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A Potential Database Reconstruction Attack against
the 2010 Decennial Census

In Section I.B.3 we discuss the potential for a database reconstruction attack against
the decennial census based on the large number of summary tables published
from the confidential micro-data. Using the schema in the public documentation
for PL94-171, Summary File 1, Summary File 2, and the Public-use Micro-data
Sample, and summarizing from the published tables, there were at least 2.8 bil-
lion linearly independent statistics in PL94-171, 2.8 billion in the balance of SF1, 2.1
billion in SF2, and 31 million in the PUMS https://www.census.gov/prod/
www/decennial.html (cited on March 17, 2018). For the 2010 Census, the na-
tional sample space at the person level has approximately 500,000 cells. The un-
restricted sample space at the census block level has approximately 500,000 × 107

cells. It might seem there are orders of magnitude more unknowns than equa-
tions in the system used for reconstruction. However, traditional statistical dis-
closure limitation (SDL) does not protect sample zeros. Consequently, every zero
in a block, tract, or county-level table rules out all record images in the sample
space that could have populated that cell, dramatically reducing the number of
unknowns in the relevant equation system.

The deliberate preservation of sample zeros can be inferred from the technical
documentation: “Data swapping is a method of disclosure avoidance designed
to protect confidentiality in tables of frequency data (the number or percentage
of the population with certain characteristics). Data swapping is done by editing
the source data or exchanging records for a sample of cases. A sample of house-
holds is selected and matched on a set of selected key variables with households
in neighboring geographic areas (geographic areas with a small population) that
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have similar characteristics (same number of adults, same number of children,
etc.). Because the swap often occurs within a geographic area with a small pop-
ulation, there is no effect on the marginal totals for the geographic area with a
small population or for totals that include data from multiple geographic areas
with small populations. Because of data swapping, users should not assume that
tables with cells having a value of one or two reveal information about specific
individuals” (U.S. Census Bureau 2012, p. 7-6).

B Randomized Response Details

A custodian collects data from a population of individuals, i ∈ {1, . . . ,N}. Each
member of the population has a sensitive characteristic and an innocuous charac-
teristic. The sensitive characteristic is xi = Yi(1) ∈ {0, 1}, with population propor-
tion Pr [Yi(1) = 1] = π. This proportion, π, is the unknown population quantity of
interest. The non-sensitive characteristic is zi = Yi(0) ∈ {0, 1} with known popula-
tion proportion Pr [Yi(0) = 1] = µ. The custodian collects and publishes a mixture

di = TiYi(1) + (1 − Ti)Yi(0), (B-1)

where Ti indicates whether the sensitive or the non-sensitive question was col-
lected, with Pr [Ti = 1] = ρ. The responses are independent of which information
is collected: (Yi(1),Yi(0)) y Ti. We also require that the non-sensitive item be inde-
pendent of the sensitive item. This is not restrictive, since the innocuous question
can literally be “flip a coin and report whether it came up heads,” as in the original
application.

The indicator Ti is not observed. Any data analyst observes only the reported
variable di. However, as in a randomized controlled trial, the probability of Ti, ρ,
is known with certainty. Furthermore, the analyst also knows the probability of
the non-sensitive response, µ.

Define β̂ = 1
N

∑
i di, the empirical mean proportion of responses of one. Inde-

pendence of Ti implies E
[̂
β
]

= πρ+µ(1−ρ). It follows that π̂ =
β̂−µ(1−ρ)

ρ
is an unbiased

estimator of π with variance Var[̂π] = Var[̂β]ρ−2.

B1 Privacy under Randomized Response

For given ε, differential privacy requires both Pr [di = 1|Yi(1) = 1]≤ eε Pr [di = 1|Yi(1) = 0],
and Pr [di = 0|Yi(1) = 0] ≤ eε Pr [di = 0|Yi(1) = 1]. Together, these expressions bound
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the Bayes factor, which limits how much can learned about the sensitive charac-
teristic upon observation of the collected response.

Making substitutions based on the data-generating model,

1 +
ρ

(1 − ρ)µ
≤ eε (B-2)

and
1 +

ρ

(1 − ρ)(1 − µ)
≤ eε. (B-3)

For a given choice of µ, the differential privacy guaranteed by randomized re-
sponse is the maximum of the values of the left-hand sides of equations (B-2) and
(B-3). Hence, privacy loss is minimized when µ = 1

2 . This is the case we will
consider throughout the remaining discussion. We note doing so assumes that
inferences about affirmative and negative responses are equally sensitive, which
may not always be the case. The results of our analysis do not depend on this
assumption. 57

For randomized response, the differential privacy guarantee as a function of ρ
is:

ε(ρ) = log
(
1 +

2ρ
(1 − ρ)

)
= log

(
1 + ρ

1 − ρ

)
, (B-4)

which follows from setting µ = 1
2 in equations (B-2) and (B-3).

57These observations highlight another allocation problem: how to trade off protection of affir-
mative responses for the sensitive item Yi(1) = 1 against protection of negative responses Yi(1) = 0.
What do we mean? If ρ is fixed, then increasing µ reduces the Bayes factor in (B-2) (increasing
privacy) and increases the Bayes factor in (B-3) (decreasing privacy). The underlying intuition is
fairly simple. Suppose the sensitive question is “did you lie on your taxes last year?” Most tax
evaders would prefer that their answer not be made public, but non-evaders are probably happy
to let the world know they did not cheat on their taxes. In such a setting, with ρ fixed, we can max-
imize privacy for the tax evader by setting µ to 1. Recall µ is the probability of a positive response
on the non-sensitive item (Yi(0) = 1). If µ = 1, then when the data report di = 0, 1 we know with cer-
tainty that Yi(1) = 0 (i.e., i did not cheat on her taxes). In this special case, the mechanism provides
no privacy against inference regarding non-evasion, but maximum attainable privacy (given the
mechanism) against inference regarding evasion. This is the role the Bloom filter plays in the full
RAPPOR implementation of randomized response (Erlingsson, Pihur and Korolova 2014). More
generally, the choice of µ can be tuned to provide relatively more or less privacy against one infer-
ence or the other.
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B2 Statistical Accuracy under Randomized Response

Expressed as a function of ρ, we denote the estimated share of the population with
the sensitive characteristic

π̂ (ρ) =
β̂(ρ) − µ(1 − ρ)

ρ
(B-5)

where β̂(ρ) is the population average response when the sensitive question is
asked with probability ρ. Clearly,

E[̂β(ρ)] = [ρπ + (1 − ρ)µ] (B-6)

and
Var[̂β(ρ)] =

[ρ(π − µ) + µ](1 − ρ(π − µ) − µ)
N

. (B-7)

It follows that

Var[̂π(ρ)] =
Var[̂β(ρ)]

ρ2 =
[ρ(π − µ) + µ](1 − ρ(π − µ) − µ)

ρ2N
. (B-8)

We can define data quality as:

I(ρ) = Var[̂π (1)] − Var[̂π (ρ)]. (B-9)

This measures the deviation in the sampling variance for the predicted population
parameter, π, relative to the case where there is no privacy protection (ρ = 1).

B3 The Accuracy Cost of Enhanced Privacy under Randomized
Response

Equations (B-4) and (B-9) implicitly define a functional relationship between data
privacy, parameterized by ε, and accuracy, parameterized as I. This function tells
us the marginal cost borne by individuals in the database necessary to achieve
an increase in accuracy of the published statistics. We can characterize the rela-
tionship between accuracy, I, and privacy loss, ε, analytically. First, we invert
equation (B-4) to get ρ as a function of ε:

ρ(ε) =
eε − 1
1 + eε

. (B-10)
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Next, we differentiate I with respect to ε via the chain rule: dI
dε = I′(ρ(ε))ρ′(ε):

I′(ρ) =
2 Var[̂β(ρ)]

ρ
−

(π − 1
2 )(1 − 2π)
N2ρ

. (B-11)

and
ρ′(ε) =

2eε

(1 + eε)2 =
1

1 + cosh(ε)
. (B-12)

Both derivatives are positive, so it follows that dI
dε > 0. A similar derivation shows

that d2I
dε2 < 0. Increasing published accuracy requires an increase in privacy loss

at a rate given by dI
dε > 0. Furthermore, achieving a given increment in accuracy

requires increasingly large privacy losses.

C Details of the Matrix Mechanism

For a single query, we defined the `1 sensitivity in Definition 1. The results in
Theorems 1 and 2 are defined in terms of the sensitivity of a workload of linear
queries, which we denote ∆Q. Following Li et al. (2015),

Theorem 3 (`1 Query Matrix Sensitivity) Define the `1 sensitivity of Q by

∆Q = max
x,y∈Z∗|χ|,||x−y||1≤1

‖Qx − Qy‖1 .

This is equivalent to
∆Q = max

k
‖qk‖1 ,

where qk are the columns of Q.

For the proof, see Li et al. (2015, prop. 4).

D Details of Privacy Semantics

We provide technical definitions associated with the derivations in Kifer and Machanava-
jjhala (2012) described in Section IV.A.

Assume a latent population of individuals hi ∈ H of size N∗. The confidential
database, D, is a random selection of N < N∗ individuals, drawn independently
from H . In this context N is a random variable, too. The database also records
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characteristics of each individual, which are drawn from the data domain χ. De-
note the record of individual i as ri. The event “the record ri is included in database
D” has probability πi. Denote the conditional probability of the event “the record
ri = χa ∈ χ” given that ri is in D as fi(ri). Then, the data generating process is
parameterized by θ = {π1, ..., πN , f1, ..., fN}. The probability of database D, given θ,
is

Pr [D | θ] =
∏
hi∈D

fi(ri)πi

∏
h j<D

(1 − π j). (D-13)

The complete set of paired hypotheses that differential privacy protects is

Spairs = {(si, s′i) : hi ∈ H , χa ∈ χ}, (D-14)

where s and s′ are defined in Section IV.A. By construction Spairs contains every
pair of hypotheses that constitute a potential disclosure; that is, whether any indi-
vidual hi from the latent population is in or out of the database D and, if in D, has
record ri.

E Derivation of the Data Utility Model

Recall that the matrix mechanism publishes a vector of answers, M(x,Q) to the
known set of queries, Q given an underlying data histogram x. The matrix mech-
anism is implemented by using a data independent mechanism to answer a set
of queries represented by the query strategy matrix, A with sensitivity ∆A and
pseudo-inverse A+. Following Theorem 2, M(x,Q) = Qx + Q(∆A)A+e where e is a
vector of iid random variables with E [e] = 0 and whose distribution is indepen-
dent of x, Q, and A. In what follows, we use the notation σ2

e to denote the common
(scalar) variance of the elements of e. For example, when e is a vector of Laplace
random variables with scale ε−1, we know that σ2

e = 2ε−2. Note that the variance
of the vector e is E

[
eeT

]
= σ2

eIwhere I is the identity matrix conformable with e.
Let Wi = ΠT

i M(x,Q) be a person-specific linear function by which published
statistics are transformed into wealth (or consumption). Individuals have utility
of wealth given by a twice-differentiable and strictly concave function, Ui(Wi). The
total realized ex post wealth for i is Wi = ΠT

i Qx + ΠT
i QA+(∆A)e. We assume i knows

Q and the details of the mechanism M. Uncertainty is over x and e.
For notational convenience, we define a function wi(e; x) = ΠT

i Qx+ΠT
i QA+(∆A)e.

Conditional on x, the expected utility of i from receiving the mechanism output
is Ee|x [Ui (wi(e; x)) |x]. We approximate this by taking expectations of a second-
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order Taylor Series expansion of hi(e; x) = Ui (wi(e; x)) with respect to e evaluated
at e0 = 0.

Let ∇hi(e0; x) denote the gradient of h with respect to e and let Hi(e0; x) denote
the Hessian. The second-order Taylor series expansion of hi(e; x) evaluated at e0 is

hi(e; x) ≈ hi(e0; x) + (e − e0)T∇hi(e0; x) +
1
2!

(e − e0)T Hi(e0; x)(e − e0). (E-15)

The gradient of h is

∇hi(e0; x) = U′i (wi(e0; x))∆A
(
ΠT

i QA+
)T
. (E-16)

The Hessian is

Hi(e0; x) = U′′i (wi(e0; x))(∆A)2
(
ΠT

i QA+
)T (

ΠT
i QA+

)
. (E-17)

Note that we have used the chain rule in both derivations. We now evaluate the
right hand side of equation (E-15) at e0 = 0. Defining new notation, let wx

i0 =

wi(0; x) = ΠT
i Qx and making substitutions for the gradient and Hessian, we have

hi(e; x) ≈ Ui
(
wx

i0
)

+ U′i (w
x
i0)∆A

[
eT

(
ΠT

i QA+
)T

]
+

1
2

U′′i (wx
i0)∆A2

[
eT

(
ΠT

i QA+
)T (

ΠT
i QA+

)
e
]
.

(E-18)

Now, taking expections with respect to e, conditional on x

Ee|x [h(e; x)|x] ≈ Ui
(
wx

i0
)

+
1
2

U′′i (wx
i0)∆A2 · Ee|x

{[
eT

(
ΠT

i QA+
)T (

ΠT
i QA+

)
e
]
|x
}
. (E-19)

The first-order term drops out because Ee|x [e|x] = 0 by assumption. Focusing on
the quadratic form in the final summand, standard results imply

Ee|x

{[
eT

(
ΠT

i QA+
)T (

ΠT
i QA+

)
e
]
|x
}

= tr
[
Ee|x

[
eeT |x

] (
ΠT

i QA+
)T (

ΠT
i QA+

)]
(E-20)

= tr
[
σ2

eI
(
ΠT

i QA+
)T (

ΠT
i QA+

)]
(E-21)

= σ2
etr

[(
ΠT

i QA+
)T (

ΠT
i QA+

)]
(E-22)

= σ2
e‖Π

T
i QA‖2F . (E-23)

The last expression is a basic property of the matrix Frobenius norm (Li et al. 2015).
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Putting it all together, we have the following approximation to the expected
utility for person i:

E[Ui(Wi)] = Ex
[
Ee|x [h(e; x)|x]

]
(E-24)

≈ Ex

[
Ui

(
wx

i0
)

+
1
2

U′′i (wx
i0)∆A2σ2

e‖Π
T
i QA‖2F

]
(E-25)

= Ex
[
Ui

(
wx

i0
)]

+
1
2
Ex

[
U′′i (wx

i0)
]
∆A2σ2

e‖Π
T
i QA‖2F . (E-26)

Note that we have used the fact that A, Q, and ΠT
i are all independent of x.

From Theorem 2 the accuracy of the matrix mechanism is

I = −σ2
e (∆A)2

∥∥∥QA+
∥∥∥2

F
. (E-27)

We can therefore substitute accuracy, I, into the expression for expected utility

E[Ui(Wi)] ≈ Ex
[
Ui

(
wx

i0
)]
−

{
1
2
Ex

[
U′′i (wx

i0)
] ‖ΠT

i QA‖2F
‖QA‖2F

}
× I. (E-28)

The expression above rationalizes a model for individual-specific data utility that
is linear in accuracy, I: vData

i (I) = ai + biI.

F Details of Legislative Redistricting Example

This appendix describes the legal background for the legislative redistricting ex-
ample in Section VI.A. These properties of the SDL applied in the 2010 PL94-171
can be deduced from U.S. Census Bureau (2012, p. 7-6), as quoted in Appendix
A, and the details provided in U.S. Census Bureau (2002), which also reveals that
no privacy protection was given to the race and ethnicity tables in the 1990 redis-
tricting data. The origin of the decision not to protect population and voting-age
population counts is difficult to trace in the law. Public Law 105119, title II, 209,
Nov. 26, 1997, 111 Stat. 2480, amended 13 U.S.C. Section 141 to provide that: “(h)
... In both the 2000 decennial census, and any dress rehearsal or other simula-
tion made in preparation for the 2000 decennial census, the number of persons
enumerated without using statistical methods must be publicly available for all
levels of census geography which are being released by the Bureau of the Cen-
sus for: (1) all data releases before January 1, 2001; (2) the data contained in the
2000 decennial census Public Law 94171 [amending this section] data file released
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for use in redistricting; (3) the Summary Tabulation File One (STF1) for the 2000
decennial census; and (4) the official populations of the States transmitted from
the Secretary of Commerce through the President to the Clerk of the House used
to reapportion the districts of the House among the States as a result of the 2000
decennial census. ... . (k) This section shall apply in fiscal year 1998 and suc-
ceeding fiscal years.” http://www.law.cornell.edu/uscode/text/13 13
U.S. Code (1954). These amendments to Title 13 concerned the use of sampling to
adjust the population counts within states, as is permitted even under current law.
They gave standing to obtain a copy of population count data that were not ad-
justed by sampling, should the Census Bureau publish such data, which it did not
do in 2000 nor 2010. Even so, only the reapportionment of the House of Represen-
tatives must be done without sampling adjustments (U.S. Supreme Court 1999).
Sampling aside, other statistical methods, like edits and imputations, including
whole-person substitutions, are routinely applied to the confidential enumeration
data before any tabulations are made, including those used to reapportion the
House of Representatives. These methods were upheld in Utah v. Evans (U.S.
Supreme Court 2002).
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