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Appendix	A:	Proofs

In	 this	Appendix, we	prove	 the	 results	 stated	 in	 the	main	 text. For	 all	 the	proofs	 that	 regard	 the	New-

Keynesian	model	(as	opposed	to	the	abstract	analysis	in	Section	IV), we	use	a	tilde	over	a	variable	to	denote

the	log-deviation	of	this	variable	from	its	steady-state	counterpart, and	reserve	the	non-tilde	notation	for	the

original	variables. The	only	exception	to	this	rule	is	that	we	let ãi,t ≡ ai,t
c∗ , where ai,t is	consumer i’s	initial

asset	position	at	period-t and c∗ is	steady-state	spending. This	takes	care	of	the	issue	that	the	log-deviation	of

the	asset	position	is	not	well	defined	because	the	steady-state	value	is a∗ = 0 and	is	standard	in	the	literature

(e.g., Woodford,	2011).

Proof	of	Proposition	1. We	proceed	in	four	steps, starting	with	the	behavior	of	the	consumers, proceeding

with	the	behavior	of	the	firms, and	concluding	with	market	clearing	and	with	the	derivation	of	the	two	beauty

contests	shown	in	the	main	text.

Step	1: Consumers. Consider	an	arbitrary	consumer i ∈ Ic. Let ai,t = Rt−1si,t−1/πt denote	consumer

i’s	initial	asset	position	at	period-t. By	condition	(2), the	following	intertemporal	budget	constraint	holds	in

all	periods	and	all	states	of	Nature:1

+∞∑
k=0


 k∏
j=1

(
Rt+j−1

πt+j

)−1

 ci,t+k

 = ai,t +

+∞∑
k=0


 k∏
j=1

(
Rt+j−1

πt+j

)−1

 (wi,t+kni,t+k + ei,t+k)

 . (26)
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1One	should	think	of	the	state	of	Nature	as	a	realization	of	the	exogenous	payoff	relevant	shocks	along	with	the	cross-sectional
distribution	of	the	exogenous	signals	(information)	received	by	the	agents.
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Taking	the	log-linear	approximation	of	the	above	around	the	steady	state, we	get	the	following:

+∞∑
k=0

βk c̃i,t+k = ãi,t +

+∞∑
k=0

βk {Ω(w̃i,t+k + ñi,t+k) + (1− Ω) ẽi,t+k} , (27)

where Ω is	the	ratio	of	labor	income	to	total	income	in	steady	state. The	consumer’s	optimality	conditions,

on	the	other	hand, can	be	expressed	as	follows:

ñi,t =
1

ϵ

(
w̃i,t −

1

σ
c̃i,t

)
, (28)

c̃i,t = Ei,t

[
c̃i,t+1 − σ

(
R̃t − π̃t+1

)]
= Ei,t [c̃i,t+1 − σr̃t+1] , (29)

where Ei,t [·] is	the	expectation	of	consumer i in	period t. The	first	condition	describes	optimal	labor	supply;

the	second	is	the individual-level Euler	condition, which	describes	optimal	consumption	and	saving.

At	 this	point, it	 is	worth	emphasizing	 that	our	analysis	preserves	 the standard Euler	condition	at	 the

individual	level. This	contrasts	with	McKay, Nakamura	and	Steinsson	(2016,	2017)	and	Werning	(2015),

where	 liquidity	constraints	cause	 this	 condition	 to	be	violated	 for some agents, as	well	 as	with	Gabaix

(2016), where	a	cognitive	friction	causes	this	condition	to	be	violated	for every agent. We	revisit	this	point

in	Appendix	C,	when	we	show	that	our	analysis	rationalizes	a discounted Euler	condition	at	the	aggregate

level, in	spite	of the	preservation	of	the	standard	condition	at	the	individual	level.

Combining	conditions	(27), (28)	and	(29), we	obtain	the	optimal	expenditure	of	consumer i in	period t

as	a	function	of	the	current	and	the	expected	future	values	of	wages, dividends, and	real	interest	rates:

c̃i,t =
(1−β)ϵσ
ϵσ+Ω ãi,t − σ

+∞∑
k=1

βkEi,t [r̃t+k] (30)

+ (1− β)
[
(ϵ+1)σΩ
ϵσ+Ω w̃i,t +

ϵσ(1−Ω)
ϵσ+Ω ẽi,t

]
+ (1− β)

+∞∑
k=1

βkEi,t

[
(ϵ+1)σΩ
ϵσ+Ω w̃i,t+k +

ϵσ(1−Ω)
ϵσ+Ω ẽi,t+k

]
.

This	condition, which	is	a	variant	of	the	consumption	function	seen	in	textbook	treatments	of	the	Permanent

Income	Hypothesis,2 contains	two	elementary	insights. First, all	future	variables—wages, dividends, and

real	interest	rates—are	discounted. Second, the current spending	of	a	consumer	depends	on	the	present

value	of	her	income, which	in	turn	depends, in	equilibrium, on	the future spending	of	other	consumers.

The	first	property	guarantees	that	the	decision-theoretic, or	partial-equilibrium, effect	of	forward	guid-

ance	diminishes	with	 the	horizon	at	which	 interest	 rates	are	changed; the	second	represents	a	dynamic

strategic	complementarity, which	is	the	modern	reincarnation	what	was	known	as	the	“income	multiplier”

2To	see	this	more	clearly, suppose	that	initial	assets	are	zero, that	the	real	interest	rate	is	expected	to	equal	the	discount	rate
at	all	periods, and	 that	 labor	 supply	 is	fixed (ϵ → ∞). Condition	 (30)	 then	 reduces	 to c̃i,t = (1− β) [Ωw̃i,t + (1− Ω) ẽi,t] +
(1− β)

∑+∞
k=1 β

kEi,t [Ωw̃i,t+k + (1− Ω) ẽi,t+k] , which	means	that	optimal	consumption	equals	“permanent	income”	(the	annuity
value	of	current	and	future	income). Relative	to	this	benchmark, condition	(30)	adjusts	for	three	factors: for	the	endogeneity	of	labor
supply, which	explains	the	different	weights	on	wages	and	dividends; for	initial	assets, which	explains	the	first	term	in	condition
(30); and	for	the	potential	gap	between	the	real	interest	rate	and	the	subjective	discount	rate, which	explains	the	second	term.
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in	the	IS-LM framework. We	elaborate	on	these	two	points	more	in	the	main	text. For	the	time	being, we

aggregate	condition	(30), and	use	the	facts	that	assets	average	to	zero	and	that	future	idiosyncratic	shocks

are	unpredictable, to	obtain	the	following	condition	for	aggregate	spending:

c̃t = −σ
+∞∑
k=1

βkĒc
t [r̃t+k] + (1− β)

[
(ϵ+1)σΩ
ϵσ+Ω w̃t +

ϵσ(1−Ω)
ϵσ+Ω ẽt

]
(31)

+ (1− β)
+∞∑
k=1

βkĒc
t

[
(ϵ+1)σΩ
ϵσ+Ω w̃t+k +

ϵσ(1−Ω)
ϵσ+Ω ẽt+k

]
,

where Ēc
t [·] henceforth	denotes	the average expectation	of	the	consumers	in	period t.

Step	2: Firms. Consider	a	firm j ∈ If that	gets	the	chance	to	reset	its	price	during	period t. The	optimal

reset	price, denoted	by pj∗t , is	given	by	the	following:

p̃j∗t = (1− βθ)

{
(m̃cjt + p̃t) +

+∞∑
k=1

(βθ)k Ej,t

[
m̃cjt+k + p̃t+k

]}
+ (1− βθ) µ̃j

t , (32)

where Ef
j,t [·] denotes	the	firm’s	expectations	in	period t, m̃cjt = w̃j

t is	its real marginal	cost	in	period t, and

µ̃j
t is	the	corresponding	markup	shock. The	interpretation	of	this	condition	is	familiar: the	optimal	“reset”

price	is	given	by	the	expected	nominal	marginal	cost	over	the	expected	lifespan	of	the	new	price, plus	the

markup.3 Aggregating	the	above	condition, using	the	fact	that	the	past	price	level	is	known	and	that	inflation

is	given	by π̃t = (1− θ) (p̃∗t − p̃t−1), where p̃∗t ≡
∫
If p̃

j∗
t dj, we	obtain	the	following	condition	for	the	level	of

inflation	in	period t:

π̃t = κm̃ct + κ
+∞∑
k=1

(βθ)k Ēf
t [m̃ct+k] +

1−θ
θ

+∞∑
k=1

(βθ)k Ēf
t [π̃t+k] + κµ̃t, (33)

where κ ≡ (1−θ)(1−βθ)
θ and Ēf

t [·] henceforth	denotes	the	average	expectation	of	the	firms. The	latter	may	or

may	not	be	the	same	as	the	average	expectation	of	the	consumers.

Step	3: Market	Clearing, Wages, and	Profits. Because	the	final-good	sector	is	competitive	and	observes

all	the	relevant	prices,4 and	because	the	technology	satisfies	(3)	and	(4), we	have	that p̃t =
∫
If p̃

j
tdj and ỹt =∫

If ỹ
j
tdj =

∫
If l̃

j
tdj. The	latter, together	with	market	clearing	in	the	labor	market, gives ỹt = ñt ≡

∫
Ic ñi,tdi.

Market	clearing	in	the	market	for	the	final	good, on	the	other	hand, gives

ỹt = c̃t ≡
∫
Ic
c̃i,tdi.

Finally, note	that	the	real	profit	of	monopolist j at	period t is	given	by ejt =
(
pjt
pt

− wj
t

)
yjt . Log-linearizing

and	aggregating	it	gives ẽt = − Ω
1−Ω w̃t + ỹt. Combining	all	these	facts	with	(28), the	optimality	condition	for

3Note	that	future	markups	are	unpredictable.
4Recall	that	the	we	have	allowed	the	entire	price	vector, (pjt)j∈[0,1], to	be	common	knowledge	at	period t.
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labor	supply, we	arrive	at	the	following	characterization	of	the	aggregate	wages	and	the	profits:

w̃t = m̃ct =

(
ϵ+

1

σ

)
ỹt, ẽt =

[
1− Ω(ϵ+ 1

σ )
1−Ω

]
ỹt, and (ϵ+1)σΩ

ϵσ+Ω w̃t +
ϵσ(1−Ω)
ϵσ+Ω ẽt = ỹt. (34)

Step	4: Beauty	Contests. Condition	(31), which	follows	merely	from	consumer	optimality, pins	down

aggregate	spending	as	a	function	of	the	average	beliefs	of	wages, profits, interest	rates, and	inflation. As	we

impose	REE,	a	consumer	can	infer	that	(34)	holds, aggregate	spending	can	then	be	expressed	as	a	function	of

the	consumers’	average	beliefs	of	interest	rates, of	inflation, and	of	aggregate	spending	itself. This	is	condition

(5), the	consumption	beauty	contest. Similarly, combining	(33)	and	(34), we	can	express	aggregate	inflation

as	a	function	of	the	firms’	average	beliefs	of	aggregate	spending	and	of	inflation	itself. This	is	condition	(6),

the	inflation	beauty	contest.

Proof	of	Proposition	2. Because Θt is	zero	for	all t > T, at is	also	zero	for	all t > T.5 Using	this	fact

along	with	the	fact	that Θt is	zero	also	for t < T, and	iterating	on	condition	(12), we	can	obtain at for	all

t < T as	a	linear	function	of	the	average	first-	and	higher-order	beliefs	about ΘT ; see, e.g., Lemma	2 below

for	an	explicit	characterization	in	the	case	without	learning. When	information	is	complete, all	agents	share

the	same	first-order	beliefs	about ΘT with	probability	one, and	this	 fact	 is	 itself	common	knowledge. It

follows	that	higher-order	beliefs	collapse	to	first-order	beliefs	and, therefore, at becomes	a	linear	function

of Et[ΘT ], the	commonly	shared	expectation	of ΘT . Now	take	any t < τ ≤ T and	any	pair	of	agents i, j.

Complete	information	guarantees	that Ei,t[Eτ [ΘT ]] = Et[ΘT ] = Ej,t[Eτ [ΘT ]] with	probability	one. And

since	we	already	argued	that, in	equilibrium, aτ is	a	known	linear	function	of Eτ [ΘT ], it	is	also	the	case

Ei,t[aτ ] = Ej,t[aτ ]. That	is, complete	information	(in	the	sense	of	Definition	1)	rules	out	imperfect	consensus

(in	the	sense	of	Definition	2).

Proof	of	Lemma	1. Lemma	1 directly	follows	from	the	argument	in	main	text.

Proof	of	Lemma	2. We	prove	the	following	stronger	result: there	exists	positively-valued	coefficients

{χh,k}k≥1,1≤h≤k, such	that, for	any t ≤ T − 1,

at =

T−t∑
h=1

{
χh,T−tĒ

h
t [ΘT ]

}
, (35)

where	each χh,k is	a	function	of (α, γ, h, k) and Ēh
t [·] is	defined	recursively	by Ē1

t [·] = Ēt [·] and Ēh
t [·] =

Ēt

[
Ēh−1

t [·]
]
for	every h ≥ 2. We	now	prove	this	claim	by	induction. First, consider t = T − 1. From

5As	mentioned	in	main	text, we	assume limk→∞ γkEi,t [at+k] = 0 and	rule	out	“extrinsic	bubbles.”
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aT = ΘT
6 and	condition	(16), we	have aT−1 = (γ + α) ĒT−1 [ΘT ]. It	follows	that	condition	(35)	holds	for

χ1,1 = γ + α.

Now, pick	an	arbitrary t ≤ T − 2, assume	that	condition	(35)	holds	for	all τ ∈ {t+ 1, ..., T − 1}, and	let
us	prove	that	it	also	holds	for t. From	condition	(16), we	have

at = γT−t−1 (γ + α) Ēt [ΘT ] + α

T−t−1∑
k=1

γk−1Ēt

[
T−t−k∑
h=1

{
χh,T−t−kĒ

h
t+k [ΘT ]

}]
(36)

= γT−t−1 (γ + α) Ēt [ΘT ] +

T−t−1∑
h=1

T−t−h∑
k=1

(
αγk−1χh,T−t−k

)
Ēh+1

t [ΘT ] ,

where	the	second	line	uses	Assumption	1 (no	learning). As	a	result, condition	(35)	holds	for

χ1,T−t = γT−t−1 (γ + α) and χh+1,T−t =

T−t−h∑
k=1

αγk−1χh,T−t−k h ∈ {1, · · ·T − t− 1} . (37)

This	finishes	the	proof.

Proof	of	Theorem	1. This	theorem	builds	on	Proposition	3 and	Theorem	2, which	are	proved	in	the

sequel. We	invite	the	reader	to	read	first	the	proofs	of	these	two	results. Here, we	prove	Theorem	1 taking

for	granted	these	results.

Part	(i)	follows	directly	from	projecting a0 on Ē0[ΘT ] and	letting ϕT be	the	coefficient	of	this	projection

and ϵ the	residual.

To	prove	part	(ii), note	that	from	Lemma	2, we	have ϕT =
∑T

h=1 χh,Tβh, which	is	condition	(20)	in	the

main	text. Together	with	the	expression	of ϕ∗
T , condition	(18), and	the	fact	that βh < 1 for	all h ≥ 2 (from

Proposition	3), we	have ϕT /ϕ
∗
T < 1 for	all T ≥ 2.

To	prove	part	(iii), from	condition	(20), we	have ϕT /ϕ
∗
T =

[∑T−1
h=1 sh,T (βh − βh+1) + sT,TβT

]
/sT,T and

ϕT+1/ϕ
∗
T+1 =

[∑T−1
h=1 sh,T+1 (βh − βh+1) + sT,T+1 (βT − βT+1) + sT+1,T+1βT+1

]
/sT+1,T+1. From	Proposi-

tion	3 we	know βh > βh+1 for	all h. Together	with	Theorem	2, we	have, for	all T ≥ 1,

ϕT+1/ϕ
∗
T+1 <

[
T−1∑
h=1

sh,T+1 (βh − βh+1) + sT+1,T+1 (βT − βT+1) + sT+1,T+1βT+1

]
/sT+1,T+1

=

[
T−1∑
h=1

sh,T+1 (βh − βh+1) + sT+1,T+1βT

]
/sT+1,T+1

≤

[
T−1∑
h=1

sh,T (βh − βh+1) + sT,TβT

]
/sT,T = ϕT /ϕ

∗
T .

6As	mentioned	in	main	text, we	assumelimk→∞ γkEi,t [at+k] = 0 and	rule	out	“extrinsic	bubbles.” Together	with	the	fact Θt is
zero	for	all t > T, at is	also	zero	for	all t > T. As	a	result, aT = ΘT from	condition	(12).
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Proof	of Proposition	3. Note	that	every	agent i’s	signal	at	period 0 is	drawn	i.i.d. from	the	aggregate

state	of	the	Nature	(for	simplicity, we	call	this	property	“symmetry”	in	the	rest	of	this	proof), we	have, for	all

h ≥ 2,

Cov
(
Ēh

0 [ΘT ], Ē
1
0 [ΘT ]

)
= Cov

(
Ei,0

[
Ēh−1

0 [ΘT ]
]
, Ē1

0 [ΘT ]
)
= Cov

(
Ei,0

[
Ēh−1

0 [ΘT ]
]
, Ei,0

[
Ē1

0 [ΘT ]
])

,

= Cov
(
Ēh−1

0 [ΘT ], Ei,0

[
Ē1

0 [ΘT ]
])

= Cov
(
Ēh−1

0 [ΘT ], Ē
2
0 [ΘT ]

)
,

where	the	second	and	the	third	equality	come	from	the	law	of	iterated	expectations. By	the	same	argument,

we	have, for	all h ≥ 2 and j ∈ {1, 2, · · ·h− 1} ,

Cov
(
Ēh

0 [ΘT ], Ē
1
0 [ΘT ]

)
= Cov

(
Ēh−j

0 [ΘT ], Ē
1+j
0 [ΘT ]

)
. (38)

From	the	previous	condition, for k ≥ 1, we	have7

β2k =
Cov

(
Ēk

0 [ΘT ], Ē
k+1
0 [ΘT ]

)
V ar

(
Ē1

0 [ΘT ]
) =

Cov
(
Ēk

0 [ΘT ], Ei,0

[
Ēk

0 [ΘT ]
])

V ar
(
Ē1

0 [ΘT ]
) =

V ar
(
Ei,0

[
Ēk

0 [ΘT ]
])

V ar
(
Ē1

0 [ΘT ]
) ≥ 0 ∀i, (39)

where	the	second	equation	follows	from	symmetry	and	the	last	equation	follows	from	the	law	of	iterated

expectations. Similarly, for k ≥ 1, we	have

β2k−1 =
Cov

(
Ēk

0 [ΘT ], Ē
k
0 [ΘT ]

)
V ar

(
Ē1

0 [ΘT ]
) =

V ar
(
Ēk

0 [ΘT ]
)

V ar
(
Ē1

0 [ΘT ]
) ≥ 0. (40)

Now, note	that	for	any	random	variableX, and	any	information I, according	to	the	law	of	total	variance,

we	have:

V ar (E[X|I]) ≤ V ar (X) .

As	a	result, V ar
(
Ēk+1

0 [ΘT ]
)
= V ar

(
E
[
Ei,0

[
Ēk

0 [ΘT ]
]
|s
])

≤ V ar
(
Ei,0

[
Ēk

0 [ΘT ]
])
and V ar

(
Ei,0

[
Ēk

0 [ΘT ]
])

=

V ar
(
E
[
Ēk

0 [ΘT ]|ωi

])
≤ V ar

(
Ēk

0 [ΘT ]
)
, where, as	a	reminder, s is	 the	aggregate	state	of	 the	Nature	and

ωi is	 the	 information	of	 agent i. Together	with	 conditions	 (39)	 and	 (40), we	know	 that, for	 all k ≥ 1,

β2k+1 ≤ β2k ≤ β2k−1. This	proves	that, for	all h ≥ 2, βh ∈ [0, 1] and	is	weakly	decreasing	in h.

Now	we	try	to	prove βh is	strictly	decreasing	in h. Note	that	from	condition	(39), β2 =
V ar(Ei,0[Ē0[ΘT ]])

V ar(Ē1
0 [ΘT ])

≤
β1 = 1. If β2 = β1 = 1, we	have V ar

(
Ei,0

[
Ē0[ΘT ]

])
= V ar

(
Ē0[ΘT ]

)
for	all i. This	means	that

V ar
(
Ei,0

[
Ē0[ΘT ]

]
− Ē0[ΘT ]

)
= V ar

(
Ei,0

[
Ē0[ΘT ]

])
+ V ar

(
Ē0[ΘT ]

)
− 2Cov

(
Ei,0

[
Ē0[ΘT ]

]
, Ē0[ΘT ]

)
= V ar

(
Ē0[ΘT ]

)
− V ar

(
Ei,0

[
Ē0[ΘT ]

])
= 0, (41)

7Note	 that	under	 incomplete	 information, we	have V ar
(
Ē1

0 [ΘT ]
)
> 0, so	all βk is	well	defined. To	prove	 it, note	 that	 if

V ar
(
Ē1

0 [ΘT ]
)
= 0, together	with	the	fact	that	the	mean	of ΘT is	zero, we	have Ē1

0 [ΘT ] = 0 almost	surely. As	a	result, we	have
V ar (Ei,0 [ΘT ]) = Cov (ΘT , Ei,0 [ΘT ]) = Cov

(
ΘT , Ē0 [ΘT ]

)
= 0, and Ei,0 [ΘT ] = 0 = Ej,0 [ΘT ] almost	surely	for	all i, j. This	is

inconsistent	with	the	definition	about	incomplete	information	in	Definition	1.
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where	the	second	equality	follows	from	the	law	of	iterated	expectations. As	a	result, for	all i, Ei,0

[
Ē0[ΘT ]

]
=

Ē0[ΘT ] almost	surely. We	henceforth	have	that

V ar
(
Ē0 [ΘT ]

)
= Cov

(
ΘT , Ē

2
0 [ΘT ]

)
= Cov

(
ΘT , Ei,0

[
Ē0 [ΘT ]

])
= Cov

(
ΘT , Ē0 [ΘT ]

)
= Cov (ΘT , Ei,0 [ΘT ]) = V ar (Ei,0 [ΘT ]) ,

where	the	first	equality	follows	a	similar	argument	as	condition	(38), the	second	and	fourth	equalities	follow

from	symmetry, the	third	equality	follows	from Ei,0

[
Ē0[ΘT ]

]
= Ē0[ΘT ] almost	surely, and	the	last	equality

follows	from	the	law	of	iterated	expectations. This	means	that

V ar
(
Ei,0 [ΘT ]− Ē0 [ΘT ]

)
= V ar (Ei,0 [ΘT ]) + V ar

(
Ē0 [ΘT ]

)
− Cov

(
Ei,0 [ΘT ] , Ē0 [ΘT ]

)
= V ar (Ei,0 [ΘT ])− V ar

(
Ē0 [ΘT ]

)
= 0, (42)

where	the	second	equality	follows	from	symmetry. As	a	result, Ei,0 [ΘT ] = Ē0 [ΘT ] almost	surely	for	all

i, and Ei,0 [ΘT ] = Ej,0 [ΘT ] almost	surely	for	all i, j. This	is	contradictory	to	the	definition	of	incomplete

information. As	a	result, β2 < β1 = 1.

Now, suppose	it	is	not	the	case	that βh is	strictly	decreasing	in h. Then	there	exists	a	smallest h∗ > 1

such	that βh∗+1 = βh∗ .

If h∗ = 2k for	some k ≥ 1. From	conditions	(39)	and	(40), we	have V ar
(
Ei,0

[
Ēk

0 [ΘT ]
])

= V ar
(
Ēk+1

0 [ΘT ]
)
.

Following	a	similar	argument	as	condition	 (42), we	have Ei,0

[
Ēk

0 [ΘT ]
]
= Ēk+1

0 [ΘT ] almost	 surely. We

henceforth	have

Cov
(
Ēk

0 [ΘT ], Ē
k+1
0 [ΘT ]

)
= Cov

(
Ei,0

[
Ēk−1

0 [ΘT ]
]
, Ēk+1

0 [ΘT ]
)
= Cov

(
Ei,0

[
Ēk−1

0 [ΘT ]
]
, Ei,0

[
Ēk

0 [ΘT ]
])

= Cov
(
Ei,0

[
Ēk−1

0 [ΘT ]
]
, Ēk

0 [ΘT ]
)
= Cov

(
Ēk

0 [ΘT ], Ē
k
0 [ΘT ]

)
,

where	the	first	and	the	last	equalities	follow	from	symmetry, the	second	equality	follows	from	the	fact	that

Ei,0

[
Ēk

0 [ΘT ]
]
= Ēk+1

0 [ΘT ] almost	surely, and	the	third	equality	follows	from	the	law	of	iterated	expectations.

This	expression	means βh∗−1 = β2k−1 = β2k = βh∗ , which	contradicts	the	fact	that h∗ is	the	smallest h such

that βh∗+1 = βh∗ .

If h∗ = 2k − 1 for	 some k ≥ 2, from	 conditions	 (39)	 and	 (40), we	 have V ar
(
Ei,0

[
Ēk

0 [ΘT ]
])

=

V ar
(
Ēk

0 [ΘT ]
)
. Following	a	similar	argument	as	condition	(41)	for	all i, Ei,0

[
Ēk

0 [ΘT ]
]
= Ēk

0 [ΘT ] almost

surely. We	henceforth	have

V ar
(
Ēk

0 [ΘT ]
)
= Cov

(
Ēk−1

0 [ΘT ] , Ē
k+1
0 [ΘT ]

)
= Cov

(
Ēk−1

0 [ΘT ] , Ei,0

[
Ēk

0 [ΘT ]
])

= Cov
(
Ēk−1

0 [ΘT ] , Ē
k
0 [ΘT ]

)
= Cov

(
Ēk−1

0 [ΘT ] , Ei,0

[
Ēk−1

0 [ΘT ]
])

= V ar
(
Ei,0

[
Ēk−1

0 [ΘT ]
])

,
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where	the	first	equality	follows	a	similar	argument	as	condition	(38), the	second	and	forth	equalities	follow

from	symmetry, the	third	equality	follows	from Ei,0

[
Ēk

0 [ΘT ]
]
= Ēk

0 [ΘT ] almost	surely, and	the	last	equality

follows	from	the	law	of	iterated	expectations. This	expression	means	that βh∗−1 = β2k−2 = β2k−1 = βh∗ ,

which	contradicts	the	fact	that h∗ is	the	smallest h such	that βh∗+1 = βh∗ .

As	a	result, βh is	strictly	decreasing	in h. This	implies	that βh < β1 = 1, ∀h ≥ 2. It	also	means	that βh >

0 ∀h. If	not, there	exists	a h∗ such	that βh∗ = 0. From	strict	monotonicity, we	then	have βh∗+1 < βh∗ = 0,

which	contradicts βh∗+1 ≥ 0. This	finishes	the	proof	of	Proposition	3.

Proof	of Corollary	1. Corollary	1 follows	directly	from	part	(ii)	of	Theorem	1.

Proof	of	Theorem	2. To	simplify	notation, we	extend	the	definition	of sh,τ =
∑h

r=1 χr,τ for	all h > τ . In

the	case	that h > τ , from	Lemma	2, we	have χh,τ = 0. As	a	result, sh,τ = sτ,τ for	all h > τ . We	also	define

s0,τ = 0 for	all τ ≥ 1.

From	condition	(16), we	have

sh,τ = γτ−1 (γ + α) +
τ−1∑
l=1

αγl−1sh−1,τ−l ∀h ≥ 1 and τ ≥ 1. (43)

Now, for	all τ ≥ 1, as χh,τ = 0 for h > τ , we	can	use dτ = sτ,τ denote	the	combined	effect	of	beliefs	of

all	different	orders. From	condition	(43), we	have

dτ = γτ−1 (γ + α) +

τ−1∑
l=1

αγl−1dτ−l ∀τ ≥ 1, (44)

where	we	use	the	fact	that sh,τ = sτ,τ for	all h > τ . From	condition	(44), we	can	easily	verify, by	induction,

that

dτ = (γ + α)τ ∀τ ≥ 1. (45)

For	any h ≥ 1, we	now	prove	that sh,τ/sτ,τ = sh,τ/dτ strictly	decreases	with τ ≥ h. Notice	that	from

condition	(43), we	have, for	all τ ≥ h ≥ 1,

sh,τ+1 = γτ (γ + α) + αsh−1,τ +

τ−1∑
l=1

αγlsh−1,τ−l

= γsh,τ + αsh−1,τ < (γ + α) sh,τ . (46)

Also	note	that	from	condition	(45), we	have sτ+1,τ+1 = dτ+1 = (γ + α) dτ = (γ + α) sτ,τ . Together, we

have sh,τ+1/sτ+1,τ+1 < sh,τ/sτ,τ for	all τ ≥ h ≥ 1.

Finally, we	prove	that, for	any h ≥ 1, sh,τ/sτ,τ → 0 as τ → +∞. Because s1,τ = γτ−1 (γ + α) and sτ,τ =

(γ + α)τ , limτ→∞ sh,τ/sτ,τ → 0 holds	for h = 1. Suppose	there	is	some h such	that limτ→∞ sh,τ/sτ,τ → 0

does	not	hold, let h∗ > 1 be	the	smallest	of	such h. As sh∗,τ/sτ,τ is	strictly	decreasing	in τ , there	exists Γ > 0
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such	that limτ→∞ sh∗,τ/sτ,τ → Γ. From	conditions	(45)	and	(46), we	have sh∗,τ+1

sτ+1,τ+1
= γ

γ+α

sh∗,τ
sτ,τ

+ α
γ+α

sh∗−1,τ

sτ,τ
.

Let τ → +∞, we	have Γ = γ
γ+αΓ. This	cannot	be	true	as α, γ > 0. As	a	result, limτ→∞ sh,τ/sτ,τ → 0 for	all

h ≥ 1.

Proof	of	Proposition	4. By	Theorem	1, the	ratio ϕT
ϕ∗
T
is	strictly	decreasing	in T and	bounded	in (0, 1). It

follows	that ϕT
ϕ∗
T
necessarily	converges	to	some φ ∈ [0, 1) as T → ∞. Similarly, by	Proposition	3, βh is	strictly

decreasing	in T and	bounded	in (0, 1). It	follows	that βh necessarily	converges	to	some β ∈ [0, 1) as T → ∞.

We	first	prove φ = β ≡ limh→∞ βh.We	note	that	for, any ϑ > 0, there	exists	a h∗, such	that
∣∣βh − β

∣∣ < ϑ
2

for	all h ≥ h∗. From	Theorem	2, we	can	then	find T ∗ ∈ N+ such	that, for	all T ≥ T ∗, sh∗−1,T

sT,T
≤ ϑ

2 . Together

with	conditions	(18)	and	(20), we	have, for	all T ≥ max {h∗, T ∗},

∣∣∣∣ϕT

ϕ∗
T

− β

∣∣∣∣ =
∣∣∣∣∣
∑T

h=1 χh,T

(
βh − β

)
sT,T

∣∣∣∣∣ =
∣∣∣∣∣
∑h∗−1

h=1 χh,T

(
βh − β

)
+
∑T

h=h∗ χh,T

(
βh − β

)
sT,T

∣∣∣∣∣
≤
∑h∗−1

h=1 χh,T

sT,T
+

∑T
h=h∗ χh,T

ϑ
2

sT,T

≤ ϑ

2
+

ϑ

2
= ϑ,

where	the	first	 inequality	we	use	the	fact	 that
∣∣βh − β

∣∣ ≤ 1 and	the	second	inequality	uses	the	fact	 that∑T
h=h∗ χh,T

sT,T
≤ sT,T

sT,T
= 1. As	a	result, φ ≡ limT→∞

ϕT
ϕ∗
T
= β.

Finally, from	condition	 (40), we	know β2h−1 =
V ar(Ēh

0 [ΘT ])
V ar(Ē1

0 [ΘT ])
. If limh→∞ V ar

(
Ēh[ΘT ]

)
= 0, we	have

limh→∞ β2h−1 = 0. As βh is	decreasing	in h, we	also	have

β = lim
h→∞

βh = 0. (47)

As	a	result, limT→∞
ϕT
ϕ∗
T
= 0.

Proof	of	Proposition	5. Under	the	assumed	information	structure, we	have	for	any h ∈ {1, ..., T} and

0 ≤ t1 < t2 < · · · < th < T ,

Ēt1 [Ēt2 [...[Ēth [ΘT ]...]] = λhz. (48)

Now	we	prove	by	induction	that, for	all t ≤ T − 1,

at = (γ + α)
{
ΠT−1

τ=t+1 (γ + λα) Ēt[ΘT ]
}
. (49)

SinceΘt = 0 for	all t ̸= T, together	with	condition	(16), we	have aT = ΘT and aT−1 = (γ + α) ĒT−1[ΘT ].

As	a	result, condition	(49)	holds	for t = T − 1. Now, pick	a t ≤ T − 2, assume	that	the	claim	holds	for	all

τ ∈ {t+ 1, ..., T − 1}, and	let	us	prove	that	it	also	holds	for t. Using	the	claim	for	all τ ∈ {t+ 1, ..., T − 1},
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condition	(16), and	condition	(48), we	have, for t ≤ T − 2,

at = γT−tĒt [ΘT ] + αĒt [at+1] + α
T−t∑
k=2

γk−1Ēt [at+k] ,

γĒt [at+1] = λγT−tĒt [ΘT ] + λα

T−t∑
k=2

γk−1Ēt [at+k] .

As	a	result, we	have at =
(γ
λ + α

)
Ēt [at+1] . Together	with	condition	(49)	for t+ 1, we	have

at = (γ + α)
{
ΠT−1

τ=t+1 (γ + λα) Ēt[ΘT ]
}
.

This	proves	condition	(49)	for	all t ≤ T−1. As	a	result, ϕT = (γ + α)ΠT−1
t=1 (γ + λα) . This	proves	Proposition

5.

Proof	of	Corollary	2. Note	that δ − δ′ = α (1− λ) increases	with α for	any	given λ < 1.

Proof	of	Lemma	3. As	firms	have	complete	information, the	canonical	NKPC in	condition	(10)	holds.

Substituting	it	 into	the	consumption	beauty	contest, condition	(5), and	using	the	fact	 that	 future	markup

shocks	are	unpredictable, we	have

ỹt = −σR̃t − σ

∞∑
k=1

βkĒc
t [R̃t+k] +

∞∑
k=1

(1− β + kσκ)βk−1Ēc
t [ỹt+k].

Proof	of	Proposition	6. Let
{
ỹtrapt , π̃trap

t

}T

t=0
denote	the	liquidity-trap	level	of	output	and	inflation	(i.e.,

the	one	obtained	when	the	period-T nominal	interest	rate	is	fixed	at	the	steady-state	value, R̃T = 0). From

conditions	(9)	and	(10), we	have, for	all t ≤ T − 1,

ỹt − ỹtrapt = σEt[π̃t+1 − π̃trap
t+1 ] + Et[ỹt+1 − ỹtrapt+1 ], (50)

π̃t − π̃trap
t = κ

(
ỹt − ỹtrapt

)
+ βEt[π̃t+1 − π̃trap

t+1 ]. (51)

Now	we	will	prove	the	following	stronger	result, which	nests	the	representation	in	condition	(24): there

exists	positive	scalars {ϕ∗
τ , ϖ

∗
τ}τ≥0 such	that, whenever	Assumptions	2 hold	and z is	commonly	known, the

equilibrium	spending	and	inflation	at	any t ≤ T are	given	by

ỹt − ỹtrapt = −ϕ∗
T−t · Et[R̃T ], (52)

π̃t − π̃trap
t = κ

(
ỹt − ỹtrapt

)
−ϖ∗

T−t · Et[R̃T ]. (53)

We	prove	this	result	by	induction, starting	with t = T and	proceeding	backwards. When t = T , under

Assumption	2, we	have ỹT − ỹtrapT = −σR̃T and π̃T − π̃trap
T = κ

(
ỹT − ỹtrapT

)
. This	verifies	(52)	and	(53)	for
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t = T , with

ϕ∗
0 = σ and ϖ∗

0 = 0. (54)

Now	suppose	that	the	result	holds	for	arbitrary t ∈ {1, ..., T} and	let’s	prove	that	it	also	holds	for t − 1.

By	the	assumption	that	(52)	and	(53)	hold	at t along	with	the	Law	of	Iterated	Expectations, we	have

Et−1[ỹt − ỹtrapt ] = −ϕ∗
T−t · Et−1[R̃T ],

Et−1[π̃t − π̃trap
t ] = −

(
κϕ∗

T−t +ϖ∗
T−t

)
· Et−1[R̃T ].

Using	the	above	together	with	conditions	(50)	and	(51)	verifies	that	(52)	and	(53)	hold	also	for t−1, with

ϕ∗
T−t+1 = (1 + σκ)ϕ∗

T−t + σϖ∗
T−t, (55)

ϖ∗
T−t+1 = βκϕ∗

T−t + βϖ∗
T−t. (56)

This	completes	 the	proof	of	conditions	 (50)	and	 (51), and	gives	a	 recursive	 formula	 that	can	be	used	 to

compute ϕ∗
T .

Now	we	prove	the	Proposition. From	conditions	(55)	and	(56), we	have	that, for	all τ ≥ 0,

ϕ∗
τ+1 = (1 + σκ)ϕ∗

τ + σϖ∗
τ , (57)

ϖ∗
τ+1 = βκϕ∗

τ + βϖ∗
τ . (58)

Together	with	condition	(54), we	know, as κ > 0, ϖ∗
τ > 0, ∀τ ≥ 1. Then, from	condition	(57), we	have

ϕ∗
τ > σ, ∀τ ≥ 1, and ϕ∗

τ is	strictly	increasing	in τ.Moreover, as 1+σκ > 1, we	know ϕ∗
τ explodes	to	infinity

as τ → ∞ from	condition	(57).

Finally, we	prove	a	few	more	results	useful	for	the	rest	of	the	paper. First, we	prove	a	recursive	relationship

about {ϕ∗
τ}τ≥0.

ϕ∗
τ+1

ϕ∗
τ

+ β
ϕ∗
τ−1

ϕ∗
τ

= 1 + β + σκ ∀τ ≥ 1. (59)

From	condition	(57), we	have, for	all τ ≥ 1,

βϕ∗
τ = β (1 + σκ)ϕ∗

τ−1 + σβϖ∗
τ−1.

Together	with	conditions	(57)	and	(58), we	arrive	at	condition	(59).

Second, we	prove	that, when κ > 0,

ϕ∗
τ

ϕ∗
τ−1

is	strictly	increasing	in τ ≥ 1. (60)

From	conditions	(57)	and	(58), we	have ϕ∗
1 = σ (1 + σκ) and ϕ∗

2 = σ
(
(1 + σκ)2 + σκβ

)
. As	a	result, when
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κ > 0,
ϕ∗
2

ϕ∗
1

= 1 + σκ+
σκβ

1 + σκ
>

ϕ∗
1

ϕ∗
0

.

Now	we	proceed	by	induction. Suppose	that, for τ ≥ 1, we	have
ϕ∗
τ+1

ϕ∗
τ

> ϕ∗
τ

ϕ∗
τ−1

. Using	condition	(59)	for τ

and τ + 1, we	have
ϕ∗
τ+2

ϕ∗
τ+1

>
ϕ∗
τ+1

ϕ∗
τ
. This	proves	(60).

Finally, from	condition	(59), we	know ϕ∗
τ

ϕ∗
τ−1

is	bounded	above. Together	with	(60), ϕ∗
τ

ϕ∗
τ−1

must	converge

to Γ∗ > 0, as τ → ∞. From	condition	(59)	again, we	know Γ∗ satisfy

Γ∗ + β
1

Γ∗ = 1 + β + σκ. (61)

Proof	of	Proposition	7. With
{
ỹtrapt , π̃trap

t

}T

t=0
defined	as	in	the	proof	of	Proposition	6, along	with	the

fact	that	it	is	common	knowledge	monetary	policy	replicates	flexible-price	allocations	from T + 1 and	on,

we	can	rewrite	the	two	beauty	contests	as	follows:

ỹt − ỹtrapt = −σβT−tĒc
t [R̃T ] +

T−t∑
k=1

σβk−1Ēc
t

[
π̃t+k − π̃trap

t+k

]
+ (1− β)

T−t∑
k=1

βk−1Ēc
t

[
ỹt+k − ỹtrapt+k

]
, (62)

π̃t − π̃trap
t = κ

(
ỹt − ỹtrapt

)
+ κ

T−t∑
k=1

(βθ)k Ēf
t

[
ỹt+k − ỹtrapt+k

]
+ 1−θ

θ

T−t∑
k=1

(βθ)k Ēf
t

[
π̃t+k − π̃trap

t+k

]
. (63)

Consider	the	following	claim, which	nests	the	representation	in	condition	(25): under	Assumption	3, there

exists	functions ϕ,ϖ : (0, 1]× (0, 1]× N → R+ such	that, for	any t ≤ T − 1,

ỹt − ỹtrapt = −ϕ (λc, λf , T − t) Ēc
t [R̃T ], (64)

π̃t − π̃trap
t = κ

(
ỹt − ỹtrapt

)
−ϖ (λc, λf , T − t) Ēf

t [R̃T ]. (65)

We	now	establish	this	claim	by	induction.

First, consider t = T , as R̃T becomes	common	known	at	period T , we	have

ỹT − ỹtrapT = −σR̃T and π̃T − π̃trap
T = κ

(
ỹT − ỹtrapT

)
.

Then, consider t = T − 1. From	conditions	(62)	and	(63), we	have

ỹT−1 − ỹtrapT−1 = −σ(1 + σκ)Ēc
T−1[R̃T ],

π̃T−1 − π̃trap
T−1 = κ

(
ỹT−1 − ỹtrapT−1

)
− σκβĒf

T−1[R̃T ].

It	follows	that	the	claim	holds	for t = T − 1 with

ϕ(λc, λf , 1) = σ (1 + σκ) and ϖ(λc, λf , 1) = σκβ. (66)
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Now, pick	an	arbitrary t ≤ T−2, assume	that	conditions	(64)	and	(65)	hold	for	all τ ∈ {t+1, ..., T−1}, and
let	us	prove	that	it	also	holds	for t. Since	the	claim	holds	for τ ∈ {t+1, ...T−1}, and	since ỹT−ỹtrapT = −σR̃T

and π̃T − π̃trap
T = −κσR̃T , from	condition	(62), we	have

ỹt − ỹtrapt = −σβT−t−1 (1 + σκ) Ēc
t [R̃T ]− (1− β + σκ)

T−t−1∑
k=1

βk−1ϕ (λc, λf , T − t− k) Ēc
t [Ē

c
t+k[R̃T ]]

− σ

T−t−1∑
k=1

βk−1ϖ (λc, λf , T − t− k) Ēc
t

[
Ēf

t+k[R̃T ]
]
.

As	a	result, we	have

ỹt − ỹtrapt = −σβT−t−1 (1 + σκ) Ēc
t [R̃T ]

−
T−t−1∑
k=1

βk−1 [(1− β + σκ)λcϕ (λc, λf , T − t− k) + σλfϖ (λc, λf , T − t− k)] Ēc
t [R̃T ],

where	we	have	used	the	fact	that, under	Assumption	3, for 1 ≤ k ≤ T − t− 1,

Ēc
t [Ē

c
t+k[R̃T ]] = λcĒ

c
t [R̃T ] and Ēc

t [Ē
f
t+k[R̃T ]] = λf Ē

c
t [R̃T ]. (67)

This	proves	the	part	of	the	claim	that	regards	output, condition	(64), with

ϕ (λc, λf , T − t) = βT−t−1
(
σ + σ2κ

)
+

T−t−1∑
k=1

βk−1 [(1− β + σκ)λcϕ (λc, λf , T − t− k) + σλfϖ (λc, λf , T − t− k)] .

(68)

Similarly, the	inflation	beauty	contest	in	condition	(63)	gives

π̃t − π̃trap
t = κ

(
ỹt − ỹtrapt

)
− σ κ

θ (βθ)
T−t Ēf

t [R̃T ]− κ
θ

T−t−1∑
k=1

(βθ)k ϕ (λc, λf , T − t− k) Ēf
t [Ē

c
t+k[R̃T ]]

− 1−θ
θ

T−t−1∑
k=1

(βθ)k ϖ (λc, λf , T − t− k) Ēf
t [Ē

f
t+k[R̃T ]].

As	a	result, we	have

π̃t − π̃trap
t = κ

(
ỹt − ỹtrapt

)
−

{
σ κ

θ (βθ)
T−t +

T−t−1∑
k=1

(βθ)k
[
κλc
θ ϕ (λc, λf , T − t− k) +

(1−θ)λf

θ ϖ (λc, λf , T − t− k)
]}

Ēf
t [R̃T ],
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where	we	have	used	the	fact	that, similarly	to	the	consumers’	case, for 1 ≤ k ≤ T − t− 1,

Ēf
t [Ē

c
t+k[R̃T ]] = λcĒ

f
t [R̃T ] and Ēf

t [Ē
f
t+k[R̃T ]] = λf Ē

f
t [R̃T ]. (69)

This	proves	the	part	of	the	claim	that	regards	inflation, condition	(65)	with

ϖ (λc, λf , T − t) = σ
κ

θ
(βθ)T−t +

T−t−1∑
k=1

(βθ)k
(
κλc
θ ϕ (λc, λf , T − t− k) +

(1−θ)λf

θ ϖ (λc, λf , T − t− k)
)
.

(70)

We	finally	provide	a	recursive	formula	for	computing ϕ(λc, λf , T − t) and ϖ (λc, λf , T − t), which	will

be	useful	later. From	condition	(68), we	have, for t ≤ T − 2,

ϕ (λc, λf , T − t) = βϕ (λc, λf , T − t− 1) + (1− β + σκ)λcϕ (λc, λf , T − t− 1) + σλfϖ (λc, λf , T − t− 1)

= (β + (1− β + σκ)λc)ϕ (λc, λf , T − t− 1) + σλfϖ (λc, λf , T − t− 1) . (71)

Similarly, from	condition	(70), we	have, for t ≤ T − 2,

ϖ (λc, λf , T − t) = βθϖ (λc, λf , T − t− 1) + βθ
(
κλc
θ ϕ (λc, λf , T − t− 1) +

(1−θ)λf

θ ϖ (λc, λf , T − t− 1)
)

= κβλcϕ (λc, λf , T − t− 1) + β [θ + (1− θ)λf ]ϖ (λc, λf , T − t− 1) . (72)

From	now	on, to	simplify	notation, we	use ϕτ and ϖτ as	shortcuts	for, respectively, ϕ (λc, λf , τ) and

ϖ (λc, λf , τ).

We	first	prove	part	(i)	of	Proposition	7. From	condition	(68), we	know ϕτ > σβτ . The	fact	that ϕτ < ϕ∗
τ

is	a	direct	corollary	from	the	monotonicity	of ϕτ with	respect	to λc and λf , which	will	be	proved	shorty.

We	then	prove	part	(ii)	of	Proposition	7. As κ > 0, from	conditions	(66), (71)	and	(72), we	know	that

ϕτ , ϖτ > 0 for	all τ ≥ 1.

We	will	first	prove, for τ ≥ 2, ϕτ = ϕ (λc, λf , τ) is	strictly	increasing	in	both λc and λf . We	will	proceed

by	induction	on τ. For τ = 2, from	(66), (71)	and	(72), we	have ϕ2 and ϖ2 is	strictly	increasing	in	both λc

and λf . Suppose	for τ ≥ 2, ϕτ , ϖτ is	strictly	increasing	in	both λc and λf . From	conditions	(71)	and	(72),

we	know ϕτ+1 and ϖτ+1 are	strictly	increasing	in	both λc and λf , where	we	use	the	fact	that ϕτ , ϖτ > 0.

This	proves	that, for τ ≥ 2, ϕτ = ϕ (λc, λf , τ) is	strictly	increasing	in	both λc and λf . Because	of	the	strict

monotonicity, we	have, for τ ≥ 2, whenever λc < 1 and/or λf < 1, ϕτ

ϕ∗
τ
=

ϕ(λc,λf ,τ)
ϕ(1,1,τ) < 1.

We	now	prove	that, whenever λc < 1 and/or λf < 1, the	ratio ϕτ

ϕ∗
τ
=

ϕ(λc,λf ,τ)
ϕ∗
τ

is	strictly	decreasing	in

τ ≥ 1. We	start	by	noticing, from	the	proof	of	Proposition	6, we	have, for τ ≥ 3,

ϕ∗
τ

ϕ∗
τ−1

+ β
ϕ∗
τ−2

ϕ∗
τ−1

=1 + β + σκ . (73)
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Now	we	prove	that ϕτ satisfies	an	inequality	with	a	similar	form	as	(73):

ϕτ

ϕτ−1
+ β

ϕτ−2

ϕτ−1
≤1 + β + σκλc ≤ 1 + β + σκ ∀τ ≥ 3. (74)

From	condition	(71), we	have, for τ ≥ 3,

ϕτ = (β + (1− β)λc)ϕτ−1 + σκλcϕτ−1 + σλfϖτ−1,

β
β+(1−β)λc

ϕτ−1 = βϕτ−2 +
σβκλc

β+(1−β)λc
ϕτ−2 +

σβλf

β+(1−β)λc
ϖτ−2.

From	the	previous	two	conditions, we	have, for τ ≥ 3,

ϕτ + βϕτ−2 = (β + (1− β)λc)ϕτ−1 + σκλcϕτ−1 + σλfϖτ−1 (75)

+ β
β+(1−β)λc

ϕτ−1 − σβκλc

β+(1−β)λc
ϕτ−2 −

σβλf

β+(1−β)λc
ϖτ−2.

Note	that, for τ ≥ 3 and λc, λf ∈ (0, 1], we	have

[
(β + (1− β)λc) + σκλc +

β
β+(1−β)λc

]
ϕτ−1 ≤ (1 + β + σκλc)ϕτ−1,

and, from	condition	(72),

σλfϖτ−1 − σβκλc

β+(1−β)λc
ϕτ−2 −

σβλf

β+(1−β)λc
ϖτ−2

=σλf (κβλcϕτ−2 + β [θ + (1− θ)λf ]ϖτ−2)− σβκλc

β+(1−β)λc
ϕτ−2 −

σβλf

β+(1−β)λc
ϖτ−2

=σκβλc

(
λf − 1

β+(1−β)λc

)
ϕτ−2 + σβλf

[
θ + (1− θ)λf − 1

β+(1−β)λc

]
ϖτ−2

≤0.

Together	with	condition	(75), we	arrive	at	condition	(74).

Now	we	can	prove	that, whenever λc < 1 and/or λf < 1, ϕτ

ϕ∗
τ
is	strictly	decreasing	in τ . We	already

prove ϕ2

ϕ∗
2
< 1 = ϕ1

ϕ∗
1
. We	proceed	by	induction	on τ . If ϕτ

ϕ∗
τ
< ϕτ−1

ϕ∗
τ−1

for τ ≥ 2, we	have ϕτ−1

ϕτ
>

ϕ∗
τ−1

ϕ∗
τ
. From

(73)	and	(74), we	have ϕτ+1

ϕτ
<

ϕ∗
τ+1

ϕ∗
τ

and	thus ϕτ+1

ϕ∗
τ+1

< ϕτ

ϕ∗
τ
. This	finishes	the	proof	that ϕτ

ϕ∗
τ
is	strictly	decreasing

in τ ≥ 1, whenever λc < 1 and/or λf < 1.

Now	we	prove	that, whenever λc < 1 and/or λf < 1, ϕτ

ϕ∗
τ
converges	to 0 as τ → ∞. Because ϕτ

ϕ∗
τ
> 0

is	strictly	decreasing	 in τ ≥ 1, there	exists Γ ∈ [0, 1) such	 that ϕτ

ϕ∗
τ

→ Γ as τ → ∞. We	next	prove	by

contradiction	that Γ = 0.

Suppose	first	that λc < 1. If Γ > 0, we	have ϕτ

ϕ∗
τ

ϕ∗
τ−1

ϕτ−1
→ 1 as τ → ∞. Because ϕ∗

τ
ϕ∗
τ−1

→ Γ∗, we	have
ϕτ

ϕτ−1
→ Γ∗ and ϕτ−2

ϕτ−1
→ 1

Γ∗ as τ → ∞. From	condition	(61), we	have ϕτ

ϕτ−1
+β ϕτ−2

ϕτ−1
→ 1+β+σκ as τ → ∞.

However, this	is	inconsistent	with	(74)	when λc < 1. As	a	result, Γ = 0.
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Suppose	next	that λc = 1 but λf < 1. We	prove	a	stronger	version	of	(74):

ϕτ

ϕτ−1
+ (1 + σκ (1− λf ))β

ϕτ−2

ϕτ−1
≤ 1 + β + σκ ∀τ ≥ 3. (76)

From	conditions	(71)	and	(72), we	have, for τ ≥ 3,

ϕτ = (1 + σκ)ϕτ−1 + σλfϖτ−1,

βϕτ−1 = βϕτ−2 + βσκϕτ−2 + βσλfϖτ−2,

ϖτ−1 = κβϕτ−2 + β [θ + (1− θ)λf ]ϖτ−2.

As	a	result, for τ ≥ 3,

ϕτ + βϕτ−2 = (1 + σκ+ β)ϕτ−1 + σλfϖτ−1 − βσκϕτ−2 − βσλfϖτ−2

≤ (1 + σκ+ β)ϕτ−1 + σ (λf − 1)κβϕτ−2.

This	proves	(76).

Now, if Γ > 0, similarly, we	have ϕτ

ϕ∗
τ

ϕ∗
τ−1

ϕτ−1
→ 1 as τ → ∞. Because ϕ∗

τ
ϕ∗
τ−1

→ Γ∗, we	have ϕτ

ϕτ−1
→ Γ∗

and ϕτ−2

ϕτ−1
→ 1

Γ∗ as τ → ∞. From	condition	(61), we	have ϕτ

ϕτ−1
+ (1 + σκ (1− λf ))β

ϕτ−2

ϕτ−1
→ 1 + β + σκ +

σκ (1− λf )β
1
Γ∗ as τ → ∞. However, this	is	inconsistent	with	equation	(76)	when λf < 1. As	a	result, Γ = 0

when λc = 1, but λf < 1.

Finally, we	prove	that, when λc is	sufficiently	low, ϕ(λc, λf , τ) converges	to	zero	as τ → ∞. The	eigen-

values	of	the	dynamic	system (ϕτ , ϖτ ) based	on	conditions	(71)	and	(72)	are

m1 =
β + (1− β + σκ)λc + β [(1− θ)λf + θ]−

√
(β + (1− β + σκ)λc − β [(1− θ)λf + θ])2 + 4σβλfλcκ

2
> 0;

m2 =
β + (1− β + σκ)λc + β [(1− θ)λf + θ] +

√
(β + (1− β + σκ)λc − β [(1− θ)λf + θ])2 + 4σβλfλcκ

2
> m1.

Note	that limλc→0m2 = β < 1. As	a	result, when λc is	sufficiently	low, both	eigenvalues	are	below 1,

which	means	that ϕ(λc, λf , τ) converges	to	zero	as τ → ∞.

Proof	of	Proposition	8. We	use g̃t to	denote	the	amount	of	government	spending	at	period t. As	men-

tioned	in	main	text, the	government	spending g̃t is	financed	by	lump	sum	tax	at	period t, t̃t = g̃t. Similar

to	the	analysis	for	monetary	policy, we	assume g̃t becomes	commonly	known	at	period t and	only	allow

higher-order	uncertainty	about	future g̃.

Similar	to	the	main	text, now	we	start	to	work	with	log-linearized	representation. Because	the	introduc-
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tion	of	lump-sum	tax, the	individual	budget	constraint	becomes

+∞∑
k=0

βk c̃i,t+k = ãi,t +

+∞∑
k=0

βk
{
Ω1 (w̃i,t+k + ñi,t+k) + Ω2ẽi,t+k − (Ω1 +Ω2 − 1)t̃t

}
,

where Ω1 is	the	ratio	of	labor	income	to	total	income	(net	of	tax)	in	steady	state, Ω2 is	the	ratio	of	dividend

income	to	total	income	(net	of	tax)	in	steady	state, and Ω1+Ω2−1 is	the	ratio	of	lump	sum	tax	to	total	income

(net	of	 tax)	 in	steady	state. On	the	other	hand, the	 individual	optimal	 labor	supply	and	Euler	equation,

conditions	(28)	and	(29), still	hold	here. Together, this	gives	rise	to	the	optimal	expenditure	of	consumer

i ∈ Ic in	period t,

c̃i,t =
(1−β)ϵσ
ϵσ+Ω1

ãi,t − σ

+∞∑
k=1

βkEi,t [r̃t+k] + (1− β)
[
(ϵ+1)σΩ1

ϵσ+Ω1
w̃i,t +

ϵσΩ2
ϵσ+Ω1

ẽi,t − ϵσ(Ω1+Ω2−1)
ϵσ+Ω1

t̃t

]
(77)

+ (1− β)
+∞∑
k=1

βkEi,t

[
(ϵ+1)σΩ1

ϵσ+Ω1
w̃i,t+k +

ϵσΩ2
ϵσ+Ω1

ẽi,t+k − ϵσ(Ω1+Ω2−1)
ϵσ+Ω1

t̃t+k

]
.

Using	the	fact	that	assets	average	to	zero	and	that	future	idiosyncratic	shocks	are	unpredictable, we	obtain

the	following	condition	for	aggregate	spending:

c̃t = −σ
+∞∑
k=1

βkĒc
t [r̃t+k] + (1− β)

[
(ϵ+1)σΩ1

ϵσ+Ω1
w̃t +

ϵσΩ2
ϵσ+Ω1

ẽt − ϵσ(Ω1+Ω2−1)
ϵσ+Ω1

t̃t

]
(78)

+ (1− β)
+∞∑
k=1

βkĒc
t

[
(ϵ+1)σΩ1

ϵσ+Ω1
w̃t+k +

ϵσΩ2
ϵσ+Ω1

ẽt+k − ϵσ(Ω1+Ω2−1)
ϵσ+Ω1

t̃t+k

]
.

The	firm	side, on	the	other	hand, is	essentially	same	as	the	case	without	government	spending, as	a	result,

condition	(6)	still	holds, but	the	formula	for	marginal	cost	are	different. In	particular, from	the	production

function	(3)	and	the	optimal	labor	supply	condition	(28), we	have

m̃ct = w̃t = ϵ

∫
Ic
ñi,tdi+

1

σ
c̃t = ϵỹt +

1

σ
c̃t =

(
ϵΩ3 +

1

σ

)
c̃t + ϵ (1− Ω3) g̃t, (79)

where ỹt = Ω3c̃t + (1− Ω3) g̃t, Ω3 = 1
Ω1+Ω2

is	the	steady	state	consumption	to	output	ratio, and 1 − Ω3 =

Ω1+Ω2−1
Ω1+Ω2

is	the	steady	state	government	spending	to	output	ratio.8 As	a	result, the	inflation	beauty	contest

in	condition	(6)	can	be	written	as

π̃t = κ (Ωcc̃t + (1− Ωc) g̃t) + κ

+∞∑
k=1

(βθ)k Ēf
t [Ωcc̃t+k + (1− Ωc) g̃t+k] +

1−θ
θ

+∞∑
k=1

(βθ)k Ēf
t [π̃t+k] + κµ̃t, (80)

where Ωc =
ϵΩ3+

1
σ

ϵ+ 1
σ

.

8In	steady	state, the	ratio	of	government	spending	to	consumption	will	be	equal	to	ratio	of	lump	sum	tax	to	total	income	(net	of
tax), Ω1 +Ω2 − 1. This	explains	the	formula	for Ω3.
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Finally, note	that	the	real	profit	of	monopolist j at	period t is	given	by ejt =
(
pjt
pt

− wj
t

)
yjt . After	log-

linearization, we	have ẽt = −
Ω1

Ω1+Ω2

1− Ω1
Ω1+Ω2

w̃t+ ỹt = −Ω1
Ω2

w̃t+ ỹt.
9 Together	with	condition	(79), we	have, for	all

t,

(ϵ+1)σΩ1

ϵσ+Ω1
w̃t +

ϵσΩ2
ϵσ+Ω1

ẽt − ϵσ(Ω1+Ω2−1)
ϵσ+Ω1

t̃t =
σΩ1

ϵσ+Ω1
w̃t +

ϵσΩ2
ϵσ+Ω1

ỹt − ϵσ(Ω1+Ω2−1)
ϵσ+Ω1

g̃t

= ϵσ(Ω1+Ω2)
ϵσ+Ω1

ỹt +
Ω1

ϵσ+Ω1
c̃t − ϵσ(Ω1+Ω2−1)

ϵσ+Ω1
g̃t

= ϵσ(Ω1+Ω2)
ϵσ+Ω1

[
1

Ω1+Ω2
c̃t +

Ω1+Ω2−1
Ω1+Ω2

g̃t

]
+ Ω1

ϵσ+Ω1
c̃t − ϵσ(Ω1+Ω2−1)

ϵσ+Ω1
g̃t = c̃t.

Substitute	it	into	condition	(78), we	have

c̃t = −σ

+∞∑
k=1

βk−1Ēc
t [r̃t+k] +

1−β
β

{
+∞∑
k=1

βkĒc
t [c̃t+k]

}
. (81)

This	is	exactly	the	same	form	of	the	consumption	beauty	contest, as	condition	(5).

Now	let	us	state	Proposition	8 formally	here. Similar	to	Assumption	2, we	assume g̃T = z + η, where

z and η are	random	variables, independent	of	one	another	and	of	any	other	shock	in	the	economy, with

z ∼ N(0, σ2
z) and η ∼ N(0, σ2

η). The	former	is	realized	at t = 0, and	could	be	interpreted	as	news	about

government	spending; the	latter	is	realized	at t = T and	is	unpredictable	prior	to	that	point.

First	consider	the	complete	information	outcome. Suppose z is	commonly	known	starting	at t = 0, we

can	find	a	scalar ϕ∗
g,T such	that c̃0 − c̃trap0 = ϕ∗

g,TE0[g̃T ], where c̃trap0 denotes	the	“liquidity	trap”	level	of

consumption	(i.e., the	one	obtained	when	it	is	common	knowledge	that g̃T = 0.) We	have, when κ > 0,

ϕ∗
g,T > 0, is	strictly	increasing	in T, and diverges to infinity as T → ∞. (82)

Now	consider	the	case	in	which z is	not	common	knowledge. Similar	 to	Section	V, we	consider	the

information	structure	specified	in	Assumption	3, in	which	let	each	agent	receives	a	private	signal	about z at

period 0. We	can	then	find	a	scalar ϕg,T such	that c̃0 − c̃trap0 = ϕg,T Ē
c
0[g̃T ]. We	have, as	long	as κ > 0 and

information	is	incomplete, that	is λc < 1,10

ϕg,T ∈
(
0, ϕ∗

g,T

)
, is	strictly	increasing	in λc and λf ;

the	ratio ϕg,T /ϕ
∗
g,T is	strictly	decreasing	in T and	converges	to 0 as T → ∞;

finally,	when λc is	sufficiently	low, ϕg,T also	converges	to 0 as T → ∞. (83)

We	start	from	the	proof	of	condition	(82). Similar	to	the	proof	Proposition	6, we	can	establish	that	there

9This	expression	is	equivalent	to Ω2
Ω1+Ω2

ẽt +
Ω1

Ω1+Ω2
(w̃t + ỹt) =

Ω2
Ω1+Ω2

ẽt +
Ω1

Ω1+Ω2

(
w̃t +

∫
If

l̃jtdj
)
= ỹt. The	last	equation	is

true	because Ω1
Ω1+Ω2

is	steady	state	labor	income	to	total	income	ratio	(before	deducting	tax)	and Ω2
Ω1+Ω2

is	steady	state	dividend
income	to	total	income	ratio	(before	deducting	tax).

10For	simplicity	here, we	always	remove	common	knowledge	about z among	consumer	here. We	allow λf ∈ (0, 1]. In	other
words, we	nest	the	case	in	which	firms	have	perfect	knowledge	about z.
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exists	non-negative	scalars
{
ϕ∗
g,τ , ϖ

∗
g,τ

}
τ≥0

such	that, when z is	commonly	known, the	equilibrium	spending

and	inflation	at	any t ≤ T are	given	by

c̃t − c̃trapt = ϕ∗
g,T−t · Et[g̃T ], (84)

π̃t − π̃trap
t = κ

(
Ωc

(
c̃t − c̃trapt

)
+ (1− Ωc) g̃t

)
+ϖ∗

g,T−t · Et[g̃T ], (85)

where c̃trapt and π̃trap
t denotes	the	“liquidity	trap”	level	of	consumption	and	inflation	(i.e., the	one	obtained

when	it	is	common	knowledge	that g̃T = 0.) Note	that	the	Euler	condition	and	NKPC with	government

spending	under	complete	information	can	be	written	as:

c̃t = −σ
{
R̃t − Et [π̃t+1]

}
+ Et [c̃t+1] , (86)

π̃t = κ (Ωcc̃t + (1− Ωc) g̃t) + βEt [π̃t+1] + κµ̃t. (87)

Using	the	above	expressions, similar	to	the	proof	of	Proposition	6, we	can	establish	that ϕ∗
g,0 = 0, ϖ∗

g,0 = 0,

ϕ∗
g,1 = σκ (1− Ωc), ϖ∗

g,1 = βκ (1− Ωc), and	for	all τ ≥ 1,

ϕ∗
g,τ+1 = (1 + σκΩc)ϕ

∗
g,τ + σϖ∗

g,τ , (88)

ϖ∗
g,τ+1 = βκΩcϕ

∗
g,τ + βϖ∗

g,τ . (89)

From	condition	(88), we	can	see	when κ > 0, ϕ∗
g,τ is	positive, strictly	increasing	in τ and	diverges	to	infinity.

This	proves	condition	(82). Similar	to	condition	(59), one	can	also	prove	the	following	recursive	relationship

about ϕ∗
g:

ϕ∗
g,τ+1

ϕ∗
g,τ

+ β
ϕ∗
g,τ−1

ϕ∗
g,τ

= 1 + β + σκΩc ∀τ ≥ 1. (90)

Moreover, as	condition	(61), we	know
ϕ∗
g,τ

ϕ∗
g,τ−1

must	converge	to Γ∗
g > 0, as τ → ∞:

Γ∗
g + β

1

Γ∗
g

= 1 + β + σκΩc. (91)

We	now	turn	to	the	case	of	incomplete	information	and	establish	the	proof	of	condition	(83). Similar	to

the	proof	of	Proposition	7, we	can	find ϕg, ϖg : (0, 1]× (0, 1]× N → R≥0 such	that, for	any t ≤ T − 1,

c̃t − c̃trapt = ϕg (λc, λf , T − t) Ēc
t [g̃T ], (92)

π̃t − π̃trap
t = κ

(
Ωc

(
c̃t − c̃trapt

)
+ (1− Ωc) g̃t

)
+ϖg (λc, λf , T − t) Ēf

t [g̃T ]. (93)

Using	conditions	(80)	and	(81), we	have ϕg (λc, λf , 1) = σκ (1− Ωc), ϖg (λc, λf , 1) = βκ (1− Ωc) and, for
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all τ ≥ 2,

ϕg (λc, λf , τ) = σβτ−1 (1− Ωc)κ+
τ−1∑
k=1

βk−1 [(1− β + σκΩc)λcϕg (λc, λf , τ − k) + σλfϖg (λc, λf , τ − k)] ;

(94)

ϖg (λc, λf , τ) = (1− Ωc)
κ

θ
(βθ)T−t +

τ−1∑
k=1

(βθ)k
(
κλcΩc

θ ϕg (λc, λf , τ − k) +
(1−θ)λf

θ ϖg (λc, λf , τ − k)
)
.

(95)

Together, we	can	establish, for	all τ ≥ 2,

ϕg (λc, λf , τ) = (β + (1− β + σκΩc)λc)ϕg (λc, λf , τ − 1) + σλfϖg (λc, λf , τ − 1) ; (96)

ϖg (λc, λf , τ) = κβλcΩcϕg (λc, λf , τ − 1) + β [θ + (1− θ)λf ]ϖg (λc, λf , τ − 1) . (97)

From	the	above	conditions, we	can	see	that	for	for	all τ ≥ 2, ϕg,τ = ϕg (λc, λf , τ) is	strictly	increasing	in λc and λf .

As ϕ∗
g,τ = ϕg (1, 1, T ), we	also	have ϕg,τ ∈

(
0, ϕ∗

g,τ

)
.

Now, we	now	prove	that, whenever λc < 1, the	ratio ϕg,τ

ϕ∗
g,τ

=
ϕg(λc,λf ,τ)

ϕ∗
g,τ

is	strictly	decreasing	in τ ≥ 1 and

converges	to 0 as τ → ∞. To	this	goal, similar	to	condition	(74), we	try	to	establish	that

ϕg,τ

ϕg,τ−1
+ β

ϕg,τ−2

ϕg,τ−1
≤ 1 + β + σκΩcλc < 1 + β + σκΩc ∀τ ≥ 3. (98)

From	condition	(96), we	have, for τ ≥ 3,

ϕg,τ = (β + (1− β)λc)ϕg,τ−1 + σκΩcλcϕg,τ−1 + σλfϖg,τ−1,

β
β+(1−β)λc

ϕg,τ−1 = βϕg,τ−2 +
σβκΩcλc

β+(1−β)λc
ϕg,τ−2 +

σβλf

β+(1−β)λc
ϖg,τ−2.

From	the	previous	two	conditions, we	have, for τ ≥ 3,

ϕg,τ + βϕg,τ−2 = (β + (1− β)λc)ϕg,τ−1 + σκΩcλcϕg,τ−1 + σλfϖg,τ−1 (99)

+ β
β+(1−β)λc

ϕg,τ−1 − σβκΩcλc

β+(1−β)λc
ϕg,τ−2 −

σβλf

β+(1−β)λc
ϖg,τ−2.

Note	that, for τ ≥ 3 and λc, λf ∈ (0, 1], we	have

[
(β + (1− β)λc) + σκΩcλc +

β
β+(1−β)λc

]
ϕg,τ−1 ≤ (1 + β + σκΩcλc)ϕg,τ−1,
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and	from	condition	(97), we	have

σλfϖg,τ−1 − σβκΩcλc

β+(1−β)λc
ϕg,τ−2 −

σβλf

β+(1−β)λc
ϖg,τ−2

=σλf (κβλcΩcϕg,τ−2 + β [θ + (1− θ)λf ]ϖg,τ−2)− σβκΩcλc

β+(1−β)λc
ϕg,τ−2 −

σβλf

β+(1−β)λc
ϖg,τ−2

=σκβΩcλc

(
λf − 1

β+(1−β)λc

)
ϕg,τ−2 + σβλf

[
θ + (1− θ)λf − 1

β+(1−β)λc

]
ϖg,τ−2

≤0.

Together	with	condition	(99), we	reach	at	condition	(98). To	prove ϕg,τ

ϕ∗
g,τ

is	strictly	decreasing	in τ , note	that

we	already	prove	that ϕg,2

ϕ∗
g,2

< 1 =
ϕg,1

ϕ∗
g,1
. We	proceed	by	induction	on τ . If ϕg,τ

ϕ∗
g,τ

<
ϕg,τ−1

ϕ∗
g,τ−1

for τ ≥ 2, we	have
ϕg,τ−1

ϕg,τ
>

ϕ∗
g,τ−1

ϕ∗
g,τ

. From	(90)	and	(98), we	have ϕg,τ+1

ϕg,τ
<

ϕ∗
g,τ+1

ϕ∗
g,τ

and	thus ϕg,τ+1

ϕ∗
g,τ+1

<
ϕg,τ

ϕ∗
g,τ
. This	finishes	the	proof

that ϕg,τ

ϕ∗
g,τ

is	strictly	decreasing	in τ ≥ 1.

To	prove	that ϕg,τ

ϕ∗
g,τ

converges	to 0 as τ → ∞. Because ϕg,τ

ϕ∗
g,τ

> 0 is	strictly	decreasing	in τ ≥ 1, there

exists Γg ∈ [0, 1) such	that ϕg,τ

ϕ∗
g,τ

→ Γg as τ → ∞. If Γg > 0, we	have ϕg,τ

ϕ∗
g,τ

ϕ∗
g,τ−1

ϕg,τ−1
→ 1 as τ → ∞. Because

ϕ∗
g,τ

ϕ∗
g,τ−1

→ Γ∗
g, we	have

ϕg,τ

ϕg,τ−1
→ Γ∗

g and ϕg,τ−2

ϕg,τ−1
→ 1

Γ∗
g
as τ → ∞. From	condition	(91), we	have ϕg,τ

ϕg,τ−1
+

β
ϕg,τ−2

ϕg,τ−1
→ 1+ β+σκΩc as τ → ∞. However, this	is	inconsistent	with	(98)	as λc < 1 and κ > 0. As	a	result,

Γg = 0.

Finally, we	prove	 that, when λc is	 sufficiently	 low, ϕg(λc, λf , τ) converges	 to	 zero	 as τ → ∞. The

eigenvalues	of	the	dynamic	system (ϕg,τ , ϖg,τ ) based	on	conditions	(96)	and	(97)	are

m1 =
β + (1− β + σκΩc)λc + β [(1− θ)λf + θ]

2

−

√
(β + (1− β + σκΩc)λc − β [(1− θ)λf + θ])2 + 4σβλfλcΩcκ

2
> 0,

m2 =
β + (1− β + σκΩc)λc + β [(1− θ)λf + θ]

2

+

√
(β + (1− β + σκΩc)λc − β [(1− θ)λf + θ])2 + 4σβλfλcΩcκ

2
> m1.

Note	that limλc→0m2 = β < 1. As	a	result, when λc is	sufficiently	low, both	eigenvalues	are	below 1, which

means	that ϕg(λc, λf , τ) converges	to	zero	as τ → ∞.
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Appendix	B.	Rational	Inattention	and	Learning

In	this	appendix, we	first	sketch	how	the	friction	we	consider	can	be	recast	as	the	product	of	rational	inat-

tention. We	next	extend	Theorem	1 to	two	leading	forms	of	learning	studied	in	the	literature. We	finally

prove	an	asymptotic	version	of	our	horizon	effect	for	arbitrary	forms	of	learning.

The	Friction	as	the	Product	of	Rational	Inattention. We	now	briefly	sketch	how	the	friction	we	consider

can	be	recast	as	the	product	of	rational	inattention	and, in	this	sense, a	form	of	bounded	rationality.11

We	let ΘT be	Normally	distributed	and, to	sharpen	the	exposition, we	assume	that ΘT is	realized	at

t = 0 (think	of ΘT as	being	itself	the	news). The	typical	agent	is	nevertheless	unable	to	observe ΘT perfectly.

Instead, for	every t, the	action ai,t must	be	measurable	in ωt
i ≡ {ωi,τ}τ≤t,where ωi,τ is	a	noisy	signal	obtained

in	period τ. The	noise	is	assumed	to	be	independent	across	the	agent.12 This	guarantees	that	all	aggregate

outcomes	are	functions	of ΘT and, therefore, we	can	reduce	the	rational-inattention	problem	faced	by	each

agent	to	the	choice	of	a	sequence	of	signals	about ΘT .We	finally	let	these	signals	be	chosen	optimally, that

is, so	as	to	maximize	the	agent’s	ex	ante	payoff, subject	to	the	following	constraint:

I
(
ωi,t,ΘT | ωt−1

i

)
≤ κRI , (100)

where I
(
ωi,t,ΘT |ωt−1

i

)
is	the	(entropy-based)	information	flow	between	the	period-t signal	and ΘT , condi-

tional	on	the	agent’s	past	information, and κRI > 0 is	an	exogenous	scalar.

The	usual	interpretation	of	constraint	(100)	is	that	it	captures	the	agent’s	limited	cognitive	capacity	in

trackingΘT . But	since	beliefs	aboutΘT map, in	equilibrium, to	beliefs	of	future	outcomes, one	can	also	think

of	(100)	as	a	constraint	on	the	agent’s	ability	to	figure	out	the	likely	effects	of	the	underlying	variation	in ΘT .

This	echoes	Tirole	(2015), who	interprets	rational	inattention	in	games	as	a	form	of	“costly	contemplation.”

As	long	as	the	prior	about ΘT is	Gaussian	and	the	objective	function	is	quadratic, which	is	the	case

here	by	assumption, the	optimal	signal	 is	also	Gaussian. Furthermore, the	noise	 in	 the	signal	has	 to	be

independent	across	periods, or	else	the	agent	could	economize	on	cognitive	costs, that	is, relax	the	constraint

in	(100). These	arguments	are	standard; see, e.g., Mackowiak, Matejka	and	Wiederholt	(2017). The	case

studied	here	is	actually	far	simpler	than	the	one	studied	in	the	literature, because	the	relevant	fundamental

(ΘT ) does	not	vary	as	time	passes. We	infer	that	the	optimal	signal	at	every t ≤ T − 1 is	given	by ωi,t =

ΘT + vi,t, where	the	noise vi,t is	orthogonal	to	both ΘT and {vi,τ}τ<t. Letting τt denotes	the	precision	(i.e.,

the	reciprocal	of	the	variance)	of	this	noise, we	have	that	the	period-t information	flow	is	given	by

I
(
ωi,t,ΘT | ωt−1

i

)
= 1

2 log2

(
1 +

τt
ςt

)
,

11For	 the	 rational	 inattention	problem	 to	be	well-defined, we	need	 to	 specify	a	payoff	 structure	behind	condition	 (11). For
example, we	can	 think	player i’s	payoff	 is Ui =

∑
t β

tU(ai,t, ai,t+1; Θt, at), where U is	a	 reverse-engineered	quadratic	utility
function	so	that	the	player’s	best-response	condition	is	given	by	(11).

12Although	this	assumption	is	separate	the	information-flow	constraint	(100), it	is	standard	in	the	literature	(e.g., Woodford,	2003,
Mackowiak	and	Wiederholt,	2009, Luo	et al.,	2017)	and	seems	appealing	if	one	interprets	the	noise	as	the	product	of	cognitive
limitations. It	is	also	broadly	consistent	with	experimental	evidence	(e.g., Khaw, Stevens	and	Woodford,	2016).
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where ςt denotes	the	precision	of	the	agent’s	prior	in	the	beginning	of	period t; the	latter	is	defined	recursively

by ς0 = σ−2
θ and ςt+1 = ςt+τt for t ∈ {0, ..., T −1}. It	follows	that	the	information	constraint	(100)	pins	down

the	sequence {τt}T−1
t=0 as	a	function	of κRI and σ2

θ alone. All	in	all, the	setting	we	have	considered	here	is

therefore	nested	in	the	cases	with	learning	studied	in	the	next	part	of	this	appendix, for	which	Theorem	1

applies. This	completes	the	rational-inattention	interpretation	of	our	results.13

The	Horizon	Effect	with	Sticky	Information	or	Noisy	Private	Learning. We	now	extend	Theorem	1 to

two	leading	forms	of	learning	studied	in	the	literature. Let ΘT ∼ N
(
0, σ2

θ

)
and	consider	the	following	two

cases	of	learning.

Case	1. Agents	become	gradually	aware	of ΘT , as	in	Mankiw	and	Reis	(2002)	and	Wiederholt	(2015).

In	particular, at	each t ∈ {0, ..., T − 1}, a	fraction λsticky of	agents	who	have	not	become	aware	about ΘT

become	aware	about ΘT . ΘT becomes	commonly	known	at	period T.

Case	2. Agents	receive	a	new	private	signal	each	period, as	in	Woodford	(2003), Nimark	(2008), and

Mackowiak	and	Wiederholt	(2009). In	particular, at	at	each t ∈ {0, ..., T − 1}, agent i’s	new	information

about ΘT is	summarized	in	the	private	signal si,t = ΘT + vi,t, where vi,t ∼ N
(
0, σ2

v,t

)
is	i.i.d	across i and t,

and	independent	of ΘT . ΘT becomes	commonly	known	at	period T.

In	both	 cases, there	 exists {λt}T−1
t=0 such	 that, for	 all t, λt ∈ (0, 1) and, for	 any h ∈ {1, ..., T} and

0 ≤ t1 < t2 < · · · < th < T ,

Ēt1 [Ēt2 [...[Ēth [ΘT ]...]] = λt1 · · ·λthΘT , (101)

In	case	1, λt = 1− (1− λsticky)
t+1. In	case	2, λt =

∑t
τ=0 σ

−2
v,τ∑t

τ=0 σ
−2
v,τ+σ−2

θ

.

Now	we	prove	by	induction	that, for	all t ≤ T − 1,

at = (γ + α)
{
ΠT−1

τ=t+1 (γ + λτα) Ēt[ΘT ]
}
. (102)

Since Θt = 0 for	all t ̸= T, together	with	condition	(16), we	have aT = ΘT and aT−1 = (γ + α) ĒT−1[ΘT ].

As	a	result, condition	(102)	holds	for t = T − 1. Now, pick	a t ≤ T − 2, assume	that	the	claim	holds	for	all

τ ∈ {t+ 1, ..., T − 1}, and	let	us	prove	that	it	also	holds	for t. Using	the	claim	for	all τ ∈ {t+ 1, ..., T − 1},
13Two	remarks	are	worth	making. First, suppose	that	the	agents	have	a	limited	cognitive	capacity	to	allocate, not	per	period, but

across	the	entire	horizon. In	this	case, the	series	of	per-period	constraints	seen	in	condition	(100)	are	replaced	by	a	single	constraint
over	the	entire	horizon, namely I

(
{ωi,t}T−1

t=0 ,ΘT

)
≤ κRI . It	then	becomes	optimal	to	allocate	all	capacity	to	the	period-0 signal,

which	means	that	this	case	can	justify	to	our	baseline	analysis, which	assumes	away	learning. Second, suppose	that	the	news
about	the	fundamental	of	interest	(say, monetary	policy)	come	at	the	same	time	with	news	about	another	fundamental	(say, TFP)
and	that	the	agents	can	economize	on	cognitive	effort	by	obtaining	a	joint	signal	of	all	the	news. In	this	case, rational	inattention
can	contribute	to	confounding	of	one	kind	of	news	with	another, a	scenario	not	considered	here.
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condition	(16), and	condition	(101), we	have, for t ≤ T − 2,

at = γT−tĒt [ΘT ] + αĒt [at+1] + α
T−t∑
k=2

γk−1Ēt [at+k] ;

γĒt [at+1] = λt+1γ
T−tĒt [ΘT ] + αλt+1

T−t∑
k=2

γk−1Ēt [at+k] .

As	a	result, we	have at =
(

γ
λt+1

+ α
)
Ēt [at+1] . Together	with	condition	(102)	for t+ 1, we	have

at = (γ + α)
{
ΠT−1

τ=t+1 (γ + λτα) Ēt[ΘT ]
}
.

This	proves	condition	(102)	for	all t ≤ T − 1. As	a	result, ϕT = (γ + α)ΠT−1
t=1 (γ + λtα) . Together	with	the

fact	that λt ∈ (0, 1) and ϕ∗
T = (γ + α)T , we	prove	Theorem	1 for	the	case	with	learning.

The	Limit	Property	with	Arbitrary	Learning. As	noted	in	the	main	text, it	is	possible	to	prove, under	quite

general	conditions, an asymptotic version	of	our	horizon	effect: as	long	as	the	higher-order	uncertainty	is

bounded	away	from	zero	(in	a	sense	we	make	precise	now), the	scalar ϕT becomes	vanishingly	small	relative

to ϕ∗
T as T → ∞.

For	any t ≤ T −1 and	any k ∈ {1, ..., T − t}, we	henceforth	let Bk
t collect	all	the	relevant k-order	beliefs,

as	of	period t :

Bk
t ≡

{
x : ∃(t1, t2, · · · , tk), with t = t1 < t2 < · · · < tk ≤ T − 1, such	that x = Ēt1 [Ēt2 [· · · Ētk [ΘT ] · · · ]]

}
.

We	next	introduce	the	following	assumption.

Assumption	4	(Non-Vanishing	Higher-Order	Uncertainty) There	exists	an ϵ > 0 such	that:

(i)	For	all t ∈ {0, ...., T − 1}, there	exists	at	least	a	mass ϵ of	agents	such	that

V ar
(
Et[x]|ωt

i

)
≥ ϵV ar (Et [x]) ,

for	all x ∈ Bk
τ ∪{ΘT }, τ ∈ {t+1, ..., T−1}, and k ∈ {1, ..., T−τ}, where ωt

i summarizes	agent i
′s information

at	period t and Et [x] denotes	the	rational	expectation	of	variable x conditional	on	the	union	of	information

of	all	agents	in	the	economy	available	at	period t.

(ii) V ar
(
Ē0[ΘT ]

)
≥ ϵ.

To	 interpret	 this	 assumption, note	 that	 complete	 information	 imposes	 that Et [x] is	 known	 to	 every

agent, and	therefore	that V ar
(
Et [x]]|ωt

i

)
= 0, regardless	of	how	volatile Et [x] itself	is. By	contrast, let-

ting V ar
(
Et [x] |ωt

i

)
> 0 whenever V ar (Et [x]) > 0 is	essentially tautological to	assuming	that	agents	have

incomplete	information	or, equivalently, that	they	face	higher-order	uncertainty. Relative	to	this	tautology,

part	(i)	introduces	an	arbitrarily	small	bound	on	the	level	of	higher-order	uncertainty. This	bound	guarantees
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that	the	higher-order	uncertainty	does	not	vanish	as	we	let T go	to	infinity. Part	(ii), on	the	other	hand, means

simply	that	there	is	non-trivial	variation	in	first-order	beliefs	in	the	first	place. The	next	result	then	formalizes

our	point	that	our	horizon	effect, at	least	in	its	limit	form, holds	for	arbitrary	forms	of	learning.

Proposition	9	(Limit) Under	Assumption	4, the	ratio ϕT
ϕ∗
T
converges	to	zero	as T → ∞.

Proof	of	Proposition	9. We	first	prove	that, under	Assumption	(4),

V ar (y) ≤
(
1− ϵ2

)k
V ar (ΘT ) . (103)

for	any t ≤ T − 1 and y = ĒtĒt2 ...Ētk [ΘT ] ∈ Bk
t .

To	simplify	notation, let x = Ēt2 ...Ētk [ΘT ] for k ≥ 2, and x = ΘT for k = 1. From	Assumption	4, we

have, there	is	at	least	a	mass ϵ of	agents	such	that

V ar
(
Et [x] |ωt

i

)
≥ ϵV ar (Et [x]) .

As	a	result,

E
[
V ar

(
Et [x] |ωt

i

)
|Ωt

]
≥ ϵ2V ar (Et [x]) ,

where Ωt is	the	cross-sectional	distribution	of	information ωt
i at	period t. Using	the	law	of	total	variance,

we	have

V ar (Et [x]) = E
[
V ar

(
Et [x] |ωt

i

)
|Ωt

]
+ V ar

(
E
[
Et [x] |ωt

i

])
= E

[
V ar

(
Et [x] |ωt

i

)
|Ωt

]
+ V ar

(
E
[
x|ωt

i

])
.

As	a	result, we	have14

V ar (y) = V ar
(
ĒtĒt2 ...Ētk [ΘT ]

)
= V ar

(
Ēt [x]

)
≤ V ar

(
E
[
x|ωt

i

])
≤
(
1− ϵ2

)
V ar (Et [x])

≤
(
1− ϵ2

)
V ar (x) =

(
1− ϵ2

)
V ar

(
Ēt2 ...Ētk [ΘT ]

)
.

Iterating	the	previous	condition	proves	(103).

Condition	(103)	provides	an	upper	bound	for	the	variance	of	all k-th	order	belief. Together	with	the	fact

that ϕ∗
T = sT,T and, for	any	random	variables X,Y and	scalars a, b ≥ 0,

V ar(aX + bY ) = a2V ar(X) + 2abCov (X,Y ) + b2V ar (Y )

≤ a2V ar(X) + 2ab
√

V ar (X)V ar (Y ) + b2V ar (Y )

=
(
a
√

V ar (X) + b
√

V ar (Y )
)2

, (104)

14We	use	the	fact	that	for	any	random	variable X, and	any	information I, V ar (E [X|I]) ≤ V ar (X) . We	also	use	the	fact	that
Ēt [·] = E

[
E
[
·
∣∣ωt

i

∣∣] |Ωt

]
, where Ωt is	the	cross	sectional	distribution	of ωt

i at	time t,
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we	have

(
ϕT

ϕ∗
T

)2

=

(
Cov

(
a0, Ē0 [ΘT ]

)
ϕ∗
TV ar

(
Ē0 [ΘT ]

) )2

≤ V ar (a0)[
ϕ∗
T

]
2V ar

(
Ē0[ΘT ]

)
≤ 1

V ar
(
Ē0[ΘT ]

) [ T∑
k=1

(
χk,T

sT,T

(
1− ϵ2

) k
2
√

V ar (ΘT )

)]2

=

[
T∑

k=1

(
χk,T

sT,T

(
1− ϵ2

) k
2

)]2
V ar (ΘT )

V ar
(
Ē0[ΘT ]

) . (105)

Further	note	that, for	any ϑ > 0, there	exists h ∈ N+ such	that (1−ϵ2)
h
2

1−(1−ϵ2)
1
2
≤ ϑ

2 . From	Theorem	2, there

exists T ∗ ∈ N+ such	that, for	all T ≥ T ∗,
∑h−1

k=1
χk,T

sT,T
≤ ϑ

2 . As	a	result, for	all T ≥ max {T ∗, h} ,

T∑
k=1

χk,T

sT,T

(
1− ϵ2

) k
2 ≤

h−1∑
k=1

χk,T

sT,T
+

T∑
k=h

(
1− ϵ2

) k
2 ≤ ϑ

2
+

(
1− ϵ2

)h
2

1− (1− ϵ2)
1
2

≤ ϑ.

This	proves
T∑

k=1

(
χk,T

sT,T

(
1− ϵ2

) k
2

)
→ 0 as T → +∞.

Together	with	(105)	and	the	fact	that V ar
(
Ē0[ΘT ]

)
≥ ϵ, the	proof	of	Proposition	9 is	completed.
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Appendix	C.	Additional	Results	for	the	New	Keynesian	Model

In	this	Appendix, we	provide	a	few	additional	results	regarding	the	application	of	our	insights	in	the	context

of	a	liquidity	trap. We	first	explain	how	our	results	regarding	the	forward-guidance	puzzle	can	be	understood

under	the	lenses	of	a	discounted	Euler	condition	and	a	discounted	NKPC,	and	draw	certain	connections	to

the	literature. We	next	show	how	our	insights	help	lessen	the	paradox	of	flexibility. We	finally	show	that	all

the	results	of	Section	IV extend	to	the	new	type	of	beauty	contest	seen	in	condition	(22).

Discounted	Euler	Condition	and	Discounted	NKPC. Proposition	5 has	already	indicated	how	the	lack

of	common	knowledge	is	akin	to	introducing	additional	discounting	in	the	forward-looking	equations	of	a

macroeconomic	model. We	now	illustrate	how	this	helps	recast	our	results	regarding	forward	guidance	and

fiscal	multipliers	under	the	lenses	of	a	discounted	Euler	condition	and	a	discounted	NKPC.

For	the	present	purposes, we	make	a	minor	modification	to	the	setting	used	in	Section	V: for t ≤ T , we

let	the	firms	lack	knowledge	of	the	concurrent	level	of	marginal	cost. For	simplicity, we	also	let	the	firms

and	the	consumers	face	the	same	level	of	friction, that	is, we	set λc = λf = λ. These	modifications	are	not

strictly	needed	but	sharpen	the	representation	offered	below.15

Proposition	10 The	power	of	forward	guidance	in	the	absence	of	common	knowledge, ϕT , is	the	same	as

that	in	a	representative-agent	variant	in	which	the	Euler	condition	and	the	NKPC are	modified	as	follows, for

all t ≤ T − 1:

ỹt = −σ
{
R̃t − λEt [π̃t+1]

}
+McEt [ỹt+1] (106)

π̃t = κ′ỹt + βMfEt [π̃t+1] + κµ̃t, (107)

where Mc ≡ β + (1− β)λ ∈ (β, 1], Mf ≡ θ + (1− θ)λ ∈ (θ, 1], and κ′ ≡ κλ.16

This	result, which	is	analogous	to	Proposition	5 in	our	abstract	setting, maps	the	incomplete-information

ϕT of	the	economy	under	consideration	to	the	complete-information ϕ∗
T of	a variant economy, in	which	the

Euler	condition	and	the	NKPC have	been	“discounted”	in	the	manner	described	above. When	we	remove

common	knowledge, it	 is as	 if the	 representative	 consumer	discounts	her	 expectations	of	 next	period’s

aggregate	income	and	inflation	by	a	factor	equal	to, respectively, Mc and λ; and	it	is as	if the	representative

firm	discounts	the	future	inflation	by	a	factor	equal	to Mf .
17

Consider	first	the	Euler	condition. When β is	close	to	1, the	discount	on	future	consumption, Mc, is

close	to	1, even	if λ is	close	to	zero. This	underscores	that	the	multiplier	inside	the	demand	block—which

gets	attenuated	by	the	absence	of	common	knowledge—is	weak	in	the	textbook	version	of	the	New	Key-

15Without	these	modifications, the	obtained	representation	is	a	bit	less	elegant, but	the	essence	remains	the	same; see	Proposition
10	in	the	first	NBER version	of	our	paper, Angeletos	and	Lian	(2016).

16To	be	precise, condition	(106)	holds	with Mc = 1 for t = T − 1.
17The	change	in	the	slope	of	the	NKPC,	from κ to κ′, is	of	relative	little	interest	to	us, because	the	effect	of	the	informational

friction	through	this	slope	cannot	be	identified	separately	from	that	of	a	higher	Frisch	elasticity	or	less	steep	marginal	costs.

27



nesian	model. As	mentioned	in	the	main	text, short	horizons, counter-cyclical	precautionary	savings, and

feedback	effects	between	housing	prices	and	consumer	spending	tend	to	reinforce	this	multiplier, thereby

also	increasing	the	discounting	caused	by	the	absence	of	common	knowledge. Also	note	that, while	future

consumption	is	discounted	by Mc, future	inflation	is	discounted	by λ. Clearly, this	can	have	a	significant

effect	on	the	joint	dynamics	of	spending	and	inflation	even	when Mc is	close	to	1.

Consider	next	the	NKPC.	For	the	textbook	parameterization	of	the	degree	of	price	stickiness	(meaning	a

price	revision	rate, 1− θ, equal	to 1/3), the	effective	discount	factor,Mf , falls	from	1	to .9 as	we	move	from

common	knowledge (λ = 1) to	the	level	of	imperfection	assumed	in	our	numerical	example (λ = .75). The

magnitude	of	this	discount	helps	explain	the	sizable	effects	seen	in	Figure	1. Under	the	parameterization

we	consider, the actual response	of	inflation	to	news	about	future	demand	is	greatly	reduced	relative	the

common-knowledge	benchmark. The	fact	that	the	average	consumer	underestimates	the	inflation	response,

as	well	as	the	spending	of	other	consumers, reinforces	this	effect	and	helps	further	attenuate	the	feedback

loop	between	inflation	and	spending.

Relation	to	Gabaix	(2016)	and	McKay, Nakamura	and	Steinsson	(2017). Related	forms	of	discounting

appear	in	McKay, Nakamura	and	Steinsson	(2017), for	the	Euler	condition, and	in	Gabaix	(2016), for	both

the	Euler	condition	and	the	NKPC.	In	this	regards, these	papers	and	ours	are	complementary	to	one	another.

However, the	underlying	theory	and	its	empirical	manifestations	are	different.

McKay, Nakamura	and	Steinsson	(2017)	obtain	a	discounted	Euler	condition	at	the	aggregate	level	by

introducing	a	specific	combination	of	heterogeneity	and	market	incompleteness	that	forces	some	agents	to

hit	their	borrowing	constraints	and	breaks	the	individual-level	Euler	condition. This	theory	therefore	ties	the

resolution	of	forward	guidance	to	microeconomic	evidence	about	the	response	of	individual	consumption

to	idiosyncratic	shocks. By	contrast, our	theory	ties	the	resolution	of	forward	guidance	to	survey	evidence

about	the	response	of	average	forecast	errors	to	the	underlying	policy	news. The	two	theories	can	therefore

be	quantified	independently	from	one	another—and	it’s	an	open	question	which	is	one	is	more	relevant	in

the	context	of	forward	guidance.

Gabaix	(2016)	on	the	other	hand, assumes	two	kinds	of	friction. The	first	is	that	agents	are	less	responsive

to	any	variation	in	interest	rates	and	incomes	due	to	“sparsity”	(a	form	of	adjustment	cost). The	second	is

that	agents	underestimate	the	response	of	future aggregate outcomes	to	exogenous	shocks. The	first	is	of

purely	decision-theoretic	nature	and, as	the	one	in	McKay, Nakamura	and	Steinsson	(2017), amounts	to	a

distortion	of	the	individual-level	Euler	condition. The	second	is	more	closely	related	to	the	one	we	have

obtained	here: by	anchoring	expectations	of aggregate outcomes, it	gives	rise	to	discounting	only	at	the

aggregate	level. In	this	regard, Gabaix’s	theory	and	ours	have	a	similar	empirical	implication: they	both

let	the	average	forecast	of	future	inflation	and	income	respond	less	than	the	complete-information, rational-

expectations, benchmark. Yet, our	theory	makes	the	following	distinct	prediction, which	is	consistent	with

the	evidence	in	Coibion	and	Gorodnichenko	(2012): the	forecast	errors, and	the	associated	discounting,

ought	to	decrease	as	time	passes, agents	accumulate	more	information, and	higher-order	beliefs	converge
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to	first-order	beliefs.

Proof	of	Proposition	10. Let	us	first	focus	on	the	incomplete-information ϕT . When	firms	lack	common

knowledge	of	 the	concurrent	 level	of	marginal	cost, condition	(62)	continues	to	hold	but	condition	(63)

becomes, for	any t ≤ T ,

π̃t − π̃trap
t = κ

T−t∑
k=0

(βθ)k Ēf
t

[
ỹt+k − ỹtrapt+k

]
+ 1−θ

θ

T−t∑
k=1

(βθ)k Ēf
t

[
π̃t+k − π̃trap

t+k

]
.

Slightly	different	from	conditions	(64)	and	(65),18 we	can	find	functions ϕ, ω : (0, 1] × N → R≥0 such	that,

for	any t ≤ T − 1,

ỹt − ỹtrapt = −ϕ (λ, T − t) Ēc
t [R̃T ], (108)

π̃t − π̃trap
t = −ω (λ, T − t) Ēf

t [R̃T ], (109)

where ϕ (λ, 1) = σ (1 + σλκ), ω (λ, 1) = κλσ (1 + σλκ) + κβ (θ + (1− θ)λ)σ, and	for t ≤ T − 2,

ϕ (λ, T − t) = (β + (1− β)λ)ϕ (λ, T − t− 1) + σλω (λ, T − t− 1) , (110)

ω (λ, T − t) = β (θ + (1− θ)λ)ω (λ, T − t− 1) + κλϕ (λ, T − t) . (111)

We	now	derive	the	complete-information ϕ∗
T and ω∗

T of	a variant economy, where	they	denote	how	the

output	and	inflation	at t = 0 responds	to	shocks	to	the	representative	agent’s	belief	about R̃T at t = 0. From

conditions	(106), (107)	and	footnote	16 in	the	appendix, we	have ϕ∗
1 = σ (1 + σλκ), ω∗

1 = κλσ (1 + σλκ) +

κβ (θ + (1− θ)λ)σ, and, for t ≤ T − 2,

ϕ∗
T−t = (β + (1− β)λ)ϕ∗

T−t−1 + σλω∗
T−t−1, (112)

ω∗
T−t = β (θ + (1− θ)λ)ω∗

T−t−1 + κλϕ∗
T−t. (113)

The	previous	conditions	coincide	with	conditions	(110)	and	(111), and	prove	Proposition	10.

On	the	Paradox	of	Flexibility. We	now	consider	 the	 implications	of	our	 insights	 for	 the	paradox	of

flexibility. In	the	standard	model, the	power	of	forward	guidance	and	the	fiscal	multiplier	vis-a-vis	future

government	spending	increase	with	the	degree	of	price	flexibility: ϕT increases	with κ.19 This	property	is

directly	related	to	the	“paradox	of	flexibility”	(Eggertsson	and	Krugman,	2012). The	next	result	proves, in

18There	are	two	differences	compared	to	conditions	(64)	and	(65). First, as	we	impose λc = λf = λ here, ϕ and ω are	functions
of λ, the	common	parameter	characterizing	the	degree	of	information	friction. Second, as	firms	lack	common	knowledge	of	the
concurrent	level	of	marginal	cost, it	is	easier	to	let ω measure	how	inflation	as	a	whole	responds	to	the	average	firm’s	belief	about
R̃T .

19Whenever	we	vary κ, we	vary θ while	keeping	the	Frisch	elasticity	constant, which	means	that	variation	in κ maps	one-to-one
to	variation	in	the	degree	of	price	flexibility.
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Figure 2: Varying	the	degree	of	price	flexibility.

effect, that	the	mechanism	identified	in	our	paper	helps	diminish	this	paradox	as	well.

Proposition	11	(Price	Flexibility) Let ϕT be	the	scalar	characterized	in	either	Proposition	7 or	Proposition	8

and	set λf = 1. We	have ∂ϕT
∂κ > 0 and ∂

∂λc

(
∂ϕT
∂κ

)
> 0. That	is, the	power	of	forward	guidance	and	the	fiscal

multiplier	vis-a-vis	future	government	spending	increase	with	the	degree	of	price	flexibility, but	at	a	rate	that

is	slower	the	greater	the	departure	from	common	knowledge.

This	finding	is	an	example	of	how	lack	of	common	knowledge	reduces	the	paradox	of	flexibility	more

generally. In	 the	 standard	model, a	 higher	 degree	 of	 price	 flexibility	 raises	 the	GE effects	 of	 all	 kinds

of	demand	shocks—whether	 these	come	 in	 the	 form	of	 forward	guidance, discount	 rates, or	borrowing

constraints—because	it	intensifies	the	feedback	loop	between	aggregate	spending	and	inflation. By	intensi-

fying	this	kind	of	macroeconomic	complementarity, however, a	higher	degree	of	price	flexibility	also	raises

the	relative	importance	of	higher-order	beliefs, which	in	turn	contributes	to	stronger	attenuation	effects	of

the	type	we	have	documented	in	this	paper. In	a	nutshell, the	very	same	mechanism	that	creates	the	para-

dox	of	flexibility	within	the	New	Keynesian	framework	also	helps	contain	that	paradox	once	we	relax	the

common-knowledge	assumption	of	that	framework.

Note	that	we	have	proved	the	above	result	only	under	the	restriction λf = 1, which	means	that	only	the

consumers	lack	common	knowledge. Whenever λf < 1, there	is	a	conflicting	effect, which	is	that	higher

price	flexibility	reduces	the	strategic	complementarity	that	operates	within	the	supply	block, thereby	also

reducing	the	role	of λf itself. For	the	numerical	example	considered	earlier, however, the	overall	effect	of

higher	price	flexibility	is	qualitatively	the	same	whether λf = 1 or λf = λc.

We	illustrate	this	in	Figure	2. We	let λf = λc = 0.75, use	the	same	parameter	values	as	those	used	in

Figure	1, and	plot	the	relation	between	the	ratio ϕT /ϕ
∗
T and	the	horizon T under	two	values	for θ. The	solid

red	line	corresponds	to	a	higher	value	for θ, while	the	dashed	blue	line	corresponds	to	a	lower	value	for θ,

that	is, to	more	price	flexibility. As	evident	in	the	figure, more	price	flexibility	maps, not	only	to	a	lower

ratio ϕT /ϕ
∗
T (i.e., stronger	attenuation)	for	any	given T, but	also	to	a	more	rapid	decay	in	that	ratio	as	we

raise T.

Proof	of	Proposition	11. Consider	first	the	environment	studied	in	Section	V and	let	us	study	the	cross-

partial	derivative	of	the	power	of	forward	guidance	with	respect	to κ and λc. To	simplify	notation, we	use ϕτ

andϖτ as	shortcuts	for, respectively, ϕ (λc, λf , τ) andϖ (λc, λf , τ), where	the	functions ϕ andϖ are	defined
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as	in	the	proof	of	Proposition	7. From	conditions	(66), we	have

∂ϕ1

∂κ
=

∂ϕ(λc, 1, 1)

∂κ
= σ2 > 0 and

∂ϖ1

∂κ
=

∂ϖ(λc, 1, 1)

∂κ
= σβ > 0. (114)

For	any τ ≥ 2, when λf = 1, conditions	(71)	and	(72)	become

ϕτ = (β + (1− β + σκ)λc)ϕτ−1 + σϖτ−1 and ϖτ = κβλcϕτ−1 + βϖτ−1.

As	a	result, for	all τ ≥ 2, we	have

∂ϕτ

∂κ
= (β + (1− β + σκ)λc)

∂ϕτ−1

∂κ
+ σλcϕτ−1 + σ

∂ϖτ−1

∂κ
, (115)

∂ϖτ

∂κ
= κβλc

∂ϕτ−1

∂κ
+ βλcϕτ−1 + β

∂ϖτ−1

∂κ
. (116)

From	conditions	 (114), (115)	 and	 (116), ∂ϕτ

∂κ and ∂ϖτ
∂κ are	 strictly	 positive	 for	 any τ ≥ 1 by	 induction.

Moreover, from	conditions	(66), (114), (115)	and	(116), we	have	that ∂ϕ2

∂κ and ∂ϖ2
∂κ are	strictly	increasing	in

λc. Then, from	conditions	(115), (116)	and	the	fact	that ϕτ itself	is	strictly	increasing	in λc for	all τ ≥ 2, we

have ∂ϕτ

∂κ and ∂ϖτ
∂κ are	strictly	increasing	in λc for	all τ ≥ 2 by	induction.

Consider	now	the	environment	studied	in	Section	VI and	let	us	study	the	cross-partial	derivative	of	the

relevant	fiscal	multiplier	with	respect	to κ and λc when λf = 1. From	the	proof	of	Proposition	8, similarly

to	conditions	(114), (115)	and	(116), we	have

∂ϕg,1

∂κ
= σ (1− Ωc) > 0 and

∂ϖg,1

∂κ
= β (1− Ωc) > 0,

∂ϕg,τ

∂κ
= (β + (1− β + σκΩc)λc)

∂ϕg,τ−1

∂κ
+ σΩcλcϕg,τ−1 + σ

∂ϖg,τ−1

∂κ
,

∂ϖg,τ

∂κ
= κβλcΩc

∂ϕg,τ−1

∂κ
+ βλcΩcϕg,τ−1 + β

∂ϖg,τ−1

∂κ
.

The	result	then	follows	from	the	same	argument	as	before.

Extension	of	Lemma	2 and	Theorems	1 and	2. Here	we	show	that	Lemma	2, Theorem	2 and, by	impli-

cation, Theorem	1 extend	to	the	kind	of	multi-layer	beauty	contest	seen	in	condition	(22)	of	Lemma	3.

Similar	to	Section	IV, we	impose	Assumption	1. Similar	to	the	proof	of	Lemma	2, we	can	find	positively-

valued	coefficients {χh,τ}τ≥1,1≤h≤τ , such	that, for	any t ≤ T − 1,

ỹt − ỹtrapt =

T−t∑
h=1

{
χh,T−tĒ

h
t

[
R̃T

]}
, (117)
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with ỹtrapt defined	as	in	the	proof	of	Proposition	6 and

χ1,τ = σ (1 + τσκ)βτ−1 ∀τ ≥ 1, (118)

χk,τ =
τ−k+1∑
l=1

(1− β + lσκ)βl−1xk−1,τ−l ∀k ≥ 2 and τ ≥ k. (119)

We	can	then	characterize	the	combined	effect	of	beliefs	of	order	up	to k on	spending, sk,τ , as20

sk,τ = σ (1 + τσκ)βτ−1 +
τ−1∑
l=1

(1− β + lσκ)βl−1sk−1,τ−l ∀k ≥ 1 and τ ≥ 1. (120)

Let dτ = sτ,τ denote	the	combined	effect	of	beliefs	of	all	different	orders	on	spending. Similar	to	condi-

tion	(18), dτ = ϕ∗
τ . Following	the	proof	of	Proposition	6, we	have

d0 = σ and d1 = σ (1 + σκ) ,

dτ
dτ−1

+ β
dτ−2

dτ−1
= 1 + β + σκ ∀τ ≥ 2. (121)

Now	we	prove sk,τ satisfies	an	inequality	with	a	similar	form	as	condition	(121):

sk,τ
sk,τ−1

+ β
sk,τ−2

sk,τ−1
≤ 1 + β + σκ ∀τ ≥ 3 and k ≥ 1. (122)

From	condition	(120), we	have

βsk,τ−1 = σ (1 + (τ − 1)σκ)βτ−1 +

τ−1∑
l=2

(1− β + (l − 1)σκ)βl−1sk−1,τ−l ∀k ≥ 1 and τ ≥ 2.

As	a	result, we	have

sk,τ = βsk,τ−1 + (1− β) sk−1,τ−1 + σ2κβτ−1 + σκ

τ−1∑
l=1

βl−1sk−1,τ−l ∀k ≥ 1 and τ ≥ 2,

βsk,τ−1 = β2sk,τ−2 + β (1− β) sk−1,τ−2 + σ2κβτ−1 + σκ

τ−1∑
l=2

βl−1sk−1,τ−l ∀k ≥ 1 and τ ≥ 3.

Using	the	previous	two	conditions, we	have, for	all k ≥ 1 and τ ≥ 3,

sk,τ + β2sk,τ−2 + β (1− β) sk−1,τ−2 = 2βsk,τ−1 + (1− β + σκ) sk−1,τ−1,

sk,τ + βsk,τ−2 = (1 + β + σκ) sk,τ−1 + β (1− β)χk,τ−2 − (1− β + σκ)χk,τ−1. (123)

20Similar	to	the	proof	of	Theorem	2, for	notation	simplicity, we	extend	the	definition	of sh,τ =
∑h

r=1 χr,τ for	all h > τ . As	for
h > τ , χh,τ = 0, we	have sh,τ = sτ,τ for	all h > τ . We	also	define s0,τ = 0 for	all τ ≥ 1.
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To	prove	(122), we	only	need	to	prove:

β (1− β)χk,τ−2 ≤ (1− β + σκ)xk,τ−1 ∀k ≥ 1 and τ ≥ 3. (124)

In	fact, we	prove	the	following	stronger	result:

βχk,τ−2 ≤ xk,τ−1 ∀k ≥ 1 and τ ≥ 3. (125)

From	condition	(118), we	know	that	(125)	is	true	for k = 1 and τ ≥ 3. From	condition	(119), we	know	that

χk,τ−1 =

τ−k∑
l=1

(1− β + σlκ)βl−1xk−1,τ−1−l ∀k ≥ 2 and τ ≥ k + 1, (126)

βχk,τ−2 =

τ−k∑
l=2

(1− β + σ (l − 1)κ)βl−1xk−1,τ−1−l ∀k ≥ 2 and τ ≥ k + 2.

This	proves βχk,τ−2 ≤ xk,τ−1 for k ≥ 2 and τ ≥ k + 2. Together	with	the	fact	that, χk,τ−2 = 0 ∀k ≥ τ − 1,

we	prove	(125)	and	thus	(124). This	finishes	the	proof	of	(122).

Based	on	(121)	and	(122), we	can	then	establish	a	result	akin	to	Theorem	2. That	is, for	any	given k ≥ 1

and τ ≥ k, the	relative	contribution	of	the	first k orders, sk,τ
sτ,τ

=
sk,τ
dτ

, strictly	decreases	with τ .

First, note	that, for	any	given k ≥ 1,1 =
sk,k
dk

>
sk,k+1

dk+1
, because xk+1,k+1 > 0. Then, we	can	proceed	by

induction	on τ ≥ k, for	any	fixed k ≥ 1. If	we	have sk,τ
dτ

>
sk,τ+1

dτ+1
for	some τ ≥ k, we	have sk,τ

sk,τ+1
> dτ

dτ+1
.

Using	(121)	and	(122), we	have sk,τ+2

sk,τ+1
< dτ+2

dτ+1
, and	thus sk,τ+1

dτ+1
>

sk,τ+2

dτ+2
. This	completes	the	proof	that, for

any k ≥ 1 and	any τ ≥ k, the	ratio sk,τ
sτ,τ

, strictly	decreases	with	the	horizon τ .

Finally, we	prove	that, for	any k ≥ 1,

sk,τ
sτ,τ

→ 0, as τ → ∞. (127)

In	other	words, we	want	to	prove	the	relative	contribution	of	the	first k orders	of	beliefs	to	aggregate	spending

converges	to	zero	when	the	horizon τ goes	to	infinity.

First	note	that, from	condition	(120), we	have s1,τ = σ (1 + στκ)βτ−1 → 0, as τ → +∞. From	the	proof

of	Proposition	6, we	know sτ,τ = dτ = ϕ∗
τ ≥ σ. As	a	result, (127)	is	true	for k = 1.

If	there	exists k ≥ 2 such	that	(127)	does	not	hold, we	let k∗ ≥ 2 denote	the	smallest	of	such k. Then,

(127)	holds	for 1 ≤ k ≤ k∗ − 1. Because	we	already	prove	that sk∗,τ
sτ,τ

≥ 0 is	decreasing	with	the	horizon

τ , there	exists 0 < Γ < 1 such	that sk∗,τ
sτ,τ

=
sk∗,τ
ϕ∗
τ

→ Γ as τ → ∞. As	a	result, sk∗,τ
ϕ∗
τ

ϕ∗
τ−1

sk∗,τ−1
→ 1 as τ → ∞.

Because	we	already	prove	that, in	the	proof	of	Proposition	6, ϕ∗
τ

ϕ∗
τ−1

→ Γ∗, we	have

sk∗,τ
sk∗,τ−1

→ Γ∗ and
sk∗,τ−2

sk∗,τ−1
→ 1

Γ∗ as τ → ∞. (128)

Note	that	since sk∗,τ = sk∗−1,τ+χk∗,τ and
sk∗−1,τ

sτ,τ
→ 0 as τ → ∞, we	have χk∗,τ

sτ,τ
=

χk∗,τ
ϕ∗
τ

→ Γ as τ → ∞.
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As	a	result,
χk∗,τ

sk∗,τ
=

χk∗,τ

ϕ∗
τ

ϕ∗
τ

sk∗,τ
→ 1 as τ → ∞. (129)

Now	we	prove	a	stronger	version	of	(122)

sk,τ
sk,τ−1

+ β
sk,τ−2

sk,τ−1
+ σκ

χk,τ−1

sk,τ−1
≤ 1 + β + σκ ∀τ ≥ 3 and k ≥ 1. (130)

This	comes	from	the	fact	that	(125)	can	be	written	as

β (1− β)χk,τ−2 + σκχk,τ−1 ≤ (1− β + σκ)xk,τ−1 ∀τ ≥ 3 and k ≥ 1. (131)

Using	(61), (128)	and	(129), we	have

sk∗,τ
sk∗,τ−1

+ β
sk∗,τ−2

sk∗,τ−1
+ σκ

χk∗,τ−1

sk∗,τ−1
→ Γ∗ + β

1

Γ∗ + σκ = 1 + β + 2σκ as τ → ∞.

This	contradicts	(130)	when κ > 0 and	proves	(127). This	finishes	the	proof	of	the	result	akin	to	Theorem	2.

Together	with	Proposition	3, we	then	establish	the	“horizon	effect”	akin	to	Theorem	1. Similarly, Proposition

4 also	holds	here.
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