also lead the
model to predict a stronger relationship between work hours and quitting. Panel (b) shows
how increasing the elasticity parameter ν would weaken the decrease in stopping probability
in response to a 10 percent increase in expected wages. An increase in ψ would also lead the
model to predict a weaker relationship between expected wages and quitting. Panel (c) shows
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how increasing the coefficient of loss aversion Λ would increase the effect of a $10 increase
in accumulated earnings on the probability of stopping. An increase in ψ or ν predicts
the opposite. Panel (d) shows how increasing the speed of adjustment would weaken the
difference between earnings accumulated at different times.

E.5 Alternative Specification of the Income Target

This section considers various alternative specifications of the reference point based on a
one-period lag of expectations under different definitions of the lag. The specifications in
Appendix Table A13 range from a reference point that does not update to a reference point
that updates after each trip. The fixed reference point (column 1) represents a model in
which the reference point updates sufficiently slowly that it does not vary. For estimation, we
take the fixed reference point to equal the driver’s average daily earnings across all shifts, as
Camerer et al. (1997) propose. The Crawford and Meng (2011) reference point (column 2)
represents drivers’ expectations at the end of the previous day. Since these reference points
do not update within a shift, neither can account for differential quitting responses based on
the within-day timing of earnings.

To allow for within-day updating, we consider a reference point defined as the expectations
held at the end of the previous hour or the previous trip in columns (3) and (4). We compute
these expectations based on a regression similar to Equation (1) with the outcome defined
as shift total income. Our estimate of expected earnings therefore takes the driver’s own
behavioral responses into account, as in the Kőszegi and Rabin (2006) reference point based
on rational expectations.

Appendix Figure A11 shows that the reference points based on lagged expectations of
earnings predict a pattern of income effects that do not match the observed recency pattern
in the data. Defining the reference point as the one-period lag of expectations produces a
stark contrast between the most recently accumulated earnings and any earlier earnings. This
occurs because the updated reference point incorporates fully the latter but not at all the
former.

For the case of a reference point that represents expectations held at the end of the
previous trip, we find a strong effect of earnings accumulated in the most recent hour but
little effect of earnings accumulated in previous hours. Likewise, for the case of a reference
point that represents expectations held an hour earlier, we find a strong effect of earnings
accumulated in the past hour and little effect of earnings accumulated prior to that. Note that
the penultimate hour shows an intermediate effect, which comprises an average of a strong
effect for recent earnings and a weak effect for earlier earnings. This also occurs if we vary
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the definition of the lag. For example, if we define lagged expectations as the expectations
held by the driver three hours earlier, we find equally strong effects of earnings in the most
recent three hours (because the reference point has not adjusted to incorporate any of those
additional earnings). We also find an intermediate effect in one of the hours in between and
little effect of earnings in the earlier hours.

With the one-period lagged expectation formulation of the reference point, the model
predicts fungibility between all earnings accumulated since the time when the reference point
updates. This occurs because the one-period lagged expectation is a discrete approximation
to how the reference point adjusts. As the data instead show a gradual relationship between
the timing of additional earnings and the probability of ending a shift, our results highlight
that earlier lags remain important for explaining the recency pattern. The adaptive reference
point, which consists of a weighted average of multiple lagged values of expectations, predicts
such a gradual relationship as Figure 3 exhibits.

E.6 Model with Hours Targeting

The Kőszegi and Rabin (2006) model posits that decision makers experience loss aversion
relative to each dimension of utility. Thus, their formulation predicts that drivers experience
losses from working longer than their “hours target,” analogous to the losses from earning
less than their “income target.”

Following Crawford and Meng (2011), the objective function of the driver takes the form

vLA(It, Ht) = (1− η)v(It, Ht) + η
∑

x∈{I,H}
nx(xt |xrt ), (3)

where Ir and Hr denote the reference levels for income and hours (i.e., the driver’s expected
earnings and hours for the shift), η determines the relative weight on gain-loss utility, and
the gain-loss utility is given by

nx(x |xr) =
(
1{x>xr} + λx1{x<xr}

)
(vx(x)− vx(xr)),

where λx ≥ 1 parameterizes the degree of loss aversion over each dimension of utility. Based
on the discussion in Appendix E.3, we define the coefficient of loss aversion as Λx = 1−η+ηλx.

Appendix Table A14 column (1) presents results from a specification with a common
coefficient of loss aversion for income and hours (ΛI = ΛH). Column (2) relaxes the assumption
of a constant coefficient of loss aversion to allow for a different coefficient of loss aversion on
each dimension (ΛI for income and ΛH for hours). The estimates reveal a significant degree of
loss aversion and similar magnitude for both dimensions. The speed of adjustment is similar
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to (but slightly faster than) the estimate in Table 3 for the model without loss aversion over
hours (ΛH = 0).

If money constitutes news about future utility rather than contemporaneous consumption
utility, then loss aversion over income can play a less pronounced role (Kőszegi and Rabin,
2009). Under the view that our estimate of loss aversion over income is attenuated by news
utility, the results provide an even stronger demonstration of reference dependence, though
a better understanding of the relative importance of loss aversion over monetary outcomes
remains a topic for future research.

E.7 Stochastic Reference Points and Diminishing Sensitivity

The model of loss aversion in Section III.A makes two simplifying assumptions: first, utility
is piecewise linear in gains and losses, and second, the targets Ir and Hr represent point
expectations.

Allowing for diminishing sensitivity corresponds to an objective function that exhibits
convexity in losses and concavity in gains. We use the power function

n(x |xr) =
(
1{x>xr} + λ1{x<xr}

)
(vx(x)− vx(xr))ζ ,

where we follow Hastings and Shapiro (2013) by calibrating the parameter ζ to 0.88 (Tversky
and Kahneman, 1992). Table 4 column (4) re-estimates the loss-aversion model with dimin-
ishing sensitivity. This specification produces a similar estimated coefficient of loss aversion
and speed of adjustment of the reference point. Overall we find that relaxing the simplifying
assumptions in the loss-aversion model does not change the conclusions about the importance
of loss aversion and adaptive reference points.

A stochastic reference point would consist of the distribution of earnings and hours for
each shift. We approximate this by defining the stochastic reference point to be a normal
distribution with a mean that updates as in Equation (5) and a variance given by the
parameter ς. Table 4 column (5) reports an estimated standard deviation of the income
target of about $38. This specification yields a lower disutility of effort and higher elasticity
parameter. We also find a greater degree of loss aversion and correspondingly faster speed of
adjustment of the reference point.
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F Salience Model

F.1 Salience

We adapt a model of salience based on Bordalo et al. (2015) to daily labor-supply decisions.
The model combines two elements: (i) an evoked set determines the choice context and hence
the salience of each attribute (income and hours), and (ii) decision makers place greater
weight on the more salient attribute.5

In this model, context influences decisions by distorting the relative weights that a driver
places on income and leisure. A decision problem brings to mind an evoked set of options,
each with an associated level of availability. The availability-weighted average of the options
comprising the evoked set determines the normal levels of income and hours. The extent to
which an attribute varies within the evoked set relative to the normal level determines the
salience of that attribute. Drivers place greater weight on the more salient attribute—income
or hours—of their decision problem. In describing the components of the model more formally,
we start with the salience distortions, taking the normal levels of income and hours as given,
and then address how to determine the normal levels.

The objective function consists of a weighted sum

vS(It, Ht) =
∑

x∈{I,H}

w(σ(xt, xnt ), δ)∑
y∈{I,H}w(σ(yt, ynt ), δ)vx(xt), (4)

where the relative weight w(σ(x, xn), δ) on the utility for a given attribute increases in the
salience σ(x, xn) of that attribute, xn denotes the normal level of the attribute, and δ ≤ 1
parameterizes the degree of distortion. We adopt the continuous salience weighting function
from Bordalo et al. (2013):

w(σ(x, xn), δ) = [1 + σ(x, xn)]1−δ

2 ,

where the case δ = 1 embeds the neoclassical model without context dependence, and the
salience function σ(·, ·) is a symmetric and continuous function that satisfies ordering and
diminishing sensitivity conditions. The ordering condition requires that moving an attribute
further apart from the normal level increases its salience. Diminishing sensitivity expresses
the idea that increasing the normal level renders a given difference between an attribute and

5Bordalo et al. (2012) develop a theory of choice under risk in which decision makers overweight states
that are more salient. Bordalo et al. (2013) extend this concept to riskless choice among goods with multiple
attributes (e.g., quality and price), where consumers place more weight on more salient attributes, but take
the evoked set as exogenous. Our formulation of salience follows Bordalo et al. (2015) which models the
evoked set explicitly.
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the normal level less salient.6 Appendix F.2 discusses the importance of these two properties
for explaining the pattern of income effects. For a continuous and symmetric salience function
satisfying these properties, Bordalo et al. (2012, 2013) suggest

σ(x, xn) = |x− xn|
|x|+ |xn| ,

which Hastings and Shapiro (2013) also use in empirical work.
To complete the description of the model, we discuss how to specify the evoked set and

availability, which determine the normal levels of income and hours. We assume that the
evoked set consists of the choices, stop or continue, and that the availability at of stopping
at the end of trip t depends on how much more the driver must earn to reach the income
target.7 We then define the normal level of an attribute as the availability-weighted average
of the level of that attribute from stopping or continuing:

In = atIt + (1− at)It+1

Hn = atHt + (1− at)Ht+1

where at increases in It, decreases in Irt , and lies between 0 and 1. Intuitively, as earnings
accumulate up to and beyond the income target, the decision to stop becomes more typical
and thus comes to the top of the driver’s mind. We assume that the availability of stopping
corresponds to the predicted probability of ending a shift based on It and Irt from a logistic
regression. We isolate the channel by which earnings influences stopping behavior through It
and Irt , though additional factors could could be included as well.

The idea that choice context influences how decision makers weight different attributes of
a decision problem appears in a number of recent economic models (e.g., salience (Bordalo et
al., 2013), focusing (Kőszegi and Szeidl, 2012), and relative thinking (Bushong et al., 2016))
which take the choice context as a degree of freedom called the evoked set, consideration
set, or comparison set. These models conceptually distinguish between the choice set and
the evoked set but equate them when deriving predictions. If the normal levels were an
unweighted average of the elements in the evoked set as in (Bordalo et al., 2013), then
assuming that the two sets coincide would fail to produce the pattern of income effects from
Section II because doing so imposes fungibility: in such a model, the behavioral distortion
only depends on cumulative earnings, independent of the timing of earnings. One way to

6Note that the salience model defines diminishing sensitivity relative to zero, whereas the loss aversion
model refers to diminishing sensitivity relative to the reference point.

7This assumption is based on Bordalo et al. (2015), who posit that availability is a map from past
experiences and objective probabilities into a weight that reflects what comes to the decision maker’s mind.
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proceed would be to make ad hoc assumptions about which additional options enter the
evoked set.8 Instead, we assume the evoked set consists of the choices stop and continue, but
we put structure on the components of the evoked set using a notion of availability based on
Bordalo et al. (2015).

F.2 Adaptive Reference Points

In this section, we discuss how the salience model can potentially account for the evidence in
Section II. The predictions depend crucially on the reference level. As a starting point, we
take each driver’s reference level for each shift to be their rational expectations of income
and hours for that particular shift. Under this view, the models of expectations-based loss
aversion and salience yield daily income effects but treat money as fungible within the shift.
By allowing for reference points that adjust within a shift, both models can generate the
violations of fungibility necessary to explain the timing pattern of the income effect.

The model based on Bordalo et al. (2015) generates daily income effects through the
diminishing-sensitivity property of salience: the driver perceives the value of an additional
fare less intensely at higher levels of daily earnings. Each of these models, despite generating
income effects, treats money as fungible within the shift. Given the static reference point,
the behavioral distortions depend on cumulative daily earnings in a shift, without scope for
recent earnings to have a stronger influence on stopping decisions.

Suppose reference points adjust instantaneously to new information about how much the
driver will earn by the end of the shift. In this case, if hourly earnings exhibit no substantial
within-day autocorrelation, the driver updates expectations about earnings for the shift by
immediately incorporating any difference between realized and expected earnings. While the
salience model continues to predict income effects due to diminishing sensitivity, no timing
pattern emerges because instantaneous adjustment does not create a distinction between
earnings at different times.9

Stronger income effects in response to recent earnings requires a slow-adjusting reference
point. Under loss aversion, the gain-loss component of utility depends on the difference
between earnings and its reference level, and the reference point adjusts to a lesser extent
in response to more recent earnings. The same applies to availability in the salience model,

8To explain observed gasoline-grade choice in 2006–2009, Hastings and Shapiro (2013) estimate a model
of salience in which the evoked set consists of the current choices along with the grades of gasoline at the
national mean prices from one week earlier. To improve fit, they propose an extended salience model in which
the evoked set consists of the current choices along with the three grades of gasoline at prices $1.00, $1.10,
and $1.20.

9With a positive autocorrelation of hourly earnings as in Appendix Figure A7, higher recent earnings
should if anything affect the reference point more strongly and hence affect the stopping decision less strongly.
This implies a higher probability of ending a shift in response to less recent earnings.
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reflecting the intuition that recent earnings bring stopping closer to the top of the driver’s
mind, which makes leisure relatively more salient due to the ordering property of salience.10

The qualitative predictions of both models under a slow-adjusting reference point corresponds
to the following intuition about reacting to surprises: unexpected earnings constitutes a
surprise, but surprises wear out over time so that quitting depends to a greater extent on
recent earnings.

10When the availability of stopping increases, the normal levels In and Hn move away from the levels of
these attributes under continuing (It+1 and Ht+1). By the ordering property, this increases the salience of
both income and hours, with the salience of hours increasing to a greater extent because of convexity in the
disutility of work hours.
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Appendix Figure A1: Supply of cabs throughout the day
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Note: The figure depicts the average number of cabs that are on the road at any given minute of the day in
our cleaned data. The solid line depicts the supply pattern of cabs searching or carrying passengers. The
dashed line depicts the supply pattern of cabs with passengers.
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Appendix Figure A2: Pattern of wages throughout the day
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Note: The figure depicts the average market wage every minute throughout the day from hour 0 to hour 23.
The market wage in each minute is the average of the per-minute wages of all drivers working during that
minute, where a driver’s per-minute wage is the ratio of the fare (not including tips) to the number of minutes
spent searching for or riding with passengers for their current trip. Gray lines are one-standard-deviation
bounds over the course of the year 2013.
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Appendix Figure A3: Pattern of wages: Weekday versus weekend
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Note: The figure depicts the average market wage every minute throughout the day, separated into weekdays
and weekends. The market wage in each minute is the average of the per-minute wages of all drivers working
during that minute, where a driver’s per-minute wage is the ratio of the fare (not including tips) to the
number of minutes spent searching for or riding with passengers for their current trip. Weekend is defined as
5 pm Friday through 5 pm Sunday. Weekday is defined as 5 pm Sunday through 5 pm Friday.
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Appendix Figure A4: Tip distribution by fare

Note: The figure depicts the distribution of tips by fare in the sample for which we observe a tip when tips
are between 0 and 20 dollars and fares are between 0 and 60 dollars. The level of darkness represents the
density of the points.
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Appendix Figure A5: Simulated stopping model: Distribution of p values for non-parametric
specification
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Note: The figure depicts the results from using Equation (TT) to test the null hypothesis that income has
no effect on stopping decisions in Simulation 1 and Simulation 2 repeated 1,000 times each. Simulation 1
denotes a stopping rule in which all drivers end their shifts after exceeding 9.5 hours with some noise in the
stopping decision prior to that. Simulation 2 denotes a stopping rule in which all drivers end their shifts
after exceeding a driver-specific quantity of hours with some noise in the stopping decision prior to that. The
curve represents the cumulative distribution of p-values.
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Appendix Figure A6: Stopping model estimates: Timing pattern of income effect at 8.5 hours—
Day versus night
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(a) Day shifts (start hour 4am–10am)
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(b) Night shifts (start hour 2pm–8pm)

Note: The figures depict the percent change in the probability of ending a shift at 8.5 hours in response
to a $26 increase in earnings accumulated at different times in the shift, during day shifts and night shifts
separately. Estimates are obtained from Equation (1) with the full set of controls (see Table 1 for details).
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Appendix Figure A7: Autocorrelation of residualized hourly market wage
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Note: The figure depicts the autocorrelation of hourly market wages indexed by hour of the calendar year
2013. The hourly market wage is the sum of the minute market wage in each hour, with the minute market
wage computed as in Appendix Figure A2. The hourly market wage is residualized from a regression on a set
of time and weather effects: an interaction between the hour of day and day of week, the week of the year,
an indicator for federal holidays, an indicator for whether it rains during that hour, and indicators for high
(over 80 degrees Fahrenheit) and low (under 30 degrees Fahrenheit) average hourly temperature. The shaded
region denotes a Bartlett 95-percent confidence band.
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Appendix Figure A8: Autocorrelation of residualized daily market wage
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Note: The figure depicts the autocorrelation of daily market wages indexed by day of the year in 2013. The
daily market wage is the sum of the minute market wage in each calendar day, with the minute market wage
computed as in Appendix Figure A2. The daily market wage is residualized from a regression on a set of time
and weather effects: day of week, week of year, an indicator for federal holidays, an indicator for whether
it rains during that day, and indicators for high (over 80 degrees Fahrenheit) and low (under 30 degrees
Fahrenheit) average daily temperature. The shaded region denotes a Bartlett 95-percent confidence band.
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Appendix Figure A9: Stopping model estimates: Income effect at 8.5 hours—Timing pattern
with alternative definitions of breaks

2

4

6

8

Baseline Breaks: >15 min Breaks: >30 min Breaks: >45 min
Alternative definitions of breaks

H
ou

r 
w

he
n 

th
e 

m
on

ey
 is

 e
ar

ne
d

Sign negative positive

Percent change in stopping probability 2.5 5.0 7.5 10.0

Note: The figure depicts the effect of an additional $10 in earnings accumulated at different times in the
shift (vertical axis) on the probability of stopping at 8.5 hours from Figure 3, with controls for break time
under various definitions of breaks (horizontal axis). The first column replicates the baseline specification,
which controls for minutes spent working, including indicators for the number of minutes with passengers
in each hour. The second column uses the following minimum thresholds to classify time spent without a
passenger as breaks: 15 minutes between Manhattan fares; 45 minutes between non-airport, non-Manhattan
fares; 75 minutes between airport fares. The third column uses the following thresholds: 30 minutes between
Manhattan fares; 60 minutes between non-airport, non-Manhattan fares; 90 minutes between airport fares.
The fourth column uses the following thresholds: 45 minutes between Manhattan fares; 75 minutes between
non-airport, non-Manhattan fares; 105 minutes between airport fares. Each square has area proportional to
the corresponding percent change in the probability of stopping.
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Appendix Figure A10: Relationship between moments and parameters

(a) Effect of additional 10 minutes of work (b) Effect of additional 10 percent in wages

(c) Effect of additional 10 percent in accumulated
income

(d) Effect of additional earnings in hour 8 relative
to hour 5

Note: Each panel plots the relationship between a moment of the data and the four key structural parameters:
disutility of effort ψ (solid black line), elasticity parameter ν (dotted red line), coefficient of loss aversion
Λ (dash-dot green line), and speed of adjustment θ (dashed blue line). Each parameter varies within one
standard deviation of its estimated value. Panel (a) plots the relationship between the parameters and the
change in the probability of stopping in response to working for an additional 10 minutes. Panel (b) plots the
relationship between the parameters and the change in the probability of stopping in response to a 10 percent
increase in the wage from continuing. Panel (c) plots the relationship between the parameters and the change
in the probability of stopping in response to a $10 increase in accumulated earnings. Panel (d) plots the
relationship between the parameters and the effect of a $10 increase in earnings accumulated in the most
recent hour relative to three hours earlier on the probability of stopping.
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Appendix Figure A11: Stopping model estimates: Income effect at 8.5 hours—Data and
lagged-expectation reference point model
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Note: The figure compares the income effects estimated using Equation (1) with the predicted income effects
from specification of reference points based on the lagged expectation estimated in columns (3) and (4) of
Appendix Table A13. The confidence interval displays the estimates from Figure 3 of the percent change in
the probability of ending a shift at 8.5 hours in response to a $26 increase in earnings accumulated at different
times in the shift. The gray squares and black diamonds represent the predictions of the expectations-based
reference point model with a lag of an hour and a trip, respectively.
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Appendix Table A1: Trip-level and shift-level summary statistics

Mean 25p 50p 75p
Ride duration in minutes 12.6 6.1 10.0 16.0
Wait duration in minutes 11.3 2.0 5.0 12.0
Fare in dollars 12.2 6.5 9.5 14.0
Percent tip 19.9 16.0 20.7 22.9

Mean 25p 50p 75p
Number of shifts per driver 163 100 170 226
Number of trips in a shift 22 16 22 27
Shift total hours 8.6 7.2 8.7 10.1
Shift ride hours 4.5 3.5 4.5 5.5
Fraction break time 0.16 0.00 0.13 0.25
Shift income in dollars 271 214 268 324
Shift income (day shifts) 240 195 244 288
Shift income (night shifts) 274 219 273 330
Hourly wage in dollars 31.6 27.7 31.7 35.6
Hourly wage (day shifts) 29.8 26.5 29.9 33.2
Hourly wage (night shifts) 33.8 30.0 34.1 37.9

Note: The top panel reports summary statistics at the trip level for all 127 million NYC taxi trips in
2013 in the cleaned data. The bottom panel reports summary statistics at the shift level. Ride duration
is the number of minutes between pick-up time and drop-off time. Wait duration is the number of
minutes between dropping off a passenger and picking up a new passenger. Fare is the amount earned
not including tips. Tip ratio is the tip divided by the fare, which is available for the 55% of trips with
credit card as the payment type. Shift total hours is the number of hours between the pickup time of
the first passenger of the shift and the dropoff time of the last passenger of the shift. Shift ride hours is
the sum of the duration of each fare during the shift. Breaks are defined as in Appendix Figure A9.
Income and hourly wage represent gross fares, not including tips, gasoline costs, or leasing fees.
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Appendix Table A2: Wage elasticity estimates: Weekday versus weekend

Shift Time OLS IV
Day Weekday -0.1636 0.2697

(0.0031) (0.0071)
Day Weekend -0.1214 0.0553

(0.0040) (0.0261)
Night Weekday -0.3546 0.2825

(0.0027) (0.0088)
Night Weekend -0.1419 1.2797

(0.0041) (0.0247)
Note: Each cell presents elasticity estimates from a regression of log hours
on log wages, with time controls (indicators for day of week, week of year,
and federal holidays) and driver fixed effects (21,245 for night-shift drivers
and 18,569 for day-shift drivers). Day shifts start between 4 am and 10 am,
and night shifts start between 2 pm and 8 pm. Weekend shifts consist of
night shifts on Friday and Saturday as well as day shifts on Saturday and
Sunday. For each shift type (day or night), the sample consists of drivers who
appear in both the weekday and weekend group. The IV column instruments
for wages using the average hourly wage from a non-overlapping sample of
2,108 drivers on the same day. Standard errors reported in parentheses are
adjusted for clustering at the driver level.
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Appendix Table A3: Simulated stopping model: Decision rule independent of income

Simulation 1: stop at 9.5 Simulation 2: stop at H̄i

Effect of 20%
increase in
income

p-value:
income coefs.

= 0

Effect of 20%
increase in
income

p-value:
income coefs.

= 0
Non-parametric model
TT -0.0032 0.6731 -0.0021 0.7401

(0.0031) (0.0044)
Linear probability model
F-1 -0.0090 0.0000 -0.0261 0.0000

(0.0005) (0.0006)
F-1* -0.0002 0.6789 -0.0110 0.0000

(0.0004) (0.0006)
F-2a 0.1309 0.0000

F-2b 0.0384 0.0000 -0.0103 0.0000
(0.0054) (0.0111)

F-3 -0.0042 0.0000 -0.0038 0.0000
(0.0050) (0.0188)

Probit model
F-1 -0.0009 0.0000 -0.0018 0.0000

(0.0001) (0.0001)
F-1* -0.0000 0.6531 -0.0009 0.0000

(0.0001) (0.0001)
F-2a 0.3402 0.0000

F-2b 0.1328 0.0000 -0.0309 0.0000
(0.0205) (0.0306)

Note: Each row corresponds to a different regression equation defined in Appendix C.2. The row F-2a
corresponds to Equation (F-2) with the partitions Ĥ and Ŷ over hours and income defined as in Farber (2005),
and the row F-2b corresponds to Equation (F-2) with the partitions defined as in Farber (2015). Simulation 1
denotes a stopping rule in which all drivers end their shifts after exceeding 9.5 hours with some noise in the
stopping decision prior to that. Simulation 2 denotes a stopping rule in which all drivers end their shifts after
exceeding a driver-specific quantity of hours with some noise in the stopping decision prior to that. The top
panel reports estimates from Equation (TT) of the percentage-point increase in the probability of ending
a shift at 8.5 hours when cumulative earnings is 20 percent higher. The middle panel reports results from
Equations (F-1) to (F-3) estimated as a linear probability model. The bottom panel reports results from the
probit models in Equations (F-1) to (F-3). The income effect (columns 1 and 3) reports the estimated effect
of a 20% increase in cumulative daily earnings on the probability of ending a shift after working 8.5 hours and
earning $300. The income effect for the model in F-2a mechanically does not predict any effect of income on
the probability of stopping after earning $300 because of how the partition is defined. The p-value (columns 2
and 4) presents the result of an F -test (Panels A and B) or χ2-test (Panel C) of the null hypothesis that the
income-related coefficients are jointly zero. The test imposes 1 restriction for Equations (F-1) and (F-1*), 9
restrictions for Equation (F-2), 72 restrictions for Equation (F-3), and 59 restrictions for Equation (TT) in
Simulation 1, and 78 restrictions for Equation (TT) in Simulation 2.
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Appendix Table A4: Simulated stopping model: Decision rule independent of timing of
income

Simulation 3: Pr(stop)
increases in income

Effect of 20% increase
in income

TT
Income in hour 1 0.0135

(0.0206)
Income in hour 2 0.0048

(0.0214)
Income in hour 3 0.0320

(0.0223)
Income in hour 4 0.0341

(0.0224)
Income in hour 5 0.0352

(0.0218)
Income in hour 6 0.0466

(0.0218)
Income in hour 7 0.0060

(0.0211)
Income in hour 8 0.0205

(0.0228)
p-value: income coefs. = 0 0.0000
p-value: Equality of income coefs. 0.8932

Note: Each row reports the estimated percentage-point change in the probability
of ending a shift at 8.5 hours in response to a $60 increase in earnings accumulated
at different times during the shift from Equation (TT∗). Simulation 3 denotes a
stopping rule in which all drivers end their shifts after exceeding 9.5 hours, prior
to which the drivers probability of ending a shift is an increasing function of
cumulative daily earnings but does not depend on the timing of those earnings.
The penultimate row presents the result of an F -test of the null hypothesis
that the income-related coefficients are jointly zero. The last row tests the null
hypothesis that the γj,k coefficients in Equation (TT∗) are independent of k (for
every j).
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Appendix Table A5: Elasticity of stopping at 8.5 hours with respect to income: Day and
night shifts

(TT) (F-1) (F-2) (F-3)
Day shifts (start hour 4am–10am)
Controlling for
Hours 0.1185 0.0864 0.9214 0.6021

(0.0401) (0.0200) (0.0889) (0.1296)
& Drivers 0.6123 0.2460 1.0862 0.8009

(0.0253) (0.0171) (0.0865) (0.1263)
& Time 0.7641 0.4342 0.9415 0.7385

(0.0244) (0.0190) (0.0832) (0.1223)
& Location 0.2677 -0.1161 0.8116 0.5850

(0.0231) (0.0186) (0.0818) (0.1198)
& Weather 0.2673 -0.1154 0.8123 0.5861

(0.0231) (0.0186) (0.0818) (0.1198)
(TT) (F-1) (F-2) (F-3)

Night shifts (start hour 2pm–8pm)
Controlling for
Hours 0.7682 1.4286 -1.0541 -1.1698

(0.0387) (0.0232) (0.0865) (0.1922)
& Drivers 0.5920 1.7490 -1.0379 -1.1945

(0.0337) (0.0219) (0.0856) (0.1908)
& Time 0.8726 0.7166 0.1959 0.1177

(0.0337) (0.0258) (0.0833) (0.1833)
& Location 0.2709 0.3055 0.0419 -0.0142

(0.0329) (0.0256) (0.0819) (0.1805)
& Weather 0.2705 0.3048 0.0398 -0.0155

(0.0329) (0.0256) (0.0820) (0.1805)
Panel B: Comparison with previous estimates

This paper (day): 0.2673 (0.2221, 0.3126)
This paper (night): 0.2705 (0.2060, 0.3350)
Farber 2015 (day): 0.9456
Farber 2015 (night): 0.0727

Note: This table reports in each cell an estimate of the percent change in the probability of
ending a shift at 8.5 hours in response to a 1 percent increase in cumulative earnings. The
columns corresponds to the specifications in Equations (TT) to (F-3), respectively. The control
variables consist of the full set from Table 1. Standard errors reported in parentheses are
adjusted for clustering at the driver level.
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Appendix Table A6: Stopping model estimates: By variance of daily hours

(1) (2) (3) (4)
< 10th

percentile
< 25th

percentile
> 75th

percentile
> 90th

percentile
Panel A
Cumulative income 0.2599 0.2927 0.3923 0.5495

(0.0623) (0.0389) (0.0401) (0.0671)
Panel B
Income in hour 2 0.0706 0.0192 0.0833 0.4802

(0.1730) (0.1129) (0.1401) (0.2447)
Income in hour 4 0.0144 0.0480 0.0858 0.0157

(0.1904) (0.1185) (0.1340) (0.2294)
Income in hour 6 0.5081 0.5910 0.6463 0.6017

(0.2015) (0.1226) (0.1303) (0.2241)
Income in hour 8 0.7754 0.8942 1.2156 1.4198

(0.2181) (0.1329) (0.1410) (0.2457)
Note: Panel A reports estimates from Equation (TT) of the percent change in the probability of
ending a shift at 8.5 hours in response to a 1 percent increase in cumulative earnings. Panel B reports
estimates from Equation (1) of the percent change in the probability of ending a shift at 8.5 hours in
response to a $26 increase in earnings accumulated at different times in the shift. The columns restrict
drivers based on the variance of their distribution of hours worked across days: (1) below the 10th

percentile, (2) below the 25th percentile, (3) above the 75th percentile, and (4) above the 90th percentile.
The control variables consist of the full set from Table 1. Standard errors reported in parentheses are
adjusted for clustering at the driver level.
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Appendix Table A7: Stopping model estimates: Income effect at 8.5 hours—Robustness

(1) (2) (3)
Control

individual-
specific
location
effects

Control
previous-day

income

Medallion
owners

Panel A
Cumulative income 0.3570 0.3041 0.6309

(0.0247) (0.0185) (0.1344)
Previous-day income -0.0295

(0.0151)
Driver × NTA X

Panel B
Income in hour 2 -0.0479 0.0431 0.0282

(0.0815) (0.0603) (0.4259)
Income in hour 4 0.0800 0.1044 0.4852

(0.0800) (0.0589) (0.4254)
Income in hour 6 0.4463 0.4870 1.0571

(0.0802) (0.0588) (0.3895)
Income in hour 8 1.1150 1.0194 0.7236

(0.0859) (0.0627) (0.3699)
Previous-day income -0.0291

(0.0150)
Driver × NTA X

Note: The table uses the same sample and control variables as in Table 1. Panel A
reports estimates from Equation (TT) of the percent change in the probability of
ending a shift at 8.5 hours in response to a 1 percent increase in cumulative earnings.
Panel B reports estimates from Equation (1) of the percent change in the probability
of ending a shift at 8.5 hours in response to a $26 increase in earnings accumulated at
different times in the shift. Column (1) adds location-by-neighborhood fixed effects
to the last row of Table 1 column (TT). Column (2) adds a control for previous-day
income to the last row of Table 1 column (TT). Column (3) corresponds to a restricted
sample of all 261 drivers who operate exactly one cab and no other driver shares that
cab. Standard errors reported in parentheses are adjusted for clustering at the driver
level.

45



Appendix Table A8: Stopping model estimates: Timing pattern of income effect—Alternative
specifications for the stopping model

(F-1) (F-2) (F-3)
Income in hour 1 0.1737 0.5763 0.5719

(0.0152) (0.0110) (0.0110)
Income in hour 2 0.0495 0.7829 0.7686

(0.0185) (0.0109) (0.0109)
Income in hour 3 -0.1042 0.4519 0.4320

(0.0192) (0.0149) (0.0150)
Income in hour 4 -0.2327 0.3271 0.3328

(0.0205) (0.0178) (0.0180)
Income in hour 5 -0.2083 0.6614 0.6557

(0.0224) (0.0183) (0.0184)
Income in hour 6 -0.0862 0.6886 0.6876

(0.0252) (0.0238) (0.0238)
Income in hour 7 0.3414 0.8675 0.8456

(0.0293) (0.0333) (0.0334)
Income in hour 8 0.9964 1.2270 1.1792

(0.0372) (0.0428) (0.0433)
Note: This table reports estimates of the percent change in the probability of ending
a shift at 8.5 hours in response to a $26 increase in earnings accumulated at different
times in the shift. Columns (1)–(3) extend Equations (F-1) to (F-3), respectively, to add
an effect of earnings in each hour

∑
` β

`y`
int. The control variables consist of the full set

from Table 1. Standard errors reported in parentheses are adjusted for clustering at the
driver level.
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Appendix Table A9: Stopping model estimates: Income effect at 8.5 hours—Timing pattern
for Manhattan trips

(1) (2)
OLS IV

Income in hour 2 0.0058 -0.1888
(0.0865) (0.6277)

Income in hour 4 0.0955 1.0525
(0.0831) (0.7392)

Income in hour 6 0.4673 -0.1203
(0.0817) (0.7776)

Income in hour 8 0.7987 1.9136
(0.0877) (0.9302)

Note: This table reports estimates of the percent change in the probability of
ending a shift at 8.5 hours in response to a $26 increase in earnings accumulated
at different times in the shift. As in Figure 3, estimates are obtained from
Equation (1) with the full set of controls. Both columns restrict the sample
to trips that remain in Manhattan. The first column presents least-squares
estimates, while the second column presents IV estimates, instrumenting for
earnings with speed.
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Appendix Table A10: Stopping model estimates: Income effect at 8.5 hours—Across-driver
experience

(1) (2)
Less experienced drivers More experienced drivers

Panel A
Cumulative income 0.0472 0.3186

(0.0666) (0.0163)
Panel B
Income in hour 2 -0.1783 0.0394

(0.2099) (0.0517)
Income in hour 4 -0.1334 -0.0008

(0.2182) (0.0508)
Income in hour 6 0.3754 0.5614

(0.2179) (0.0503)
Income in hour 8 0.4746 0.9066

(0.2297) (0.0544)
Note: Panel A reports estimates from Equation (TT) of the percent change in the
probability of ending a shift at 8.5 hours in response to a 1 percent increase in cumulative
earnings. Panel B reports estimates from Equation (1) of the percent change in the
probability of ending a shift at 8.5 hours in response to a $26 increase in earnings
accumulated at different times in the shift. The sample in column (1) restricts to the
2,361 drivers who first appear in the data in April 2013 and drive at least 50 shifts until
December 2013. The sample in column (2) consists of the 32,551 drivers who first appear
in the data before April 2013. The control variables consist of the full set from Table 1.
Standard errors reported in parentheses are adjusted for clustering at the driver level.
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Appendix Table A11: Stopping model estimates: Income effect at 8.5 hours—Within-driver
experience

(1) (2) (3)
Panel A
Cumulative income -0.0286 0.0098 0.0483

(0.0792) (0.0700) (0.0610)
× experience 0.0220 0.0006 -0.0114

(0.0167) (0.0006) (0.0204)
Panel B
Income in hour 2 0.0607 0.0167 -0.0808

(0.2918) (0.2833) (0.2345)
× experience -0.0679 -0.0029 -0.1574

(0.0672) (0.0035) (0.2737)
Income in hour 4 -0.5669 -0.3887 -0.4133

(0.2930) (0.2807) (0.2408)
× experience 0.1370 0.0044 0.6006

(0.0687) (0.0035) (0.2877)
Income in hour 6 0.2634 0.2765 0.2874

(0.2839) (0.2743) (0.2315)
× experience 0.0208 0.0009 0.0938

(0.0660) (0.0033) (0.2670)
Income in hour 8 0.6047 0.3864 0.5971

(0.3015) (0.2909) (0.2461)
× experience -0.0531 0.0007 -0.3378

(0.0671) (0.0034) (0.2667)
Note: The estimates in this table restrict to the sample of 2,361 drivers who first appear in
the data in April 2013 and drive at least 50 shifts until December 2013. Panel A reports
estimates from Equation (TT) of the percent change in the probability of ending a shift
at 8.5 hours in response to a 1 percent increase in cumulative earnings. Panel B reports
estimates from Equation (1) of the percent change in the probability of ending a shift at
8.5 hours in response to a $26 increase in earnings accumulated at different times in the
shift. Column (1) defines experience as the number of months since the driver started.
Column (2) defines experience as the number of shifts since the driver started. Column (3)
defines experience as an indicator variable which is equal to one for half of each driver’s
shifts, those that occur later in the year. The control variables consist of the full set from
Table 1. Standard errors reported in parentheses are adjusted for clustering at the driver
level.
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Appendix Table A12: Stopping model estimates: Income effect at 8.5 hours—Reduced-form
model allowing jumps at the targets

(1) (2) (3) (4)
Above hours target 0.0393 0.0394 0.0393 0.0392

(0.0019) (0.0019) (0.0019) (0.0019)
Above I0 0.0021 0.0060 0.0026 0.0027

(0.0027) (0.0019) (0.0041) (0.0023)
Above Iearly>late 0.0215 0.0123 0.0287 0.0177

(0.0042) (0.0024) (0.0069) (0.0033)
Above Iearly<late 0.0062 0.0030 0.0059 0.0079

(0.0041) (0.0023) (0.0069) (0.0032)
Cumulative income / 100 0.0063 0.0067 0.0062 0.0062

(0.0028) (0.0027) (0.0028) (0.0028)
Note: This table reports the change in the probability of stopping at 8.5 hours in response to reaching
targets for hours and income. The first row corresponds to expected daily hours as the hours target.
The second row corresponds to expected daily earnings as the income target. The third row corresponds
to the increment in the stopping probability from exceeding the updated targets for income that put
more weight on income earned in hours 0—4 of the shift. The fourth row corresponds to the increment
in the stopping probability from exceeding the updated targets for income that put more weight on
income earned in hours 5–8 of the shift. Column (1) defines updated targets with weights 0, 50, or 100
on earnings in each half of the shift. Column (2) uses weights 0, 33, 66, and 100. Column (3) uses
weights 0, 25, 50, 75, and 100. Column (4) uses weights 0, 10, 25, 50, 75, 90, and 100. Standard errors
reported in parentheses are adjusted for clustering at the driver level.
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Appendix Table A13: Maximum likelihood estimates: Alternative specifications of the
reference point

One-period lagged expectation
Fixed Ref. Pt. Day Hour Trip

(1) (2) (3) (4)
Disutility of effort ψ 0.0145 0.2051 0.0231 0.0164

(0.0019) (0.1601) (0.0043) (0.0026)
Elasticity ν 1.6749 0.7771 1.7334 1.8046

(0.0658) (0.2675) (0.0653) (0.0650)
Loss aversion Λ 1.4816 2.0275 2.6507 2.1452

(0.0564) (0.2177) (0.3352) (0.2370)
Error term distribution σ 0.2315 0.4168 0.4705 0.3748

(0.0216) (0.0844) (0.0859) (0.0644)
Mean log likelihood -27,242 -27,061 -27,071 -27,207
Test Λ = 1 <0.001 <0.001 <0.001 <0.001

Note: This table presents maximum likelihood estimates of Equation (6) with the reference point given by
the lagged expectation of earnings under different definitions of the lag. The estimation sample consists of
over 37,000 drivers, using data from 230 subsamples of 150,000 trips each without replacement. Column (1)
corresponds to a fixed reference point (sufficiently long lag that reference points do not adjust) equal to the
driver’s average earnings across all shifts. Column (2) corresponds to the case that the updated reference
point is formed the previous day, as in Crawford and Meng (2011), which also appears in column (2) of
Table 3. Column (3) and (4) correspond to updated reference points that are formed the previous hour and
trip, respectively, estimated using Equation (1) with total fare earnings for the shift as the outcome variable.
The mean log likelihood reports the average of the log likelihood across the subsamples. The last row contains
p-values from likelihood ratio tests of the null hypotheses of the model without loss aversion.

51



Appendix Table A14: Maximum likelihood estimates: Loss aversion over income and hours

(1) (2)
Disutility of effort ψ 0.1461 0.1679

(0.0208) (0.0286)
Elasticity ν 0.4479 0.4806

(0.0635) (0.0693)
Loss aversion over income ΛI 1.8097 2.1262

(0.0709) (0.1819)
Loss aversion over hours ΛH 1.8097 1.7434

(0.0709) (0.0770)
Speed of adjustment θ 0.7913 0.7481

(0.0490) (0.0690)
Error term distribution σ 0.2582 0.3241

(0.0229) (0.0489)
Mean log likelihood -26,674 -26,667
Test Λ = 1 <0.001 <0.001
Test θ = 1 <0.001 <0.001

Note: This table presents maximum likelihood estimates of Equation (2) for the
objective function Equation (3), which allows for loss aversion on both dimensions
(income and hours), with the adaptive reference point given by Equation (5). The
estimation sample consists of over 37,000 drivers, using data from 230 subsamples of
150,000 trips each without replacement. The mean log likelihood reports the average
of the log likelihood across the subsamples. The last two rows contain p-values from
likelihood ratio tests of the following null hypotheses: (i) the model without loss
aversion, and (ii) the model with a static reference point.
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