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Appendix A:
Criteria for Delineating the Set of 12,935 “Superstars”

Highly Funded Scientists. Our first data source is the Consolidated Grant/Applicant File (CGAF) from
the U.S. National Institutes of Health (NIH). This dataset records information about grants awarded to
extramural researchers funded by the NIH since 1938. Using the CGAF and focusing only on direct costs
associated with research grants, we compute individual cumulative totals for the decades 1977-1986, 1987-
1996, and 1997-2006, deflating the earlier years by the Biomedical Research Producer Price Index. We also
recompute these totals excluding large center grants that usually fund groups of investigators (M01 and P01
grants). Scientists whose totals lie above the 95th percentile of e‘ither distribution constitute our first group
of superstars. In this group, the least well-funded investigator garnered $10.5 million in career NIH funding
and the most well-funded $462.6 million.i

Highly Cited Scientists. Despite the preeminent role of the NIH in the funding of public biomedical
research, the above indicator of “superstardom” biases the sample towards scientists conducting relatively
expensive research. We complement this first group with a second composed of highly cited scientists
identified by the Institute for Scientific Information. A Highly Cited listing means that an individual was
among the 250 most cited researchers for their published articles between 1981 and 1999, within a broad
scientific field.ii

Top Patenters. We add to these groups academic life scientists who belong in the top percentile of the
patent distribution among academics—those who were granted 17 patents or more between 1976 and 2004.

Members of the National Academy of Science and of the Institute of Medicine. We add to
these groups academic life scientists who were elected to the National Academy of Science or the Institute
of Medicine between 1970 and 2013.

MERIT Awardees of the NIH. Initiated in the mid-1980s, the MERIT Award program extends fund-
ing for up to 5 years (but typically 3 years) to a select number of NIH-funded investigators “who have
demonstrated superior competence, outstanding productivity during their previous research endeavors and
are leaders in their field with paradigm-shifting ideas.” The specific details governing selection vary across
the component institutes of the NIH, but the essential feature of the program is that only researchers holding
an R01 grant in its second or later cycle are eligible. Further, the application must be scored in the top
percentile in a given funding cycle. We add to this category the NIH Director’s Pioneer Awardees. Part
of the “High-Risk, High-Reward Research” program, since 2004 the award has supported “scientists with

iWe perform a similar exercise for scientists employed by the intramural campus of the NIH. These scientists are not eligible
to receive extramural funds, but the NIH keeps records of the number of “internal projects” each intramural scientist leads. We
include in the elite sample the top five percentiles of intramural scientists according to this metric.

iiThe relevant scientific fields in the life sciences are microbiology, biochemistry, psychiatry/psychology, neuroscience, molec-
ular biology & genetics, immunology, pharmacology, and clinical medicine.
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outstanding records of creativity pursuing new research directions to develop pioneering approaches to major
challenges in biomedical and behavioral research.”

Former and current Howard Hughes Medical Investigators (HHMIs). Every three years, the
Howard Hughes Medical Institute selects a small cohort of mid-career biomedical scientists with the potential
to revolutionize their respective subfields. Once selected, HHMIs continue to be based at their institutions,
typically leading a research group of 10 to 25 students, postdoctoral associates and technicians. Their
appointment is reviewed every five years, based solely on their most important contributions during the
cycle.iii

Early career prize winners. We also included winners of the Pew, Searle, Beckman, Rita Allen, and
Packard scholarships for the years 1981 through 2000. Every year, these charitable foundations provide seed
funding to between 20 and 40 young academic life scientists. These scholarships are the most prestigious
accolades that young researchers can receive in the first two years of their careers as independent investigators.

Consolidated categories. Why use 8 different criteria to delineate the set of stars? There are two reasons
to do so. First, there is of course no agreed-upon definition of stardom in academic science, and choosing
an eclectic set of metric makes it less likely that our analysis will be biased by the idiosyncrasies of any
particular metric. For example, the funding metric will tend to bias the set of stars towards scientists doing
relatively expensive research (e.g., clinical research, or research on monkeys/other mammals vs. research
on invertebrates such as the nematode worm c. elegans). Table A1 documents the overlap between each of
the eight metrics. Some metrics are highly negatively correlated (e.g., ECPW and high NIH funding) while
most correlations between individual metrics are modest in magnitude.

Second, if we focused on a single, incontrovertible metric such as election to the National Academy of
Sciences, we would not have enough statistical power to identify the main effect of death on subfield growth.
To examine the effect of star death across stars of different types, we consolidate the eight metrics into three
mutually exclusive categories:

(i) “Cumulative stars,” who enter the sample on the basis of cumulative achievement (high NIH grant re-
ceipt, highly cited scientists, top patenters, and members of the National Academy of Science/Medicine
(N = 6, 858 or 53%);

(ii) “Shooting stars,” who enter the sample on the basis of a specific contribution (appointment as a
Howard Hughes Medical Investigator; NIH MERIT/Director Pioneer awardees; Early career prize
winners), with no presumption that this mark of elevated status will endure over the entire career
(N = 3, 859 or 30%);

(iii) “Cumulative⊕Shooting stars,” who enter the sample based on at least one cumulative metric, and at
least one “burst” metric (N = 2, 218 or 17%).

We also create a subsample limited to the members of the National Academies of Science/Medicine and
Investigators of the Howard Hughes Medical Institute. One can think of this rarefied subset (which de facto
subsumes Nobel prize winners and Lasker awardees) as “the elite within the elite” of academic biomedical
research (N=3,325 or 26% of the total).

In Table A2, we run our benchmark specification (number of papers in the field by non-collaborators, as in the
third column of Table 3) separately on these four subsamples. All the coefficients are positive in magnitude,
but some of them are imprecisely estimated. Table A3 lists all of the 452 extinct stars in the sample, along
with basic demographic information, cause of death, institutional affiliation, and a short description of their
research expertise.

iiiSee Azoulay et al. (2011) for more details and an evaluation of this program.
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Table A1: Star Decomposition 
 

Highly 
Funded 

Highly 
Cited 

Top 
Patenter 

NAS NAM MERIT HHMI ECPW 

Highly Funded 7,822 886 189 942 1,033 1,540 221 128 
Highly Cited 886 1,921 96 385 355 442 141 58 
Top Patenter 189 96 606 88 55 86 29 14 
NAS 942 385 88 1,843 430 561 295 151 
NAM 1,033 355 55 430 1,933 368 176 68 
MERIT 1,540 442 86 561 368 2,898 196 145 
HHMI 221 141 29 295 176 196 866 179 
ECPW 128 58 14 151 68 145 179 1,114 

Note: Metrics of stardom and their distribution in the sample of 12,935 eminent scientists. NAS=National Academy of 
Sciences; NAM=National Academy of Medicine; MERIT=Method to Extend Research In Time, an exceptional 
NIH grant category; HHMI=Howard Hughes Medical Investigator; ECPW=Early Career Prize Winners. 

 

 
  
 
 
 
 

Table A2: Impacts by Type of Star 

 Shooting 
Stars 

Cumulative 
Stars 

Shooting & 
Cumulative 

Stars 

“Elite of the 
Elite” 

After Death 0.047 0.079* 0.154* 0.032 
(0.056) (0.038) (0.069) (0.052) 

Nb. of Investigators 1,551 3,164 1,545 1,708 
Nb. of Fields 6,584 16,095 11,539 11,855 
Nb. of Field-Year Obs. 242,409 592,030 424,737 436,081 
Log Likelihood -535,715 -1,345,402 -938,102 -952,496 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications by non-collaborators in a subfield in a particular year, contributed by non-
collaborators. All models incorporate a full suite of year effects and subfield age effects, as well as a term 
common to both treated and control subfields that switches from zero to one after the death of the star, to 
address the concern that age, year and individual fixed effects may not fully account for trends in subfield entry 
around the time of death for the deceased star. Exponentiating the coefficients and differencing from one yield 
numbers interpretable as elasticities. 
 
Robust standard errors in parentheses, clustered at the level of the star scientist. 
†p < 0.10, *p < 0.05, **p < 0.01. 

 
 



Investigator Name Cause of death if known Institution at the time of death Scientific domain
Richard C. Parker [1952-1986] PhD, 1979 lymphoma Columbia University properties of cellular and viral src genes
Richard E. Weitzman [1943-1980] MD, 1968 cancer Harbor-UCLA Medical Center arginine vasopressin metabolism
Eva U.J. Paucha [1949-1988] PhD, 1976 cancer Dana Farber Cancer Institute mechanism of transformation by SV40 large T antigen
Kiertisin Dharmsathaphorn [1950-1990] MD, 1972 AIDS University of California — San Diego intestinal secretory mechanisms and antidiarrheal drugs
Ernest G. Peralta [1959-1999] PhD, 1986 brain cancer Harvard University signal transduction mechanisms of muscarinic receptors
Roderich Walter [1937-1979] PhD, 1964 malignant melanoma University of Illinois solid-phase peptide synthesis
JoAnn E. Franck [1950-1992] PhD, 1981 cancer University of Washington School of Medicine hippocampal damage as a cause of epilepsy
Thomas K. Tatemichi [1952-1995] MD, 1978 non hodgkin’s lymphoma Columbia University College of Physicians & Surgeons mechanisms and syndromes of dementia related to stroke
Bruce S. Schoenberg [1942-1987] MD, 1968 cancer NIH prevention and control of neurological disorders
George Khoury [1943-1987] MD, 1970 lymphoma NIH genetics of simian virus 40, human papovavirus and HIV
Leonard N. Horowitz [1947-1992] MD, 1972 cancer University of Pennsylvania School of Medicine diagnosing and treatment of ventricular arrythmia
W. Alden Spencer [1931-1977] MD, 1956 long illness Columbia University plasticity of the simplest neuronal pathways
Jerome T. Pearlman [1933-1979] MD, 1957 prolonged illness UCLA laboratory studies of retinal degenerations
Joram Heller [1934-1980] MD/PhD, 1965 brain cancer UCLA biochemical and biophysical investigation of rhodopsin
B. Frank Polk [1942-1988] MD, 1967 brain cancer Johns Hopkins University School of Medicine epidemiology of HIV infection
Ronald D. Fairshter [1942-1988] MD, 1968 rapidly metastatic melanoma University of California — Irvine clinical studies in chronic obstructive pulmonary disease
Cornelia P. Channing [1938-1985] PhD, 1966 breast cancer University of Maryland School of Medicine mechanism of luteinization in vitro and in vivo
Joel D. Meyers [1944-1991] MD, 1970 colon cancer University of Washington/FHCRC infections caused by suppression of the immune system in organ transplant and AIDS patients
Richard L. Lyman [1927-1975] PhD, 1957 terminal illness for months University of California — Berkeley protein, trypsin inhibitors and pancreatic secretion
James N. Gilliam [1936-1984] MD, 1964 cancer University of Texas Southwestern Medical Center at Dallas cutaneous lupus erythematosus pathogenesis mechanisms
Gordon M. Tomkins [1926-1975] MD/PhD, 1953 brain surgery to remove a tumor University of California — San Francisco pleiotypic response in regulation of cell growth
Muriel R. Steele [1930-1979] MD, 1957 metastatic disease University of California — San Francisco surgical treatment of liver trauma
Allastair M. Karmody [1937-1986] MD, 1963 gastric cancer Albany Medical College novel procedures for difficult vascular surgical problems
Chaviva Isersky [1937-1986] PhD, 1967 cancer NIH/NIDDK Characterization of the protein responsible for amyloidosis
Melvin L. Marcus [1940-1989] MD, 1966 colon cancer UMASS cardiology, heart disease, coronary vascular adaptations to myocardial hypertrophy
Alan S. Morrison [1943-1992] PhD, 1972 cancer Brown University Medical School hormones in the epidemiology of prostatic hyperplasia
Sidney Futterman [1929-1979] PhD, 1954 prolonged illness University of Washington School of Medicine biochemistry of the retina and pigment epithelium
Loretta L. Leive [1936-1986] PhD, 1963 cancer NIH/NIDDK role of bacterial cell surface in microbial physiology and pathogenesis
Philip G. Weiler [1941-1991] MD, 1965 terminal illness University of California — Davis coronary heart disease & stroke in the elderly
Ira M. Goldstein [1942-1992] MD, 1966 metastatic lung cancer University of California — San Francisco pancreatitis, complement and lung injury
Harold Weintraub [1945-1995] MD/PhD, 1973 brain cancer University of Washington/FHCRC characterization and function of MyoD gene
Richard K. Gershon [1932-1983] MD, 1959 lung cancer Yale University immunologic responses to tumor grafts
Edward J. Sachar [1933-1984] MD, 1956 stroke three years ago Columbia University psychoendocrine studies of schizophrenic reactions
Catherine Cole-Beuglet [1936-1987] MD, 1962 colon cancer University of California — Irvine ultrasonography of the breast
Theodore S. Zimmerman [1937-1988] MD, 1963 lung cancer Scripps Research Institute platelet/plasma protein interaction in blood coagulation
Markku Linnoila [1947-1998] MD/PhD, 1974 cancer NIH studies on the biological bases of impulsivity and aggression
William J. Mellman [1928-1980] MD, 1952 lymphoma University of Pennsylvania School of Medicine human genetics and pediatrics
Dennis Slone [1930-1982] MD, 1956 long illness Boston University School of Medicine intensive inpatient psychiatric monitoring program
Roger O. Eckert [1934-1986] PhD, 1960 melanoma UCLA ionic and metabolic mechanisms in neuronal excitability
Michael Solursh [1942-1994] PhD, 1968 AIDS University of Iowa School of Medicine extracellular matrix and cell migration
Larry C. Clark [1948-2000] PhD, 1981 prostate cancer University of Arizona nutritional prevention of cancer
Robert F. Spencer [1949-2001] PhD, 1974 gastric carcinoma Medical College of Virginia neuroanatomy of the oculomotor system
Carl C. Levy [1928-1981] PhD, 1957 leukemia NIH/NCI regulation of intracellular messenger RNA
Marshall H. Becker [1940-1993] PhD, 1968 intractable illness University of Michigan, Ann Arbor elaboration of the health belief model
Samuel W. Perry, 3rd [1941-1994] MD, 1967 pancreatic cancer Cornell University — Weill Medical College psychological course of prolonged infection among AIDS patients
Michael A. Kirschenbaum [1944-1997] MD, 1969 long illness University of California — Irvine prostaglandins and kidney medicine
Janis V. Giorgi [1947-2000] PhD, 1977 uterine cancer UCLA cellular immunology of resistance to HIV
Herbert F. Hasenclever [1924-1978] PhD, 1953 cancer NIH/NIAID mannan polysaccharides of pathogenic fungi
Edward C. Franklin [1928-1982] MD, 1950 brain cancer New York University School of Medicine structure and properties of rheumatoid antibodies
Robert M. Joy [1941-1995] PhD, 1969 cancer University of California — Davis pesticide induced changes in central nervous function
Lois K. Miller [1945-1999] PhD, 1972 melanoma University of Georgia genetics and molecular biology of baculoviruses
Gerald T. Babcock [1946-2000] PhD, 1973 cancer Michigan State University bioenergetic mechanisms in multicenter enzymes
John G. Gambertoglio [1947-2001] PharmD, 1972 multiple sclerosis University of California — San Francisco pharmacokinetics in healthy volunteers and subjects with renal insufficiency and on hemodialysis
John C. Cassel [1921-1976] MD, 1946 University of North Carolina at Chapel Hill Contribution of the social environment to host resistance
Ernst A. Noltmann [1931-1986] MD, 1956 severe health problems University of California — Riverside biochemical and physical characterization of phosphoglucose isomerase
Edward A. Smuckler [1931-1986] MD/PhD, 1963 barrett’s disease/oesophagal cancer University of California — San Francisco cytochemical studies in liver injury
Joseph W. St. Geme, Jr. [1931-1986] MD, 1956 cardiac myopathy University of Colorado Health Sciences Center studies of cellular resistance to virus infection
Edwin H. Beachey [1934-1989] MD, 1962 cancer University of Tennessee chemistry and immunology of streptococcal m proteins
Ora M. Rosen [1935-1990] MD, 1960 breast cancer Sloan Kettering Institute for Cancer Research Cloning and characterization of gene for human insulin receptor
Tai-Shun Lin [1939-1994] PhD, 1970 non hodgkin’s lymphoma Yale University synthesis and development of nucleoside analogs as antiviral and anticancer compounds
Judith G. Pool [1919-1975] PhD, 1946 brain tumor Stanford University pathophysiology of hemophilia
Ardie Lubin [1920-1976] PhD, 1951 serious illness for months Naval Health Research Center repeated measurement design in psychopharmacology
William H. Hildemann [1927-1983] PhD, 1956 amyotrophic lateral sclerosis UCLA mechanisms of immunoblocking versus tumor immunity
Murray Rabinowitz [1927-1983] MD, 1950 muscular dystrophy University of Chicago mitochondrial assembly and replication
Paul A. Obrist [1931-1987] PhD, 1958 3 year illness University of North Carolina at Chapel Hill blood pressure control: relation to behavioral stress
C. Richard Taylor [1939-1995] PhD, 1963 heart failure Harvard University locomotion–idling metabolism and gait dynamics
Helene S. Smith [1941-1997] PhD, 1967 breast cancer University of California — San Francisco malignant progression of the human breast/predictors of breast cancer prognosis
Bruce W. Erickson [1942-1998] PhD, 1970 cancer University of North Carolina at Chapel Hill engineering of nongenetic beta proteins
Norton B. Gilula [1944-2000] PhD, 1971 lymphoma Scripps Research Institute cell junction biosynthesis and biogenesis/cell-cell communication
John M. Eisenberg [1946-2002] MD, 1972 high-grade malignant glioma Georgetown University Medical Center health services research
Elizabeth A. Bates [1947-2003] PhD, 1974 pancreatic cancer University of California — San Diego cross-linguistic studies of language development, processing and breakdown in aphasia
Ira Herskowitz [1946-2003] PhD, 1971 pancreatic cancer University of California — San Francisco genetics of yeast mating type
Wallace P. Rowe [1926-1983] MD, 1948 colon cancer NIH genetic basis of disease in murine leukemia viruses
J. Weldon Bellville [1926-1983] MD, 1952 cancer UCLA dynamic isolation studies of control of respiration
Peter W. Lampert [1929-1986] MD, 1955 lymphoma University of California — San Diego pathogenesis of virus-induced brain disease
Sheldon D. Murphy [1933-1990] PhD, 1958 cancer University of Washington School of Medicine biochemical and physiologic response to toxic stress
Allan C. Wilson [1934-1991] PhD, 1961 leukemia University of California — Berkeley use of molecular approaches to understand evolutionary change
Bernard N. Fields [1938-1995] MD, 1962 pancreatic cancer Harvard Medical School/Brigham & Women’s Hospital genetic and molecular basis of viral injury to the nervous system
Priscilla A. Campbell [1940-1998] PhD, 1968 cervical cancer University of Colorado Health Sciences Center/Natl. Jewish Center cell biology of the immune response to bacteria
Ethan R. Nadel [1941-1998] PhD, 1969 cancer Yale University thermoregulation during exercise and heat exposure
Peter A. Kollman [1944-2001] PhD, 1970 cancer University of California — San Francisco free energy perturbation calculations and their application to macromolecules

Table A3: List of 452 Extinct Superstars
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Investigator Name Cause of death if known Institution at the time of death Scientific domain
David Tapper [1945-2002] MD, 1970 long battle with renal cell carcinoma University of Washington School of Medicine determination of a new growth factor in breast milk
Cyril S. Stulberg [1919-1977] PhD, 1947 multiple sclerosis Wayne State University School of Medicine characterization and preservation of cell strains
Dorothy T. Krieger [1927-1985] MD, 1949 breast cancer Mount Sinai School of Medicine CNS-pituitary-adrenal interactions
Aaron Janoff [1930-1988] PhD, 1959 long illness SUNY HSC at Stony Brook pathology of smoking and emphysema
Wylie J. Dodds [1934-1992] MD, 1960 brain cancer Medical College of Wisconsin esophageal motor function in health and disease
Oscar A. Kletzky [1936-1994] MD, 1961 lung cancer UCLA ameliorating effects of estrogen replacement therapy on cerebral blood flow and sleep
Nelson Butters [1937-1995] PhD, 1964 Lou Gehrig’s disease University of California — San Diego cognitive deficits related to chronic alcoholism
Elizabeth M. Smith [1939-1997] PhD, 1978 cancer Washington University in St. Louis psychiatric problems among disaster survivors
David G. Marsh [1940-1998] PhD, 1964 glioblastoma Johns Hopkins University School of Medicine genetics of allergy and asthma
George C. Cotzias [1918-1977] MD, 1944 lung cancer Cornell University Medical College studies of extrapyramidal & related behavioral disorders
Robert D. Allen [1927-1986] PhD, 1953 pancreatic cancer Dartmouth Medical School cytoplasmic rheology of motile cells
Marilyn Bergner [1933-1992] PhD, 1970 ovarian cancer Johns Hopkins University School of Public Health cost and efficacy of home care for COPD patients
G. Harrison Echols, Jr. [1933-1993] PhD, 1959 lung cancer University of California — Berkeley Genetic and chemical studies of phage lambda development
Milton H. Stetson [1943-2002] PhD, 1970 prolonged and courageous fight with illness University of Delaware environmental regulation of reproduction and the onset of puberty
Nicholas R. DiLuzio [1926-1986] PhD, 1954 extended illness Tulane University School of Medicine role recognition factors and macrophages in neoplasia
Lauran D. Harris [1927-1987] MD, 1947 long illness Boston University School of Medicine sphincter strength–its measurement and control
Charles W. Mays [1930-1990] PhD, 1958 cancer National Cancer Institute reducing cancer risk by radionuclide chelation
Lawrence H. Piette [1932-1992] PhD, 1957 cancer Utah State University electron spin resonance spectroscopy
Mehdi Tavassoli [1933-1993] MD, 1961 heart failure University of Mississippi Medical Center hematopoietic stem cell purification and biology
Howard M. Temin [1934-1994] PhD, 1959 lung cancer University of Wisconsin molecular biology and genetics of tumor viruses
Mette Strand [1937-1997] PhD, 1964 cancer Johns Hopkins University School of Medicine parasite immunochemistry and vaccine development
William L. Chick [1938-1998] MD, 1963 diabetes complications UMASS studies of islet and beta cells in pancreatic transplantation
Robert A. Mendelson, Jr. [1941-2001] PhD, 1968 lung cancer University of California — San Francisco molecular mechanism of muscle contraction
Susan M. Sieber [1942-2002] PhD, 1971 breast cancer National Cancer Institute biochemical epidemiology and cancer
Joachim G. Liehr [1942-2003] PhD, 1968 pancreatic cancer University of Texas Medical Branch at Galveston mechanism of estrogen-induced carcinogenesis
Charles A. Janeway, Jr. [1943-2003] MD, 1969 B-cell lymphoma Yale University innate immunity and T lymphocyte biology
Edward Herbert [1926-1987] PhD, 1953 pancreatic cancer Oregon Health & Science University regulation of expression of opioid peptides and receptors
Thomas W. Smith [1936-1997] MD, 1965 mesothelioma Harvard Medical School/Brigham & Women’s Hospital Mechanism and reversal studies of digitalis
Roy H. Steinberg [1935-1997] MD/PhD, 1965 multiple myeloma University of California — San Francisco pigment epithelium interactions with neural retina
David W. Fulker [1937-1998] PhD, 1967 pancreatic cancer University of Colorado at Boulder adoption studies of development in middle childhood
Donald J. Cohen [1940-2001] MD, 1966 ocular melanoma Yale University Tourette’s syndrome and autism in children
Harvey D. Preisler [1941-2002] MD, 1965 lymphoma Rush Medical College clinical and biological studies of myeloid leukemias
Carl M. Pearson [1919-1981] MD, 1946 cancer UCLA studies in adjuvant-induced arthritis
Morton I. Grossman [1919-1981] MD/PhD, 1944 esophageal cancer UCLA studies on the etiology of peptic ulcer
Mones Berman [1920-1982] PhD, 1957 cancer National Cancer Institute quantitative, model-based problems in metabolism and endocrinology
Henry R. Mahler [1921-1983] PhD, 1948 heart failure Indiana University respiratory enzymes–structure, function, & biosynthesis
Milton Kern [1925-1987] PhD, 1954 lung cancer NIH ribonucleic acids of specifically isolated ribosomes
Thoralf M. Sundt, Jr. [1930-1992] MD, 1959 bone marrow cancer Mayo Clinic surgical techniques for intracranial aneurysms
John C. Liebeskind [1935-1997] PhD, 1962 cancer UCLA behavioral and electrophysiological studies of pain
Marian W. Fischman [1939-2001] PhD, 1972 colon cancer Columbia University behavioral pharmacology of cocaine
David S. Sigman [1939-2001] PhD, 1965 brain cancer UCLA enzymology and gene targeting
Charles D. Heidelberger [1920-1983] PhD, 1946 carcinoma of nasal sinus University of Southern California Keck School of Medicine effects of fluorinated pyrimidines on tumors
Sidney H. Ingbar [1925-1988] MD, 1947 lung cancer Harvard Medical School/Beth Israel Medical Center physiology of the thyroid gland and its clinical diseases
Kiichi Sagawa [1926-1989] MD/PhD, 1958 cancer Johns Hopkins University School of Medicine modelling the mechanics of cardiac chamber contraction
Sydney E. Salmon [1936-1999] MD, 1962 pancreatic cancer University of Arizona quantitative method for evaluating changes in myeloma tumor mass
Eva J. Neer [1937-2000] MD, 1963 breast cancer Harvard Medical School/Brigham & Women’s Hospital regulation and cellular levels of G protein subunits
Lawrence D. Jacobs [1938-2001] MD, 1965 cancer SUNY Buffalo recombinant b interferon as treatment for Multiple Sclerosis
Richard J. Wyatt [1939-2002] MD, 1964 lung cancer NIH biochemistry of schizophrenia
Robert J. Fass [1939-2002] MD, 1964 lung cancer Ohio State University In vitro methods to test antimicrobial susceptibility of infectious agents
Michael Doudoroff [1911-1975] PhD, 1939 cancer University of California — Berkeley taxonomy and phylogeny of pseudomonads
Arnold M. Seligman [1912-1976] MD, 1937 prolonged terminal illness Johns Hopkins University School of Medicine drug development for prostatic carcinoma
Frederick H. Carpenter [1918-1982] PhD, 1944 University of California — Berkeley mechanism of leucine aminopeptidase
Harvey M. Patt [1918-1982] PhD, 1942 University of California — San Francisco ultra-high dose rates in experimental radiotherapy
Teruzo Konishi [1920-1984] MD/PhD, 1955 cancer NIEHS physiological and biophysical functions of the inner ear
Mortimer B. Lipsett [1921-1985] MD, 1951 brain tumor NIH steroid metabolic conversions in human subjects
Andrew C. Peacock [1921-1985] PhD, 1949 cancer NIH/NCI materials and methods for polyacrylamide gel electrophoresis
Harold Edelhoch [1922-1986] PhD, 1947 cancer NIH/NIDDK fluorescence methods for the study of protein structures
Gerald L. Klerman [1928-1992] MD, 1954 diabetes Cornell University — Weill Medical College phsychological studies of depression, schizophrenia and panic and other anxiety disorders
Nina S. Braunwald [1928-1992] MD, 1952 cancer Harvard Medical School/Brigham & Women’s Hospital development of prosthetic heart valves for children
Amico Bignami [1930-1994] MD, 1954 brain cancer Harvard Medical School brain specific protein in astrocytes
Frank A. Oski [1932-1996] MD, 1958 prostate cancer Johns Hopkins University School of Medicine erythrocyte metabolism in the newborn infant
Richard P. Bunge [1932-1996] MD, 1960 esophageal cancer University of Miami schwann cell biology and human spinal cord injury
Harold C. Neu [1934-1998] MD, 1960 glioblastoma Columbia University surface enzymes in bacteria
Jiri Palek [1934-1998] MD, 1958 2 year illness Tufts University membrane properties of abnormal red cells
Irving Kupfermann [1938-2002] PhD, 1964 Creutzfeldt-Jacob’s disease Columbia University Behavioral and neural analysis of learning in aplaysia
Merton Bernfield [1938-2002] MD, 1961 Parkinson’s Disease Harvard Medical School/Children’s Hospital nature and interactions of cell surface proteoglycans during morphogenesis
Eleanor M. Saffran [1938-2002] PhD, 1968 amyotrophic lateral sclerosis Temple University School of Medicine cognitive deficits in brain-damaged patients
Barbara J. Lowery [1938-2002] PhD, 1973 ovarian cancer University of Pennsylvania School of Medicine understanding stress responses of people who were physically ill
Elizabeth Stern [1915-1980] MD, 1940 cancer UCLA effects of steroid contraception on the ovary
Joseph Stokes, 3rd [1924-1989] MD, 1949 cancer Boston University School of Medicine epidemiological studies of coronary heart disease
W. Dean Warren [1924-1989] MD, 1950 cancer Emory University cirrhosis, shunt surgery, and nitrogen metabolism
Edward W. Purnell [1928-1993] MD, 1957 lung cancer Case Western Reserve University School of Medicine study of eye physiology and disease by ultrasound
Leo J. Neuringer [1928-1993] PhD, 1957 cancer MIT NMR studies of normal and transformed cell membranes
Frank Lilly [1930-1995] PhD, 1965 prostate cancer Albert Einstein College of Medicine of Yeshiva University role of hereditary factors in governing susceptibility to cancer-causing agents
Edwin L. Bierman [1930-1995] MD, 1955 bone cancer University of Washington School of Medicine Metabolism of particulate fat in diabetes and atherosclerosis
Kenneth W. Sell [1931-1996] MD/PhD, 1968 complications from diabetes Emory University School of Medicine human tissue banking and transplantation
Edgar Haber [1932-1997] MD, 1956 multiple myeloma Harvard University School of Public Health biological regulation of the renin-angiotensin system
J. Christian Gillin [1938-2003] MD, 1966 esophageal cancer University of California — San Diego serotenergic mechanisms in sleep and depression
Albert Dorfman [1916-1982] MD/PhD, 1944 kidney failure University of Chicago biochemistry of connective tissues
Henry S. Kaplan [1918-1984] MD, 1940 lung cancer Stanford University radiation-induced leukemia in the C57BL mouse
Charlotte Friend [1921-1987] PhD, 1950 lymphoma Mount Sinai School of Medicine tissue studies of murine virus-induced leukemia
William H. Tooley [1925-1992] MD, 1949 long illness University of California — San Francisco prevention and treatment of respiratory distress in neonates
Charles G. Moertel [1927-1994] MD, 1953 Hodgkin’s Disease Mayo Clinic clinical treatments of gastrointestinal cancer
Barbara H. Bowman [1930-1996] PhD, 1959 cancer University of Texas HSC at San Antonio genetic control of the structure of human proteins
J. Calvin Giddings [1930-1996] PhD, 1955 prolonged battle with cancer University of Utah biomedical separations: field-flow fractionation
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Investigator Name Cause of death if known Institution at the time of death Scientific domain
John R. Williamson [1934-2000] PhD, 1959 cancer University of Pennsylvania School of Medicine molecular mechanisms of hormonal signal transduction
John S. O’Brien [1934-2001] MD, 1960 postpolio complications University of California — San Diego discovery of the gene responsible for Tay-Sachs disease
Jon I. Isenberg [1937-2003] MD, 1963 cancer University of California — San Diego duodenal mucosal bicarbonate secretion in human
George G. Glenner [1927-1995] MD, 1953 systemic senile amyloidosis University of California — San Diego molecular structure of the amyloid protein
J. Kiffin Penry [1929-1996] MD, 1955 complications of diabetes Bowman Gray School of Medicine at Wake Forest University controlled clinical trials of anticonvulsant and anti-epileptic drugs
Paul C. MacDonald [1930-1997] MD, 1955 cancer University of Texas Southwestern Medical Center at Dallas origin and interconversion of gonadal and adrenal streoid hormones
John Gibbon [1934-2001] PhD, 1967 cancer Columbia University CNS functions underlying the interval time sense in animals and humans
Donald F. Summers [1934-2001] MD, 1959 cancer NIH composition, assembly and replication of RNA viruses
R. Gordon Gould [1910-1978] PhD, 1933 cancer Stanford University internal medicine and cardiology
Sol Spiegelman [1914-1983] PhD, 1944 pancreatic cancer Columbia University College of Physicians & Surgeons nucleic acid hybridization
Frederick S. Philips [1916-1984] PhD, 1940 cancer Sloan Kettering Institute for Cancer Research pharmacological properties of chemotherapeutic agents and chemical carcinogenesis
Cyrus Levinthal [1922-1990] PhD, 1951 lung cancer Columbia University College of Physicians & Surgeons colinearity of genes and proteins, and the nature of messenger RNA
Sidney Leskowitz [1923-1991] PhD, 1950 brain tumor Tufts University cellular aspects of tolerance & delayed hypersensitivity
Kenneth M. Moser [1929-1997] MD, 1954 cancer University of California — San Diego clinical outcomes after pulmonary thromboendarterectomy
Donald A. Pious [1930-1998] MD, 1956 cancer University of Washington School of Medicine somatic cell genetic analysis of human immune response genes
Louis V. Avioli [1931-1999] MD, 1957 cancer Washington University in St. Louis mineral and skeletal metabolism in diabetes, kidney, and gastrointestinal disorders
Joseph E. Coleman [1930-1999] MD/PhD, 1963 cancer Yale University structure and function of metalloenzyme synthesis
Harvey C. Knowles, Jr. [1915-1984] MD, 1942 cancer University of Cincinnati/Children’s Hospital clinical studies of gestational diabetes
Joseph Cochin [1916-1985] MD/PhD, 1955 leukemia Boston University School of Medicine factors in tolerance to the narcotic analgesics
Albert L. Lehninger [1917-1986] PhD, 1942 complications from asthma Johns Hopkins University School of Medicine structure and function of mitochondria
Charles W. Todd [1918-1987] PhD, 1943 long illness City of Hope Medical Center immunology & immunochemistry of tumor antigens
David H. Blankenhorn [1924-1993] MD, 1947 prostate cancer University of Southern California Keck School of Medicine control of risk factors in atherosclerosis
Paul M. Gallop [1927-1996] PhD, 1953 cancer Harvard Medical School/Children’s Hospital Protein structure and collagen maturation
David J.L. Luck [1929-1998] MD/PhD, 1962 lymphoma Rockefeller University microtubular systems in human cells
Edward W. Moore [1930-1999] MD, 1955 aspergillosis Medical College of Virginia Pathophysiology of the billiary tract and gallbladder
Donald J. Reis [1931-2000] MD, 1956 hepatic cancer Cornell University — Weill Medical College neural control of blood circulation
Julius Marmur [1926-1996] PhD, 1951 lymphoma Albert Einstein College of Medicine of Yeshiva University genetics and biochemistry of cellular regulation
Nemat O. Borhani [1926-1996] MD, 1949 acute leukemia University of Nevada at Reno multicenter clinical studies of hypertension and cardiovascular disease
Russell Ross [1929-1999] DDS/PhD, 1962 cancer University of Washington School of Medicine response-to-injury origins of atherosclerosis
Richard A. Carleton [1931-2001] MD, 1955 cancer Brown University Medical School clinical studies of diet and smoking as cardiovascular disease risk factors
Gilda H. Loew [1931-2001] PhD, 1957 breast cancer Molecular Research Institute computational investigation of the structural and functional aspects of heme proteins and enzymes
N. Raphael Shulman [1925-1996] MD, 1947 cancer NIH/NIDDK mechanisms of autoimmune, alloimmune, and drug-dependent cytopenias
George  Winokur [1925-1996] MD, 1947 pancreatic cancer University of Iowa School of Medicine genetics of bipolar disease, mania, alcoholism and other psychiatric diseases
Giovanni Di Chiro [1926-1997] MD, 1949 lung cancer NIH interventional neuroradiology
Norman P. Salzman [1926-1997] PhD, 1953 pancreatic cancer NIH glycosylation of SIV gp120–role in the immune response
Fritz E. Dreifuss [1926-1997] MD, 1950 lung cancer University of Virginia School of Medicine clinical investigations of childhood epilepsy
Dante G. Scarpelli [1927-1998] MD/PhD, 1960 esophageal adenocarcinoma Northwestern University metabolism of pancreatic carcinogens
Hans J. Müller-Eberhard [1927-1998] MD, 1953 cancer Scripps Research Institute identification of proteins and reaction mechanisms of the complement system
Miriam M. Salpeter [1929-2000] PhD, 1953 thyroid cancer Cornell University neurobiology of myasthenia gravis
Gerald Cohen [1930-2001] PhD, 1955 cancer Mount Sinai School of Medicine H2O2 and oxy-radical stress in catecholamine neurons
James K. McDougall [1931-2003] PhD, 1971 gastric cancer University of Washington/FHCRC role of DNA viruses in cancer
Edward H. Kass [1917-1990] MD/PhD, 1947 lung cancer Harvard Medical School/Brigham & Women’s Hospital mechanism of toxic shock syndrome
Norman Kretchmer [1923-1995] MD/PhD, 1952 kidney cancer University of California — Berkeley regulation of metabolism during developement
Adolph I. Cohen [1924-1996] PhD, 1954 leukemia Washington University in St. Louis biochemistry and pharmacology of the retina
John L. Doppman [1928-2000] MD, 1953 cancer NIH flow dynamics in anterior spinal artery
David E. Green [1910-1983] PhD, 1934 cancer University of Wisconsin molecular biology of membrane systems
Alton Meister [1922-1995] MD, 1945 complications from a stroke Cornell University — Weill Medical College amino acid and glutathione biochemistry
Gisela Mosig [1930-2003] PhD, 1959 undergoing cancer treatment for two years Vanderbilt University dna replication and recombination in bacteriophages
Choh Hao Li [1913-1987] PhD, 1938 cancer of the pharynx University of California — San Francisco isolation and synthesis the human pituitary growth hormone
Robert H. Abeles [1926-2000] PhD, 1955 Parkinson’s disease Brandeis University rational design of small-molecule inhibitors of enzymes
Alfred P. Wolf [1923-1998] PhD, 1953 lengthy illness Brookhaven National Laboratory synthesis of simple molecules in pure form and high specific activity for PET
Marian E. Koshland [1921-1997] PhD, 1949 lung cancer University of California — Berkeley biochemical methods to examine the immune response
Timothy J. Regan [1924-2001] MD, 1952 colon cancer UMDNJ Newark myocardial function and metabolism in chronic disease
Thomas C. Chalmers [1917-1995] MD, 1943 prostate cancer Mount Sinai School of Medicine inter-hospital cooperative studies of cirrhosis
Mortimer M. Elkind [1922-2000] PhD, 1953 long illness Colorado State University cell radiation response of cultured mammalian cells
Hamish N. Munro [1915-1994] MD/PhD, 1956 died in a nursing home. Parkinson Tufts University nutritional regulation of protein metabolism
Ruth Sager [1916-1997] PhD, 1948 bladder cancer Harvard Medical School/DFCI role of tumor suppressor genes in breast cancer
David M. Maurice [1922-2002] PhD, 1951 liver cancer Columbia University College of Physicians & Surgeons interference theory of corneal transparency
Robert A. Good [1922-2003] MD/PhD, 1947 esophageal cancer University of South Florida College of Medicine role of the thymus in immune system development
Harland G. Wood [1907-1991] PhD, 1935 lymphoma Case Western Reserve University School of Medicine heterotrophic carbon dioxide fixation
Hans Popper [1903-1988] MD/PhD, 1944 pancreatic cancer Mount Sinai School of Medicine correlation of structure and function in liver disease
Fritz A. Lipmann [1899-1986] MD/PhD, 1928 natural reasons Rockefeller University glucose transport in normal and malignant cells
Paul J. Scheuer [1915-2003] PhD, 1950 leukemia University of Hawaii structure and properties of spinochromes
Berta V. Scharrer [1906-1995] PhD, 1930 natural causes Albert Einstein College of Medicine of Yeshiva University immunocytochemical study of invertebrate nervous system
Michael W. Pozen [1945-1981] MD/PhD, 1974 heart attack Boston University School of Medicine confirmation parameters to assess EMT’s decisions
Ronald E. Talcott [1947-1984] PhD, 1973 automobile accident University of California — San Francisco carboxylesterases of toxicologic significance
Nathaniel A. Young [1939-1979] MD, 1962 drowned in British Virgin Islands National Cancer Institute oncology and molecular pathology
Ahmad I. Bukhari [1943-1983] PhD, 1971 heart attack Cold Spring Harbor Laboratory life cycle of mutator phage μ
Alan P. Wolffe [1959-2001] PhD, 1984 car accident NIH role of DNA methylation in regulating gene expression in normal and pathological states
Shu-Ren Lin [1936-1979] MD, 1962 plane crash University of Rochester imaging studies of cerebral blood flow after cardiac arrest
William D. Nunn [1943-1986] PhD, 1972 sudden cardiac arrest University of California — Irvine regulation of fatty acid/acetate metabolism in e. coli
John L. Kemink [1949-1992] MD, 1975 murder University of Michigan, Ann Arbor vestibular diagnosis and surgery, acoustic neuromas, and cochlear implants
Stanley R. Kay [1946-1990] PhD, 1980 heart attack Albert Einstein College of Medicine of Yeshiva University symptoms and diagnostic tests of schizophrenia
Roberta D. Shahin [1953-1997] PhD, 1985 sudden accute illness Center for Biologics Evaluation and Research mouse model of respiratory B. pertussis infection in mice
Robert M. Pratt, Jr. [1942-1987] PhD, 1970 died in his sleep NIEHS/University of North Carolina at Chapel Hill craniofacial development of the fetus
Howard J. Eisen [1942-1987] MD, 1969 suicide NIH/NICHD mechanism of action of cortisol and related glucocorticoid hormones
Joaquim Puig-Antich [1944-1989] MD, 1967 asthma attack University of Pittsburgh psychobiology and treatment of child depression
Elizabeth A. Rich [1952-1998] MD, 1977 traffic accident Case Western Reserve University School of Medicine natural history of lymphocytic alveolitis in hiv disease
Jeffrey M. Hoeg [1952-1998] MD, 1977 renal cancer NIH/NHLBI lipoprotein metabolism and its connection to cardiovascular disease
Matthew L. Thomas [1953-1999] PhD, 1981 died while travelling Washington University in St. Louis function and regulation of leukocyte surface glycoproteins
Mu-En Lee [1954-2000] MD/PhD, 1984 complications from routine surgery Harvard Medical School/MGH characterization of vascular smooth muscle LIM protein
Tsunao Saitoh [1949-1996] PhD, 1977 murdered University of California — San Diego altered protein kinases in alzheimer’s disease
James W. Prahl [1931-1979] MD/PhD, 1964 rock climing accident University of Utah structural basis of the functions of human complement
Pokar M. Kabra [1942-1990] PhD, 1972 plane crash University of California — San Francisco application of liquid chromatography to therapeutic drug monitoring
Harold A. Menkes [1938-1987] MD, 1963 car accident Johns Hopkins University School of Medicine occupational and environmental lung disease
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Richard E. Heikkila [1942-1991] PhD, 1969 murder UMDNJ Robert Wood Johnson Medical School oxidation-reduction reactions and the dopamine receptor system
Howard S. Tager [1945-1994] PhD, 1971 heart attack University of Chicago biochemical structure, action, regulation and degradation of the insulin and glucagon molecules
Sukdeb Mukherjee [1946-1995] MD, 1971 short illness Medical College of Georgia neuroleptic effects on regional cerebral blood flow
John J. Wasmuth [1946-1995] PhD, 1973 heart attack University of California — Irvine human-hamster somatic cell hybrids/localization of Hnyington’s disease gene
Richard P. Nordan [1949-1998] PhD, 1983 cerebral aneurysm NIH immunologist and molecular biologist
Roland L. Phillips [1937-1987] MD/PhD, 1971 glider plane accident Loma Linda University School of Medicine role of lifestyle in cancer and cardiovascular disease among Adventists
Samuel A. Latt [1938-1988] MD/PhD, 1971 heart attack Harvard Medical School/Children’s Hospital genetic and cytogenetic studies of mental retardation
Emil T. Kaiser [1938-1988] PhD, 1959 complications from kidney transplant Rockefeller University mechanism of carboxypeptidase action
D. Michael Gill [1940-1990] PhD, 1967 heart attack Tufts University biochemistry of cholera toxin and other pathogenic toxins
John P. Merlie [1945-1995] PhD, 1973 heart failure Washington University in St. Louis molecular genetics of the acetylcholine receptor
Robert S. Krooth [1929-1980] MD/PhD, 1957 suicide/self-inflicted gunshot wound Columbia University College of Physicians & Surgeons biochemical deffects in inherited metabolic disorders
Takeo Kakunaga [1937-1988] PhD, 1966 lung cancer with a brain metastasis NIH/NCI malignant transformation of mammalian cells by chemical carcinogens
Abraham Worcel [1938-1989] MD, 1963 suicide University of Rochester structure of interphase and metaphase chromosomes
Roland D. Ciaranello [1943-1994] MD, 1970 heart attack Stanford University molecular neurobiology and developmental disorders
Gary J. Miller [1950-2001] MD/PhD, 1978 heart attack University of Colorado Health Sciences Center vitamin D receptors in the growth regulation of prostate cancer cells
William B. Reed [1924-1976] MD, 1952 University of Southern California Keck School of Medicine cutaneous genetic disorders
James R. Neely [1936-1988] PhD, 1966 heart attack Penn State University effects of diabetes and oxygen deficiency in regulation of metabolism in the heart
Mary Lou Clements [1946-1998] MD, 1972 airplane crash Johns Hopkins University School of Medicine development of AIDS vaccines
John B. Penney, Jr. [1947-1999] MD, 1973 heart attack Harvard Medical School/MGH receptor mechanisms in movement disorder pathophysiology
Lynn M. Wiley [1947-1999] PhD, 1975 plane crash University of California — Davis morphogenesis in early mammalian embryos
Trudy L. Bush [1949-2001] PhD, 1977 heart attack University of Maryland School of Medicine postmenopausal estrogen/progestins interventions
Arend Bouhuys [1926-1979] MD/PhD, 1956 heart attack Yale University community studies of obstructive lung disease
Erhard Gross [1928-1981] PhD, 1958 automobile collision NIH/NICHD structural analysis of naturally-occuring peptide antibiotics
Richard C. Lillehei [1928-1981] MD/PhD, 1960 died while jogging University of Minnesota mechanisms of RES stimulation in experimental shock
Hymie L. Nossel [1930-1983] MD/PhD, 1962 heart attack Columbia University causes of thrombosis and the nature of hemostasis
James C. Steigerwald [1935-1988] MD, 1961 University of Colorado Health Sciences Center internal medicine / rheumatology
Simon J. Pilkis [1942-1995] MD/PhD, 1971 heart attack University of Minnesota carbohydrate metabolism and diabetes
James Olds [1922-1976] PhD, 1952 swimming accident California Institute of Technology pharmacology of motivational mechanisms
Peter W. Neurath [1923-1977] PhD, 1950 heart attack Tufts University chromosomal variants of cells converted by viruses
Emanuel M. Bogdanove [1925-1979] PhD, 1953 killed in an accident Medical College of Virginia endocrine-influencing centers in the hypothalamus
Harold A. Baltaxe [1931-1985] MD, 1960 heart attack University of California — Davis development of new coronary angiographic techniques
Roy D. Schmickel [1936-1990] MD, 1961 died tragically University of Pennsylvania School of Medicine isolation and characterization of human ribosomal DNA
Fredric S. Fay [1943-1997] PhD, 1969 heart attack UMASS generation and regulation of force in smooth muscle
Roger R. Williams [1944-1998] MD, 1971 airplane crash University of Utah genetics and epidemiology of coronary artery diseases
Jeffrey M. Isner [1947-2001] MD, 1973 heart attack Tufts University therapeutic angiogenesis in vascular medicine, cardiovascular laser phototherapy
Gustavo Cudkowicz [1927-1982] MD, 1952 brief illness SUNY Buffalo controls of proliferation specific for leukemias
John C. Seidel [1933-1988] PhD, 1961 heart attack Boston Biomedical Research Institute actin-myosin interaction in pulmonary smooth muscle
William L. McGuire [1937-1992] MD, 1964 scuba-diving accident University of Texas HSC at San Antonio mechanisms of hormonal control and growth and regression of mammary carcinoma
Eric Holtzman [1939-1994] PhD, 1964 ingestion of potassium cyanide, self-administered Columbia University dynamic of cell membranes
Julio V. Santiago [1942-1997] MD, 1967 heart attack Washington University in St. Louis role of social factors, lifestyle practices, and medication in the onset of type II diabetes
John J. Pisano [1929-1985] PhD, 1955 heart attack NIH/NHLBI isolation of active peptides
Dale E. McFarlin [1936-1992] MD, 1961 heart attack NIH neuroimmunological studies of multiple sclerosis
Walter F. Heiligenberg [1938-1994] PhD, 1964 plane crash University of California — San Diego neuroethological studies of electrolocation
George J. Schroepfer, Jr. [1932-1998] MD/PhD, 1961 heart attack Rice University regulation of the formation and metabolism of cholesterol
Thomas A. McMahon [1943-1999] PhD, 1970 complications from routine surgery Harvard University orthopedic biomechanics
Joseph F. Foster [1918-1975] PhD, 1943 heart attack Purdue University configurational changes in protein molecules
Gerald P. Rodnan [1927-1983] MD, 1949 complications after vascular surgery University of Pittsburgh renal transport if uric acid and protein
George Streisinger [1927-1984] PhD, 1953 scuba-diving accident University of Oregon genetic mutations and the nervous system development in lower vertebrates
Lucien B. Guze [1928-1985] MD, 1951 sudden cardiac arrest UCLA pathogenesis of experimental pyelonephritis
Lubomir S. Hnilica [1929-1986] PhD, 1952 automobile accident Vanderbilt University nuclear antigens in human colorectal cancer
Charles L. Wittenberger [1930-1987] PhD, 1959 motorcycle accident NIH/NINDR regulation of the pathways of intermediary metabolism
D. Martin Carter [1936-1993] MD/PhD, 1971 dissecting aortic aneurysm Rockefeller University susceptibility of pigment and cutaneous cells to DNA injury by UV
Verne M. Chapman [1938-1995] PhD, 1965 died suddenly while attending meeting Roswell Park Cancer Institute/SUNY Buffalo development of cumulative multilocus map of mouse chromosomes
Dolph O. Adams [1939-1996] MD/PhD, 1969 unexpected Duke University development and regulation of macrophage activation
Lee A. Lillard [1943-2000] PhD, 1972 heart attack University of Michigan, Ann Arbor aging and retirement studies
Don C. Wiley [1944-2001] PhD, 1971 accidental fall Harvard University viral membrane and glycoprotein structure
Lonnie D. Russell, Jr. [1944-2001] PhD, 1974 swimming accident Southern Illinois University School of Medicine filament regulation of spermatogenesis
Herbert J. Rapp [1923-1981] PhD, 1955 National Cancer Institute immunologist and cancer research
Eugene C. Jorgensen [1923-1981] PhD, 1953 murdered University of California — San Francisco structure/activity relationships of compounds related to thyroxin
Margaret O. Dayhoff [1925-1983] PhD, 1948 heart attack Georgetown University Medical Center computer study of sequences of amino acids in proteins
Norman Geschwind [1926-1984] MD, 1951 heart attack Harvard Medical School/Beth Israel Medical Center relationship between the anatomy of the brain and behavior
Laurence M. Sandler [1929-1987] PhD, 1956 heart attack University of Washington School of Medicine cytogenetics of meiosis and development in drosophila
L. Rao Chervu [1930-1988] PhD, 1962 brutally murdered Albert Einstein College of Medicine of Yeshiva University improved radiopharmaceuticals for nephrology and urology
Peter M. Steinert [1945-2003] PhD, 1972 heart attack NIH structures and interactions of the proteins characteristic of epithelial cells
Arnold Lazarow [1916-1975] MD/PhD, 1941 brief illness University of Minnesota fetal endocrinology and study of diabetes & pregnancy
Edward V. Evarts [1926-1985] MD, 1948 heart attack NIH electrophysiological activity of in vivo neurons in waking and sleeping states
Anthony Dipple [1940-1999] PhD, 1964 heart attack NIH metabolic activation and DNA interactions of polycyclic aromatic hydrocarbon carcinogens
Gerald L. Stoner [1943-2002] PhD, 1974 complications following a fall NIH/NINDS neuropathology and molecular epidemiology of the human polyomavirus
G. Scott Giebink [1944-2003] MD, 1969 heart attack University of Minnesota pathogenesis of otitis media and immunizations
Daniel A. Brody [1915-1975] MD, 1940 heart attack University of Tennessee generator properties of isolated mammalian hearts
Michelangelo G.F. Fuortes [1917-1977] MD, 1941 NIH/NINDS study of the peripheral visual system in vertebrate animals
Sidney Riegelman [1921-1981] PhD, 1948 drowned while scuba diving University of California — San Francisco intersubject variation in first pass effect of drugs
Lewis W. Wannamaker [1923-1983] MD, 1948 heart attack University of Mississippi Medical Center clinical and epidemiologic aspects of streptococcal infections
Donald J. Magilligan, Jr. [1929-1989] MD, 1965 short illness Henry Ford Health Sciences Center natural history and limitations of porcine heart valves
Ronald G. Thurman [1941-2001] PhD, 1967 massive heart attack University of North Carolina at Chapel Hill hepatic metabolism, alcoholic liver injury and toxicology
F. Brantley Scott, Jr. [1930-1991] MD, 1955 plane crash Baylor University College of Medicine/St. Luke’s Episcopal Hospital development of the penile prosthesis
DeWitt S. Goodman [1930-1991] MD, 1955 pulmonary embolism Columbia University lipid metabolism and its role in the development of heart and artery disease
Donald C. Shreffler [1933-1994] PhD, 1961 heart attack Washington University in St. Louis organization and functions of H-2 gene complex
A. Arthur Gottlieb [1937-1998] MD, 1961 pulmonary embolus following surgery Tulane University School of Medicine role of macrophage nucleic acid in antibody production
John N. Whitaker [1940-2001] MD, 1965 injuries following a bycicle race University of Alabama at Birmingham molecular immunopathogenesis of demyelinating disease
Christopher A. Dawson [1942-2003] PhD, 1969 suddenly Medical College of Wisconsin pulmonary hemodynamics
Maurice S. Raben [1915-1977] MD, 1939 Tufts University humoral and metabolic aspects of cardiac function
Josiah Brown [1923-1985] MD, 1947 tragic accident UCLA biochemical studies of lipid and carbohydrate metabolism
John H. Walsh [1938-2000] MD, 1963 heart attack UCLA gastrointestinal hormones, gastric acid production and peptic ulcer disease
Jerome R. Vinograd [1913-1976] PhD, 1940 California Institute of Technology biochemistry and molecular biology
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Merton F. Utter [1917-1980] PhD, 1942 Case Western Reserve University School of Medicine structure and function of pep carboxykinase isozymes
E. Jack Wylie [1918-1982] MD, 1943 heart attack University of California — San Francisco development of techniques for the treatment and management of chronic visceral ischemia
Kwan C. Tsou [1922-1985] PhD, 1950 heart attack University of Pennsylvania School of Medicine development of serum nuclease isozyme test for cancer
Norbert Freinkel [1926-1989] MD, 1949 heart attack Northwestern University metabolic regulation in normal and diabetic pregnancies
Edgar C. Henshaw [1929-1992] MD, 1956 complications from early-stage cancer treatment University of Rochester intermediary metabolism in animals and in man
Donald T. Witiak [1935-1998] PhD, 1961 stroke University of Wisconsin stereochemical studies of hypocholesterolemic agents
Thomas P. Dousa [1937-2000] MD/PhD, 1968 heart attack Mayo Clinic cellular action of vasopressin in the kidney
Thomas F. Burks, II [1938-2001] PhD, 1967 heart attack University of Texas HSC at Houston central and peripheral neuropeptide pharmacology
Robert M. Macnab [1940-2003] PhD, 1969 accidental fall Yale University sequence analysis and function of bacterial flagellar motor
David Pressman [1916-1980] PhD, 1940 Roswell Park Cancer Institute/SUNY Buffalo structure and function of antibody molecules and tissue antigens of the HLA system
Abraham M. Lilienfeld [1920-1984] MD, 1944 heart attack Johns Hopkins University School of Public Health epidemiological methods for the study of chronic diseases
Marion I. Barnhart [1921-1985] PhD, 1950 traffic accident Wayne State University School of Medicine cellular sites for synthesis of blood proteins
Thomas R. Johns, 2nd [1924-1988] MD, 1948 refractory arrhythmia University of Virginia School of Medicine physiological studies of myasthenia gravis
Gerald D. Aurbach [1927-1991] MD, 1954 hit in a head by a stone NIH bone metabolism and calcium homeostasis
Demetrios Papahadjopoulos [1934-1998] PhD, 1963 adverse drug reaction/multi-organ failure University of California — San Francisco phospholipid-protein interactions, lipid vesicles, and membrane function
Takis S. Papas [1935-1999] PhD, 1970 unexpected and sudden Medical University of South Carolina characterization of ETS genes and retroviral onc genes
John J. Jeffrey, Jr. [1937-2001] PhD, 1965 stroke Albany Medical College mechanism of action and the physiologic regulation of mammalian collagenases
Victor J. Ferrans [1937-2001] MD/PhD, 1963 complications from diabetes NIH myocardial and vascular pathobiology
James N. Davis [1939-2003] MD, 1965 airplane crash SUNY HSC at Stony Brook mechanisms underlying neuronal injury after brain ischemia
Frederick B. Bang [1916-1981] MD, 1939 heart attack Johns Hopkins University School of Medicine cell virus relationships in respiratory mucosae
James M. Felts [1923-1988] PhD, 1955 heart failure University of California — San Francisco synthesis and processing of plasma lipoproteins
Ernst Freese [1925-1990] PhD, 1954 cerebral hemorrhage NIH/NINDS studies of environmental mutagenesis
Lucien J. Rubinstein [1924-1990] MD, 1948 ruptured intracranial aneurysm University of Virginia School of Medicine differentiation and stroma-induction in neural tumors
George B. Craig, Jr. [1930-1995] PhD, 1956 heart attack University of Notre Dame genetics and reproductive biology of aedes mosquitoes
James R. Klinenberg [1934-1999] MD, 1959 intracerebral hemorrhage UCLA pathophysiology of gout and hyperuricemia
Paul B. Sigler [1934-2000] MD/PhD, 1967 heart attack Yale University structural analysis of biological macromolecules
Sandy C. Marks, Jr. [1937-2002] DDS/PhD, 1968 heart attack UMASS vitamin D and bone modeling
Albert H. Coons [1912-1978] MD, 1937 coronary disease and congestive heart failure Harvard Medical School studies on antibody formation
Henry G. Kunkel [1916-1983] MD, 1942 complications after vascular surgery Rockefeller University identification of MHC Class II molecules
Edgar E. Ribi [1920-1986] PhD, 1948 plane crash NIH/NIAID fine structure of immunologically-active cell constituents for the development of vaccines
Bertram Sacktor [1922-1988] PhD, 1949 heart attack National Institute on Aging in Baltimore mechanisms of hormonal regulation of cellular pH and mineral metabolism in the kidney
Lucille S. Hurley [1922-1988] PhD, 1950 complications from open heart surgery University of California — Davis genetic and nutritional interactions in development
Paul Margolin [1923-1989] PhD, 1956 heart attack City College of New York mutation and suppressor studies of a bacterial gene
Zanvil A. Cohn [1926-1993] MD, 1953 aortic dissection Rockefeller University macrophage in cell biology and resistance to infectious disease
Carl Monder [1928-1995] PhD, 1956 brief illness, acute fulminating leukemia Population Council corticosteroid metabolism in juvenile hypertension
Gordon Guroff [1933-1999] PhD, 1959 car accident NIH/NICHD biochemical and molecular biological studies of nerve growth factor
Gerald P. Murphy [1934-2000] MD, 1959 heart attack Roswell Park Cancer Institute/SUNY Buffalo detection, immunotherapy, and prognostic indicators of prostate cancer
Alvito P. Alvares [1935-2001] PhD, 1966 killed by a car Uniformed Services University of the Health Sciences biochemical manifestations of toxicity in gold therapy
Patricia S. Goldman-Rakic [1937-2003] PhD, 1963 struck by a car Yale University development and plasticity of the primate frontal lobe
Stephen W. Kuffler [1913-1980] MD, 1937 heart attack Harvard University microphysiology of synaptic transmission
John P. Merrill [1917-1984] MD, 1942 drowned Harvard Medical School/Brigham & Women’s Hospital role of the immune system in kidney transplantation
Abraham I. Braude [1917-1984] MD/PhD, 1950 heart attack University of California — San Diego pathogenesis and treatment of life-threatening septic shock
Susumu Hagiwara [1922-1989] PhD, 1951 bacterial infection UCLA evolutionary and developmental properties of calcium channels in cell membranes
Daniel Rudman [1927-1994] MD, 1949 complications from brain surgery Medical College of Wisconsin adipokinetic substances of the pituitary gland
Thomas G. Smith, Jr. [1931-1998] MD, 1960 heart attack NIH/NINDS fractal analysis of central nervous system neuron and glial cell morphology
Richard N. Lolley [1933-2000] PhD, 1961 heart attack University of Southern California Keck School of Medicine maturation of metabolism in normal & dystrophic retina
Joseph H. Ogura [1915-1983] MD, 1941 heart attack Washington University in St. Louis physiology of the larynx analog
Manfred M. Mayer [1916-1984] PhD, 1946 heart attack Johns Hopkins University School of Medicine immunochemistry of the complement system
Albert  Segaloff [1917-1985] MD, 1942 brief illness Tulane University School of Medicine hormonal treatment of advanced breast cancer
F. Blair Simmons [1930-1998] MD, 1956 heart attack Stanford University development of a cochlear prothesis system for hearing loss
Henryk M. Wisniewski [1931-1999] MD/PhD, 1960 heart failure SUNY Downstate Medical Center College of Medicine pathogenesis of inflammatory demyelinating diseases
V. Everett Kinsey [1909-1978] PhD, 1937 stroke Institute of Biological Sciences at Oakland University intraocular fluid dynamics
Frederic C. Bartter [1914-1983] MD, 1940 stroke University of Texas HSC at San Antonio interaction between the kidney and various endocrine systems
Nathan O. Kaplan [1917-1986] PhD, 1943 University of California — San Diego isolation and structure determination of coenzyme A
David T. Imagawa [1922-1991] PhD, 1950 heart attack Harbor-UCLA Medical Center morphological conversion with leukemia viruses
Robert H. Williams [1909-1979] MD, 1934 on an airline en route to Philadelphia University of Washington School of Medicine diabetes etiology, pathogenesis, and management
Toichiro Kuwabara [1920-1991] MD/PhD, 1952 heart failure Harvard Medical School ultrastructure of retina and retinal disease
William F. Harrington [1920-1992] PhD, 1952 heart failure Johns Hopkins University School of Medicine myosin thick filament structure and assembly
G. Jeanette Thorbecke [1929-2001] MD/PhD, 1954 stung by a Portuguese man-of-war jellyfish New York University School of Medicine histologic and functional aspects of lymphoid tissue development
Felix T. Rapaport [1929-2001] MD, 1954 coronary heart disease SUNY HSC at Stony Brook induction of unresponsiveness to allografts
Marian W. Kies [1915-1988] PhD, 1944 pancreatitis NIH/MIMH study of experimental allergic encephalomyelitis
Menek Goldstein [1924-1997] PhD, 1955 stroke New York University School of Medicine purification of enzymes in the catecholamine synthetic pathway
Andrew P. Somlyo [1930-2003] MD, 1956 heart attack University of Virginia School of Medicine vasomotor function of smooth muscle and their relation to heart disease
Koloman Laki [1909-1983] PhD, 1936 heart attack NIH/NIDDK purification of fibrinogen
Paul A. Srere [1925-1999] PhD, 1951 complications from liver surgery University of Texas Southwestern Medical Center at Dallas cell metabolism and the krebs tca cycle
D. Eugene Strandness, Jr. [1928-2002] MD, 1954 pulmonary failure University of Washington School of Medicine ultrasonic duplex scanner for noninvasive vascular disease diagnosis
Vincent Massey [1926-2002] PhD, 1953 heart attack University of Michigan, Ann Arbor biological oxidation mechanisms of proteins that contain riboflavin
Murray B. Bornstein [1918-1995] MD, 1952 cardiac aneurysm Albert Einstein College of Medicine of Yeshiva University copolymer as a protective treatment for the exacerbation of multiple sclerosis
Clarence J. Gibbs, Jr. [1924-2001] PhD, 1962 cardiac disease NIH/NINDS infectuous diseases of the nervous system
Russell L. De Valois [1926-2003] PhD, 1952 automobile accident University of California — Berkeley brain mechanisms underlying color vision
Efraim Racker [1913-1991] MD, 1938 stroke Cornell University identifying and purifying Factor 1, the first part of the ATP synthase enzyme
Walsh McDermott [1901-1981] MD, 1934 heart attack Cornell University Medical College latent and dormant microbial infections
Jonas E. Salk [1914-1995] MD, 1939 heart failure Salk Institute effective vaccine for polio
Lawrence Bogorad [1921-2003] PhD, 1949 stroke while on vacation Harvard University determinants of transcript longevity
Herman M. Kalckar [1908-1991] MD/PhD, 1939 pneumonia Boston University School of Medicine genes, enzymes, nucleotides, and carbohydrate patterns
Eugene M. Farber [1917-2000] MD, 1943 brief illness Stanford University biologic effects of photochemotherapy in psoriasis
Henry Rapoport [1918-2002] PhD, 1943 pneumonia University of California — Berkeley total synthesis of heterocyclic drugs
Norman R. Davidson [1916-2002] PhD, 1939 brief illness California Institute of Technology physical chemistry of nucleic acids
Karl A. Folkers [1906-1997] PhD, 1931 heart failure University of Texas at Austin peptide antagonists of LHRH as gonadotropin inhibitors
Margaret J. Sullivan [1957-2001] PhD, 1986 University of Missouri at Columbia role of peptide neurotransmitters in body fluid homeostasis
Leonard R. Axelrod [1927-1975] PhD, 1952 Environmental Protection Agency studies in steroid intermediate metabolism
Sidney R. Cooperband [1931-1979] MD, 1956 Boston University School of Medicine lymphocyte proliferation inhibitory factor
James L. Lehr [1940-1989] MD, 1968 University of Chicago modular computer-mediated radiology system
Alberto DiMascio [1928-1978] PhD, 1966 Tufts University follow-up of maintenance treatment for depression
William B. Kinter [1926-1978] PhD, 1955 Mount Desert Island Biological Lab membrane toxicity theory and environmental pollutants
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Alfred A. Smith [1928-1980] MD, 1956 New York Medical College respiratory-depressive effects of ethanol
Leah M. Lowenstein [1931-1984] MD/PhD, 1958 Thomas Jefferson University Medical College regulation of renal compensatory adaptation
S. Morris Kupchan [1922-1976] PhD, 1945 University of Virginia School of Medicine chemistry of tumor-inhibitory natural products
Edward C. Heath [1930-1985] PhD, 1955 University of Iowa School of Medicine molecular biology of tumor cells
Arnold F. Brodie [1923-1981] PhD, 1952 University of Southern California Keck School of Medicine mechanisms of oxidative energy generation in bacteria
Alvin Nason [1919-1978] PhD, 1952 Johns Hopkins University School of Medicine enzymology of nitrate respiration and assimilation
Andrew G. Morrow [1923-1982] MD, 1946 NIH/NHLBI surgical correction of obstructive subaortic hypertrophy
Elijah Adams [1918-1979] MD, 1942 University of Maryland School of Medicine tyrosinases and tyrosine hydroxylases
Myron L. Bender [1924-1988] PhD, 1948 Northwestern University mechanism of action of proteases
Kenneth J.W. Taylor [1939-2003] MD/PhD, 1975 Yale University diagnostic ultrasound imaging
Brigitte A. Prusoff [1926-1991] PhD, 1978 Yale University follow-up of maintenance treatment for depression
Edwin D. Murphy [1917-1984] MD, 1943 NIH/NCI gene mechanisms in autoimmunity and lymphoproliferation
Henry Kamin [1920-1988] PhD, 1948 Duke University biological oxidations in mitochondria and microsomes
Henry A. Schroeder [1906-1975] MD, 1933 Dartmouth Medical School abnormal trace metals in cardiovascular diseases
Carl L. Larson [1909-1978] MD, 1939 University of Montana at Missoula specific and nonspecific resistance caused by t. bacilli
David F. Waugh [1915-1984] PhD, 1940 MIT protein interactions and physico-chemical properties
John W. Porter [1915-1984] PhD, 1942 University of Wisconsin regulation of lipogenesis by insulin and glucagon
Thomas F. Gallagher [1905-1975] PhD, 1931 Albert Einstein College of Medicine of Yeshiva University metabolic transformation of steroid hormones
Benjamin Alexander [1908-1978] MD, 1934 NY Blood Center coagulation, hemorrhage, and thrombosis
Bernard Saltzberg [1919-1989] PhD, 1972 University of Houston electrophysiological analysis of learning disabilities
Georges Ungar [1906-1977] MD, 1939 University of Tennessee chemical transfer of drug tolerance and learned behavior
Harold Koenig [1921-1992] MD/PhD, 1949 Northwestern University molecular mechanisms of blood-brain barrier dysfunction
Albert S. Kaplan [1917-1989] PhD, 1952 Vanderbilt University metabolism of cells infected with nuclear DNA viruses
Tsoo E. King [1917-1990] PhD, 1949 University of Pennsylvania School of Medicine bioenergetic apparatus in heart mitochondria
Arthur Cherkin [1913-1987] PhD, 1953 Sepulveda VA Medical Center role of cholinergic drugs in reducing the memory loss
Peter D. Klein [1927-2001] PhD, 1954 Baylor College of Medicine metabolism of 13C compounds in digestive diseases
Alex B. Novikoff [1913-1987] PhD, 1938 Albert Einstein College of Medicine of Yeshiva University histochemical studies of the Golgi apparatus
Walter E. Brown [1918-1993] PhD, 1949 American Dental Association Health Foundation chemistry of calcium phosphates
C. Clark Cockerham [1921-1996] PhD, 1952 North Carolina State University the statistics of genetic systems
Leo T. Samuels [1899-1978] PhD, 1930 University of Utah steroid hormone metabolism and tumorogenic action
Peter N. Magee [1921-2000] MD, 1945 Thomas Jefferson University Medical College genetic basis of carconogenesis
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Appendix B: Linking Scientists with their Journal Articles

The source of our publication data is PubMed, a bibliographic database maintained by the U.S. National
Library of Medicine that is searchable on the web at no cost.iv PubMed contains over 14 million citations
from 4,800 journals published in the United States and more than 70 other countries from 1950 to the present.
The subject scope of this database is biomedicine and health, broadly defined to encompass those areas of
the life sciences, behavioral sciences, chemical sciences, and bioengineering that inform research in health-
related fields. In order to effectively mine this publicly-available data source, we designed PubHarvester,
an open-source software tool that automates the process of gathering publication information for individual
life scientists (see Azoulay et al. 2006 for a complete description of the software). PubHarvester is fast,
simple to use, and reliable. Its output consists of a series of reports that can be easily imported by statistical
software packages.

This software tool does not obviate the two challenges faced by empirical researchers when attempting
to accurately link individual scientists with their published output. The first relates to what one might
term “Type I Error,” whereby we mistakenly attribute to a scientist a journal article actually authored by
a namesake; The second relates to “Type II error,” whereby we conservatively exclude from a scientist’s
publication roster legitimate articles:

Namesakes and popular names. PubMed does not assign unique identifiers to the authors of the
publications they index. They identify authors simply by their last name, up to two initials, and an optional
suffix. This makes it difficult to unambiguously assign publication output to individual scientists, especially
when their last name is relatively common.

Inconsistent publication names. The opposite danger, that of recording too few publications, also looms
large, since scientists are often inconsistent in the choice of names they choose to publish under. By far the
most common source of error is the haphazard use of a middle initial. Other errors stem from inconsistent
use of suffixes (Jr., Sr., 2nd, etc.), or from multiple patronyms due to changes in spousal status.

To deal with these serious measurement problems, we opted for a labor-intensive approach: the design of
individual search queries that relies on relevant scientific keywords, the names of frequent collaborators,
journal names, as well as institutional affiliations. We are aided in the time-consuming process of query
design by the availability of a reliable archival data source, namely, these scientists’ CVs and biosketches.
PubHarvester provides the option to use such custom queries in lieu of a completely generic query (e.g,
"azoulay p"[au] or "graff zivin js"[au]). As an example, one can examine the publications of Scott A.
Waldman, an eminent pharmacologist located in Philadelphia, PA at Thomas Jefferson University. Waldman
is a relatively frequent name in the United States (with 208 researchers with an identical patronym in the
AAMC faculty roster); the combination "waldman s" is common to 3 researchers in the same database.
A simple search query for "waldman sa"[au] OR "waldman s"[au] returns 377 publications at the time
of this writing. However, a more refined query, based on Professor Waldman’s biosketch returns only 256
publications.v

The above example also makes clear how we deal with the issue of inconsistent publication names. Pub-
Harvester gives the end-user the option to choose up to four PubMed-formatted names under which
publications can be found for a given researcher. For example, Louis J. Tobian, Jr. publishes under "tobian
l", "tobian l jr", and "tobian lj", and all three names need to be provided as inputs to generate a
complete publication listing. Furthermore, even though Tobian is a relatively rare name, the search query
needs to be modified to account for these name variations, as in ("tobian l"[au] OR "tobian lj"[au]).

ivhttp://www.pubmed.gov/
v(((("waldman sa"[au] NOT (ether OR anesthesia)) OR ("waldman s"[au] AND (murad OR philadelphia[ad] OR west

point[ad] OR wong p[au] OR lasseter kc[au] OR colorectal))) AND 1980:2013[dp])
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Appendix C: PubMed Related Citations Algorithm [PMRA]

Algorithm overview. The PubMed Related Citations Algorithm [PMRA] underlies the “related articles”
search feature in PubMed. Lin and Wilbur (2007) develop a topic-based similarity model designed to help
a typical user search through the literature by presenting a set of records topically related to a focal article
returned by a PubMed search query.

Specifically, PMRA relies on Bayes’ Theorem to estimates the probability that an individual is interested in
document a given expressed interest in document b. They focus on the following relationship:

Pr(a|b) ∝
N∑
j=1

Pr(a|sj) Pr(b|sj) Pr(sj),

where {s1, ..., sN} denotes the entire set of mutually exclusive topics that could possibly be contained within
a, b, or any other document of interest. Lin and Wilbur (2007) then make assumptions about the underlying
arrival rates of terms within documents and how likely the occurrence of a term within a document actually
reflects the true nature of that document. From these assumptions, the authors arrive at a topic weighting
function, wj,x, that describes how important a topic sj is to any document x, and a document scoring
function, Sim(a, b), that quantifies the similarity between a and b, given by:

wj,x =λj,x ×

√
1

fj

Sim(a, b) =

N∑
j=1

wj,a × wj,b,

where fj is the frequency of topic sj in the entire corpus and λj,x is based on a series of Poisson arrival
rate parameters and the number of times topic sj occurs within document x. Intuitively, two documents
are more likely to be similar when they both use topics that are rare (fj is low) many times (λj,x is high).
The authors estimate, optimize and experimentally confirm parameters to align with human assessments.
They also report that one fifth of “non-trivial” browser sessions in PubMed invoke PMRA at least once,
providing some “ground truth” for the view that the algorithm captures meaningful intellectual linkages
between documents.

Defining topics. The algorithm relies on three types of text information to derive a list of potential topics:
MeSH terms, abstract words, and title words. MeSH is the National Library of Medicine’s [NLM] controlled
vocabulary thesaurus. It consists of terms arranged in a hierarchical structure that permit searching at
various levels of specificity (there are over 28,000 descriptors in the 2018 edition of MeSH). Almost every
publication in PubMed is tagged with a set of MeSH terms (between 1 and 103 in the current edition of
PubMed, with both the mean and median approximately equal to 11). NLM’s professional indexers are
trained to select indexing terms from MeSH according to a specific protocol, and consider each article in the
context of the entire collection (Bachrach and Charen 1978; Névéol et al. 2010).

The presence of MeSH terms is crucial for the performance of the PMRA algorithm in two separate respects.
Directly, because the MeSH terms are appended to the list of abstract words and title words to form the set
of topics present in a PubMed record. Indirectly, because PMRA uses MeSH terms as informative markers
to separate “elite” from “non-elite” topics in each record, and relies on a mixture of two Poisson distributions
(one for elite terms, one for non-elite terms) to estimate the probability that a document is about a topic,
given that we observe its corresponding term (abstract word, title word, MeSH term) a certain number of
times in the document.

The reliance of PMRA on MeSH terms offers both advantages and disadvantages from the standpoint of our
study. On the positive side of the ledger, professional indexers with domain expertise annotate articles with
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MeSH terms—the authors are not involved. Professional annotators are probably less subject than authors
to demand effects, whereby keywords are chosen endogenously to appeal to an audience of potential readers,
referees, and journal editors. As such, they are relatively more stripped of “social baggage” than author-
chosen keywords would be.vi Research in information science backs up the claim that MeSH terms can be
seen as representing standardized and high-quality summaries of a particular publication (Bhattacharya et
al. 2011).

On the negative side of the ledger, two features of the MeSH annotation process deserve mention. First,
MeSH terms suffer from a keyword vintage problem as well as a left-censoring problem; these two problems
are inextricably linked. Indexers may have available a lexicon of permitted keywords which is itself out
of date. NLM continually revises and updates the MeSH vocabulary in an attempt to neutralize keyword
vintage effects, but articles are not systematically backward-annotated. Take, for example the paper by
Emmanuelle Charpentier and Jennifer Doudna which appeared in Science in June 2012 (Jinek et al., “A
programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity”) and established the
viability of the CRISPR-Cas9 system for genome editing. The article is tagged by 11 unique MeSH terms,
but CRISPR is not one them. This is of course because the CRISPR keyword was not part of the controlled
MeSH thesaurus in 2012—it was “born” as a keyword in 2013!

Second, human indexers are not necessarily impervious to scientific fads and fashions. In their efforts to be
helpful to PubMed users, they may use combinations of keywords that reflect the conventional views of the
field. Probabilistic topic models such as PMRA assume that the scientific corpus has been correctly indexed.
But what if the indexers who chose the keywords brought their own “conceptual baggage” to the indexing
task, so that the pictures that emerge from this process are more akin to their conceptualization than to
those of the scientists whose work it was intended to study? In our view, “indexer effects” (in the parlance
of Whittaker 1989) present a more benign challenge. A number of studies have asked authors to validate ex
post the quality of the keywords selected by independent indexers, with generally encouraging results (Law
and Whittaker 1992). Inter-indexer reliability is also very high (Wilbur 1998).

There is an additional reason why these challenges deserve less emphasis than might appear at first blush,
at least from the standpoint of accurately capturing intellectual relatedness. PMRA relies on abstract words
and title words as well as MeSH terms. Going back to the Jinek et al. (2012) article, the word “CRISPR”
appears four separate times in the abstract. PMRA can therefore link this foundational paper to 218
other articles, which will often be annotated with CRISPR-relevant MeSH terms (e.g., “CRISPR-Associated
Proteins” or “CRISPR-Cas Systems.”) In other words, the inclusion of title/abstract words help remedy
unpleasant features of the MeSH annotation process. In so doing, however, they weaken our initial claim
that the linkages revealed by PMRA are purely intellectual, devoid of “social baggage.” For this reason,
below we will explicitly look at the extent to which omitting abstract and title words from the input used by
PMRA to generate the list of intellectual neighbors alters our benchmark set of results. Figure C1 depicts
how the multiplier of the unconditional probability that two articles are related through PMRA is affected
by the number of MeSH terms that overlap between the two records. For example, two articles picked at
random are 255 times more likely to be related if they share 5 MeSH terms instead of only one. Note that
the baseline unconditional probability that two articles are related when they share only one MeSH term is
quite low, on the order of 1÷ 1, 000, 000.

Implementation details. Using the MeSH keywords as input, PMRA essentially defines a distance concept
in idea space such that the proximity between a source article and any other PubMed-indexed publication
can be assessed. The following paragraphs were extracted from a brief description of PMRA:

The neighbors of a document are those documents in the database that are the most similar to it. The simi-
larity between documents is measured by the words they have in common, with some adjustment for document
lengths. To carry out such a program, one must first define what a word is. For us, a word is basically an

viImportantly, the assignment of MeSH keywords does NOT take into account references cited in the publication.
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unbroken string of letters and numerals with at least one letter of the alphabet in it. Words end at hyphens,
spaces, new lines, and punctuation. A list of 310 common, but uninformative, words (also known as stopwords)
are eliminated from processing at this stage. Next, a limited amount of stemming of words is done, but no
thesaurus is used in processing. Words from the abstract of a document are classified as text words. Words
from titles are also classified as text words, but words from titles are added in a second time to give them a
small advantage in the local weighting scheme. MeSH terms are placed in a third category, and a MeSH term
with a subheading qualifier is entered twice, once without the qualifier and once with it. If a MeSH term is
starred (indicating a major concept in a document), the star is ignored. These three categories of words (or
phrases in the case of MeSH) comprise the representation of a document. No other fields, such as Author or
Journal, enter into the calculations.

Having obtained the set of terms that represent each document, the next step is to recognize that not all words
are of equal value. Each time a word is used, it is assigned a numerical weight. This numerical weight is
based on information that the computer can obtain by automatic processing. Automatic processing is important
because the number of different terms that have to be assigned weights is close to two million for this system.
The weight or value of a term is dependent on three types of information: 1) the number of different documents
in the database that contain the term; 2) the number of times the term occurs in a particular document; and
3) the number of term occurrences in the document. The first of these pieces of information is used to produce
a number called the global weight of the term. The global weight is used in weighting the term throughout the
database. The second and third pieces of information pertain only to a particular document and are used to
produce a number called the local weight of the term in that specific document. When a word occurs in two
documents, its weight is computed as the product of the global weight times the two local weights (one pertaining
to each of the documents).

The global weight of a term is greater for the less frequent terms. This is reasonable because the presence of a
term that occurred in most of the documents would really tell one very little about a document. On the other
hand, a term that occurred in only 100 documents of one million would be very helpful in limiting the set of
documents of interest. A word that occurred in only 10 documents is likely to be even more informative and
will receive an even higher weight.

The local weight of a term is the measure of its importance in a particular document. Generally, the more
frequent a term is within a document, the more important it is in representing the content of that document.
However, this relationship is saturating, i.e., as the frequency continues to go up, the importance of the word
increases less rapidly and finally comes to a finite limit. In addition, we do not want a longer document to be
considered more important just because it is longer; therefore, a length correction is applied.

The similarity between two documents is computed by adding up the weights of all of the terms the two docu-
ments have in common. Once the similarity score of a document in relation to each of the other documents in
the database has been computed, that document’s neighbors are identified as the most similar (highest scoring)
documents found. These closely related documents are pre-computed for each document in PubMed so that
when one selects Related Articles, the system has only to retrieve this list. This enables a fast response time
for such queries.vii

For a given source article, PMRA yields the following output: (i) an ordered list of intellectually related
articles with a fixed length; (ii) a cardinal measure of distance between the source and each related article,
which we have normalized such that a source is always 100% related to itself, and relatedness decreases as
one goes down the ranking of the ordered list of neighbors.

Cutoff Rules. The algorithm uses a cutoff rule to determine the number of related articles associated with a
given source article. First, the 100 most related records by similarity score are returned. Second, a reciprocity
rule is applied to this list of 100 records: if publication x is related to publication y, publication y must also
be related to publication x. As a result, there is no fixed number of related articles for a source article. On
the contrary, the total number of related articles can be of arbitrary large size, and certainly much higher
than 100. Figure C2, Panel A displays the histogram for the distribution of the number of related articles
for the 35,409 source articles in our main sample. The mean number of articles is 153 and the median 119.
Surprisingly, however, 25% or so of the source articles have less than 100 related articles associated with
them. In part, this is an artefact of some data construction choices, as we eliminate related articles outside
the [1965; 2006] date range, or related articles that are not original articles (reviews, editorials, etc.), or
related articles in journals not indexed by the Web of Science. And yet, even after accounting for these

viiAvailable at http://ii.nlm.nih.gov/MTI/related.shtml
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factors, slightly more than 10% of the source articles have less than 100 intellectual neighbors, which is
surprising given the documented cutoff rule whereby PMRA supposedly always starts from a list of 100
neighbors, and then possibly add to this list via symmetry.

We investigated this peculiar feature of the data; PMRA appears to have a second cutoff rule based on the
cardinal relatedness score. For each source article, we computed the minimum relatedness score, and graphed
the resulting distribution (Figure C2, Panel B). One can observe a mass point around 0.10 (corresponding
to 3% of the source articles), meaning that PMRA will fail to expand the set of neighbors all the way up to
100 articles if it finds out that doing so would mean including related articles with relatedness < 0.10.viii

The presence of this second cutoff is in an important respect a welcome (if idiosyncratic and poorly docu-
mented) feature of the algorithm. If the cutoff was downward-rigid at 100, then after a star scientist had
passed away, PMRA would need to reach into a set of articles that are in fact quite intellectually distant
from the source to fill the void mechanically induced by the fact that the deceased star cannot contribute
to his own subfields. Figure C2, Panel C confirms that it is not the case. It depicts, for both treated and
control source articles, the distribution of relatedness score for the least related article associated with each
source article, only taking into account the articles written after the death (or counterfactual death) of the
star. The two distributions are quite close to one another; if anything, there are slightly more control source
articles that lie at the cardinal cutoff value of 0.10, relative to treated source articles. In other words, we find
no evidence of “overexpansion” in less proximate intellectual domains for treated fields, relative to control
fields, in the period that follows the death of an eminent scientist.

One final check is to look for stability over time, both for the ordinal cutoff and the cardinal cutoff. A
maintained assumption for our research design is that these cutoffs do not vary over time differentially for
treated and control fields. We investigate cutoff stability by running a regression of each subfield’s log size
(respectively, each subfield’s log odds of the lowest relatedness score) onto journal effects, number of authors
effects, 36 source publication year effects (from 1967 to 2002, 1966 is the omitted variable), and 36 source
publication year by treatment status interaction terms. We graph the coefficient estimates corresponding to
these interaction effects on Figure C3, which are for the most part imprecisely estimated zeros, and do not
exhibit any specific upward or downward trend. From all these analysis, we conclude that there is no reason
to suspect that PMRA’s cutoff rules impact treated and control source articles in a differential way.

From source article to subfield: An Example. Given our set of source articles, we delineate the
scientific fields to which they belong by focusing on the set of articles returned by PMRA that satisfy three
additional constraints: (i) they are original articles (as opposed to editorials, comments, reviews, etc.); (ii)
they were published in or before 2006 (the end of our observation period); and (iii) they appear in journals
indexed by the Web of Science (so that follow-on citation information can be collected). In Figure C4, we
illustrate the use of PMRA with an example taken from our sample. Consider “The transcriptional program
of sporulation in budding yeast” (PubMed ID #9784122), an article published in the journal Science in
1998 originating from the laboratory of Ira Herskowitz, an eminent UCSF biologist who died in 2003 from
pancreatic cancer. PMRA returns 72 original related journal articles for this source publication.ix Some
of these intellectual neighbors appeared before the source to which they are related, whereas others were
published after the source. Some represent the work of collaborators, past or present, of Herskowitz’s,
whereas others represent the work of scientists in his field he may never have come in contact with during
his life, much less collaborated with. The salient point is that nothing in the process through which these
related articles are identified biases us towards (or away from) articles by collaborators, frequent citers of

viiiThere is a smattering of source articles for which the minimum relatedness is below 0.10. Upon closer examination, these
source articles have no abstracts in PubMed, or do not have MeSH terms available. We investigated the sensitivity of our main
results to dropping these subfields from the analysis (Appendix F, Table F5).

ixWhy exactly 72? In fact, PMRA lists 152 “intellectual neighbors” for PubMed ID 9784122. But once we exclude articles
published after 2006 (the end of our observation period), purge from the list reviews, editorials and other miscellaneous “non-
original” content, and drop a handful of articles that appeared in minor journals not indexed in Thomson-Reuter’s Web of
Science, the number of publications associated with this source article indeed drops to 72.
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Herskowitz’s work, or co-located researchers. Rather, the only determinants of relatedness are to be found
in the overlap in MeSH keywords between the source and its potential neighbors.

PubMed ID #9784122 appeared in the October 23rd 1998 issue of the journal Science and lists 15 MeSH terms
and 5 substances. Consider now its second most-related (listed in Figure C1), PubMed ID #12242283 “Phos-
phorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is
dependent on Ime2” by Sopko et al. It appeared in Molecular and Cell Biology in October of 2002 and
has 24 MeSH terms (resp. 11 substances). Figure C5 displays the MeSH terms that tag this article along
with its source PubMed ID #9784122. The keywords that overlap exactly have been highlighted in dark
blue; those whose close ancestors in the MeSH keyword hierarchical tree overlap have been highlighted in
light blue. These terms include common terms such as Saccharomyces cerevisiae and Transcription

Factors as well as more specific keywords including NDT80 protein, S cerevisiae and Gene Expression

Regulation, Fungal.

PMRA also provides a cardinal dyadic measure of intellectual proximity between each related article and its
associated source article. In this particular instance, the relatedness score of “Phosphorylation...” is 94%,
whereas the relatedness score for the most distant related article in Figure C4, “Catalytic roles of yeast...”
is only 62%.

Delineating subfields. In the five years prior to his death (1998-2002), Herskowitz was the last author on
12 publications, the publications most closely associate with his position as head of a laboratory. For each
of these source publications, we treat the set of publications returned by PMRA as constituting a distinct
subfield, and we create a subfield panel dataset by counting the number of related articles in each of these
subfields in each year between 1975 and 2006.

An important characteristic of the subfields subfields generated by this procedure is that they correspond to
quite compact intellectual neighborhoods. One window into the extent of intellectual breadth for PMRA-
generated subfields is to gauge the overlap between the articles that constitute any pair of subfields associated
with the same star. In the sample, the 452 deceased stars account for 3,076 subfields, and 21,661 pairwise
combination of subfields (we are only considering pairs of subfields associated with the same individual
star). Figure C6 displays the histogram for the distribution of overlap, which is extremely skewed. A full
half of these pairs exhibit exactly zero overlap, whereas the mean of the distribution is 0.06. To find pairs
of subfields that display substantial amounts of overlap (for example, half of the articles in subfield 1 also
belong in subfield 2), one must reach far into the right tail of the distribution, specifically, above the 98th

percentile.

Given a source article published in year t, PMRA will tend to find the largest number of neighbors contem-
poraneously, slightly fewer neighbors–but still a large proportion of them all–during years t− 1 and t+ 1, a
slightly lower number still in years t − 2 and t + 2, etc. In other words, PMRA creates lists of intellectual
neighbors such that, when rolled up at the year level, will generate subfields whose life cycle has an inverted
U-shape, with the peak of the U corresponding to the year of publication for the source. This does not strike
us as an implausible feature of the scientific process: papers related to a focal one will be more likely to
appear in close temporal proximity with it. Importantly, this feature of PMRA affects treated and control
subfields in a precisely symmetric fashion.

To illustrate this empirically, we took a random sample of 5,000 articles in PubMed (original articles, in
journals indexed by web of science, that appeared between 1965 and 2003–the same range of years as for
our source articles) and computed the average number of articles entering those subfields in a range of
[−10; +10] years after the publication of the source. This yields a pronounced inverted-U shape, as seen on
Figure C7. Interestingly, the decay in the outer years is not symmetric: PMRA finds more neighbors in the
future than in the past. This may reflect the steadily expanding universe of publications, such that there
will mechanically be more candidates to be included as related neighbors going forward in time, relative to
going backward in time. The same tendency would of course apply equally to control and treated subfields.
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Robustness checks. The production version of PMRA is used by thousands of scientists every day to assist
their search of the biomedical literature. The foregoing discussion has shown that some idiosyncrasies baked
into the algorithm are not necessarily desirable from a research standpoint. How would our benchmark set
of results change, for instance, if the subfields were expanded in size? Or if a cardinal cutoff rule determined
the boundary of a subfield? Or if only MeSH terms, rather than the combination of MeSH terms and
abstract/title words, were used to assess the similarity between the documents in a subfield? Below, we avail
ourselves to an off-line version of PMRA that was explicitly built to allow some limited experimentation with
featured of the PMRA algorithm.x Using this software tool, we can generate the relatedness score between
a source article in PubMed and a string of text. We manipulate that string of text to generate relatedness
scores between our source articles and an expanded set of candidate related articles under different scenarios.

Before doing so, however, we need to create an expanded list of “candidate” related articles, because we lack
the computing power to check each source article against the entire PubMed corpus.xi Our approach is to
combine the related articles (denoted PMRA1 articles below) with the related articles of the related articles
(denoted PMRA2 articles below) as the candidate set. Using the cardinal relatedness score generated by the
off-line, tunable version of the software, we then use a simple cutoff rule to delineate the expanded subfields:
we retain only those articles with cardinal relatedness score greater than 0.20 (the median). In addition,
as is the case for the benchmark set of subfields, we also eliminate non-original articles, articles that fall
outside of our date range, articles not written in English, and articles that appear in journals not indexed
by the Web of Science. We repeat this exercise, except that we set loose the tunable version of PMRA on
candidate related articles that are summarized solely by their MeSH terms (i.e., abstract/title words are not
taken into account).

Figure C8 displays the histogram of the distribution for subfields constructed using this novel set of rules.
The mean stands at 891 articles, the median at 625 articles, with a maximum value of 7,112. These subfields
are therefore much larger than those generated by the production version of PMRA. Table C1 replicates
our benchmark set of specifications (columns 1, 2, and 3 of Table 3) on these new data. The leftmost
three columns correspond to the version where abstract/title words and MeSH terms are used to calculate
relatedness score; the rightmost three columns correspond to the version where the input into the calculation
of relatedness is limited to the MeSH terms. The magnitudes of the effects are a bit larger than those observed
in Table 3; the coefficients are also more precisely estimated. Figure C9 replicates Panel C of Figure 2 on
the new data. Panel A of Figure C9 corresponds to a dynamic version of the specification in column (3) of
Table C1, whereas Panel B of Figure C9 corresponds to a dynamic version of the specification in column (6) of
Table C1. In both of these pictures, there appear to be a slight pre-trend in that activity in the field picks up
slightly before the death of the star scientist. The magnitudes, however, are very small, marginally significant,
and substantially smaller than those found in the post-death period, providing reassurance regarding the
robustness of our core results.

xWe thank Kyle Myers from the NBER for graciously allowing us access to this software, which forms the basis of his
manuscript entitled “The Elasticity of Science” (Myers 2018). Note that it relies on a version of PubMed that is not complete—
about 10% of the online version of the database have no counterparts in the off-line version, but these articles appear to be
missing at random.

xiThere would be close to half a trillion article pairs to check, even after eliminating articles outside of our date range,
non-original content, articles in other languages, etc.
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Table C1: Alternate Subfield Definitions 
 Expanded Neighborhoods  Expanded Neighborhoods, 

MeSH Terms Only 

 All 
Authors 

Collabs. 
Only 

Non-
Collabs. 

Only 
 All 

Authors 
Collabs. 

Only 

Non-
Collabs. 

Only 

After Death 0.098** -0.321** 0.120**  0.071** -0.327** 0.089** 
(0.026) (0.047) (0.026)  (0.022) (0.045) (0.022) 

Nb. of Investigators 6,237 6,194 6,237  6,226 6,189 6,226 
Nb. of Fields 33,987 33,732 33,981  33,928 33,761 33,928 
Nb. of Field-Year Obs. 1,390,415 1,380,078 1,390,169  1,398,549 1,391,664 1,398,549 
Log Likelihood -5,918,924 -1,508,675 -5,704,068  -8,106,163 -1,818,687 -7,895,247 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total 
number of publications in a subfield in a particular year (similar to Table 3, columns 1 through 3). All models 
incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated and 
control subfields that switches from zero to one after the death of the star, to address the concern that age, year 
and individual fixed effects may not fully account for trends in subfield entry around the time of death for the 
deceased star. The first three columns use subfields that comprise both PMRA1 and PMRA2 articles, but where 
the input data includes abstract/title words plus MeSH terms, just as in the production version of the algorithm. 
In contrast, in the second set of three columns, subfields have been constructed while ignoring abstract/title 
words for the candidate related articles. Robust standard errors in parentheses, clustered at the level of the star 
scientist. †p < 0.10, *p < 0.05, **p < 0.01. 

 

 

Figure C1: MeSH Term Overlap & Relatedness 

 
Note: This figure depicts the relationship between MESH term overlap 

and being classified as related by PMRA based on a random 
sample of approximately 130 million article pairs in PubMed 
(formed from a random sample of 15,400 individual articles). 
With exactly one MeSH term in common, the base probability of 
being related is on the order of 1/1,000,000. That probability 
increases extremely steeply as the number of MeSH terms shared 
between any two random articles moves beyond 4 terms in 
common. 
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Figure C2 
Subfield Size and PMRA Cutoff Rules 

 

A. Ordinal Cutoff B. Cardinal Cutoff 
C. Cardinal Cutoff, by Treatment 

Status, Post-Death Period Only 

 

Note: We document the rules that govern the cutoff in the number of related articles associated with each source. Panel A depicts the histogram for the distribution of related 
articles after filtering out “undesirable” publications (such as reviews and other non-original material, non-English publications, etc.). Panel B depicts the distribution of 
the relatedness score for the least related article associated with each source article in our data. There is a mass point at 0.10 that corresponds to an additional cutoff 
rule in PMRA. A smattering of source publications have some related articles with relatedness score below 0.10, but the overwhelming majority of those are incomplete 
records: missing abstract, missing MeSH terms, or both. These account for less than 0.5% of the source articles. Finally, Panel C compares the relatedness of the least 
related article for each source, by treatment status, and solely for the related articles that appeared after the death (respectively counterfactual death) of a star. 
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Figure C3 
Temporal Stability of Cutoff Rules 

 

A. Ordinal Cutoff
(Subfield Size) 

B. Cardinal Cutoff
(Lowest Relatedness Score) 

Note: We regress the log of pre-death subfield size (Panel A) and the log odds of the relatedness score for the least related article (Panel B) onto (i) journal fixed 
effects; (ii) a suite of indicator variables for the source article’s number of authors; (iii) source article year of publication effects; and (iv) interaction terms 
between each year of publication and a treatment status indicator. The graphs report the coefficient estimates, along with their associated 95% confidence 
interval (corresponding to robust standard errors, clustered at the level of the star) for these 36 interaction terms.
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Figure C4: From Source to Related Articles 

 
Note: We illustrate the process of identifying the related articles through the use of an example. Ira Herskowitz, a superstar scientist in our sample, died in 2003. In 

the five years prior to his death (1998-2002), Herskowitz was the last author on 12 publications. One of these publications is “The transcriptional program of 
sporulation in budding yeast,” an article published in the journal Science in 1998. On the right-hand side panel, one sees that PMRA identifies 72 related 
articles related to this source publication. Each of these related articles can then be parsed in a variety of ways. In particular, their authorship list can be 
matched to the AAMC Faculty Roster, which allows us to distinguish between collaborators of Herskowitz’s and non-collaborators, as well as between the 
subfield’s insiders vs. outsiders. Eight out of the 72 articles have a former or current collaborator on the authorship roster. Twenty two of the 72 articles in 
the subfield cite the source article, while the source articles references eight of the articles in the subfield.
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Figure C5: PMRA and MeSH Term Overlap—An Example 
 

Source Article  PMRA-Linked Article 

Chu et al., “The transcriptional program of 
sporulation in budding yeast.” Science, 

1998. 

 
Sopko et al., “Phosphorylation and maximal 
activity of Saccharomyces cerevisiae meiosis-

specific transcription factor Ndt80 is 
dependent on Ime2.” MCB, 2002. 

PMID #9784122  PMID #12242283 
MeSH Terms MeSH Terms 
Animals Active Transport, Cell Nucleus 
Chromosomes, Fungal Binding Sites 
DNA-Binding Proteins* Cell Cycle Proteins* 
Fungal Proteins Cell Nucleus 
Gene Expression Regulation, Fungal* DNA-Binding Proteins* 
Genes, Fungal Fungal Proteins* 
Genome, Fungal Gene Expression Regulation, Fungal* 
Humans Genes, Fungal 
Meiosis Intracellular Signaling Peptides and Proteins 
Morphogenesis Meiosis* 
Organelles Phosphorylation 
Saccharomyces cerevisiae* Promoter Regions, Genetic 
Spores, Fungal Protein Kinases* 
Transcription Factors Protein-Serine-Threonine Kinases 
Transcription, Genetic* Recombinant Fusion Proteins 

 Saccharomyces cerevisiae 

 Saccharomyces cerevisiae Proteins* 

 Spores, Fungal 

 Substrate Specificity 

 Transcription Factors* 

 Transcriptional Activation 
 
Substances Substances 
DNA-Binding Proteins Cell Cycle Proteins 
Fungal Proteins DNA-Binding Proteins 
NDT80 protein, S cerevisiae Fungal Proteins 
Saccharomyces cerevisiae Proteins Intracellular Signaling Peptides and Proteins 
Transcription Factors NDT80 protein, S cerevisiae 

 Recombinant Fusion Proteins 

 Saccharomyces cerevisiae Proteins 

 Transcription Factors 

 Protein Kinases 

 IME2 protein, S cerevisiae 
    Protein-Serine-Threonine Kinases 
Note: We compare the MeSH terms for  the number of MeSH terms for the source article in Figure C4, 

along with those of its most proximate intellectual neighbor according to PMRA. 
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Figure C6 
Article Overlap Between Subfield Pairs  

 
Note: We compute the share of related articles that are shared between pairs of PMRA-delineated subfields. 

To be conservative, we focus the analysis on 21,661 subfield pairs where a deceased superstar was the 
last author on both of the associated source articles. 

 
 

Figure C7 
Distribution of Activity in Subfields Over Time 

 
Note: This figure illustrates the timing of articles entering the subfields for a random sample of 5,000 articles 

in PubMed (original articles, in journals indexed by Web of Science, that appeared between 1965 and 
2003—the same range of years as for the source articles in our analytic sample), and we run them 
through PMRA, rolling up the count of articles up to the subfield-year level (as in our regressions). 
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Figure C8 
Distribution of Expanded Neighborhood Subfield Size 

 
Note: The articles that are candidate for membership in each subfield 

satisfy the following conditions: PMRA1 or PMRA2. We then 
compute relatedness in this expanded neighborhood using the 
tunable version of PMRA. We discard every article with new 
relatedness score less than 0.20 (the median in the sample). As 
a result, there is a cardinal cutoff, but no ordinal cutoff that 
delineates subfield boundaries. 35 (0.1%) of the fields are outliers 
with more than 5,000 articles. In the histogram above, we make 
use of abstract & title words, in addition to MeSH terms, to 
assess relatedness through PMRA.
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Figure C9 

Dynamics of Subfield Entry—Non Collaborators 
Alternate Subfield Definitions 

 
A. Expanded Neighborhoods B. Expanded Neighborhoods, MeSH Terms Only 

  
Note: The dark blue dots in the above plots correspond to coefficient estimates stemming from conditional (subfield) fixed effects Poisson specifications in which 

publication flows in subfields are regressed onto year effects, subfield age effects, as well as 20 interaction terms between treatment status and the number of 
years before/after the death event (the indicator variable for treatment status interacted with the year of death is omitted). The specifications also include 
a full set of lead and lag terms common to both the treated and control subfields to fully account for transitory trends in subfield activity around the time 
of the death. The 95% confidence interval (corresponding to robust standard errors, clustered around star scientist) around these estimates is plotted with 
vertical light blue lines; Panel A corresponds to a dynamic version of the specification in the third column of Table C1; Panel B corresponds to a dynamic 
version of the specification in the sixth column of Table C1.

 

 



Appendix D: Construction of the Control Group

We detail the procedure implemented to identify the control subfields that help pin down the life-cycle and
secular time effects in our difference-in-differences (DD) specification. Happenstance might yield a sample of
stars clustered in decaying scientific fields. More plausibly, activity in the typical subfield might be subject
to idiosyncratic life-cycle patterns, with their productive potential first increasing over time, eventually
peaking, and thereafter slowly declining. Relying solely on subfields treated earlier or later as an implicit
control group raises the worry that these time-varying omitted variables will not be fully captured by subfield
age controls, particularly since dating the birth of a subfield is a process fraught with hazards.

To address this concern, we create an additional level of difference by selecting control subfields. Recall that
selecting a subfield in our framework is akin to first selecting a source article and then using PMRA to harvest
all the related articles to this source in intellectual space. Since the second step is fully automated, only
the first step is really of concern. Practically, we will recruit control source articles from the set of articles
authored by star scientists who do not die prematurely. But what makes a satisfactory control group? It is
important to distinguish between ex ante vs. ex post criteria. Ex ante, one would like control source articles
to have the following properties:

1. to be published contemporaneously with the source article for the treated subfield;

2. to be unrelated (in both an intellectual and a social sense) to the source article for the treated subfield;

3. to be of similar expected impact and fruitfulness, relative to the source article for the treated subfield;

4. to have a similar number of authors as the source article for the treated subfield;

5. to have a superstar author in the same authorship position and of approximately the same age as
that occupied by the deceased superstar on the authorship roster of the source article for the treated
subfield.

Ex post, it will be important for the control subfields to satisfy an additional condition: the treated and
control subfields should exhibit very similar trends in publication activity and funding flows up to the year
of treatment (i.e., the year of death for the treated superstar).

Coarsened Exact Matching. To meet these goals, we implement a “Coarsened Exact Matching” (CEM)
procedure (Blackwell et al. 2009). The first step is to select a relatively small set of covariates on which
we need to guarantee balance ex ante. This choice entails judgement, but is strongly guided by the set of
criteria listed above. The second step is to create a large number of strata to cover the entire support of the
joint distribution of the covariates selected in the previous step. In a third step, each observation is allocated
to a unique strata, and for each observation in the treated group, control observations are selected from the
same strata.

The procedure is coarse because we do not attempt to precisely match on covariate values; rather, we coarsen
the support of the joint distribution of the covariates into a finite number of strata, and we match a treated
observation if and only if a control observation can be recruited from this strata. An important advantage
of CEM is that the analyst can guarantee the degree of covariate balance ex ante, but this comes at a cost:
the more fine-grained the partition of the support for the joint distribution (i.e., the higher the number of
strata), the larger the number of unmatched treated observations.

Implementation. We identify controls based on the following set of covariates (t denotes the year of
death): star scientist career age; citations received by the article up to year t; number of authors; position
of the star author on the authorship roster (only last authorship position is considered); journal; and year
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of publication. The first three covariates only need to match within relatively coarse bins. For instance, we
create nine career age categories: less than 10 years; between 10 and 20 years; between 20 and 25 years;
between 25 and 30 years; between 30 and 35 years; between 35 and 40 years; between 40 and 45 years;
between 45 and 50 years, over 50 years of career age. Similarly, we coarsen the distribution of citations at
baseline into five mutually exclusive bins: zero citations; between one and 10 citations; between 10 and 50
citations; between 50 and 120 citations; and more than 120 citations. In contrast, we impose an exact match
on journal, publication year, and the star’s authorship position.

We match approximately 75% of the treated source articles in this way. Some further trimming of the control
articles is needed. First, we eliminate any control that shares any author with the treated source. Second,
we eliminate any control article with a dead star scientist on its authorship roster, even if he appears in an
intermediate position in the authorship list. Third, we drop every control that also happens to be related
intellectually to its source as per PMRA. Finally, we drop from the data any source article that finds itself an
orphan (i.e., not paired with any control) at the conclusion of this process. Figure D1 provides an illustrative
example.

The final sample has 3,074 treated source articles and 31,142 control source articles. As can be seen in
Figure D2, the distribution of activity levels, measured by cumulative publications up to the baseline year,
is very similar between treated and control subfields. As well, there is no evidence of preexisting trends
in activity, as demonstrated by the coefficient estimates graphed in Figure 1 and E1. In Table 2, treated
and control subfields are very well-balanced on the covariates that formed the basis of the CEM matching
procedure. This is true almost by construction. What is more surprising (and also welcome) is that the
procedure balances a number of covariates that were not used as inputs for matching, such as various metrics
of star eminence. For other covariates, we can detect statistically significant mean differences, though they
do not appear to be substantively meaningful (e.g., 6.7% of control stars vs. 9.9% of treated stars are female).

Sensitivity Analyses. Human judgement matters for the outcome of the CEM procedure insofar as one
must draw a list of “reasonable” covariates to match on, as well as decide on the degree of coarsening to
impose. We have verified that slight variations in the implementation (e.g., varying slightly the number of
cutoff points for the stock of baseline citations for the source; focusing on birth age as opposed to career age
for the stars) have little impact on the main results.
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Figure D1: Matching Procedure to Identify Controls for the Source Articles 

 

Note: The two articles above illustrate the Coarsened Exact Matching (CEM) procedure. These two articles appeared in the journal Science in 1998. They received a 
similar number of citations up to the end of the baseline year (2002, one year before Herskowitz’s death): 514 citations for Chu et al., 344 citations for Neumann 
et al. Note that Alan Perelson and Ira Herskowitz are both in last authorship position. They also obtained their PhD within a year of each other. 



Appendix E: Extensions

Extended descriptive statistics. For space reasons, Table 2 provided descriptive statistics at baseline
for only a selected set of right-hand side covariates and outcome variables. In Tables E1 and E2, we present
descriptive statistics and correlation matrices for all the covariates and outcome variables that appear either
in the main body of the manuscript, or in Appendixes E and F. Table E1a highlights balance between
control and treated subfields at baseline for a simple transformation of the outcome variables. Recall that
our outcome variables are of the form “number of articles in subfield i and year t that satisfy some condition,”
where examples of such conditions include, inter alia, “by non-collaborators only, where these related authors
had no prior participation in the subfield” or “by non-collaborators only, where the focal star is not cited in
the list of references.” We transform these flow variables into cumulative stock variables, taking into account
the years between the birth of the subfield and the year of death (or counterfactual death). So, for example,
at baseline, the stock or related articles by non-collaborators that list references only outside the subfield
are balanced between control and treated subfields (13.764 vs. 13.789).xii

Table E1b provides descriptive statistics for star-level (e.g., cumulative NIH funding at baseline) and subfield-
level (e.g., commitment of the star to the subfield) covariates. These covariates are used to realize sample
splits around their medians in Tables 6 and 7 of the manuscript, and in Tables E5, E7, and E8 of Appendix E.
In Table E2, we also display correlation matrices for these variables. To make the matrix legible, we
place correlations for subfield-level covariates and star-level covariates in separate tables (E2a and E2b).
The correlations are typically reassuringly high across measures within a construct (e.g., , but low across
constructs.

Event study graphs using the raw data. Figure E1 provides graphical evidence of the effect of star
death on subfield entry using raw data. This involves an important simplification—anchoring the comparison
between control and treated subfields on “experimental time” (the number of years elapsed since treatment),
ignoring the fact that our death events are staggered over a long time period (1975 to 2003). Yet, these
graphs provide visual evidence that the main effects of death on subfield growth or decline we document in
regression specifications saturated with calendar year and age effects (Figure 2) are also apparent in the raw
data. The graphs in Figure E1 also make vivid the life-cycle of subfields. Given a particular source article,
PMRA creates a list of intellectual neighbors that, when added together at the year level, generate subfields
whose evolution over time follows an inverted U-shape, with the peak of the U corresponding to the year of
publication for the source.xiii Of course, these life cycle patterns are a reflection of design choices for PMRA.
That being said, a plausible feature of the scientific process is that papers related to a focal one will be more
likely to appear in close temporal proximity with it.

Sudden vs. Anticipated Death Events. To gain statistical power, our main results pool the subfields
of stars who died suddenly with those of stars whose untimely passing was anticipated. Yet, the case for
the exogeneity of a death event is stronger when it is sudden; when the death can be anticipated, it is
theoretically possible for the star to engage in “intellectual estate planning,” whereby particular scientists
(presumably close collaborators) are anointed as exemplars of the next generation of leaders in the subfield.
Table E3 breaks down our core set of results by cause of death, focusing on entry by non-collaborators only.
Contrasting the coefficient estimates across Panel A and Panel B in the first column of Table E1, relative
subfield growth appears to be driven by stars whose death was anticipated. The effect in the case of sudden
death is small in magnitude and imprecisely estimated.

xiiNote that the variables in Table E1a pertain to subfield entry by non-collaborators only, except the first three, which
correspond to the outcome variables in the right-most three columns of Table 3 (number of NIH grants acknowledged by articles
in the subfield, in total, by collaborators only, and by non-collaborators only).
xiiiOn Figures E1, Panels A, B, and C, the peak appears roughly two to three years before the death, and not in

the year of death. But recall that the source articles that generate the subfields in our data appeared in the window
[tyr death−5; tyr death−1]. As such, the peak observed in these figures is an average of the peaks for subfields associated
with sources published in the years tyr death−5, tyr death−4, . . . , tyr death−1.
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As in Table 4, we parse every related article in the subfield to assign them into one of six mutually exclusive
bins, based on their vintage-specific long-run citation impact: articles that fall in the bottom quartile of the
citation distribution; in the second quartile; in the third quartile; articles that fall above the 75th percentile,
but below the 95th percentile; articles that fall above the 95th percentile, but below the 99th percentile; and
articles that fall above the 99th percentile of the citation distribution. Decomposing this effect across the
quantile bins as above reveals that the differences between the cases of sudden and anticipated death can be
accounted for by shifts in activity for low-impact contributions. In the right tail of the distribution, there is
very little evidence that the manner of superstar death matters at all for the fate of their subfields. In both
cases, non-collaborators increase their relative contribution sharply—on the order of 40%.

Figure E2 and E3 display event study-style graphs in the spirit of Figure 2, Panel C. When using all
publications (regardless of impact) as the metric of activity in a subfield (Figure E2), we can see that
the upward trend is more pronounced (as well as statistically significant) in the case of anticipated events.
When using only “top publications” (specifically, those in the upper 5 percentiles of the citation distribution,
adjusted for each year of publication), the differences are less stark. Consistent with a dearth of statistical
power, our ability to estimate these effects precisely is also limited. This convergence of the effect of death
when focused on the upper tail of the impact distribution legitimates our choice to pool the data for sudden
and anticipated events.

Consolidating vs. disruptive entry. The findings above do not imply that the published results of
entrants necessarily contradict or overturn the prevailing scientific understanding and assumptions within a
subfield. Direct evidence of these contributions’ disruptive impact is elusive. To provide indirect evidence,
we use the “disruptiveness” index (hereafter denoted d) recently proposed by Funk and Owen-Smith (2017),
which seeks to capture whether an idea consolidates or destabilizes the status quo. d measures the extent to
which the future ideas that build on the focal idea also rely on its acknowledged predecessors. In practice,
for article i, it is defined as:

di =
1

ni

n∑
j=1

[1(j ∨Ki)− 1(j ∧Ki)]

where j indexes the forward citing articles (j = 1, . . . , n), Ki is the set of articles {k1, k2, . . . , kp} that are
(backwards) referenced within i, ni is the number of forward citations to article i, 1(j ∨ Ki) is equal to
one if forward citing article j does not reference any of the articles in Ki, and 1(j ∧ Ki) is equal to one
if forward citing article j does reference at least one of the articles in Ki. d = 1 for articles that are
“maximally destabilizing,” in the sense that there is no overlap between the articles referenced by the focal
article and the references listed in the papers that cite it. In contrast, d = −1 for articles that are “maximally
consolidating,” in the sense that every citing article and the source have at least one reference in common.

We compute the d index for all related articles in our data (mean= −.39, median= −.49, s.d.= .47). We count
the number of related articles that belong to a particular quantile bin of d. We create six non-overlapping
bins: below the 10th percentile of d, between the 10th and the 25th percentile, between the 25th and the 50th

percentile, between the 50th and the 75th percentile, between the 75th and the 95th percentile, and above the
95th percentile of d. In a final step, we roll up the outcome at the subfield-year level. We then run a separate
regression with each of these six outcome measures, using the research design outlined in Section III.A. As
can be observed in Table E4, the relationship between star death and subfield entry by non-collaborators
is non-monotonic in the extent to which it entails disrupting the paradigms of the treated subfields. The
relationship is strongest for related articles that fall in the intermediate range of the “disruptiveness” metric.
In contrast, the effect is zero and noisy when focusing on entry by both the most disruptive and the most
consolidating articles.

Taken together, the results in Tables 5 and E4 paint a nuanced picture of directional change in the wake of
superstar death. The new contributions do not represent a departure from the subfield’s concerns. At the
same time, the citation evidence makes it clear that these additional contributions often draw from more
recent and different sources of knowledge for inspiration. Moreover, rather than to view these contributions
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as the expression of a Kuhnian paradigm shift within the subfield, it seems more appropriate to interpret
them as reflecting the impact of a myriad “small r,” permanent revolutions whereby new ideas come to the
fore without necessarily eclipsing prior approaches.

Subfield characteristics. Table E5 examines how three different characteristics of subfields influence the
magnitude of the treatment effect. We first inquire whether post-death entry by non-collaborators is more
pronounced is subfields with forward momentum, relative to those where activity is relatively more subdued
in the years leading up to the star’s death. To create a metric of subfield “hotness,” we compute the fraction
of all papers in the subfield that were published in the window of five years before the star’s death (or
counterfactual death for the control subfields).xiv We then contrast the magnitude of the treatment effect
in the subsamples of “hot” and “cold” subfields, respectively, by splitting the data across the median of the
hotness covariate. Interestingly, the subfields with relatively less intense activity are driving the post-death
entry effect. The treatment effect for hot subfields is half as small in magnitude, relative to that for cold
subfields, and not statistically significant.

Next, we focus on the number of scientists trained by the star that had been active in the subfield before his
death. We conjecture that the subfields of stars who produced many intellectual “offsprings” may be less
welcoming to outsiders than those in which the stars did not train many graduate students or postdoctoral
fellows. Of course, we do not have evidence that these individuals, once trained, remained intellectually
beholden to the star. To identify trainees, we focus on the subset of collaborators who occupy the first
author position in articles where the star occupies the last position; with the added stipulation that the
coauthored publication appears in a window of ± three years around the year in which the collaborator’s
highest degree was received. We then count of the number of investigators trained by the star before his
(possibly counterfactual) death. The results in Table E5 indicate that subfields that are relatively more
endogamous (more than two trainees, the median of this covariate) experience elevated rates of entry after
the star’s death, relative to before. However, the difference between the coefficients corresponding to subfield
with an above median of number of trainees versus below median number of trainees is not itself statistically
significant.

Finally, we examine whether a star’s level of commitment to a subfield moderates the extent of the post-death
entry boost. Recall from Table 6 that the subfields where stars are relatively more important experience more
entry following the star’s death. A star could be important to a subfield, while not being fully committed to
it, in the sense that his presence in the subfield represents only a small part of his overall published output.
Empirically, we compute commitment as the fraction of a star’s publications that fall into the focal subfield,
and we split the data according to the median of this measure (which is equal to 0.14 in the data). The
magnitudes of the treatment effects are very similar. What appears to be associated with the post-death
entry boost is the star’s importance to the subfield while alive, and not the extent of his commitment to it.

Impact of research infrastructure needs. Our analysis is limited to the life sciences and biomedical
research. Though this area accounts for a large fraction of publicly funded, civilian research funding in
the United States, it is not necessarily representative of all fields of science. In particular, some domains
of research, like high-energy particle physics for example, require access to expensive and lumpy capital
equipment, such as the Large Hadron Collider that came on line in 2009 at the cost $8 billion dollars
(Stephan 2012). In contrast to the “big science,” hypercollaborative projects that are emerging as the norm
in these fields (e.g., Aad et al. 2015), academic life scientists require funding in sizable, but more modest
amounts to do frontier research. In scientific domains where capital needs are lumpy, the phenomenon of
entry in the wake of the passing of an eminent scientists may play out very differently, depending on the
institutions that govern access to the scarce capital equipment.

xivOnly the articles in the subfield that were published before the death are taking into account when computing this ratio.
The mean hotness across subfields is 0.61 (very similar to the median), with a standard deviation equal to 0.21.
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Within biomedical research, large-scale clinical trials most closely resemble the characteristics of those other
capital-intensive science fields. These necessitate a large infrastructure of data collection, monitoring, and
management, which is why these activities are often consolidated in large cooperative groups such as the
AIDS Clinical Trials Group, the Children’s Oncology Group, or the Framingham Heart Study. PubMed has
a “publication type” field which allows us to identify the subfields that are clinical-trial intensive (10% of
the subfields) versus those that are not (the remaining 90%).

Table E6 replicates the results of Table 3 separately for these two subsamples. Unsurprisingly, our ability
to estimate statistically significant effects is limited to the much larger set of non clinical trial-intensive
subfields. That said, the magnitudes for the clinical trial-intensive subfields are very similar.

Star characteristics. We saw in Table 6 that the passing of stars that shone brighter while they were
alive (measured by citations, publications or funding at death) appear to be driving much of the effect on
non-collaborator entry. Tables E7 and E8 focus on other star characteristics that might moderate the core
finding. The first two columns of Table E7 show that the subfields of relatively younger stars (those aged 60
and below at the time of their deaths, the median in our sample) account for much of the overall impact of
death—the magnitude of the effect for older stars is very small and imprecisely estimated. However, there is
potentially a distinction between being “young in the field” and simply being young. We measure experience
in a subfield by capturing the year in which the star first published within it. Subfield experience varies
from 1 to 38 years, with a median of seven and a mean of 8.36. The last two columns of Table E7 imply that
the stars who are above median in subfield experience are associated with slightly more post-death entry,
but the difference is very slight.

Table E8 brings more nuance to the analysis by focusing on the extent to which the star was leading vs.
lagging the frontier of his subfields at the time of death. We develop two alternative measures of “distance
to the frontier.” We assume that frontier work will be more likely to reference more recent science, and
alternatively will tend to be tagged by MeSH keyword combinations that are of more recent vintage. In
a window of five years before the death, we then contrast the difference in reference vintage (respectively
MeSH term combination vintage) for articles written by the star vs. articles written by all other authors. We
then split subfields according to the median of this difference. Across all measures, the results in Table E8
tend to show that the effect of post-death entry are larger for those subfields where the star was leading
when he passed, relative to those where his lead may have been slight or his research even staler than that
of other researchers in the subfield.

Outsiders vs. competitors: A reprise. Recall that Figure 3 focused on the extent to which related
authors were outsiders vs. previous incumbents in the subfields that expand in the wake of a star’s death.
For every related article, we matched their authorship roster to the Faculty Roster of the AAMC. Using the
matched authors’ past publication record, we can then ascertain the fraction of each related author’s output
that fall in the focal subfield. We then sorted each related article into 11 mutually exclusive bins: zero overlap
(which corresponds to the bottom two quartiles of the overlap distribution), and a separate bin for every five
percentiles above the median (50th to 55th percentile, 55th to 60th percentile,. . . , 95th to 99th percentile), as
well as a top percentile bin. We then computed the corresponding measures of subfield activity by aggregating
the data up to the subfield/year level. We presented the results graphically in Figure 3, Panel B, where each
dot corresponds to the magnitude of the treatment effect in a separate regression with the outcome variable
being the number of articles in each subfield that belong to the corresponding bins.

In Table E9, we provide, in regression table form this time, a variant of Table 3 where overlap is measured
not just with respect to the focal subfield, but rather with respect to the combined subfields of a given star.
We also simplify the number of bins, with only five: related articles by new scientists, related articles by
scientists with zero overlap who have published in the past in other subfields, related articles by scientists in
the third quartile of overlap, related articles by scientists whose past publication record puts them between
the 75th and 95th percentile of the overlap distribution, and finally related articles by scientists whose past
publication record puts them above the 95th percentile of the overlap distribution. With this “global”
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measure of overlap, one can observe that the post-death entry boost is driven by scientists with no, or only
limited past participation in the subfields where the star was active.

The lifecycle of stardom. The results in our manuscript naturally raise implications for welfare. We
expound the view that once securely ensconced at the helm of their field, stars leverage their power for
longer than a benevolent social planner might prefer. This argument would be less tenable if stars were
able to remain at the peak of their intellectual abilities until the very twilight of their careers. To shed
light on the career life cycle for superstars, we focus on the 5,878 control stars in our analytic sample, and
construct a panel dataset of publications at the star scientist-year level.xv Using Poisson specifications, we
then regress publication output onto year effects, indicator variables for degree (MD, PhD, MD/PhD), an
indicator variable for female scientists, indicator variable for departmental affiliation (medicine vs. surgery
vs. cell biology, etc.), indicator variables for the year in which the highest degree was received as well as
52 indicator variables for age effects (from age 29 to age 80, with ages below 29 absorbed in the omitted
category).

Panel A of Figure E4 displays the estimates corresponding to the age effects when then outcome in the
specification is the overall number of publications in a given year. Panel B restricts the outcome measure to
publications whose number of long-run citations lies above the 95th percentile of the vintage-specific citation
distribution at the article level. Panel C proceeds in the same spirit, but focuses on even more impactful
publications, those whose number of long-run citations lie above the 99th percentile of the vintage-specific
citation distribution at the article level. As can be observed in all three panels, the productive life cycle
of stars follows an inverted U-shaped pattern, with a peak occurring earlier for highly cited publications,
followed by a steeper drop off.

The circle of scientific life. The impacts in the final years of a star’s life are not necessarily indicative
of their contributions writ large. Indeed, the lofty accomplishments which earned them superstar status
suggest that their net contribution to society is likely positive. A longer view would also recognize that the
scientific journeymen of today may well become the stars of tomorrow.

One lens into this phenomenon is to examine the status of scientists that produce new contributions in a
subfield. In the first two columns of Table E10, we parse every article by non-collaborators, distinguishing
between those that have a star author from those for which none of the authors are stars. We find that the
effect is driven by related articles where none of the authors is particularly famous. One limitation of this
dichotomy is that it fails to take into account long-run career trajectories, since it lumps together mediocre
scientists with those that have not yet made their mark, but will do so in the future.

We can explore this dynamic by taking advantage of the fact that roughly 20% of the eminent life scientists
in our sample have a clear date attached to their accession to star status: the year of appointment as a
Howard Hughes Medical Investigator, or the year of election to the National Academy of Science or the
National Academy of Medicine. These events mark their recipients as among the most celebrated within the
superstar sample. With this more rarefied definition of stardom, we can now distinguish between related
authors who are “never stars,” “current stars,” and “future stars.” The next three columns of Table E10
show that future star authors are disproportionately likely to contribute to treated subfields after the star
has passed away, consistent with the idea that the outsiders of today can sometimes turn into the stars of
tomorrow—a phenomenon we refer to as the circle of academic life.

xvWe eliminate the 452 extinct stars from the sample since their life cycle was interrupted prematurely.
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Table E1a: Extended Descriptive Statistics, Subfield-level outcome variables 
 
 Control Subfields  Treated Subfields 

 Mean Median Std. Dev.  Mean Median Std. Dev. 
Baseline stock of related NIH grants, total 23.824 17 25.570  22.449 17 23.566 
Baseline stock of related NIH grants, collaborators 4.876 2 6.952  4.446 2 6.011 
Baseline stock of related NIH grants, non-collaborators 19.301 13 22.170  18.306 13 20.659 
Baseline stock of related articles, bottom quartile of citation impact 6.614 4 8.322  6.741 4 8.611 
Baseline stock of related articles, 2nd quartile of citation impact 13.423 9 13.983  13.356 9 14.057 
Baseline stock of related articles, 3rd quartile of citation impact 20.100 14 19.051  19.996 14 18.937 
Baseline stock of related articles, 75th < citation impact< 95th pctl. 21.762 16 19.810  21.271 16 19.289 
Baseline stock of related articles, 95th < citation impact< 99th pctl. 5.233 3 5.933  5.108 3 5.844 
Baseline stock of related articles, citation impact > 99th pctl. 1.257 1 2.129  1.280 0 2.360 
Baseline stock of related articles, outsiders 25.167 19 21.966  23.046 17 21.194 
Baseline stock of related articles, incumbents 16.000 9 19.960  17.056 11 19.908 
Baseline stock of related articles, proximate to source (cardinal measure) 31.353 24 31.179  32.022 25 31.854 
Baseline stock of related articles, distant from source (cardinal measure)  37.037 19 49.598  35.730 18 48.119 
Baseline stock of related articles, proximate to source (ordinal measure) 32.730 31 17.223  32.786 31 17.000 
Baseline stock of related articles, distant from source (ordinal measure)  35.661 15 51.796  34.966 14 51.735 
Baseline stock of related articles, references within subfield 54.627 42 48.492  53.963 41 47.581 
Baseline stock of related articles, references outside subfield 13.764 7 19.080  13.789 7 19.159 
Baseline stock of related articles, cites the star 32.332 22 34.199  31.076 22 32.141 
Baseline stock of related articles, does not cite the star 36.058 24 37.875  36.677 24 39.633 
Baseline stock of related articles, recent references 25.390 16 29.948  25.300 16 29.643 
Baseline stock of related articles, old references 43.000 32 39.830  42.453 32 39.545 
Baseline stock of related articles, recent MeSH terms (individual) 47.225 34 44.565  46.781 34 43.835 
Baseline stock of related articles, old MeSH terms (individual) 20.465 7 32.090  20.318 7 30.955 
Baseline stock of related articles, recent MeSH terms (combinations) 34.242 23 36.401  33.941 23 35.964 
Baseline stock of related articles, old MeSH terms (combinations) 30.569 20 34.234  30.179 20 33.176 
Baseline stock of related articles, with no star author 50.222 36 45.708  50.241 36 46.113 
Baseline stock of related articles, with at least one star author 18.168 12 19.281  17.512 12 18.411 
Baseline stock of related articles, with current elite author 62.275 46 55.514  61.728 45 55.169 
Baseline stock of related articles, with no current or future elite author 2.699 1 4.855  2.657 1 4.715 
Baseline stock of related articles, with future elite author 3.416 2 5.079  3.367 2 4.916 
Note: All variables are limited to subfield activity by non-collaborators, unless otherwise specified. 
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Table E1b: Extended descriptive statistics, key covariates 
 
 

Control Subfields 
 

Treated Subfields 

 Mean Median Std. 
Dev. 

 Mean Median Std. 
Dev. 

Star-level        
Age at Death 58.100 58 8.795  58.100 58 8.796 
Investigator Cumulative Nb. of Publications 164 131 123  170 143 118 
Investigator Cumulative Nb. of Citations 12,141 8,010 12,938  11,580 8,726 10,212 
Investigator Cumulative NIH Funding at Baseline $18,784,517 $11,904,846 $25,160,518  $17,637,726 $12,049,690 $24,873,018 
Star’s number of past trainees (overall) 8.665 6 8.991  8.379 7 7.661 
Subfield-level        
Importance of the star to the subfield 0.152 0 0.134  0.151 0 0.132 
Commitment of the star to the subfield 0.160 0 0.149  0.157 0 0.149 
Subfield coherence [PMRA-based measure] 0.602 1 0.131  0.603 1 0.128 
Subfield coherence [citation-based measure] -0.003 0 0.019  -0.003 0 0.023 
Subfield cliquishness [Clustering Coefficient] 0.774 1 0.140  0.774 1 0.137 
Cumulative Nb. of editorials by coauthors 122.453 35 217.358  118.844 39 201.803 
Nb. of coauthors in study sections 0.324 0 0.846  0.369 0 0.971 
% of subfield NIH funding controlled by the star’s collaborators 0.285 0 0.315  0.269 0 0.307 
Subfield “hotness” 0.597 1 0.212  0.596 1 0.217 
Star’s number of past trainees in the subfield 1.917 1 2.450  1.803 1 2.171 
Years of experience in the subfield 8.277 7 5.750  8.493 7 6.078 
Relative lead of the star in subfield [Individual MeSH measure] 0.045 -0 1.879  0.036 -0 1.741 
Relative lead of the star in subfield [2-way combo MeSH measure] -0.028 0 4.447  -0.089 0 4.334 
Relative lead of the star in subfield [backward reference measure] 0.053 -0 6.902  0.227 -0 6.833 
Note: This table reports summary statistics for all of the key covariates that we interact with the treatment effect in order to explore the underlying 
mechanisms of star death. 
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Table E2a: Correlation matrix, Subfield-level covariates 
  (1) (2) (3) (4) (5) (6) (7) 

(1) Importance of the star to the subfield 1.00       
(2) Commitment of the star to the subfield 0.34** 1.00      
(3) Star’s number of past trainees in the subfield 0.23** 0.24** 1.00     
(4) Subfield coherence [PMRA-based measure] -0.34** -0.07** 0.04** 1.00    
(5) Subfield coherence [citation-based measure] -0.05** -0.03** -0.01 0.00 1.00   
(6) Subfield cliquishness [clustering coefficient] -0.25** -0.37** -0.40** -0.10** 0.12** 1.00  
(7) Cumulative nb. of editorials by coauthors -0.06** -0.20** 0.01* 0.07** -0.03** -0.00 1.00 
(8) Nb. of coauthors in study sections -0.02** -0.11** 0.13** 0.05** -0.02** -0.04** 0.48** 
(9) % of subfield NIH funding controlled by the star’s collaborators 0.36** 0.15** 0.24** -0.12** -0.09** -0.25** 0.10** 
(10) Subfield “hotness” -0.03** -0.07** -0.10** -0.05** -0.09** 0.24** -0.04** 
(11) Years of experience in the subfield 0.12** 0.30** 0.38** 0.07** 0.02** -0.44** 0.09** 
(12) Relative lead of the star in subfield [individual MeSH measure] 0.01* 0.01 -0.00 -0.04** 0.01 0.02** -0.01** 
(13) Relative lead of the star in subfield [2-way combo MeSH measure] -0.00 0.01 -0.00 0.01** 0.01 -0.00 -0.01* 
(14) Relative lead of the star in subfield [backward reference measure] -0.08** -0.00 -0.04** 0.02** 0.02** 0.04** -0.04** 

  (8) (9) (10) (11) (12) (13) (14) 

(8) Nb. of coauthors in study sections 1.00       
(9) % of subfield NIH funding controlled by the star’s collaborators 0.12** 1.00      
(10) Subfield “hotness” -0.02** -0.05** 1.00     
(11) Years of experience in the subfield 0.09** 0.22** -0.49** 1.00    
(12) Relative lead of the star in subfield [individual MeSH measure] 0.00 0.00 -0.01† -0.01† 1.00   
(13) Relative lead of the star in subfield [2-way combo MeSH measure] -0.01** 0.00 -0.05** 0.03** 0.29** 1.00  
(14) Relative lead of the star in subfield [backward reference measure] -0.03** -0.06** -0.10** 0.02** 0.05** 0.09** 1.00 

 
Table E2b: Correlation matrix, Star-level covariates 
       
  (1) (2) (3) (4) (5) 
(1) Age at Death 1.00     
(2) Investigator Cumulative Nb. of Publications 0.40** 1.00    
(3) Investigator Cumulative Nb. of Citations 0.21** 0.74** 1.00   
(4) Investigator Cumulative NIH Funding at Baseline 0.38** 0.45** 0.34** 1.00  
(5) Star’s number of past trainees (overall) 0.33** 0.54** 0.56** 0.36** 1.00 

† p < 0.10, * p < 0.05, ** p < 0.01 
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Table E3: Scientific Impact of Entry by Non-Collaborators 

 All Pubs 
Bttm. 

Quartile 
2nd 

Quartile 
3rd 

Quartile 

Btw.75th 
& 95th 
pctl. 

Btw. 95th 
& 99th 
pctl. 

Above 
99th 
pctl. 

Panel A: Anticipated Death Events 

After Death 
0.128** 0.043 0.082* 0.093* 0.151** 0.214** 0.333** 
(0.038) (0.045) (0.041) (0.041) (0.048) (0.069) (0.115) 

Nb. of Investigators 4,018 3,982 4,018 4,016 4,013 3,946 3,214 
Nb. of Fields 15,084 14,885 15,082 15,082 15,076 14,623 9,586 
Nb. of Field-Year Obs. 554,869 547,637 554,795 554,795 554,573 537,883 352,571 
Log Likelihood -1,234,030 -315,200 -504,577 -633,777 -643,787 -234,637 -67,585 

Panel B: Sudden Death Events 

After Death 
0.026 -0.102† -0.069 -0.040 0.090 0.243** 0.310** 

(0.048) (0.057) (0.055) (0.054) (0.057) (0.075) (0.116) 
Nb. of Investigators 4,656 4,615 4,656 4,655 4,656 4,592 3,777 
Nb. of Fields 17,549 17,253 17,539 17,545 17,549 17,063 11,331 
Nb. of Field-Year Obs. 645,771 634,958 645,407 645,623 645,771 627,898 417,017 
Log Likelihood -1,396,961 -338,628 -563,370 -726,799 -756,820 -285,678 -83,118 
Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. Like in Table 4 in the manuscript, 

the dependent variable is the total number of publications by non-collaborators in a subfield in a particular 
year, where these publications fall in a particular quantile bin of the long-run, vintage-adjusted citation 
distribution for the universe of journal articles in PubMed. In Panel A, the sample is limited to 1,576 subfields 
associated with 229 stars whose death is anticipated (along with the corresponding control subfields); and in 
Panel B, the sample is limited to 1,342 subfields associated with 185 stars whose death is sudden and unexpected 
(along with the corresponding control subfields). All models incorporate a full suite of year effects and subfield 
age effects, as well as a term common to both treated and control subfields that switches from zero to one after 
the death of the star. Exponentiating the coefficients and differencing from one yield numbers interpretable as 
elasticities. For example, the estimates in the first column of Panel A, imply that treated subfields see an 
increase in the number of contributions by non-collaborators after the superstar passes away—a statistically 
significant 100×(exp[0.128]-1)=13.66%. 

 
Robust standard errors in parentheses, clustered at the level of the star scientist. 
†p < 0.10, *p < 0.05, **p < 0.01. 
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Table E4: Disruptive vs. Consolidating Entry 

 
Below 

10th pctl. 

Btw. 10th 
& 25th 
pctl. 

Btw. 25th 
and 50th 

pctl. 

Btw. 50th 
and 75th 

pctl. 

Btw. 75th 
and 95th 

pctl. 

Above 95th 
pctl. 

Disruption Index d d=-1 -1< d <-.74 -.74< d <-.50 -.50< d <-.14 -.14< d <0.53 d >0.53 

After Death 0.005 0.071 0.139*** 0.154*** 0.121*** 0.002 
(0.041) (0.041) (0.034) (0.031) (0.034) (0.041) 

Nb. of Investigators 6,189 6,184 6,247 6,254 6,253 6,077 
Nb. of Fields 33,610 33,868 34,183 34,205 34,147 30,889 
Nb. of Field-Year Obs. 1,237,024 1,246,410 1,257,883 1,258,695 1,256,557 1,136,914 
Log Likelihood -670,691 -837,488 -1,218,093 -1,268,501 -1,134,304 -448,029 

Note: Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total 
number of publications by non-collaborators in a subfield in a particular year, where these publications fall within 
a particular quantile bin of the Funk & Owen-Smith (2017) disruptiveness index, denoted by d. All models 
incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated and control 
subfields that switches from zero to one after the death of the star. Exponentiating the coefficients and differencing 
from one yield numbers interpretable as elasticities. Robust standard errors in parentheses, clustered at the level 
of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 

 

 

Table E5: Post-death entry and subfield characteristics 
Metric of field 
Momentum “Hotness”  Number of 

Trainees  Commitment to 
the Field 

 Below 
Median 

Above 
Median 

 Below 
Median 

Above 
Median 

 Below 
Median 

Above 
Median 

After Death 
0.130** 0.066  0.100* 0.059†  0.059† 0.069 
(0.028) (0.044)  (0.041) (0.035)  (0.032) (0.046) 

Nb. of Investigators 4,870 4,694  3,566 4,881  4,477 4,520 
Nb. of Fields 17,427 16,791  8,652 25,566  17,072 17,146 
Nb. of Field-Year Obs. 642,219 616,957  317,813 941,363  627,355 631,821 
Log Likelihood -1,453,789 -1,137,226  -677,372 -2,085,856  -1,345,958 -1,413,964 
Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is 

the total number of publications by non-collaborators within a subfield in a particular year. Each pair of 
columns splits the sample across the median of a particular covariate for the sample of subfields (treated 
and control) in the baseline year. The first set of two columns examines differences in the extent to which 
the “hotness” of the subfield—defined as the fraction of the subfield’s activity that falls within the time 
window of five years before the star’s death—influences the rate at which non-collaborators enter the field 
after the star passes away. The second set of columns examines the impact of having former trainees of the 
star in the subfield. The final set of columns splits the sample according to the degree of commitment of 
the star to the subfield (i.e., the fraction of his/her output that falls within the subfield). All models 
incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated 
and control subfields that switches from zero to one after the death of the star. Exponentiating the 
coefficients and differencing from one yield numbers interpretable as elasticities. Robust standard errors in 
parentheses, clustered at the level of the star scientist. †p<0.10, *p<0.05, **p<0.01. 
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Table E6: Impact of Research Infrastructure Needs 
 Clinical Trial-intensive  Other 

 All 
Authors 

Collabs. 
Only 

Non-
Collabs. 

Only 
 All 

Authors 
Collabs. 

Only 

Non-
Collabs. 

Only 

After Death 0.061 -0.147 0.086†  0.060† -0.262** 0.095** 
(0.051) (0.102) (0.052)  (0.031) (0.065) (0.032) 

Nb. of Investigators 1,739 1,666 1,739  5,753 5,630 5,753 
Nb. of Fields 3,437 3,309 3,437  30,781 29,787 30,781 
Nb. of Field-Year Obs. 125,919 121,230 125,919  1,133,257 1,096,675 1,133,257 
Log Likelihood -315,048 -77,390 -302,267  -2,628,821 -660,968 -2,510,273 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications in a subfield in a particular year. The first set of three columns replicate our 
benchmark specifications (Table 3, columns 1, 2, and 3) on the sample of subfields where research often entails 
performing large scale clinical trials. The second set of three columns replicate the benchmark specifications on 
the sample of subfields where research seldom entails performing large-scale clinical trials. Clinical trial 
publications were identified using the publication type field in PubMed. All models incorporate a full suite of 
year effects and subfield age effects, as well as a term common to both treated and control subfields that switches 
from zero to one after the death of the star, to address the concern that age, year and individual fixed effects 
may not fully account for trends in subfield entry around the time of death for the deceased star. Robust 
standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 

 

 

 

Table E7: Influence of star age and in-field experience 
  Star Birth Age 

at Time of Death 
Star Experience in the Field 

at Time of Death 

 Younger than 61 61 or Older Recent 
(less than 7 years) 

Established 
(more than 7 years) 

After Death 0.108** 0.009 0.061† 0.092* 
(0.041) (0.041) (0.037) (0.036) 

Nb. of Investigators 5,542 1,936 5,166 4,257 
Nb. of Fields 27,022 7,196 17,933 16,285 
Nb. of Field-Year Obs. 995,153 264,023 659,252 599,924 
Log Likelihood -2,178,601 -581,832 -1,376,994 -1,348,968 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications by non-collaborators within a subfield in a particular year. All models incorporate 
a full suite of year effects and subfield age effects, as well as a term common to both treated and control 
subfields that switches from zero to one after the death of the star, to address the concern that age, year and 
individual fixed effects may not fully account for trends in subfield entry around the time of death for the 
deceased star. Exponentiating the coefficients and differencing from one yield numbers interpretable as 
elasticities. Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 
0.05, **p < 0.01. 
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Table E8: Star’s leadership relative to the frontier in his/her 
subfield 

Metric of distance to 
the subfield frontier 

Vintage of 
cited references  Vintage of MeSH terms 

   Individual  2-way combinations 

 Lagging Leading  Lagging Leading Lagging Leading 

After Death 0.117** 0.154*  0.063 0.192** 0.094† 0.167** 
 (0.037) (0.072)  (0.047) (0.049) (0.057) (0.041) 
Nb. of Investigators 3,373 3,075  3,328 3,210 3,333 3,216 
Nb. of Fields 9,226 7,664  8,647 8,243 8,762 8,128 
Nb. of Field-Year Obs. 339,900 282,526  318,626 303,800 322,838 299,588 
Log Likelihood -775,180 -618,943  -713,539 -682,532 -729,341 -666,577 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications by non-collaborators within a subfield in a particular year. We develop two 
alternative measures of “distance to the frontier.” We assume that frontier work will be more likely to 
reference more recent science, and alternatively will tend to be tagged by MeSH keyword combinations that 
are of more recent vintage. In a window of five years before the death, we then contrast the difference in 
reference vintage (respectively MeSH term combination vintage) for articles written by the star vs. articles 
written by all other authors. We then split subfields according to the median of this difference. All models 
incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated 
and control subfields that switches from zero to one after the death of the star, to address the concern that 
age, year and individual fixed effects may not fully account for trends in subfield entry around the time of 
death for the deceased star. Robust standard errors in parentheses, clustered at the level of the star scientist. 
†p < 0.10, *p < 0.05, **p < 0.01. 

 
 

Table E9: Influence of field overlap between related authors and 
the stars on the rate of entry into subfields 

 New 
Scientists 

Below 
Median 

Btw. 50th and 
75th pctl. 

Btw. 75th and 
95th pctl. 

Above 
95th pctl. 

Intellectual Overlap x Not Defined x=0 0<x<6.35% 6.35%<x<36.70% x>36.70% 

After Death 0.081 0.113** 0.096* -0.000 -0.075 
(0.082) (0.028) (0.038) (0.061) (0.128) 

Nb. of Investigators 4,724 6,260 6,167 5,638 3,622 
Nb. of Fields 16,961 34,216 33,688 29,845 15,241 
Nb. of Field-Year Obs. 625,066 1,259,102 1,239,873 1,098,754 561,888 
Log Likelihood -88,890 -1,508,995 -970,344 -633,095 -149,524 

Note:  This table displays a variation of the results depicted in Figure 3, Panel B in regression form. Estimates stem 
from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of 
publications by non-collaborators within a subfield in a particular year, broken into five bins: publications by 
new scientists; publications that fall below the median of our measure of field overlap between the star and the 
related investigators identified on these articles’ authorship roster; publications that fall in the third quartile of 
the field overlap measure; publications that fall in the fourth quartile but below the top ventile of the field 
overlap measure; and finally publications that fall in the top ventile of the measure. In contrast to Figure 3, in 
this case overlap has been defined with respect to the “global” subfield that encompasses all the subfields of a 
given star in the data, as opposed to the “local” measure where overlap with the focal subfield determines the 
extent of overlap. All models incorporate a full suite of year effects and subfield age effects, as well as a term 
common to both treated and control subfields that switches from zero to one after the death of the star, to 
address the concern that age, year and individual fixed effects may not fully account for trends in subfield entry 
around the time of death for the deceased star. Robust standard errors in parentheses, clustered at the level of 
the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table E10: The Eminence of Entrants—The Circle of Life 

 Star Related Author  Elite Related Author 
 No Yes  Never Current Future 
After Death 0.103** 0.055†  0.066* 0.077 0.205** 

(0.036) (0.030)  (0.029) (0.052) (0.074) 
Nb. of Investigators 6,254 6,260  6,260 5,721 5,886 
Nb. of Fields 34,160 34,218  34,218 28,992 29,650 
Nb. of Field-Year Obs. 1,257,053 1,259,176  1,259,176 1,067,107 1,091,439 
Log Likelihood -1,287,272 -2,324,369  -2,615,424 -373,036 -377,540 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total 
number of publications by non-collaborators in a subfield in a particular year, where these publications have 
scientists on their authorship roster with certain demographic characteristics. The first two columns examine the 
differential effect of the publications in the subfield having a star author vs. no star author. We rely on our home-
grown definition of star—a fixed universe of 12,935 individuals that are in some sense “born” as stars. In the next 
two columns, we focus on two of our metrics of stardom: becoming a Howard Hughes Medical Investigator and or 
becoming a member of the National Academy of Science/Medicine. At a given point of time, every related author 
either (i) is already a member of this rarefied elite; (ii) will be member of it in the future; or (iii) will never become 
a member of it, and this taxonomy provides a basis to split the output of each subfield into three non-overlapping 
categories in each year. All models incorporate a full suite of year effects and subfield age effects, as well as a term 
common to both treated and control subfields that switches from zero to one after the death of the star. 
Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, 
the estimates in the first column imply that treated subfields see an increase in the number of contributions by 
non-stars after the superstar passes away—100×(exp[0.103]-1)=10.85%. 

Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Figure E1 

Subfield Growth and Decline—Raw Data 
 

A. All Authors B. Collaborators C. Non-Collaborators 

   
Note: Panels A, B, and C show the path of mean publication activity for treated and control subfields around the year of star death, broken down by total number of 

publications in the subfield (Panel A), number of publications in the subfield with a coauthor of the star (Panel B), and number of publications in the subfield 
without any coauthor of the star (Panel C). 
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Figure E2: Effect of Star Scientist Death on Subfield Growth and Decline 

Non-collaborator Activity Only—All Publications 
 

  
  

A. Anticipated Death B. Sudden Death 

  
Note: The graphs in this figure are patterned after Panel C in Figure 2 in the main body of the manuscript. The dark blue dots correspond to coefficient estimates 

stemming from conditional (subfield) fixed effects Poisson specifications in which publication flows by non-collaborators within a subfield are regressed onto 
year effects, subfield age effects, as well as 20 interaction terms between treatment status and the number of years before/after the death event (the indicator 
variable for treatment status interacted with the year of death is omitted). The specifications also include a full set of lead and lag terms common to both the 
treated and control subfields to fully account for transitory trends in subfield activity around the time of the death. These regressions are run separately on 
the subsample of subfields associated with stars whose death was anticipated (and their controls—Panel A), and on the subsample of subfields associated with 
stars whose death was sudden (and their controls—Panel B). The 95% confidence interval (corresponding to robust standard errors, clustered around star 
scientist) around these estimates is plotted with the vertical light blue lines. 
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Figure E3: Effect of Star Scientist Death on Subfield Growth and Decline 

Non-collaborator Activity Only—Top 5% publications by citation 
 

  
  

A. Anticipated Death B. Sudden Death 

  
Note: The graphs in this figure are patterned after Panel C in Figure 2 in the main body of the manuscript. The dark blue dots correspond to coefficient estimates 

stemming from conditional (subfield) fixed effects Poisson specifications in which the flows of highly-cited publications (top 5% of the vintage-specific citation 
distribution) by non-collaborators within a subfield are regressed onto year effects, subfield age effects, as well as 20 interaction terms between treatment status 
and the number of years before/after the death event (the indicator variable for treatment status interacted with the year of death is omitted). The specifications 
also include a full set of lead and lag terms common to both the treated and control subfields to fully account for transitory trends in subfield activity around 
the time of the death. These regressions are run separately on the subsample of subfields associated with stars whose death was anticipated (and their controls—
Panel A), and on the subsample of subfields associated with stars whose death was sudden (and their controls—Panel B). The 95% confidence interval 
(corresponding to robust standard errors, clustered around star scientist) around these estimates is plotted with the vertical light blue lines. 
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Figure E4 
The Life Cycle of Stardom 

 

A. All Publications B. Highly-cited Publications 
(Top 5%) 

C. Highly-cited Publications 
(Top 1%) 

   
Note: For the sample of 5,878 control superstars, we create a panel dataset at the scientist-year level. We regress (i) publication output in a given year (Panel A) and (ii) 
highly-cited publications in a given year (Panels B and C) onto year effects, indicator variables for degree (MD, PhD, MD/PhD), an indicator variable for female scientists, 
indicator variable for departmental affiliation (medicine vs. surgery vs. cell biology, etc.), indicator variables for the year in which the highest degree was received as well 
as 52 indicator variables for age effects (from age 29 to age 80, with ages below 29 absorbed in the omitted category). In Panel B, a publication is deemed to be highly 
cited if it falls above the 95th percentile of the vintage-specific citation distribution at the article level. In Panel C, a publication is deemed to be highly cited if it falls 
above the 99th percentile of the vintage-specific citation distribution at the article level. The above plots display the estimates for the age indicator variables up to the 
age of 70 (to preserve the same scale across the three figures), together with their associated 95% confidence interval. The list of covariates is strictly identical across the 
three panels. 

 



Appendix F: Robustness Checks

Balanced panel. With treatment events staggered over time, a concern with the dynamic specifications
summarized in Figure 2 is that the magnitude of the treatment effect might not be stable over time. Because
our observation period stops in 2006, the lead terms far away from death are identified by only a subsample
of the data (see Figure F1). Could such heterogeneity confound the true dynamics, for example if deaths
that occurred earlier in the sample have a bigger effect? To address this concern, we extend the observation
period used to generate the event study graphs in Figure 2 from 2006 to 2012, resulting in a sample that is
almost perfectly balanced in a window of ten years before to ten years after the death of a superstar. As
can be seen in Figure F2, which replicates Figure 2 in all respects except the length of the analytic sample,
the results change very little.

This figure begs another question: why not simply use this longer observation period as the default through-
out the paper? There are two reasons. First, we cannot identify collaborator status reliably after 2006
because this is the last year of the data in our version of the AAMC Faculty Roster. Second, whereas we
can account precisely for the employment status of the control superstars up to 2006 (the year during which
we coded their CVs), some may retire, or even die in the years that follow, raising the specter that their
subfields are not adequate controls during the 2007-2012 time period. As a result, we quickly revert back to
the observation window 1965-2006 in all that follows.

Main results, rolled up to the scientist-level of analysis. The treatment variable exhibits variation
at the level of the star scientist, and not at the level of the subfield-star pair. Of course, we cluster the
standard errors at the star level, and we exploit the differential position of a star across his subfields to shed
light on mechanisms. But do our main results survive when the data is “rolled up” to the star-year level of
the analysis? To probe the robustness of our benchmark set of results, we lump all related articles for each
star together as if they belonged to a single subfield. Nevertheless, the results in Table F1 and Figure F3 are
very similar to those in Table 3 and Figure 2, both in terms of magnitude and statistical significance. One
exception is the coefficient on the effect of entry by collaborators in Table F1, which is negative as expected,
but smaller in magnitude, relative to the corresponding coefficient in Table 3.

Alternate functional forms. Despite its robustness and appropriateness for the analysis of skewed positive
outcomes, the conditional fixed effects Poisson model of Hausman et al. (1984) has an important shortcoming:
subfields for which there is no variation in the outcome during the observation period (for example, because
the outcome is uniformly zero) drop out of the sample. This is why the number of observations in many
tables varies slightly from column to column. Fixed-effects OLS models do not suffer from this limitation.
In Table F2 and Figure F4, we examine the sensitivity of our benchmark set of results to the choice of
alternative functional forms. In the three columns to the left, we simply use the “raw” number of articles
in the subfield as the outcome, and perform estimation by OLS. Of course, the estimates are not directly
interpretable in terms of elasticities. At the mean of the data, however, the treatment effect in the third
column implies that subfield entry by non-collaborating authors expands by 0.409/3.335 = 12.26%, which is
not all that different from the 8.2% reported in Table 3.

In the three columns to the right, Table F2 reports results corresponding to OLS estimation, but this time
with the outcome variables transformed using the inverse hyperbolic sine function (Burbidge et al. 1988).xvi

In this case, coefficient estimates can be interpreted as elasticities, as an approximation. They are quite
similar once again to those reported in Table 3, except for the effect on entry by collaborators, which is
smaller in magnitude.

xvisinh−1(x) = ln(x +
√
x2 + 1). Unlike the log of x, the inverse hyperbolic sine is defined at zero, which is attractive here

because a substantial proportion of the subfields in the data display no activity in a particular year. For example, all subfields
obviously see entry over the entire observation period, and yet in 31.33% of the subfield-year observations, the number of articles
entering is zero.
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Figure F4 presents dynamic analogs of the results in the the third column (Panel A) and sixth column
(Panel B) of Table F2. In the case of the raw outcomes (Panel A), one can detect a trend in outcome before
the event, though it is not estimated precisely. The results using the inverse hyperbolic sine transformation
(Panel B) exhibit no evidence of a pre-trend.

Size of the control group. The first three columns in Table F3 drop from the sample all the control
subfields, but are otherwise analogous to the core results presented in Table 3, Panel A. In these specifications,
subfields who were treated in the past or will be treated in the future serve as implicit controls for the
subfields currently experiencing the death of their associated star. The results are qualitatively similar to
those displayed in Table 3. However, the corresponding event study graphs (Figure F5) clearly show that
dropping the control group from the estimation sample produces pre-event trends that cast doubt on a
research design based on a single level of difference. This provides a clear rationale for our preferred research
design, which adds an additional level of difference to the data—that provided by control subfields.

The second set of three columns in Table F3 attempt to replicate the results of Table 3 in a sample such that
for each treated subfield, there is exactly one control subfield (selected at random from the set of control
subfields for each treated source). The magnitudes are qualitatively similar to those observed in Table 3, but
the standard errors are larger. We conclude that the approximate 1 : 10 ratio of treated to control subfields
is important insofar as it provides the statistical power to estimate the post-death term that is common
between treated and control subfields, and to do so net of the subfield age and calendar year dynamics.

Are death events exogenous? Could some of the deaths in our sample be caused by stress as others are
seeking to break a stars’ hold on a field? Chronic stress can lead to a wide range of adverse health conditions.
Most of these conditions diminish quality of life but not mortality per se. The most notable link between
stress and death is through heart disease. Thus one possibility is that stress increases the risk of a heart
attack. 14% of the extinct superstars (who account for 16.75% of the treated subfields) die of a heart attack.

In Table F4 (three leftmost columns), we replicate the results of Table 3 while excluding these subfields. The
point estimates are slightly larger in magnitude, and also slightly more precisely estimated when excluding
the subfields associated with heart attack events. Of course, there may be other more indirect channels
through which stress can precipitate death. From a study design perspective, we would be more concerned
with this threat to identification if subfield growth was trending upward before the death. But from the
event study-type figures we present (Figure 2, as well as numerous variations in Appendices E and F), this
does not appear to be the case.

Multi-disciplinary source articles and the validity of the control group. Multi-disciplinary journals
such as PNAS, Science, or Nature account for 10% of the subfields in our data.xvii This could be problematic
insofar as these prestigious outlets publish articles in all scientific fields, and we recruit control source articles
from the same journal and year as that of the treated source article. Take the source paper by Chu et al.
(1998)—already used as an example in Appendix D—which appeared in the issue of Science dated October
23rd of that year. The same issue includes a paper with the title “Climate and groundwater recharge during
the last glaciation in an ice-covered region” and another called “Self-organized growth of three- dimensional
quantum-Dot crystals with fcc-like stacking and a tunable lattice constant.” It would not seem advisable to
use one of these as the source for a control subfield, since they do not pertain to the life sciences, even under
the most expansive definition of this term.

This is not an issue in practice, since to qualify as a control, it is not sufficient for a candidate source article
to appear in the same journal and year as its treated counterpart. In addition, we impose the requirement
that one of our 12,000+ still alive superstars is in last authorship position. This will filter out of the set
of potential controls any non-biomedical articles that appear in these outlets since all the stars in our data

xviiNote that PLoS One, a very large multidisciplinary journal, does not contribute any source article in our sample. This is
because it was founded in 2006, and the latest year of publication for one of the source articles (treated or control) is 2002 (one
year before the latest year of death, which is 2003).
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(deceased or not) are life scientists. We have also replicated the benchmark results excluding the subfields
that are associated with a source article published in either Science, Nature, or PNAS. The results are
displayed in the three rightmost columns in Table F4. The point estimates are very similar to those we
obtain in our benchmark set of analyses (columns 1, 2, and 3 of Table 3).

Source articles, with and without abstracts. In Table F5, we perform one analysis that (imperfectly)
tries to assess the sensitivity of our results to the use of author-chosen information to delineate the set of
intellectual neighbors in a subfield. Ten percent of the subfields in the data radiate from source articles
for which PubMed does not have an abstract. For these subfields, PMRA must therefore make do without
abstract words (i.e., relying solely on title words and MeSH terms) to return a set of neighbors. We reproduce
our benchmark set of specifications (the first panel of Table 3) on the set of subfields radiating from source
articles with and without abstract information. As can be seen above, the estimates for the sample restricted
to abstractless source articles are less precisely estimated than for the sample restricted to the much larger
number of subfields associated with source articles that have an abstract. The magnitudes in both cases,
however, are quite similar, which we find reassuring.

Table 7 estimated on the subsample of less-well cited stars. Table 7 provides evidence that subfield
entry is more pronounced after the death of an eminent scientist when the subfield can be perceived as less
coherent, or when the colleagues of the star are less able to exert control over critical resources after he has
passed away. However, the sample for these results was limited to the subfields of well-cited stars (those
above the median by cumulative citations in the sample, in the year of death). For completeness, Table F6
provides an exact analog to Table 7, except that in this case the sample is limited to the subfields of less
well-cited stars (those below the median by cumulative citations in the sample, in the year of death).

The results in this subsample are less consistent across measures than was the case for the more eminent
stars. Many pairs of columns do not show notable differences between more coherent and less coherent
subfields, or between more indirectly controlled vs. less indirectly controlled subfields. In two instances,
however, the direction of the results is opposite to that observed in Table 7. First, subfields that were
relatively less consolidated according to the metric of Funk and Owen-Smith (2017) see increased entry after
the passing of a less eminent star (second and third columns of Panel A). Second, subfields in which the
less eminent star had important coauthors sitting on NIH study sections in the last five years of his life also
experience elevated rated of entry post-death (second and third columns of Panel B).
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Table F1: Impacts at the level of the star scientist 
 Publication Flows  NIH Funding Flows 

(Nb. of Awards) 

 All 
Authors 

Collabs. 
Only 

Non-Collabs. 
Only 

 
All 

Authors 
Collabs. 

Only 
Non-Collabs 

Only 

 (1) (2) (3)  (4) (5) (6) 

After Death 0.227** -0.121 0.249**  0.248** -0.092 0.272** 
(0.056) (0.088) (0.055)  (0.059) (0.098) (0.058) 

Nb. of Stars 6,369 6,369 6,369  5,440 5,172 5,427 
Nb. of Star-Year Obs. 801,654 801,654 801,654  15,469 14,589 15,436 
Log Likelihood -2,444,982 -663,888 -2,262,127  479,539 452,259 478,516 

Note:  Estimates stem from conditional (star) fixed effects Poisson specifications. The dependent variable is the total 
number of publications in the collection of subfields in which the star (deceased or not) was active in a particular 
year. All models incorporate a full suite of year effects and star career age effects, as well as term common to 
both treated and control stars that switches from zero to one after the (possibly counterfactual) death of the 
star. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For 
example, the estimates in column (3) imply that treated stars see an increase in the number of contributions by 
non-collaborators in their fields—a statistically significant 100×(exp[0.249]-1)=28.27%. Robust standard errors 
in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 

 
 
 
 
 

Table F2: Alternate Functional Forms 
 OLS 

(in levels)  OLS 
(inverse hyperbolic sine) 

 All 
Authors 

Collabs. 
Only 

Non-
Collabs. 

Only 
 All 

Authors 
Collabs. 

Only 

Non-
Collabs. 

Only 

After Death 0.334** -0.145** 0.409**  0.032 -0.054** 0.065** 
(0.108) (0.032) (0.100)  (0.025) (0.014) (0.024) 

Nb. of Investigators 6,260 6,260 6,260  6,260 6,260 6,260 
Nb. of Fields 34,218 34,218 34,218  34,218 34,218 34,218 
Nb. of Field-Year Obs. 1,259,176 1,259,176 1,259,176  1,259,176 1,259,176 1,259,176 
Mean of the Depndt. Var. 3.757 0.606 3.335  1.407 0.289 1.315 
Adjusted R2 0.428 0.380 0.400  0.555 0.329 0.523 

Note:  Estimates stem from (subfield) fixed effects OLS specifications. In columns 1, 2, and 3, the dependent variable 
is the number of publications in a subfield in a particular year. In columns 4, 5, and 6, the dependent variable 
is the inverse hyperbolic sine of the number of publications in a subfield in a particular year. All models 
incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated and 
control subfields that switches from zero to one after the death of the star, to address the concern that age, year 
and individual fixed effects may not fully account for trends in subfield entry around the time of death for the 
deceased star. Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 
0.05, **p < 0.01. 
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Table F3: Alternate Control Groups 
 No Controls  1:1 Ratio 

Treated to Control Subfields 

 All 
Authors 

Collabs. 
Only 

Non-
Collabs. 

Only 
 All 

Authors 
Collabs. 

Only 

Non-
Collabs. 

Only 

After Death 0.052 -0.312** 0.058†  0.023 -0.205** 0.049 
(0.033) (0.045) (0.034)  (0.033) (0.061) (0.034) 

Nb. of Investigators 452 430 452  2,557 2,439 2,557 
Nb. of Fields 3,076 2,885 3,076  6,152 5,800 6,152 
Nb. of Field-Year Obs. 111,708 104,705 111,708  223,416 210,502 223,416 
Log Likelihood -255,523 -57,768 -245,596  -520,195 -118,841 -498,256 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications in a subfield in a particular year. All models incorporate a full suite of year effects 
and subfield age effects. Columns 4, 5, and 6 also include a term common to both treated and control subfields 
that switches from zero to one after the death of the star, to address the concern that age, year and individual 
fixed effects may not fully account for trends in subfield entry around the time of death for the deceased star. 
Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 
0.01. 

 
 
 
 
 
 
 
 

Table F4: Additional Robustness Checks 

 Excluding Heart Attacks  Excluding 
Multi-disciplinary Journals 

 All 
Authors 

Collabs. 
Only 

Non-
Collabs. 

Only 
 All 

Authors 
Collabs. 

Only 

Non-
Collabs. 

Only 

After Death 0.060* -0.235** 0.093**  0.074* -0.212** 0.105** 
(0.030) (0.063) (0.030)  (0.029) (0.058) (0.030) 

Nb. of Investigators 5,817 5,685 5,817  5,811 5,670 5,811 
Nb. of Fields 26,728 25,793 26,728  28,707 27,741 28,707 
Nb. of Field-Year Obs. 983,372 948,973 983,372  1,056,127 1,020,609 1,056,127 
Log Likelihood -2,243,461 -562,978 -2,147,307  -2,455,832 -616,652 -2,355,142 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications by non-collaborators in a subfield in a particular year. All models incorporate a full 
suite of year effects and subfield age effects, as well as a term common to both treated and control subfields that 
switches from zero to one after the death of the star, to address the concern that age, year and individual fixed 
effects may not fully account for trends in subfield entry around the time of death for the deceased star. Robust 
standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table F5: Additional Robustness Checks (cont’d) 
 Only source with abstracts  Only source without abstracts 

 All 
Authors 

Collabs. 
Only 

Non-
Collabs. 

Only 
 All 

Authors 
Collabs. 

Only 

Non-
Collabs. 

Only 

After Death 0.055* -0.234** 0.089**  0.129 -0.224† 0.148† 
(0.028) (0.061) (0.028)  (0.081) (0.118) (0.083) 

Nb. of Investigators 6,009 5,905 6,009  1,549 1,399 1,549 
Nb. of Fields 30,787 30,052 30,787  3,431 3,044 3,431 
Nb. of Field-Year Obs. 1,132,555 1,105,538 1,132,555  126,621 112,367 126,621 
Log Likelihood -2,621,169 -689,447 -2,502,613  -276,654 -46,146 -266,293 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications by non-collaborators in a subfield in a particular year. All models incorporate a full 
suite of year effects and subfield age effects, as well as a term common to both treated and control subfields that 
switches from zero to one after the death of the star, to address the concern that age, year and individual fixed 
effects may not fully account for trends in subfield entry around the time of death for the deceased star. Robust 
standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table F6: The Nature of Entry Barriers for Less Cited Stars 
 
Panel A 
 

Subfield Coherence 

PMRA-based definition  Citation-based definition  Cliquishness 

 
 Below Median Above 

Median   Below Median Above Median   Below 
Median 

Above 
Median  

After Death 0.044 0.024  -0.021 0.128**  -0.018 0.052 
(0.052) (0.047)  (0.047) (0.045)  (0.053) (0.040) 

Nb. of Investigators 2,131 2,257  2,118 2,232  2,087 2,263 
Nb. of Fields 8,068 9,260  8,191 9,137  9,181 8,147 
Nb. of Field-Year Obs. 296,675 340,075  301,130 335,620  337,770 298,980 
Log Likelihood -604,994 -746,571  -690,078 -673,587  -749,640 -595,838 
 
Panel B 
 

Indirect Control through Collaborators 

Editorial Channel  NIH Study Section Channel  Fraction of Subfield 
NIH Funding 

 
 Below Median Above 

Median   Below Median Above Median   Below 
Median 

Above 
Median  

After Death -0.041 0.072  -0.003 0.149†  0.029 0.055 
(0.063) (0.052)  (0.050) (0.083)  (0.049) (0.059) 

Nb. of Investigators 1,024 2,455  2,279 1,367  1,997 2,135 
Nb. of Fields 5,719 11,609  12,153 5,175  7,806 9,522 
Nb. of Field-Year Obs. 210,920 425,830  446,939 189,811  287,089 349,661 
Log Likelihood -495,980 -892,355  -1,000,972 -393,326  -646,673 -713,420 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications by non-
collaborators in a subfield in a particular year. The sample is limited to the subfields in which the least eminent among the stars were active 
(specifically, below the median of the “cumulative citations up to the year of death” metric). Each pair of columns splits the sample across the median 
of a particular covariate for the sample of fields (treated and control) in the baseline year. For example, the first two columns of Panel B compare the 
magnitude of the treatment effect for stars whose collaborators have written an above-median number of editorials in the five years preceding the 
superstar’s death, vs. a below-median number of editorials. All models incorporate a full suite of year effects and subfield age effects, as well as a term 
common to both treated and control subfields that switches from zero to one after the death of the star. Exponentiating the coefficients and differencing 
from one yield numbers interpretable as elasticities. Robust standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 
0.05, **p < 0.01. 
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Figure F1 
Timing of Death Events 
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Figure F2 
Effect of Star Scientist Death on Subfield Growth and Decline 

Balanced Panel 
 

A. All Authors B. Collaborators C. Non-Collaborators 

   
Note: The graphs in this figure are patterned after Figure 2 in the main body of the manuscript. The dark blue dots correspond to coefficient estimates stemming from 

conditional (subfield) fixed effects Poisson specifications in which publication flows in subfields are regressed onto year effects, subfield age effects, as well as 20 
interaction terms between treatment status and the number of years before/after the death event (the indicator variable for treatment status interacted with the year 
of death is omitted). The specifications also include a full set of lead and lag terms common to both the treated and control subfields to fully account for transitory 
trends in subfield activity around the time of the death. The sample used to estimate these specifications differs in one respect from our main sample: it has been 
extended from 2006 to 2012, which entails that at least nine years of data are available to identify the treatment effects far away from death (the latest date of death 
in our sample is 2003). The 95% confidence interval (corresponding to robust standard errors, clustered around star scientist) around these estimates is plotted with 
the vertical light blue lines. 

  



liv 

 
Figure F3: Effect of Star Scientist Death on Subfield Growth and Decline 

Aggregated up to the level of the star scientist 
  
  

A. Non-collaborators B. Collaborators 

Note: The graphs in this figure are patterned after Panel B and C in Figure 2 in the main body of the manuscript. The dark blue dots correspond to coefficient 
estimates stemming conditional (star scientist) fixed effects Poisson specifications in which publication flows within the composite-subfield (comprising all 
the distinct related articles associated with a star’s source articles) are regressed onto year effects, subfield age effects, as well as 15 interaction terms 
between treatment status and the number of years before/after the death event (the indicator variable for treatment status interacted with the year of 
death is omitted). The specifications also include a full set of lead and lag terms common to both the treated and control subfields to fully account for 
transitory trends in subfield activity around the time of the death. The 95% confidence interval (corresponding to robust standard errors, clustered around 
star scientist) around these estimates is plotted with the vertical light blue lines. 
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Figure F4: Effect of Star Scientist Death on Subfield Growth and Decline 
Non-Collaborators—Alternate Functional Forms 
  

A. OLS (in levels) B. OLS (inverse hyperbolic sine) 

 
Note: The graphs in this figure are patterned after Panel C in Figure 2 in the main body of the manuscript. The dark blue dots correspond to coefficient estimates 

stemming from subfield fixed effects OLS specifications in which publication flows by non-collaborators within a subfield are regressed onto year effects, 
subfield age effects, as well as 20 interaction terms between treatment status and the number of years before/after the death event (the indicator variable 
for treatment status interacted with the year of death is omitted). The specifications also include a full set of lead and lag terms common to both the treated 
and control subfields to fully account for transitory trends in subfield activity around the time of the death. In Panel A, the dependent variable is the “raw” 
count of articles in a subfield-year; In Panel B, these counts have been transformed using the inverse hyperbolic sine. The 95% confidence interval 
(corresponding to robust standard errors, clustered around star scientist) around these estimates is plotted with the vertical light blue lines. 
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Figure F5: Effect of Star Scientist Death on Subfield Growth and Decline 
No Control Subfields 

  
  

A. Non-collaborators B. Collaborators 

Note: The graphs in this figure are patterned after Panel B and C in Figure 2 in the main body of the manuscript. The dark blue dots correspond to coefficient 
estimates stemming from conditional (subfield) fixed effects Poisson specifications in which publication flows within a subfield are regressed onto year effects, 
subfield age effects, as well as 20 interaction terms between treatment status and the number of years before/after the death event (the indicator variable 
for treatment status interacted with the year of death is omitted). These regressions are run with subfield activity limited to non-collaborators of the star 
(Panel A), and with subfield activity limited to collaborators of the star (Panel B). The 95% confidence interval (corresponding to robust standard errors, 
clustered around star scientist) around these estimates is plotted with the vertical light blue lines 

 
 

 



Appendix G: Displacement Effects

Conceptual challenges. We find that activity by non-collaborators of the star increases in the fields in
which the superstar was active prior to his death. In principle, it is possible that commensurate declines
can be observed in the fields where these related authors were active but the star was not. However, these
displacement effects might be very diffuse—spread out over many subfields, and thus difficult to detect in
our subfield-level of analysis. To examine this possibility more directly, we shift the level of analysis away
from the subfield to that of the related author.

It is important to note however, that the panel dataset at the related author level is not simply the mirror
image of the subfield panel dataset using an alternative way to aggregate the data. In particular, an author
can only be represented in the sample if he was active in one of the star’s subfields prior to his untimely
death. But we have seen in Figure 3 and Table E9 that the bulk of the effect of death can be traced to
new entrants in the subfield. We do not include these authors in the author-level analysis, because doing
so would imply that the individuals are part of the sample because of an event that is itself a result of the
treatment.

As a consequence, there should be no presumption that the magnitudes of the effect of star death at the
author level and at the subfield level match. Since the author-level analysis necessarily excludes entrants, a
reasonable conjecture is that the author-level effects will be smaller.

Author-level sample. In building up a sample of related authors, we face an important practical hurdle.
A related author is frequently related to more than a single eminent scientist. Around which star should we
anchor the analysis? In order to pin down a single year of treatment for each related author, we use two
different metrics. The first is simply the number of related articles before the star’s death—we associate to
a related author the star with the highest count. The second metric is based on the cardinal relatedness
score—we select the star that has the most highly related article among all the stars to whom the author is
intellectually related. We proceed in a rigorously symmetric fashion for the related authors of control stars.

Since we are now choosing a focal star on which to anchor our analysis, but we know that authors are
related to several distinct stars, we no longer maintain the distinction between those publications that are
related and unrelated to a particular star. Rather, we turn our attention to the effect of superstar death
on the total output of related authors (in terms of publications and NIH grants awarded). Recall that
non-collaborators are contributing more within the subfields of the dead superstars with whom they are
intellectually related (Table 3). Therefore, the absence of changes in total output would imply that this
additional work is displacing work they were doing in other subfields, at least in part.

Results. We are now ready to proceed with a related author-level analysis whose structure parallels that
of our main specifications at the subfield level. We investigate the effect of star death on related authors’
(i) NIH grants awarded; (ii) publication output; and (iii) publication output split between “PI articles” and
“non-PI articles.”xviii

The results are displayed in Table G1. When looking at either publication or grant output, we do not find
evidence of sustained increases after the death of a superstar. When focusing on authors associated with
stars because of the number of related articles between the two, the effect of death tends to be small in
magnitude and statistically indistinguishable from zero (the four leftmost columns of Table G1). These
results change slightly when we focus on authors whose research was, at least in part, very closely related to

xviiiPI articles—those where the focal author appears in first or last position on the authorship roster—are most intimately
identified with his laboratory (Zuckerman 1968; Nagaoka and Owan 2014). In contrast, the articles where the related author
appears in the middle of the authorship list correspond to research projects for which the author’s substantive contribution
might have been marginal.
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that of the star. Here the magnitude of the effects are positive and relatively large in magnitude, but also
imprecisely estimated.

We estimate a dynamic version of these specifications and display the corresponding event study-style graphs
in Figure G1 (publication output) and Figure G2 (grant output). In general, it appears from these figures
that the total output of related authors neither expands nor contracts in the wake of a star’s passing.
Therefore, the related articles contributed to the star’s subfields after they pass away most likely replace,
at least in part, articles that these authors would have written in other intellectual domains had the star
remained alive. Our results are therefore consistent with star extinction driving changes in the direction of
scientific research, rather than shifting the overall level of scientific activity.
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Table G1: Related Authors’ Publication and Grant Output 
 Nb. of Related Articles  Highest Relatedness Score 

 Nb. of 
NIH Grants 

All 
Pubs. 

PI 
Pubs. 

Middle-
Author Pubs.  Nb. of 

NIH Grants 
All 

Pubs. 
PI 

Pubs. 
Middle-

Author Pubs. 

After Death -0.020 0.003 0.014 -0.019  -0.019 0.092 0.087 0.072 
(0.022) (0.060) (0.083) (0.055)  (0.053) (0.228) (0.319) (0.172) 

Nb. of Star Investigators 5,459 5,802 5,766 5,784  1,784 2,017 2,008 2,015 
Nb. of Related Authors 26,728 44,649 42,654 43,483  2,944 3,850 3,811 3,840 
Nb. of Star/Related Author Pairs 39,770 67,740 64,823 66,036  3,542 4,642 4,599 4,632 
Nb. of Author-Year Obs. 888,746 1,402,293 1,357,179 1,382,976  94,132 120,918 120,249 120,822 
Log Likelihood -362,087 -772,285 -468,162 -595,167  -54,512 -86,098 -53,633 -71,209 

Note:  Estimates stem from conditional (related author) fixed effects Poisson specifications. The dependent variable is either the publication output for a related, non-
collaborating author in a particular year, or the number of distinct NIH grants awarded to that author awarded in a particular year. In the four leftmost columns, 
each author is paired with the star with whom s/he had the highest number of related articles. In the four rightmost columns, each author is paired with the 
star with whom s/he had the related article with the highest relatedness score. All models incorporate a full suite of year effects and investigator age effects, as 
well as a term common to both treated and control authors that switches from zero to one after the death of the star. Exponentiating the coefficients and 
differencing from one yield numbers interpretable as elasticities. Robust standard errors in parentheses double-clustered at the level of the star & related authors. 
†p < 0.10, *p < 0.05, **p < 0.01. 
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Figure G1: Effect of Star Scientist Death on Related Authors’ Publication Output 
 

  
  

A. Nb. of Related Articles B. Highest Relatedness Score 

  
Note: The dark blue dots in the above plots correspond to coefficient estimates stemming from conditional fixed effects specifications in which publication output for 

a related, non-collaborating author in a given year is regressed onto year effects, author age effects, as well as 20 interaction terms between treatment status 
and the number of years before/after the death event (the indicator variable for treatment status interacted with the year of death is omitted). The specifications 
also include a full set of lead and lag terms common to both treated and control authors. The 95% confidence intervals (corresponding to robust standard 
errors, clustered at the level of the associated star) around these estimates is plotted with the light-blue vertical lines; Panel A corresponds to a dynamic version 
of the specification in the second column of Table G1; Panel B corresponds to a dynamic version of the specification in the sixth column of Table G1. 
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Figure G2: Effect of Star Scientist Death on Related Authors’ NIH Grants  
 

  
  

A. Nb. of Related Articles B. Highest Relatedness Score 

  
Note: The dark blue dots in the above plots correspond to coefficient estimates stemming from conditional fixed effects specifications in which the number of NIH 

grants awarded to a related, non-collaborating author in a given year is regressed onto year effects, author age effects, as well as 20 interaction terms between 
treatment status and the number of years before/after the death event (the indicator variable for treatment status interacted with the year of death is omitted). 
The specifications also include a full set of lead and lag terms common to both treated and control authors. The 95% confidence intervals (corresponding to 
robust standard errors, clustered at the level of the associated star) around these estimates is plotted with the light-blue vertical lines; Panel A corresponds to 
a dynamic version of the specification in the first column of Table G1; Panel B corresponds to a dynamic version of the specification in the fifth column of 
Table G1. 
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