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Online Appendix A1: Correspondent Data Standardization

As state and national banks reported correspondent relationships data differently, we describe
differences between the two and the standardization procedure to match them.

State banks’ annual reports provided quarterly balance sheets and the amounts due to each
state-chartered Pennsylvania bank by individual debtors annually. Balance-sheet information
is available for March, June, September, and November, while correspondents’ information is
available for November of each year. We collect information on balance sheets and amounts due
to each Pennsylvania state bank by individual debtor for November.

National banks did not report all of their correspondent banks because the primary purpose
of examinations was to verify whether national banks met legal reserve requirements. Country
banks selected the national banks in reserve cities with which they wished to keep a portion
of their legal reserves, and sent the names of those banks to the comptroller. Once approved,
they were known as approved reserve agents. Similarly, national banks in reserve cities selected
national banks in central reserve cities. Hence, for both country banks and reserve city banks,
only amounts due from approved reserve agents in reserve cities and the central reserve city were
enumerated. Amounts due from other banks in reserve cities and the central reserve city were
not reported. In addition, amounts due from other country banks did not need to be reported.
For national banks in the central reserve city, no due-from information was reported since these
banks had to hold all their reserves in cash.

Examiners’ reports include three types of “due-from” payments from the banks with whom
they had relationships: (1) amounts due from approved redeeming agents, (2) amounts due from
other national banks, and (3) amounts due from other banks. For approved redeeming agents,
each agent’s name is recorded with the corresponding amount. For other national banks and
other banks, only aggregate due-from amounts were reported. During this period, most national
banks had one reserve agent to keep their legal reserves. These reserve agents tended to be the
major holder of national banks’ correspondent deposits. On average, national banks kept 50
percent of total interbank deposits in one bank.1 However, a few Philadelphia banks kept their
reserves in multiple banks in New York City, with about 20 percent of total interbank deposits
in each bank. To make the data on state banks’ correspondents comparable to that of national
banks with their approved reserve agents, we list only correspondent banks that held more than
20 percent of total interbank deposits for each bank.

1Calomiris and Carlson (2017) study the interbank network from the panic of 1893; they find similar values of
56 percent.
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Online Appendix A2: Balance-Sheet Standardization

Because state and national bank balance sheets report different items, we combine them to
create a standardized list of six asset categories (cash; government securities; other securities;
amounts due from other banks; loans; and other assets) and six liability categories (capital;
notes; deposits; amounts due to other banks; surplus; and other liabilities). Table A1 and A2
report the balance-sheet categories for state banks and national banks, respectively.

Table A1. State Bank Balance-Sheet Structure

Assets Standardized

Gold and silver in the vault of the bank Cash
Current notes, checks, and bills of other banks Cash
Uncurrent notes, checks, and bills of other banks Cash
Other obligations of other banks Due from
Bills and notes discounted, (not under protest) Loans
Bills and notes discounted, (under protest) Loans
Mortgages held and owned by the bank Loans
Assessed value for the year 186- of the real estate bound by said mortgages Loans
Judgments held and owned by the bank Loans
Real estate held and owned by the bank Loans
Due from solvent banks Due from
Due from insolvent banks Due from
Public and corporate stocks and loans Other securities
Bonds held by the bank Other securities
Treasury notes Government securities
Claims against individuals or corporations, disputed or in controversy Loans
All other debts and claims either due or to become due Loans
Expenses Other assets
Value of any other property of the bank, as the same stands charged on Other assets
the books, or otherwise

Liabilities Standardized

Capital stock actually paid in Capital
Notes in circulation Notes
Deposits Deposits
Certificates of deposit Deposits
Due to the Commonwealth Other liabilities
Due to corporations Deposits
Due to banks Due to
Due to individuals Deposits
Claims against the bank, in controversy Other liabilities
Surplus, contingent or sinking fund Surplus
All other items of indebtedness not embraced in foregoing specifications Other liabilities

Notes: This table lists the original and standardized balance-sheet items for state banks.
Source: Reports of the Several Banks and Savings Institutions of Pennsylvania (1863, 1868)
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Table A2. National Bank Balance-Sheet Structure

Assets Standardized

Loans and discounts Loans
Overdrafts Loans
U.S. bonds deposited to secure circulation Government securities
U.S. bonds deposited to secure deposits Government securities
U.S. bonds and securities on hand Government securities
Other stocks, bonds, and mortgages Other securities
Due from approved redeeming agents Due from
Due from other national banks Due from
Due from other banks and bankers Due from
Real estate, furniture, etc. Other assets
Current expenses Other assets
Premiums Other assets
Checks and other cash items Cash
Bills of national banks Cash
Bills of other banks Cash
Specie Cash
Fractional currency Cash
Legal tender notes Cash
Compound interest notes Cash

Liabilities Standardized

Capital stock Capital
Surplus fund Surplus
Undivided profits Surplus
National bank notes outstanding Notes
State bank notes outstanding Notes
Individual deposits Deposits
United States deposits Deposits
Deposits of U.S. disbursing officers Deposits
Due to national banks Due to
Due to other banks and bankers Due to
Amount due, not included under either of the above headings Other liabilities

Notes: This table lists the original and standardized balance-sheet items for national banks. Due from
approved redeeming agents, checks and other cash items, specie, fractional money, legal tender notes,
and compound interest notes counted toward legal reserves (Bankers’ Magazine, 1875).
Source: National Banks’ Examination Reports (1867)
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Online Appendix B: Bank Entry and the Concentration of Interbank De-
posits

After the NBAswere passed, many new national banks entered the market, especially outside
financial centers. The number of banks in Pennsylvania and New York City increased from 113
in 1862 to 198 in 1867. This was largely driven by a doubling of country banks from 64 to
132. The coincidence of the rule change and the increase in new bank entries raise the concern
that the concentration of interbank deposits may have originated from the increased volume of
the banking sector rather than regulation. In this Appendix, we show that regulation led to the
concentration of interbank deposits. To do so, we examine the distribution of interbank deposits
across converted national, new national, and state banks.

We begin by comparing the interbank deposits of converted national banks in 1867 to
themselves as state banks in 1862. Since these banks did not have to comply with reserve
requirements before the NBAs, this exercise allows us to document the direct effect of regulation.
Seventy-five state banks converted into national banks after the NBAs. Table B1 compares the
distribution of interbank deposits of these banks before and after the conversion.

We find that the distribution of interbank deposits varied significantly after the rule change.
For country banks, the percentage of interbank deposits in Philadelphia and Pittsburgh went up
from 68 percent to 77 percent, and the percentage of correspondent relationships went up from
60 percent to 76 percent. In particular, Pittsburgh became a major financial center after it was
designated as a reserve city. The fraction of correspondent relationships between country banks
and Pittsburgh climbed from 2 percent to 10 percent. For Philadelphia and Pittsburgh banks, the
percentage of deposits and correspondent linkages with New York City banks increased from
72 percent to 96 percent and 46 percent to 94 percent, respectively. These findings suggest that
the law caused the concentration of deposits.

Next, we compare the distribution of interbank deposits of new national banks to those of
state banks in 1867. By doing so, we alleviate the concern that new bank entries alone could
have caused the concentration of deposits. Without the NBAs, these new banks would have
behaved similarly to the state banks, which were not under the reserve requirements in 1867.
In Table B2, we compare the interbank deposits of 91 new national banks to 12 state banks in
1867.2 The distribution of interbank deposits differed for these two groups. The deposits of an
average state bank were more dispersed. For example, the Pittsburgh state banks allocated 42
percent of deposits outside of New York City, and the country state banks allocated 21 percent
of deposits to non-reserve city banks. In comparison, these numbers for the new national banks

2The 91 new national banks included 87 new banks that entered under the national charters and four banks
that entered initially as state banks between 1863 and 1866 and converted to national banks by 1867. The 12 state
banks included nine original state banks and three new state banks.
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Table B1. Distribution of Interbank Deposits: Converted National Banks in 1862 vs. 1867

Converted National Banks

All Banks Philadelphia Banks Pittsburgh Banks Country Banks

Year = 1862 Amount Links Amount Links Amount Links Amount Links

New York City 41.5 36.1 75.6 38.1 68.6 53.8 30.3 32.6
Philadelphia 54.8 41.7 13.5 11.9 25.0 30.8 67.8 57.3
Pittsburgh 0.4 1.4 0.0 0.0 0.0 0.0 0.5 2.2
Other PA 2.4 11.8 5.9 23.8 4.7 7.7 1.3 6.7
Other U.S. 0.9 9.0 5.0 26.2 1.7 7.7 0.0 1.1

Year = 1867 Amount Links Amount Links Amount Links Amount Links

New York City 58.6 47.1 100.0 100.0 91.2 88.9 20.8 22.4
Philadelphia 36.5 44.8 0.0 0.0 8.8 11.1 69.3 65.5
Pittsburgh 3.7 6.9 0.0 0.0 0.0 0.0 7.5 10.3
Other PA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Other U.S. 1.2 1.1 0.0 0.0 0.0 0.0 2.4 1.7

Notes: This table compares the distribution of interbank deposits of the 75 state banks that converted to national
banks in Pennsylvania for the years 1862 and 1867. All numbers are in percentages. The rows indicate the location
of correspondent banks. The columns indicate the location of respondent banks. We classify respondent banks
into three groups: Philadelphia, Pittsburgh, and country banks. The columns show the fraction of deposits held at
different locations against total major due-from deposits in all the 75 converted Pennsylvania national banks, those
in Philadelphia, in Pittsburgh, and converted country banks.

were only 8 percent and 2 percent, respectively. These findings further corroborate that the rule
change was critical.

To conclude, reserve requirements led to the concentration of interbank deposits in financial
centers. While significant bank entry occurred at the same time as the NBAs, our analysis shows
that the same level and structure of concentration would not have appeared without the rule
change by the NBAs.

5



Table B2. Distribution of Interbank Deposits: New National Banks vs. State Banks in
1867

New National Banks

All Banks Philadelphia Banks Pittsburgh Banks Country Banks

Year = 1862 Amount Links Amount Links Amount Links Amount Links

New York City 68.4 50.5 100.0 100.0 92.4 83.3 42.3 40.5
Philadelphia 26.4 38.1 0.0 0.0 7.6 16.7 47.7 45.2
Pittsburgh 4.3 8.6 0.0 0.0 0.0 0.0 8.3 10.7
Other PA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Other U.S. 0.9 2.9 0.0 0.0 0.0 0.0 1.7 3.6

State Banks

Year = 1867 Amount Links Amount Links Amount Links Amount Links

New York City 29.2 21.1 - - 58.5 50.0 14.5 17.6
Philadelphia 42.9 42.1 - - 0.0 0.0 64.4 47.1
Pittsburgh 13.8 5.3 - - 41.5 50.0 0.0 0.0
Other PA 13.6 21.1 - - 0.0 0.0 20.4 23.5
Other U.S. 0.5 10.5 - - 0.0 0.0 0.8 11.8

Notes: This table compares the distribution of interbank deposits of 91 new national banks vs. 12 state banks in
1867. All numbers are in percentages. The rows indicate the location of correspondent banks. The columns indi-
cate the location of respondent banks. We classify respondent banks into three groups: Philadelphia, Pittsburgh,
and country banks. The columns show the fraction of deposits held at different locations against total major due-
from deposits in all the Pennsylvania respondent banks, those in Philadelphia, in Pittsburgh, and country banks.

Online Appendix C: Best-Case Equilibrium

In this Appendix, we show that the model has a unique best-case equilibrium solution. This
equilibrium outcome reflects the minimum set of possible withdrawals and defaults. We also
show that an iterative algorithm converges to the best-case equilibrium solution.

As explained in the body of the paper, the two-period payment equilibrium is computed in
two steps. We solve first for the t = 1 equilibrium taking into account the expected equilibrium
outcome of t = 2, and then for the t = 2 equilibrium upon the realization of vector R2. The
algorithm to compute the t = 1 equilibrium has an outer loop and an inner loop. The outer
loop computes the withdrawals W1, and the inner loop computes the clearing system X1. As
in Elliott, Golub and Jackson (2014) and Walden, Wallace and Stanton (2018), we focus on
the best-case equilibrium, i.e., the outcome with the minimal set of possible withdrawals and
defaults.

0. Initialization. Set iteration m = 0. Set
(0)
W1 such that

(0)
W1

ii = 1,∀i ∈ ΩW ,
(0)

W1
ii = 0,∀i < ΩW

and
(0)

W1
i j = 0, ∀ j , i. Set

(0)
X1 =W1D.
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1. Finding equilibrium for t = 1 (outer loop for W1)

(a) Set m = m + 1.

(b) Given
(m−1)
W1 , solve for the unique payment matrix

(m)

X1 using the Eisenberg-Noe ficti-

tious default algorithm and
(m−1)
X1 as the initial guess (inner loop for X1).

(c) Update
(m)

W1 according to the withdrawal conditions (8)–(12) and
(m)

X1.

(d) Terminate if
(m)

W1 =
(m−1)
W1 ; otherwise, go back to Step 1.(a).

2. Finding equilibrium for t = 2 for the set of banks that survive from t = 1

(a) Given
(m)

W1 and
(m)

X1, obtain W2 = 1 −
(m)

W1 and A2 according to equation (5) in the
paper.

(b) Solve for the unique payment matrix X2 using the Eisenberg-Noe fictitious default
algorithm.

To show that this algorithm converges to the best-case equilibrium solution, we begin by
decomposing the payment variable X t

ki in equation (6) to the product of two subcomponents,
Πt

ki and Pt
i . The first component, Πt

ki = W t
kiDki/

(∑
j W t

jiD ji

)
, is the nominal liability of bank

i to depositor k as a fraction of bank i’s total liabilities at time t; the second component,
Pt

i = min
{∑

j W t
jiD ji, At

i

}
, is the total payment by bank i to depositors at time t. The total

payments thus satisfy the following mappings. For all i = 1, . . . ,N ,

(C1) P1
i = Φ

1
i (P

1) = min

{∑
j

W1
jiD ji,Ci + 1

l
iξ Ii +

∑
j,i

Π
1
i j P

1
j

}
,

where the liquidation event 1l
i is given by

(C2) 1
l
i =


1 if Ci +

∑
j,i Π

1
i j P

1
j −

∑
j W1

jiD ji < 0 and
∑

j,i W1
i j Di j =

∑
j,i Di j

0 otherwise
.

Denote the set of banks that survive at t = 1 by S, i.e., S = {i : 1d1
i = 0}. For all i ∈ S,

(C3) P2
i = Φ

2
i (P

2) = min

∑
j∈S

W2
jiD ji, A1

i −
∑
j∈S

W1
jiD ji + (1 − 1l

i )Ii R2
i +

∑
j∈S,j,i

Π
2
i j P

2
j

 .
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We start by analyzing the t = 1 equilibrium. From mapping Φ1 in equation (C1), our
model differs from the Eisenberg-Noe (2001) setting because of the endogenous withdrawals∑

j W1
jiD ji. To understand the equilibrium properties, let us first consider the formulation in

which the liquidity withdrawals W1 are exogenously given. This corresponds to the inner loop
of the algorithm that solves the payment matrix X1. The following conclusions hold.

Proposition C1 For a given liquidity withdrawal matrix W1, a payment equilibrium of t = 1 is
a pair of payment vector P1 and liquidation vector 1l that simultaneously solve (C1) and (C2).
The payment equilibrium exists and is unique. Furthermore, the payment matrix X1 = Π1P1

can be obtained via an iterative algorithm in at most N iterations.

Proof. The proof builds on Eisenberg and Noe (2001) and Acemoglu, Ozdaglar and Tahbaz-
Salehi (2015). Based on how the liquidation event is defined in equation (2), for a given liquidity
withdrawal matrix W1, we can separate the banks into two sets. Denote by A the set of banks
that withdraw all interbank deposits due from correspondents, i.e., A = {i :

∑
j,i W1

i j Di j =∑
j,i Di j}. Then for all i ∈ A, liquidation occurs if and only if Ci +

∑
j,i Π

1
i j P

1
j <

∑
j W1

jiD ji.
The mapping satisfies3

P1
i = Φ

1
i (P

1) = min

{∑
j

W1
jiD ji,Ci +

∑
j,i

Π
1
i j P

1
j + 1

l
iξ Ii

}
=

∑
j

W1
jiD ji +min

{
0,Ci +

∑
j,i

Π
1
i j P

1
j −

∑
j

W1
jiD ji + 1{Ci+

∑
j,i Π

1
i jP

1
j <

∑
j W1

jiDji}
ξ Ii

}
=

∑
j

W1
jiD ji +min

{
0,Ci +

∑
j,i

Π
1
i j P

1
j −

∑
j

W1
jiD ji + ξ Ii

}
= min

{∑
j

W1
jiD ji,Ci + ξ Ii +

∑
j,i

Π
1
i j P

1
j

}
, ∀i ∈ A,(C4)

where 1E denotes the indicator function of event E .
For all i < A, liquidation does not happen according to equation (2), so1l

i = 0. Consequently,
the mapping reduces to

P1
i = Φ

1
i (P

1) = min

{∑
j

W1
jiD ji,Ci +

∑
j,i

Π
1
i j P

1
j + 1

l
iξ Ii

}
= min

{∑
j

W1
jiD ji,Ci +

∑
j,i

Π
1
i j P

1
j

}
, ∀i < A.(C5)

3The last but two equality follows froma general result: suppose that l > 0 and a ∈ R; thenmin{0,a+1{a<0}l} =
min{0,a + l}.
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Combining equations (C4) and (C5) gives a new mapping

(C6) P1
i = Ψ

1
i (P

1) = min

{∑
j

W1
jiD ji,Ci + 1i∈Aξ Ii +

∑
j,i

Π
1
i j P

1
j

}
,

in which 1i∈A is exogenous for a given W1. We then have the following result. Suppose
that (P1,1l) is a payment equilibrium of t = 1. Then, from (C4) and (C5), P1 satisfies (C6).
Conversely, if P1 ∈ RN satisfies (C6), then there exists 1l ∈ {0,1}N such that (P1,1l) is a
payment equilibrium of t = 1. To see this, let 1l

i = 1{(
Ci+

∑
j,i Π

1
i jP

1
j <

∑
j W1

jiDji

)
∧(i∈A)

} . Then by

construction, (C2) is satisfied. And again from (C4) and (C5), Ψ1(P1) = Φ1(P1), which verifies
that (P1,1l) is indeed a payment equilibrium.

The above result contains an important insight. The mapping P1 = Φ1(P1) given in equation
(C1) is a function of the liquidation event 1l , which is itself endogenous to P1. Consequently,
the appropriate mapping Φ1 whose fixed points determine the equilibrium should take the
endogeneity of the liquidation event into account. In the analysis above, we borrow the approach
of Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) and show that the mapping Φ1(P1) can be
reduced to an equivalent mapping Ψ1(P1) which is independent of the vector 1l . As a result, it
is sufficient to show the existence and uniqueness of P1 ∈ RN that satisfies P1 = Ψ1(P1).

We proceed to show existence by analyzing the properties of mapping Ψ1. Denote 1 as the
N-dimensional vector with all components equal to 1. The vector of total withdrawal requests
is 1T (W1 ◦ D) < 1TD, in which ◦ represents the Hadamard product of two matrices. It follows
that P1 ∈ [0,1TD] ⊂ RN . The set [0,1TD] is bounded and, with the pointwise ordering induced
by the lattice operations, forms a complete lattice. Hence, the equilibrium payment vector P1 is
a fixed point of the mapping Ψ1 : [0,1TD] → [0,1TD] defined by (C6). As shown in Theorem
1 of Eisenberg and Noe (2001), the mapping Ψ1 is continuous, positive, increasing, concave,
and nonexpansive. Tarski’s fixed-point theorem (1955) implies that the set of fixed points is
nonempty and forms a complete lattice.

We next show uniqueness. Suppose for contradiction that there are two distinct payment
equilibria, denoted by P1 and P̂1 such that P1 , P̂1. From the above analysis, both P1 and P̂1

must satisfy (C6). Next we introduce an auxiliary lemma.

Lemma B1 of Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) Suppose that β > 0. Then��[min{α, β}]+ − [min{α̂, β}]+
�� ≤ |α − α̂ | .
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Following this lemma, for any bank i,��P1
i − P̂1

i

��
=

������min

{∑
j

W1
jiD ji,Ci + 1i∈Aξ Ii +

∑
j,i

Π
1
i j P

1
j

}
−min

{∑
j

W1
jiD ji,Ci + 1i∈Aξ Ii +

∑
j,i

Π
1
i j P̂

1
j

}������
≤

������∑j,i

Π
1
i j P

1
j −

∑
j,i

Π
1
i j P̂

1
j

������ .
Here [·]+ is dropped because the term inside is non-negative by construction in our setting.

Let matrix Λ = Π − Π ◦ diag(1, . . . ,1) such that the diagonal elements of Λ are zero, and
the off-diagonal elements of Λ equal those of matrix Π. The above inequality is equivalent to��P1

i − P̂1
i

�� ≤ ��(ΛP)i − (ΛP̂)i
�� .

Because Πii > 0,∀i (since a bank must have a positive retail deposit, i.e., Dii > 0), the column
sums of Λ are all less than one, i.e. ‖Λ‖1 < 1. Summing both sides of the above inequality over
all banks i and making use of ‖Λ‖1 < 1, we have

‖P1 − P̂1‖1 ≤ ‖Λ(P1 − P̂1)‖1 ≤ ‖Λ‖1· ‖P1 − P̂1‖1 < ‖P1 − P̂1‖1.

Hence, we obtain a contradiction and thus complete the proof for uniqueness.
This unique equilibriumpayment vectorP1 can be obtained via the fictitious default algorithm

in at most N iterations.4 The algorithm starts with the assumption that no banks default. If
all obligations being satisfied is indeed a feasible outcome, the algorithm terminates. If some
banks default when all other banks pay fully, we update the payment vector given the defaults in
the previous step and check for new defaults. The algorithm terminates when no new defaults
occur.

Having established the equilibrium properties under exogenous withdrawals, next, we in-
corporate the withdrawal conditions (8)–(12) in the main paper and analyze how they affect the
equilibrium characterization. To begin with, note that the exogenous withdrawal shocks by retail
depositors ΩW do not affect the above results. We thus focus on the endogenous withdrawal
decisions.

Condition (8) states that bank i withdraws all its deposits due from correspondent banks
when bank i itself faces withdrawals that could not be met by its liquid assets. Depositors’
withdrawals from bank i are characterized by conditions (9)–(10) and (11)–(12). From (9)–(10),

4This result is shown in Lemma 3 of Eisenberg and Noe (2001).
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respondent banks of bank i withdraw if bank i defaults early or is expected to default. From
(11)–(12), the retail depositor withdraws from bank i when other depositors of her bank do so
or when her bank’s correspondent defaults. Other than exogenous reasons that bank i has a
low expected return R1

i , this happens when bank i’s correspondents face large withdrawals that
cannot be met. In other words, significant withdrawals at its correspondents lead to withdrawals
at bank i.

The contagious withdrawals give rise to an important feature: depositors face strategic
complementarities in their withdrawal decisions. Following Bulow, Geanakoplos and Klem-
perer (1985), the marginal payoff of any depositor’s withdrawal increases with other depositors’
withdrawals. Specifically, a respondent bank’s marginal payoff to withdraw increases as other
depositors withdraw under (8)–(10), and flat otherwise; a retail depositor’s marginal payoff to
withdraw increases as other depositors withdraw under (11)–(12), and flat otherwise. Super-
modular games provide the appropriate framework tomodel strategic interactions in the presence
of complementarities (Topkis, 1979; Milgrom and Roberts, 1990; Vives, 1990). The following
lemma establishes the supermodularity property.

Lemma C1 The game of depositors’ strategic withdrawals at t = 1 is supermodular.

Proof. The proof is based on Milgrom and Roberts (1990). This non-cooperative game has
2N players: N bank depositors and N retail depositors, denoted respectively by bi and ri,
i ∈ {1,2, . . . ,N}. A bank depositor bi has an (N − 1)-dimensional strategy set: Wb

i,· ∈ {0,1}
N−1

where Wb
i,j = W1

i j ∈ {0,1}, ∀ j , i. A retail depositor ri has a one-dimensional strategy set:
Wr

i = W1
ii ∈ {0,1}. The strategy set of each player is finite, compact, and forms a complete

lattice in the Euclidean space with the usual vector ordering.
Denote the payoff function of the bank depositor as f b

i (W
b
i ; Wb

−i×Wr) and the retail depositor
as f r

i (W
r
i ; Wr

−i × Wb). Since the players’ strategy sets are finite, the payoff functions are
continuous with respect to the strategy sets.

Next we show that the payoff functions satisfy increasing differences and supermodularity.
For a bank depositor bi, the payoff function satisfies f b

i (W
b
i,j = 1,∀ j , i; Wb

−i ×Wr) − f b
i (W

b
i,j =

0,∃ j , i; Wb
−i ×Wr) is positive if condition (8) holds, and is negative otherwise; f b

i (W
b
i,j =

1; Wb
i,k, j ; Wb

−i ×Wr) − f b
i (W

b
i,j = 0; Wb

i,k, j ; Wb
−i ×Wr) is positive if condition (9) or (10) holds

for bank j, and is negative otherwise. Given the nature of conditions (8)–(10), an element of
Wb
−i ×Wr under which any of these conditions hold cannot be smaller than an element under

which conditions (8)–(10) do not hold. Hence, ∀Ŵb
i ≥ Wb

i , ∀Ŵ
b
−i × Ŵr ≥ Wb

−i ×Wr , we have

f b
i (Ŵ

b
i ; Ŵb

−i × Ŵr) − f b
i (W

b
i ; Ŵb

−i × Ŵr) ≥ f b
i (Ŵ

b
i ; Wb

−i ×Wr) − f b
i (W

b
i ; Wb

−i ×Wr).

That is, f b
i has increasing differences in Wb

i and Wb
−i ×Wr . In a similar fashion, f b

i satisfies

11



increasing differences with respect to any pair ofWb
i,j andWb

i,k for a given {W
b
i,−{ j,k}×Wb

−i ×Wr}.
Equivalently, f b

i is supermodular in Wb
i for any given Wb

−i ×Wr .
For a retail depositor ri, the payoff function satisfies: f r

i (W
r
i = 1; Wr

−i ×Wb) − f r
i (W

r
i =

0; Wr
−i ×Wb) is positive if Θi = {0,1} and is negative otherwise. Given the nature of conditions

(11)–(12), an element in {Wr
−i ×Wb : Θi(Wr

−i ×Wb) = {0,1}} cannot be smaller than any
element in {Wr

−i ×Wb : Θi(Wr
−i ×Wb) = {0}}. Hence, ∀Ŵr

−i × Ŵb ≥ Wr
−i ×Wb ∈ {0,1}N2−1,

we have

f r
i (1; Ŵr

−i × Ŵb) − f r
i (0; Ŵr

−i × Ŵb) ≥ f r
i (1; Wr

−i ×Wb) − f r
i (0; Wr

−i ×Wb).

This establishes that f r
i has increasing differences in Wr

i and Wr
−i ×Wb. Furthermore, since Wr

i

is one-dimensional, ∀Wr
i ,Ŵ

r
i ∈ {0,1} and ∀W

r
−i ×Wb ∈ {0,1}N2−1 we have

f r
i (W

r
i ,W

r
−i×Wb)+ f r

i (Ŵ
r
i ,W

r
−i×Wb) ≤ f r

i (inf{Wr
i ,Ŵ

r
i },W

r
−i×Wb)+ f r

i (sup{Wr
i ,Ŵ

r
i },W

r
−i×Wb).

This establishes that f r
i is supermodular in Wr

i .
Taken together, all conditions in Milgrom and Roberts (1990) for a supermodular game

satisfy.
Supermodular games have nice properties. The following result characterizes the equilib-

rium.

Proposition C2 The set of pure strategy Nash equilibria of withdrawals W1 is non-empty
and forms a complete lattice. Let the best-case equilibrium be the one with the minimum
withdrawals. The best-case equilibrium can be obtained via an iterative algorithm with finite
steps.

Proof. The proof applies results established in Tarski (1955), Topkis (1979), Milgrom and
Roberts (1990), and Vives (1990). The following theorem is central to our results.

Theorem 5 of Milgrom and Roberts (1990) Let Γ be a supermodular game. For each player
n, there exist largest and smallest serially undominated strategies, xn and xn. Moreover, the
strategy profiles (xn; n ∈ N) and (xn; n ∈ N) are pure Nash equilibrium profiles.

This theorem says that all serially undominated strategies form a complete lattice, whose
extreme points are the largest and smallest Nash equilibria. Moreover, the theorem establishes
that the extreme points can be obtained using the iterated elimination process which produces a
series of monotone strategies.

From Lemma C1, the game of depositors’ withdrawals at t = 1 is supermodular. Applying
Milgrom and Roberts (1990), the set of pure strategy Nash equilibria exists and forms a complete

12



lattice. The best-case equilibrium has the minimum withdrawals and thus is the smallest Nash
equilibrium in the complete lattice.

Equilibria of gameswith supermodular payoffs, yieldingmonotone increasing best responses,
have nice stability properties. In particular, the smallest Nash equilibrium can be found by an
iterative elimination of strictly dominated strategies starting from the smallest action profile.
This algorithm is based on the one proposed in Topkis (1979). The algorithm corresponds to the
iterative decision-making process by which each of the players concurrently and individually
chooses the next payoff-optimizing strategy under the assumption that the other players will hold
their decisions unchanged. A new joint decision is put together by combining these individually
determined decisions, and the next iteration then begins. For finite games, the iteration converges
in finite steps (Topkis, 1979, pg. 784). This algorithm is formalized as the “best response
dynamics” in Milgrom and Roberts (1990) and the “Cournot tâtonnement” in Vives (1990).
Theorem 5.1 in Vives (1990) establishes monotone convergence to an equilibrium point of the
game whenever the starting point is ‘below’ or ‘above’ all the best reply correspondences of the
players.

Once the t = 1 equilibrium is determined and the returns R2 are realized, the t = 2 payment
equilibrium for the set of banks that survive from t = 1 can be characterized following Eisenberg
and Noe (2001).

Proposition C3 Once the t = 1 equilibrium (W1,X1) is determined, the final date payment
equilibrium characterized by X2 exists and is unique. Furthermore, X2 can be obtained via an
iterative algorithm in at most N iterations.

Proof. The t = 2 clearing system matches that in Eisenberg and Noe (2001). This is because (1)
once the returns R2 are realized, the term A1

i −
∑

j∈SW1
jiD ji + (1 − 1l

i )Ii R2
i ≥ 0 is exogenously

given for each bank; (2) default does not create extra costs that would affect the clearing outcome.
The proof works similarly to Proposition C1. Since X2 = Π2P2, it is equivalent to analyzing
the properties of the payment vector P2. It follows that P2 ∈ [0,1TD] ⊂ RN . The set [0,1TD]
is bounded and forms a complete lattice. The equilibrium payment vector is a fixed point of
the mapping Φ2 : [0,1TD] → [0,1TD] defined by equation (C3). As shown in Theorem 1
of Eisenberg and Noe (2001), the mapping Φ2 is continuous, positive, increasing, concave,
and nonexpansive. Tarski’s fixed-point theorem (1955) implies that the set of fixed points is
nonempty and forms a complete lattice. Furthermore, sinceΠ2 shares the same properties asΠ1,
using the same technique as in Proposition C1, we obtain the uniqueness of P2 at equilibrium.
This unique equilibrium payment vector P2 can be obtained via the Eisenberg-Noe fictitious
default algorithm in at most N iterations, in the same way as P1 is computed.
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Online Appendix D: Analytical Results for Stylized Networks

TheNBAs led to changes in both interbank networks and bank balance sheets, e.g., NewYork
City (NYC) banks held more cash after the acts’ introduction. To evaluate the effect of network
changes in isolation, we provide analytical results for a pair of stylized networks. We compare
an N-bank chain network versus a two-tier pyramid, which underlines how the concentration of
interconnections affects stability. We also extend the results to a stylized network of seven banks,
which resembles the emergence of the pyramiding structure after the NBAs. To simplify the
analysis, we normalize banks’ balance sheets. Such normalizations guarantee that any variation
in the stability of the system is due to changes in the distribution of interbank liabilities, while
abstracting away from other features of the network. To ease readability, we move the proof to
the end of this appendix.

Balance-Sheet Normalization

We let bank 1 solely receive deposits, which resembles an NYC bank. We normalize banks’
balance sheets such that (1) the size of cash equals the size of equity capital for all banks; (2) the
retail deposits are the same across all banks; and (3) the size of cash and the size of investment,
respectively, are the same across all the non-NYC banks. Let us also fix the investment returns
for all the non-NYC banks to 1. Formally, we make the following assumption.

Assumption D1 We normalize banks’ balance sheets such that Ci = Ki, Dii = d, for all i. Let
bank i = 1 represents the NYC bank and banks i ≥ 2 represent the non-NYC banks; Ci = c,
Ii = a, R2

i = 1, for all i ≥ 2. Moreover, 0 < a < d.

An N-Bank Chain vs. a Two-Tier Pyramid

Denote a bank’s total liability as Di =
∑

j D ji. The interbank deposits D are determined by
the network structure and the balance-sheet equality. We proceed to introduce the two stylized
networks.

In the N-bank chain network, bank N places a deposit DN,N−1 at bank N −1, who then places
a deposit DN−1,N−2 at bank N − 2, etc. Denote DN-chain the N-bank chain network; formally,
DN-chain =

{
Di j : Di j > 0,∀i, j = 1, . . . ,N : i = j or i = j + 1; Di j = 0,otherwise

}
. Using As-

sumption D1 and the balance-sheet equality, we have

KN + d = CN + a + DN,N−1 ⇒ DN,N−1 = d − a,(D1)

Ki + d + Di+1,i = Ci + a + Di,i−1 ⇒ Di,i−1 = (N − i + 1)(d − a), i = 2, . . . ,N − 1,(D2)

K1 + d + D2,1 = C1 + I1 ⇒ I1 = D1 = (N − 1)(d − a) + d.(D3)
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Figure D1. An N-Bank Chain vs. a Two-Tier Pyramid. This figure shows two stylized
networks of N banks. Subfigure D1a illustrates an N-bank chain network in which bank i places
a deposit Di,i−1 at bank i − 1. Subfigure D1b illustrates a two-tier pyramid in which banks
i = 2, . . . ,N all place a deposit Di,1 at bank 1.

In the two-tier pyramid, banks i = 2, . . . ,N all place a deposit Di,1 at bank 1 where interbank
deposits are highly concentrated. DenoteD2-tier the two-tier pyramid network; formally, D2-tier ={

Di j : Di j > 0,∀i, j = 1, . . . ,N : i = j or j = 1; Di j = 0,otherwise
}
. We have

Ki + d = Ci + a + Di,1 ⇒ Di,1 = d − a, i = 2, . . . ,N,(D4)

K1 + d +
N∑

i=2
Di,1 = C1 + I1 ⇒ I1 = D1 = (N − 1)(d − a) + d.(D5)

Illustrative of a “top-to-bottom crisis,” the NYC bank (bank 1) defaults after incurring losses
in investment. Equivalently, the bank’s asset is less than its liability, i.e., C1 + R2

1 I1 < D1 = I1

(recall that D1 = I1 from equations (D3) and (D5)). Denote ∆R1 = 1 − (C1 + R2
1 I1)/I1 as the

rate of bank 1’s asset shortfall; bank 1 defaulting thus implies that ∆R1 > 0. Variations in
∆R1 represent the size of the negative asset shock to bank 1. We evaluate financial stability by
comparing the number of bank defaults across the two stylized networks.

Proposition D1 Suppose that Assumption D1 holds. Denote ∆R1 = 1 − (C1 + R2
1 I1)/I1

as the rate of bank 1’s asset shortfall in a “top-to-bottom crisis.” There exists a thresh-
old value of shock size, ∆RN-chain

1 (N), such that
∑

i 1
d
i (D

N-chain) >
∑

i 1
d
i (D

2-tier) for ∆R1 ∈

(c/((N − 1)(d − a)) , c/(d − a)];
∑

i 1
d
i (D

N-chain) <
∑

i 1
d
i (D

2-tier) for∆R1 ∈
(
c/(d − a),∆RN-chain

1 (N)
]
,
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where ∆RN-chain
1 (N) > c/(d − a) is given by

(D6) ∆RN-chain
1 (N) =

c
(N − 1)(d − a)

1 +
N−1∑
k=2

k∏
j=2

(N − j)(d − a) + d
(N − j)(d − a)

 .
This proposition shows that the stability of different networks against a top-to-bottom crisis

depends on the size of the shocks. If the shock sizes aremild,∆R1 ∈ (c/((N − 1)(d − a)) , c/(d − a)],
the N-bank chain network has multiple defaults, whereas the two-tier pyramid is limited to a
single default at bank 1; hence, themore concentrated two-tier pyramid is more robust. However,
if the shock sizes are large, ∆R1 ∈

(
c/(d − a),∆RN-chain

1 (N)
]
, the N-bank chain network incurs

no more than N − 1 defaults, whereas the two-tier pyramid suffers from a simultaneous default
of N banks; hence, the more concentrated two-tier pyramid is more fragile.

Illustrative of a “bottom-to-top crisis,” a set of country banks faces exogenous withdrawals
by the retail depositor, i.e., W1

ii = 1, i ∈ ΩW . Let the size of ΩW be ω, so that ΩW =

{N − ω + 1,N − ω + 2, . . . ,N} and ω = 1, . . . ,N − 2. The size of the set ΩW represents the
size of the “bottom-to-top” withdrawal shocks. Since liquidation is the direct consequence of
withdrawals, we evaluate financial stability by comparing the number of liquidations across the
two stylized networks. In line with the regulations brought about by the NBAs, we introduce
the following assumption.

Assumption D2 Let c < d so a country bank experiences cash shortage when facing retail
withdrawals; assume C1 ≥ (1 − ξ)I1 so the NYC bank stays solvent after liquidation.

Proposition D2 Let the size of the set ΩW be ω = 1, . . . ,N − 2, so that ΩW = {N − ω +

1,N − ω + 2, . . . ,N}. Suppose that Assumptions D1 and D2 hold. Then
∑

i 1
l
i (D

N-chain) ≥∑
i 1

l
i (D

2-tier). In particular,
∑

i 1
l
i (D

N-chain) >
∑

i 1
l
i (D

2-tier) when c < a, or, when c ≥ a and
C1 ∈ [max{(1 − ξ)I1,ω(d − a) + d}, I1).

This proposition shows that, for a bottom-to-top crisis, the two-tier pyramid is always more
robust. As long as not all country banks face the initial exogenous withdrawal shocks (ω < N−1)
and that bank 1 has enough cash assets to stay solvent, the two-tier pyramid generates no more
liquidations than the N-bank chain, a result insensitive to the size of the withdrawal shock ω.

The mechanism is as follows. In an N-bank chain network, the withdrawal shock at the
bottom is contagious upwards along the chain. Banks that are subject to withdrawals suffer
from a cash shortage, and thus need to redeem its interbank deposits, causing further panic
withdrawals at all other banks. In contrast, in a two-tier pyramid, as long as bank 1 has enough
cash and does not default, the panic withdrawals are contained within the exogenously shocked
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Figure D2. Number of Defaults and Size of Negative Shock ∆R1. This figure compares the
number of defaults in the four-bank chain and a two-tier pyramid as we vary the size of the
negative asset shock ∆R1. Compared to the four-bank chain, the two-tier pyramid is more robust
when the shock size is mild (in interval AB) and is more fragile when the shock size is severe
(in interval BC).

country banks, rather than spreading to the other country banks. Hence, the two-tier pyramid is
more robust to withdrawal shocks originating from country banks.

Examples

We illustrate the above results in an example of N = 4 banks. We start by analyzing the top-to-
bottom crises. In a four-bank chain, the conditions for the simultaneous default of two, three, and
four banks are∆R1 >

c
D2,1
= c

3(d−a) , ∆R1 >
c

D2,1

(
1 + D2

D3,2

)
, and∆R1 >

c
D2,1

(
1 + D2

D3,2
+

D2
D3,2

D3
D4,3

)
,

respectively. In a two-tier pyramid, banks i = 2,3,4 are direct respondents of bank 1—the
condition for the simultaneous default of all banks is ∆R1 >

c
D2,1
= c

d−a . Figure D2 illustrates
the number of defaults in the two stylized networks when we vary the size of ∆R1. Comparing
across networks, under a mild negative shock when ∆R1 ∈

(
c

3(d−a),
c

d−a

]
(corresponding to

interval AB in Figure D2), the two-tier pyramid is more robust because default is limited to only
the shocked bank 1, whereas the four-bank chain has multiple defaults caused by contagion.
However, under a severe negative shock ∆R1 ∈

(
c

d−a,
c

D2,1

(
1 + D2

D3,2
+

D2
D3,2

D3
D4,3

)]
(corresponding

to interval BC in Figure D2), the two-tier pyramid in which all four banks default is more fragile.
In comparison, the four-bank chain has fewer defaults.

The comparison is different when it comes to a bottom-to-top crisis. The two-tier pyramid is
always more robust and generates no more liquidations than the N-bank chain. In the four-bank
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Figure D3. A Stylized Network of Seven Banks. This figure shows two stylized networks that
resemble the structural changes brought by the NBAs. Subfigure D3a illustrates the pre-NBAs
network. Subfigure D3b illustrates the post-NBAs network.

chain network, the exogenous withdrawal shock at the bottom of the chain is contagious along
the chain, affecting all banks. Facing an exogenous withdrawal shock, bank 4 suffers from cash
shortage and withdraws from bank 3 (following condition (8) in the paper), who then withdraws
from bank 2, etc. Thus, bank 1 receives a total withdrawal request of D1 = I1 = 3(d − a) + d.
Since C1 ≥ (1− ξ)I1, bank 1 is solvent. When the country banks do not have significant cash to
meet depositors’ run (c < a), all country banks would suffer from liquidation. This result holds
no matter whether one or two country banks are hit with the withdrawal shock simultaneously.
The two-tier pyramid is different because the depositors’ run is contained to only the exogenously
shocked country banks, as long as bank 1 stays solvent. The two-tier structure effectively avoids
the propagation of withdrawal shocks along the chain and is thus more robust.

The above insights carry through to a stylized network of seven banks. As shown in Figure
D3, this example resembles the structural changes brought about by the NBAs. The pre-NBAs
network is summarized in Figure D3a: both the NYC bank (bank 1) and the Philadelphia bank
(bank 2) are major correspondent banks. The Pittsburgh bank (bank 3) and other country banks
(4 and 5) serve as local correspondents, taking deposits from country banks (6 and 7). The
NBAs led to a three-tier reserve pyramid which had fewer numbers of correspondents. As in
Figure D3b, all country banks (i = 4,5,6,7) place deposits at reserve city banks in Philadelphia
and Pittsburgh (i = 2,3), which then place deposits at the NYC bank (i = 1) at the top.

The stylized network of seven banks is a stacked version of the two-tier model. The results in
Propositions D1–D2 follow through qualitatively (the proofs are similar to those of Propositions
D1–D2 and are thus omitted). For a top-to-bottom crisis, the size of negative asset shockmatters.
Under mild asset shocks, the post-NBAs three-tier pyramid is more robust than the pre-NBAs
network because the asset shock is less likely to spread to respondent banks 2 and 3. For a
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bottom-to-top crisis, the post-NBAs three-tier pyramid is always more robust because the chains
are shorter so the country banks that are not directly shocked can avoid liquidations.

Importance of Top-to-Bottom vs. Bottom-to-Top Crises

We have compared the stability of stylized networks during crises that originate from the
top and from the bottom of the pyramid. The analysis also provides insights into what types of
crises are more relevant to a concentrated network. Let us focus on the two-tier pyramid. For a
top-to-bottom crisis, as long as the return shock to the NYC bank (bank 1 in the stylized model)
is large enough, insolvency spreads to the entire network, so all banks default simultaneously. In
contrast, for a bottom-to-top crisis, as long as the NYC bank has enough cash and stays solvent
against withdrawals from country banks, liquidation will not occur at banks that do not directly
face withdrawal shocks.

Furthermore, the two-tier pyramid is more robust than the chain network regardless of the
size of withdrawal shocks to country banksΩW . This result suggests that a severe bottom-to-top
crisis becomes less probable in a pyramid structure. These theoretical predictions are in line with
evidence from the National Banking era that banking crises mainly originated from financial
centers (see, e.g., Wicker, 2006).

Proof of Proposition D1

For the top-to-bottom crises, we compare the number of defaults across the two networks
when varying ∆R1, the size of the negative shock to bank 1. Denote Qi = Xi,i/Di,i the fraction
of payment over the nominal liability by bank i. Denote ∆RN-chain

1 (n) and ∆R2-tier
1 (n) as the

minimum of the shock sizes that can cause the simultaneous defaults of n banks in the N-bank
chain network, and the two-tier network, respectively.

We start from the N-bank chain network. From the definition of ∆R1, bank 1 defaults if and
only if ∆R1 > 0, and so Q1 = 1 − ∆R1 < 1. Similarly, banks i = 1,2 default if and only if
c + a +Q1D2,1 < d + D3,2; plugging in the relation, D2,1 = D3,2 + d − a, gives

(D7) ∆R1 > ∆RN-chain
1 (2) =

c
D2,1
=

c
(N − 1)(d − a)

.

Using the same method, we can show that banks i = 1,2,3 default if and only if5

(D8) ∆R1 > ∆R1(3) =
c

D2,1

[
1 +

D2
D3,2

]
.

5From the balance sheet equation of bank i = 3, banks i = 1,2,3 default if and only if 1 −Q2 > c/D3,2. Using
the relations that Q2 = (c + a +Q1D2,1)/D2 and D2 = d + D3,2 = D2,1 + a, we obtain condition (D8).
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More generally, among the defaulting banks along the chain network, the series of payment
fraction {Qi} obeys a recursive relation

(D9) Qi =
a + c +Qi−1Di,i−1

Di
.

Plugging in the balance-sheet relation Di = Di,i−1 + a, for all i ≥ 2, we arrive at the following
recursive form,

(D10) (1 −Qi) =
Di,i−1

Di
(1 −Qi−1) −

c
Di
.

From the balance sheet equation of bank i+1, bank i+1 defaults if and only if 1−Qi > c/Di+1,i.
Using (D10), we obtain the following threshold condition for bank i + 1 to default,

(D11) ∆RN-chain
1 (i + 1) =

c
D2,1

1 +
i∑

k=2

k∏
j=2

D j

D j+1,j

 .
Hence, the threshold condition for the simultaneous default of all N banks satisfies
(D12)

∆RN-chain
1 (N) =

c
D2,1

1 +
N−1∑
k=2

k∏
j=2

D j

D j+1,j

 >
c

D2,1

1 +
N−1∑
k=2

k∏
j=2

1
 =

c(N − 1)
D2,1

=
c

d − a
.

Next we turn to the two-tier pyramid. As in the previous case, bank 1 defaults if and only
if ∆R1 > 0. In the second tier of the network, banks i = 2, . . . ,N simultaneously default if and
only if

(D13) ∆R1 > ∆R2-tier
1 (N) =

c
Di,1
=

c
d − a

.

From (D7) and (D13), we conclude that ∆R2-tier
1 (N) > ∆RN-chain

1 (2). This result suggests that
the threshold value for the negative shock size to generate contagion in the N-chain network,
DN-chain, is lower than that in the two-tier pyramid D2-tier.

From (D12) and (D13), we conclude that ∆RN-chain
1 (N) > ∆R2-tier

1 (N). This result suggests
that the threshold value for the negative shock size to generate N simultaneous defaults in the
N-chain network, DN-chain, is higher than that in the two-tier pyramid D2-tier. Summarizing the
above results, we have

∑
i 1

d
i (D

N-chain) >
∑

i 1
d
i (D

2-tier), for ∆R1 ∈
(

c
(N−1)(d−a),

c
d−a

]
∑

i 1
d
i (D

N-chain) <
∑

i 1
d
i (D

2-tier), for ∆R1 ∈
( c

d−a,∆RN-chain
1 (N)

]
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which completes the proof of the proposition.

Proof of Proposition D2

For the bottom-to-top crises, we compare the number of liquidations across the two networks
when varying the size of the exogenous withdrawal set ΩW . Recall that C1 is the level of cash
at bank 1 and c the level of cash at all other banks.

We start with the N-bank chain network. Facing the retail depositor’s withdrawal, bank N

does not have enough cash to meet the withdrawal request (recall from Assumption D2 that
c < d); hence, bank N withdraws from bank N − 1 under condition (8) in the paper. As a result,
bank N − 1 faces a total withdrawal request of DN,N−1 + d = 2d − a and has to withdraw from
bank N − 2, etc. Even if bank i = N −ω does not face an exogenous withdrawal shock, the retail
depositor still withdraws because she follows bank depositors according to condition (12) in the
paper. The same holds for all other banks i < N −ω. Hence, bank 1 receives a total withdrawal
of D1 = (N − 1)(d − a) + d (recall that D1 = I1).

Two cases are relevant depending on the level of C1.
If C1 ≥ I1 = D1 = (N − 1)(d − a) + d, bank 1 has enough cash to cover the withdrawal

requests so it does not liquidate. We further have that, under the condition c ≥ a, all payments
are paid in full so X = D and no banks liquidate, i.e.,

∑
i 1

l
i = 0.6 If c < a, then even if a

bank redeems all its interbank due-from deposits in full, it still does not have enough cash to
honor the total withdrawal request; hence, liquidation occurs at all banks other than bank 1, i.e.,∑

i 1
l
i = N − 1.
If C1 ∈ [(1 − ξ)I1, I1), bank 1 does not have enough cash to cover the withdrawal requests

unless it liquidates, so 1l
1 = 1 and 1d1

1 = 0. Under the condition c ≥ a, all payments are paid in
full so X = D and none of the non-NYC banks liquidate, i.e.,

∑
i 1

l
i = 1. If c < a, then even if

a bank redeems all its interbank due-from deposits in full, it still does not have enough cash to
honor the total withdrawal request; hence, liquidation occurs at all banks, i.e.,

∑
i 1

l
i = N .

On balance, the number of liquidations,
∑

i 1
l
i , depends onC1, the cash level at bank 1, and c,

the cash level at all other banks; see a summary in Table D1. Notably, the number of liquidations
does not depend on the shock size ω.

We now move on to the case of the two-tier pyramid. Banks i ∈ ΩW = {N −ω + 1,N −ω +
2, . . . ,N} face withdrawal shocks and have to redeem deposits Di,1 from bank 1. Together with
the retail depositor’s withdrawal based on condition (12) in the main paper, bank 1 receives a
total withdrawal of ω(d − a) + d in total.

6To see this, notice that X2,1 = D2,1. Since c ≥ a and Di,i−1 = Di+1,i + d − a, we have c + X2,1 ≥ d + D3,2,
i.e., bank 2 does not liquidate, and so on. More generally, as long as bank 1 does not default and pays deposits in
full, we have that all banks i ≥ 2 avoid liquidation if and only if c + Di,i−1 ≥ d + Di+1,i . This condition is further
reduced to c ≥ a when plugging in the relation that Di,i−1 = Di+1,i + d − a.
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Table D1. Comparing the Number of Liquidations∑
i 1

l
i N-Bank Chain Two-Tier Pyramid

C1 ≥ I1 C1 ∈ [(1 − ξ)I1, I1) C1 ≥ ω(d − a) + d C1 ∈ [(1 − ξ)I1,ω(d − a) + d)

c ≥ a 0 1 0 1
c < a N − 1 N ω ω + 1

If C1 ≥ ω(d − a)+ d, bank 1 has enough cash to cover the withdrawal requests so it does not
liquidate. Accordingly, the other respondents do not withdraw. Under the condition that c ≥ a,
no banks liquidate (as in the case above), i.e.,

∑
i 1

l
i = 0. If c < a, then even if a bank redeems

all its interbank due-from deposits in full, liquidation still occurs at all the banks suffering from
the exogenous withdrawal shock, i.e.,

∑
i 1

l
i = ω.

If C1 ∈ [(1 − ξ)I1,ω(d − a) + d) (if (1 − ξ)I1 < ω(d − a) + d), bank 1 does not have enough
cash to cover the withdrawal requests unless it liquidates, so 1l

1 = 1 and 1d1
1 = 0. Under the

condition that c ≥ a, all payments are paid in full and none of the non-NYC banks liquidate,
i.e.,

∑
i 1

l
i = 1. If c < a, then even if a bank redeems all its interbank due-from deposits in full,

liquidation still occurs at all banks suffering from withdrawals, i.e.,
∑

i 1
l
i = ω + 1.

Suppose instead that (1 − ξ)I1 ≥ ω(d − a) + d, then the case discussed in the previous
paragraph does not exist, so bank 1 never liquidates.

Overall, the number of liquidations
∑

i 1
l
i therefore depends on banks’ cash holdings C1 and

c; see a summary in Table D1.
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