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Abstract

Appendix A provides omitted proofs, the setting with heterogenous assets, and the
phase diagram of the competitive equilibrium. Appendix B develops the contractual
environment in detail, provides verification theorems and shows how to solve the com-
petitive equilibrium and the planner’s problem as a system of PDEs. Appendix C
provides a discrete-time version of the setting.

Appendix A
In the first part of this Appendix I provide proofs for Propositions 1 and 2, which corre-
spond to the baseline model. In the second part I extend the baseline model to include
heterogenous asset classes and intermediaries, as in Section 6, and I provide the proof of
Proposition 3. For simplicity I don’t consider retirement, as in the baseline model in the
paper. Proofs can be easily extended to incorporate retirement. Finally, Figure 1 shows
the stationary distribution of the competitive equilibrium and the phase diagram.

1 Omitted proofs in the baseline model

Proof of Proposition 1

Consider an optimal plan P and the associated value function S and policy functions ĉ, g,
σx and the law of motion of the endogenous state, µX and σX , all functions of (X,Y ). We
can build a recursive equilibrium using the same law of motion µX and σX . From the FOC
for growth we get

q = ι′(g) (1)
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From the FOC for households’ consumption we get ζ =
(
a−ι(g)−ĉX

S

)−1/ψ
= ĉ
−1/ψ
h and from

intermediaries’ FOC for ĉ we get ξ =
(
ĉ−1/ψ + γ

ψ (φqνX )2ĉ−2/ψ−1
)−1

, where we have used

k̂ = X−1. Notice that we get by construction ξζ = Λ = −SX , from the planner’s optimality
condition (37). From S = ζ(q + T − ξX) we get T = S

ζ − q + ξX.
We can use the representative households’ HJB to pin down r, and from the FOC for

σw we pin down π, as follows. Define w = (q+ T − ξX)k, and obtain an expression for σw.
We then set π = γσw − (1 − γ)σζ , and r so that households’ HJB is satisfied. We are in
effect choosing r and π so that (a− ι(g)− ĉX)k = ch is the optimal choice of consumption
for the household, and their wealth w = (q+T − ξX)k. Intermediaries’ FOC for σx will be
satisfied automatically, because the planner’s optimality condition for aggregate risk sharing
(36) coincides with the competitive equilibrium’s (22). Since the FOC for ĉ is satisfied by
construction, we just need to set τk so that the FOC for k̂ is satisfied:

a− ι(g)

q
+ µq + g + σ′σq − (r + τk)− π(σ + σq) = γξ(ĉ−1/ψφν)2 q

X
(2)

Now we want to prove that ξ will satisfy intermediaries’ HJB equation. For this we will
use the planner’s HJB equation (32). Multiply by S on both sides, take the derivative with
respect to X using the envelop theorem, and divide throughout by SX to obtain

ρ

1− 1
ψ

=
(a− ι(g)− ĉX)

1− 1
ψ

1− 1
ψ

1

ψ
S

1
ψ
−1 − (a− ι(g)− ĉX)

− 1
ψ S

1
ψ

SX
ĉ+ (g − γ

2
σ2)

+
SXY
SX

µY +
SXX
SX

µXX

+ µX − γ(ĉ
− 1
ψφ

ι′(g)

X
ν)2 +

1

2

SXY Y
SX

σ2
Y +

1

2

SXXX
SX

(σXX)2 +
SXX
SX

σ2
XX +

SXXY
SX

σXXσY

+
SXY
SX

σXσY + (1− γ)σ

(
SXX
SX

σXX +
SXY
SX

σY

)
+ (1− γ)σσX

− γ
(
SX
S
σXX +

SY
S
σY

)(
SXX
SX

σXX +
SXY
SX

σY + σX

)
+
γ

2

(
SX
S
σXX +

SY
S
σY

)2

(3)

Now use −ξζ = SX to obtain

SXX
SX

=
ξX
ξ

+
ζX
ζ
,

SXY
SX

=
ξY
ξ

+
ζY
ζ
,

SXXX
SX

=
ζXX
ζ

+ 2
ξX
ξ

ζX
ζ

+
ξXX
ξ
,

SXY Y
SX

=
ζY Y
ζ

+ 2
ζY
ζ

ξY
ξ

+
ξY Y
ξ
,

SXXY
SX

=
ζXY
ζ

+
ξY
ξ

ζX
ζ

+
ξX
ξ

ζY
ζ

+
ξXY
ξ

Now plug this into (3), use the definition of µX and the FOC for ĉ in the private contract
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(which we already know holds), and simplify to obtain

0 =

1
ψ

1− 1
ψ

c̃
1− 1

ψ

h ζ
1
ψ
−1

+ µξ + µζ −
1

ψ

ĉ
1− 1

ψ

1− 1
ψ

+
γ

2
σ2
X − γ(

1

2
− 1/ψ)(ĉ

− 1
ψφ

ι′(g)

X
ν)2

+σξσζ + σX (σξ + σζ) + (1− γ)σ (σξ + σζ)

−γσS (σξ + σζ + σX) +
γ

2
σ2
S

Now from household’s HJB and using σw = σS − σζ + σ we get

ρ

1− 1
ψ

=
1

ψ

c̃
1− 1

ψ

h

1− 1
ψ

ζ
1
ψ
−1

+ r +
γ

2
(σS − σζ + σ)2 + µζ −

γ

2
σ2
ζ

which we plug into our expression. After some algebra using σS = σX + 1
γ (σξ + σζ) and

σx = σX + σ, as well as the FOC for ĉ and σx, we get

γξ(ĉ
− 1
ψφ

ι′(g)

X
ν)2 − ĉ

+ξ

{
r +

ĉ
1− 1

ψ

1− 1
ψ

− ρ

1− 1
ψ

− γ

2
(ĉ
− 1
ψφ

ι′(g)

X
ν)2 − µξ + σxπ + σξπ −

γ

2
σ2
x − σξσx

}
= 0

Because τk is chosen so that the pricing equation for capital holds we get

γξ(ĉ
− 1
ψφ

ι′(g)

X
ν)2 =

q

X

(
a− ι(g)

q
+ µq + g + σ′σq − (r + τk)− π(σ + σq)

)
and plugging this in, we obtain experts’ HJB.

Finally, we just need to check that the pricing equation for taxes is satisfied. First,
use the planner’s HJB and households’ HJB to obtain a version of the dynamic budget
constraint of the household. Write S = ζ(q + T − ξX), w = (q + T − ξX)k, and then

qµq + TµT − ξX(µξ + µX + σξσX) + g(q + T − ξX) + σ(qσq + TσT − ξX(σξ + σX))

= r(q + T − ξX) + π(qσq + TσT − ξX(σξ + σX) + σ(q + T − ξX))− c̃h(q + T − ξX)

Multiply experts’ HJB by X to obtain

a− ι(g)− ĉX + q(g + µq + σσq − (r + τk)− (σ + σq)π)

+ξX

{
r +

1

1− 1
ψ

(ĉ
1− 1

ψ − ρ)− γ

2
σ2
x −

γ

2
(ĉ
− 1
ψφ

ι(g)

X
v)2 + σx(π − σξ)− µξ + σξπ

}
= 0

Combining these two expressions, and using the definition of µX , σX , and c̃h = a−ι(g)−ĉX
q+T−ξX we

3



get the pricing equation for taxes. Verifying that we indeed have a competitive equilibrium
can then be done as described in part B of this Appendix, and depends on the particular
application. Finally, comparing the planner’s optimality condition for g (33) with the
equilibrium condition (35) we obtain Tt/qt = ηt.

Proof of Proposition 2

Use expression (34) for η

ηt =
ΛtXt

ĉ
−1/ψ
h,t

γ(ĉ
−1/ψ
t φt

νt
Xt

)2ι′′t (g)

Use ζt = ĉ
−1/ψ
h,t and Λt = ξtζt to get

ηt = ξtXtγ(ĉ
−1/ψ
t φt

νt
Xt

)2ι′′t (g)

ηt =
1

ξtXt
γ(ξtĉ

−1/ψ
t φtνt)

2ι′′t (g)

Now use φ̃t = ξtĉ
−1/ψ
t φt, and multiply and divide by ι′t(gt) to get

ηt =
ι′t(gt)

ξtXt
γ(φ̃tνt)

2 ι
′′
t (g)

ι′t(gt)

Now recall qt = ι′t(gt), and Xt =
∫
I xi,tdi, so ξtXt = nt/kt. Plug this in to get

ηt =
qtkt
nt

γ(φ̃tνt)
2 ι
′′
t (g)

ι′t(gt)

Finally, recall αt = qtkt
nt
γ(φ̃tνt)

2 and the definition εt =
ι′′t (g)
ι′t(gt)

to get

ηt = αtεt

This completes the proof.

2 Heterogenous asset classes and intermediaries

Each intermediary has continuation utility

dUi,t = −f(ci,t, Ui,t)dt+ σU,i,tdZt +
∑
j

σ̃U,i,j,tdWj,t (4)
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The incentive compatibility constraint requires that we expose the intermediary to idiosyn-
cratic risk in each of his asset classes

σ̃U,i,j,t ≥ ∂cf(ci,t, Ui,t)φi,tqj,tki,j,tνi,j,t =
c
−1/ψ
i,t

((1− γ)Ui,t)
γ−1/ψ
1−γ

φi,j,tqj,tki,j,tνi,j,t ≥ 0 (5)

The process ξi depends on intermediary i’s type (we get one process ξ for each intermediary
type). The HJB equation must then be adjusted slightly

rtξi,t = min
ĉ,k̂,σx

ĉ−
∑
j

qj,tk̂jαi,j,t + ξi,t

{
1

1− 1
ψ

(
ρ− ĉ1−1/ψ

)
− σxπt (6)

+µξ,i,t − σξ,i,tπt +
1

2
γσ2

x +
∑
j

1

2
γ
(
ĉ−1/ψφi,j,tqj,tk̂jνi,j,t

)2
+ σξ,i,tσx

}

The FOC for each k̂j gives us the asset pricing equation for capital for all (i, j) such that
k̂i,j,t > 0,

ai,j,t − ιj,t(gj,t)
qj,t

+ gj,t + µq,j,t + σj,tσ
′
q,j,t − (rt + τkj,t)− (σj,t + σq,j,t)πt︸ ︷︷ ︸

risk-adjusted excess return ≡ αi,j,t

= γ
qj,tki,j,t
ni,t

(φ̃i,j,tνi,j,t)
2︸ ︷︷ ︸

id. risk premium
(7)

where φ̃i,j,t = ξi,tĉ
−1/ψ
i,t φi,j,t. Note that now the intermediary might have to keep different

equity stakes for each asset class. If φi,j,t = φi,t for all j, the equity stake is common
across asset classes, and we can implement the optimal contract with an equity constraint.
Otherwise, we need an incentive scheme that treats the returns on different asset classes
differently.

The FOC for investment in each asset class is

ι′j,t(gj,t) = qj,t

=⇒ ĉ
−1/ψ
h,t ι′j,t(gj,t)(1 + Tj,t/qj,t) = ĉ

−1/ψ
h,t (qj,t + Tj,t) (8)

Since front-loading consumption can relax the equity constraint across asset classes, the
FOC for ĉ is now

ξi,tĉ
−1/ψ
i,t + ξi,t

∑
j

γ

ψ
(φi,j,tqj,tk̂i,j,tνi,j,t)

2ĉ
−2/ψ−1
i,t = 1 (9)

Since households’ FOC for consumption is unchanged, we get the MRS Λi,t = ξi,tζt

Λi,t =
ĉ
−1/ψ
h,t

ĉ
−1/ψ
i,t +

∑
j
γ
ψ (φi,j,tιj,t(gj,t)k̂i,j,tνi,j,t)2ĉ

−2/ψ−1
i,t

(10)
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and the FOC for aggregate risk sharing yields

σx,i,t − σh = −1

γ
σΛi,t (11)

The logic is the same as in the baseline model; optimal contracts give more utility to an
intermediary when the cost of his utility Λi,t is low.

It is still the case that every intermediary of each type gets the same policy function ĉf ,
k̂f,j and σx,f for each f = 1...F . We now have more endogenous state variables: for each

intermediary type f = 1...F we have Xf,t =

∫
If
xi,tdi

kt
; and for each asset class j = 1...J we

have θj,t =
kj,t
kt

, where kt =
∑

j kj,t is the total capital stock:

dkt
kt

=
∑
j

gj,tθj,t︸ ︷︷ ︸
gt

dt+
∑
j

σj,tθj,t︸ ︷︷ ︸
σt

dZt

Each intermediary type has aggregate wealth nf,t = ξf,tXf,tkt, and the representative
households’ wealth is wt = (

∑
j(qj,t + Tj,t)θj,t −

∑
f ξf,tXf,t)kt. Total output from each

asset class is aj,tkj,t =
∑

f

(
af,j,tk̂f,j,tXf,t

)
kt. Market clearing conditions must be adjusted

c̃h,twt +
∑
f

ĉf,tXf,t =
∑
j

((aj,t − ιj,t(gj,t))θj,t) (12)

∑
f

k̂f,j,tXf,t = θj,t (13)

The law of motion of each Xf must be adjusted:

µX,f,,t =
ρ

1− 1/ψ
−
ĉ

1−1/ψ
f,t

1− 1/ψ
+
γ

2
σ2
x,f,t+

∑
j

γ

2
(ĉ
−1/ψ
f,t φf,j,tk̂f,j,tι

′
j,t(gj,t)νf,j,t)

2−gt−σtσx,f,t+σ2
t

σX,f,t = σx,f,t − σt

and the law of motion of each θj is

dθj,t = θj,t (gj,t − gt + σt(σj,t − σt)) dt+ θj,t (σj,t − σt) dZt

The social planner has the same laws of motion. His value function takes the form
(S(X,θ,Y )k)1−γ

1−γ . We must adjust his HJB equation, and also allow him to choose how to
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allocation assets to intermediaries:

ρ

1− 1/ψ
= max

gj ,ĉf ,k̂f,j ,σx,f

(∑
j ((aj,t − ιj,t(gj,t))θj,t)−

∑
f ĉfXf

)1−1/ψ

1− 1/ψ
S1/ψ−1 (14)

+µS + g − γ

2
σ2
S −

γ

2
σ2 + (1− γ)σSσ (15)

where µS and σS are obtained from Ito’s lemma on S(X, θ, Y ).
The FOC for ĉf and σf,t are the same as in the competitive equilibrium. We get

equations (10) and (11), where Λf,t = −S′Xf . The FOC for gj is

ĉ
−1/ψ
h,t︸ ︷︷ ︸

∂ch (Sk)

ιj,t(gj,t)(1 + ηj,t) = St +
∑
f

Λf,tXf,t +
(
S′θj −

∑
m

θm,tS
′
θm

)
︸ ︷︷ ︸

∂kj (Sk)

(16)

ηjt =
∑
f

Λf,tXf,t

ĉ
−1/ψ
h θj,t

γ(ĉ
−1/ψ
f,t φf,j,tk̂f,j,tνf,j,t)

2ι′′j,t(gj,t) (17)

Comparing this FOC with (8) we see that ηj,t captures the externality related to asset
class j, analogous to the case with homogeneous capital and intermediaries. Here when
the planner raises the marginal cost of capital, it affects idiosyncratic risk sharing for all
intermediaries that hold that asset.

The FOC for k̂f,j is

ĉ
−1/ψ
h,t af,j,t − Λf,tγ(ĉ

−1/ψ
f,t φf,j,tι

′
j,t(gj,t)νf,j,t)

2k̂f,j,t = λj,t

where λj,t is the Lagrange multiplier on the constraint (13). Using Λf,t = ξf,tζt = ξf,tĉ
−1/ψ
h,t ,

the definition of φ̃f,j,t and qj,t = ιj,t(gj,t) in the competitive equilibrium, we get that all
intermediaries who hold asset of class j must have the same

ai,j,t − γ
qj,tki,j,t
ni,t

(φ̃i,j,tνi,j,t)
2qj,t

which is exactly what the competitive equilibrium does according to the pricing equation
(7). So we see that ηj,t is still the only source of inefficiency in the economy. All other
optimality conditions for the planner are satisfied.

Proof of Proposition 3

The proof follows the same lines as the proof of Proposition 1. To establish that each
intermediary’s HJB holds, we now take derivatives on the planner’s HJB equation with
respect to each Xf (instead of a single X as before). Notice that St = S({Xf}, {θj}, Y ), so
the law of motion of the θ′s must be taken into account when computing µS and σS . Also,
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now we don’t have k̂ = X−1. Instead, k̂f,j are controls for the planner, so the envelope
theorem allows us to ignore it when taking derivatives with respect to Xf ; but Xf appears
in the formula for aj,tθj,t =

∑
f

(
af,j,tk̂f,j,tXf,t

)
and each of the (13) constraints (for each

j). Once this is taken into account, we obtain essentially the same formulas, extended to
account for heterogenous asset classes and intermediaries.

To establish the validity of the sufficient statistic (43) for each asset class, we follow the
proof of Proposition 2 but using expression (17):

ηj,t =
∑
f

Λf,tXf,t

ĉ
−1/ψ
h θj,t

γ(ĉ
−1/ψ
f,t φf,j,tk̂f,j,tνf,j,t)

2ι′′j,t(gj,t)

Use ζt = ĉ
−1/ψ
h,t and Λf,t = ξf,tζt to get

ηj,t =
∑
f

ξf,tXf,t

θj,t
γ(ĉ
−1/ψ
f,t φf,j,tk̂f,j,tνf,j,t)

2ι′′j,t(gj,t)

ηj,t =
∑
f

Xf,tk̂f,j,t
ξf,tθj,t

γ(ξf,tĉ
−1/ψ
f,t φf,j,tνf,j,t)

2k̂f,j,tι
′
j,t(gj,t)

ι′′j,t(gj,t)

ι′j,t(gj,t)

ηj,t =
∑
f

Xf,t

θj,t
k̂f,j,tγ(ξf,tĉ

−1/ψ
f,t φf,j,tνf,j,t)

2
k̂f,j,tι

′
j,t(gj,t)

ξf,t

ι′′j,t(gj,t)

ι′j,t(gj,t)

Now use φ̃f,j,t = ξf,tĉ
−1/ψ
f,t φf,j,t,

ηj,t =
∑
f

kf,j,t
kj,t

γ(φ̃f,j,tνf,j,t)
2 qj,tkf,j,t

nf,t

ι′′j,t(gj,t)

ι′j,t(gj,t)

Notice that for any f such that k̂f,j,t > 0 we have αf,j,t = γ(φ̃f,j,tνf,j,t)
2 qj,tkf,j,t

nf,t
. Multiply

and divide by qj,t = ι′j,t(gj,t) to get:

ηj,t =
∑
f

qj,tkf,j,t
qj,tkj,t

αf,j,tεj,t = αj,tεj,t

where αj,t =
∑

f
qj,tkf,j,t
qj,tkj,t

αf,j,t is the value-weighted risk-adjusted expected excess return
that intermediaries obtain on assets of class j.
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Stationary distribution under competitive equilibrium
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Figure 1: Stationary distribution of state variables ν and X in the competitive equilibrium.
The lines indicate the loci of µX = 0 and µν = 0, and the arrows the direction in which
the economy moves. The intersection represents the steady state of the economy, but
uncertainty shocks continually move the economy away from it. The contour lines indicate
the probability contained within.

Appendix B
In Section 1 I develop the contract environment in detail. I provide a verification theorem for
the HJB equation, show how the optimal contract can be implemented with a constrained
portfolio problem, and show that it is renegotiation-proof. In Section 2 I show how the
competitive equilibrium and the planner’s problem can be characterized with a system of
second order PDEs that can be easily solved numerically.

3 Optimal Contracts

This section develops the contractual environment in detail. It is useful for the applications
and numerical solutions to include an exogenous retirement time τi which arrives with
independent Poisson intensity θ (this will yield a stationary distribution). After retirement
the agent cannot manage capital any longer, and the contract just delivers a terminal utility
by giving the agent consumption (he becomes a household). The results in the main paper
can be obtained by letting θ → 0.

3.1 Setting

Let (Ω, P,F) be a complete probability space. Throughout this appendix, all stochastic
processes are adapted to the filtration Fi generated by the aggregate brownian motion Z,
the idiosyncratic brownian motion Wi, and an idiosyncratic Poisson process Ni with arrival
rate θ associated with retirement of intermediary i. I will use a weak formulation of the
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problem, which is equivalent to the strong one in the paper. Prices and coefficients depend
only on the history of aggregate shocks, e.g. r, π, σ, ν, φ, q, g, ι(g), τk, ζ. In what follows
I will drop the reference i to the intermediary in order to simplify notation.

There is a complete financial market, with risk free interest rate r and price of aggregate
risk π (and associated equivalent martingale measure Q). The agent can continuously trade
capital k at price q, and obtains a return per dollar invested in capital

dRt =

(
a− ιt(gt)

qt
+ gt + µq,t + σtσ

′
q,t − τkt

)
dt+ (σt + σq,t)dZt + νtdWt

The agent starts with net worth n0 and signs a contract C =
(
c, Ū , k

)
with full commitment.

The contract specifies consumption c = {ct ≥ 0; t ≤ τ}, a terminal utility Ū = {Ūt; t ≤ τ},
and capital under management k = {kt ≥ 0; t ≤ τ}. After retirement the agent cannot
manage capital any longer, and the principal delivers utility Ūτ .

After signing the contract the intermediary can choose a hidden action s = {st; t ≤ τ}
which we interpret as a stealing process. Stealing changes the distribution of observed
outcomes from P to P s so that the return can be written

dRt =

(
a− ιt(gt)

qt
+ gt + µq,t + σtσ

′
q,t − τkt − st

)
dt+ (σt + σq,t)dZt + νtdW

s
t

where W s
t = Wt +

∫ t
0
su
νu
du is a brownian motion under P s. For each dollar stolen, the

intermediary keeps a fraction φt ∈ (0, 1) which he adds to his consumption: c̃ = c+φqks (the
intermediary doesn’t have access to hidden savings). As a result he gets utility U s(c̃) = U s0 ,
where the utility process U s = {U st ; t ≤ τ} is given by

U st = Est
[∫ τ

t
f(c̃t, U

s
t )ds+ Ūτ

]
(18)

In this environment it is always optimal to implement no stealing s = 0, for the same reasons
as in DeMarzo and Sannikov (2006) for example.1 The principals’ objective is to minimize
the cost of delivering utility u0 to the intermediary F (C) = F0 where the continuation cost
of the contract F = {Ft; t ≤ τ} is

Ft = EQt
[∫ τ

t
e−

∫ u
t rmdm (cu − qukuαu) du+ e−

∫ τ
t rmdmF̄τ (Ūτ )

]

and αt ≡ a−ιt(gt)
qt

+ gt + µq,t + σtσ
′
q,t − rt − τkt − (σt + σq,t)πt. Here F̄t(Ū) is the cost of

delivering utility Ū to the intermediary who has retired and cannot manage capital any
longer. The intermediary has in fact become a household, so the cost of delivering utility

1If a contract implements stealing s in equilibrium, then the principal can do better by giving c′ = c+φqks
to the agent as legitimate consumption, and implementing no stealing s′ = 0.

10



takes the form
F̄t(Ū) = ζ−1

t

(
(1− γ)Ū

) 1
1−γ

and we assume ζ−1
t > 0 is bounded.

We say a contract C = (c, Ū , k) is admissible if 1) there is a solution U0 to (18), with

E
[(∫ t

0
f(cu, U

0
u)du

)
2 + (U0

t )2
]
<∞ (19)

for all t, and 2)

EQ
[∫ τ

0
e−

∫ t
0 rmdm |ct − qtktαt| dt+ sup

u≤τ
e−

∫ u
0 rmdmF̄u(Uu)

]
<∞ (20)

Given a contract C, we say that a stealing process s is valid if 1) there is a U s solution to
(18), and 2) s

ν ≥ 0 is bounded and there is a constant T ∈ R+ such that st = 0 ∀t ≥ T .2

Let S(C) be the set of valid stealing plans given contract C. We say an admissible contract
C is incentive compatible if3

0 ∈ arg max
s∈S(C)

U s(c+ φqks)

Let IC be the set of incentive compatible contracts. For an initial utility u0 for the agent, an
incentive compatible contract is optimal if it minimizes the cost of delivering initial utility
u0 to the agent, that is

J(u0) = min
C∈IC

F (C)

st : U0(C) ≥ u0

By changing u0 we can trace the Pareto frontier for this problem. In particular, at time
t = 0 the intermediary has net worth n0 which he gives to the principal in exchange for the
contract. We set u0 so that the principal breaks even

n0 + J(u0) = 0

Let Jt = F (C∗) be the continuation cost of an optimal contract C∗. This is how much it
would cost the agent to “buy into” the contract at that time, and therefore this is the net
worth of the intermediary at time t.

2Note the intermediary can choose T as large as desired, as well as the bound on st
νt
. These regularity

conditions can be relaxed with some work, but are economically innocuous.
3Notice A(C) 6= ∅ because 0 ∈ S(C) for an admissible contract.
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3.2 Recursive formulation

We can use the continuation utility of the intermediary as a state variable in order to
provide incentives for not stealing. First we obtain a law of motion for continuation utility.

Lemma 1. For any admissible contract C = (c, Ū , k), the intermediary’s continuation utility
U0 satisfies

dU0
t = −f(ct, U

0
t )dt+ σU,tdZt + σ̃U,tdWt − λt (dNt − θdt) (21)

for some σU and σ̃U in L2, and λt = U0
t− − Ūt.

4

Proof. Consider the process

Yt = Et
[∫ τ

0
f(cu, U

0
u)du+ Ūτ

]
=

∫ t

0
f(cu, U

0
u)du+ U0

t

on {t ≤ τ}. Since Y is an F-adapted P -martingale, and F is generated by Z, W and N , we
can apply a martingale representation theorem to obtain

dYt = f(ct, U
0
t )dt+ dU0

t = σU,tdZt + σ̃U,tdWt − λt (dNt − θdt)

Rearranging we get (21). Since Uτ = Ūτ it must be that λt = U0
t− − Ūt, and from admissi-

bility of C we get E
[
Y 2
t

]
<∞ for all t, so therefore σU and σ̃U are in L2.5

Notice that because retirement is contractible, the agent’s utility can in principle “jump”
when the agent retires. However, if U0

t jumps down when the agent retires, for example,
then while he doesn’t retire it must drift up to compensate the agent. To obtain equation
(6) in the main text, we just drop the jump term.

Faced with contract C, the intermediary can consider a valid stealing process s ∈ S(C),
getting consumption c̃ = c+ φqks under probability P s. The following lemma gives neces-
sary and sufficient conditions for an admissible contract to be incentive compatible, for the
parameter configuration that is of interest to us.

Lemma 2. If EIS ψ > 1 and the risk aversion γ > 1, an admissible contract C = (c, Ū , k)

is incentive compatible if and only if

0 ∈ arg max
s≥0

f(ct + φtqtkts, U
0
t )− σ̃U,t

st
νt
− f(ct, U

0
t ) (22)

Remark. The result of this lemma can be extended to other combinations of ψ and γ.
4In this context, L2 is the set of F-adapted processes x such that E

[∫ t
0
x2udu

]
<∞ for any t.

5Notice that for t ≥ τ , Yt is constant, so σU,t, σ̃U,t, and λt are zero, but this is not relevant for our
purposes.
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Proof. Suppose the agent picks a valid stealing plan s. His utility is U s, defined by

U st = Est
[∫ τ

t
f(cu + φtqukusu, U

s
u)du+ Ūτ

]
We would like to compare this with the utility from good behavior U0. To do this, it’s
useful to first express U0 as an expectation under P s. Using (21) and dWt = dW s

t − st
νt
dt,

we obtain

dU0
t =

(
−f(ct, U

0
t )− st

νt

)
dt+ σU,tdZt + σ̃U,tdW

s
t − λt (dNt − θdt)

Now we can integrate, bearing in mind that since s
ν is bounded σU and σ̃U are both in

L2(P s) as well. We get:

U0
t = Est

[∫ T∧τ

t

(
f(cu, U

0
u) +

su
νu
σ̃U,u

)
du+ U0

T∧τ

]
where st = 0 for all t ≥ T . Notice U sT∧τ = U0

T∧τ . Now we can obtain

U st − U0
t = Est

[∫ T∧τ

t

(
f(cu + φtqukusu, U

s
u)− f(cu, U

0
u)− su

νu
σ̃U,u

)
du

]
(23)

on {t ≤ T ∧ τ}.
To prove necessity, suppose (22) fails. Pick a bounded stealing strategy such that

f(ct + φtqtkts, U
0
t )− σ̃U,t

st
νt
− f(ct, U

0
t ) > 0

on a set of positive measure A, and zero outside (we can pick T as large as desired). Look
at the integrand in (23), and write

f(cu + φtqukusu, U
s
u)− f(cu, U

0
u)− σ̃U,u

su
νu

= f(cu + φtqukusu, U
s
u)− f(cu + φtqukusu, U

0
u)

+f(cu + φtqukusu, U
0
u)− f(cu, U

0
u)− σ̃U,u

su
νu

≥ f(cu + φtqukusu, U
s
u)− f(cu + φtqukusu, U

0
u)

with strict inequality on A. Now we use an interesting fact about the EZ aggregator f(c, U):
if γ > 1 and ψ > 1, then there is a constant κ > 0 such that f(c, y) − f(c, x) ≤ κ(y − x)

for y ≥ x, and any c.6 We can then write

f(cu + φtqukusu, U
s
u)− f(cu, U

0
u)− σ̃U,u

su
νu︸ ︷︷ ︸

Hu

≥ κ (U su − U0
u)︸ ︷︷ ︸

Mu

when U su − U0
u︸ ︷︷ ︸

Mu

≤ 0

6see Proposition 3.2 in Kraft et al. (2011)
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and the inequality is strict on A. Now define the process Mt = U st − U0
t and rewrite the

previous condition as

Mt = U st − U0
t = Est

[∫ T∧τ

t
Hudu

]
with Ht ≥ κMt whenever Mt ≤ 0

We can now use a generalized version of Skiadas’ Lemma7 to obtain thatMt = U st −U0
t ≥ 0

as follows. Let τ0 = inf{t ≥ 0 : U0
t ≤ U st } and write

Mt1{τ0>t} ≥ Est
[∫ τ0∧T∧τ

t
κMu1{τ0>t}du+Mτ0∧T∧τ1{τ0>t}

]

Mt1{τ0>t} ≥ Est
[∫ T∧τ

t
κMu1{τ0>u}du+Mτ01{τ0>T∧τ}

]
= Est

[∫ T∧τ

t
κMu1{τ0>u}du

]
Applying the stochastic Gronwall-Bellman inequality,8 we get that Mt1{τ0>t} ≥ 0 for 0 ≤
t ≤ T ∧ τ . Since M01{τ0=0} ≥ 0 , we conclude M0 ≥ 0. We can apply a similar argument
for any u (redefining the stopping time τu = inf{t ≥ u : U0

t ≤ U st }) and get Mu ≥ 0 for all
0 < u < T ∧ τ . For u ≥ T ∧ τ we already know that Mu∧τ = 0.

Now to make the inequality strict, if Mt = 0 a.e. on [0, τ ] × Ω, then Ht ≥ κMt = 0,
and the inequality is strict on positive measure subset A, and therefore M0 > 0. If Mt > 0

for at least some (ω, t) with t < τ , with positive probability, we do the following. For some
small ε > 0, let τ ε = inf{t : Mt ≥ ε}. If we take ε small enough, the probability that we
get to such a point before τ is positive: P s({τ ε ∧ τ < τ}) > 0 (for any P s since they are
equivalent). It must be that there is some stealing going on after this, since otherwise Mτε

would be zero. Now consider the alternative stealing plan s′ that steals only until τ ε and
then stops, that is s′t = st for t < τ ε and s′ = 0 after this. By a similar argument as before,
U0

0 ≤ U s
′

0 . Utility under this plan satisfies U s′τε∧τ = U0
τε∧τ < U sτε∧τ if τ ε ∧ τ < τ , and equal

otherwise. Now if we compare s and s′, both plans induce the same probability measure
until τ ε ∧ τ , and the same consumption stream, but the payoff at τ ε ∧ T is larger for s
(strictly so with positive probability):

U s
′
t = Est

[∫ τε∧τ

t
f(cu + φtqukusu, U

s′
u ) + U0

τε∧τ

]

U st = Est
[∫ τε∧τ

t
f(cu + φtqukusu, U

s
u) + U sτε∧τ

]
By strict monotonicity of EZ preferences with respect to terminal value, we get U s0 > U s

′
0 ≥

U0
0 . This proves stealing is attractive if (22) fails.

7The strategy is similar to Theorem A.2 in Kraft et al. (2011).
8See Duffie and Epstein (1992)
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For sufficiency, suppose (22) holds, so that for any valid stealing plan we have

f(ct + φtqtkts, U
0
t )− σ̃U,t

st
νt
− f(ct, U

0
t ) ≤ 0

Using the same properties of the EZ aggregator as before but with the opposite inequalities,
we get

Mt = U st − U0
t = Est

[∫ T∧τ

t
Hudu

]
with Ht ≤ κMt whenever Mt ≥ 0

The same reasoning as before now yields M0 = U s0 − U0
0 ≤ 0, so the contract is indeed

incentive compatible.

The FOC for (22) are

∂cf(ct, U
0
t )φtqtkt = σ̃U,t

1

νt

which yields the “skin in the game” condition (??) in the main text

σ̃U,t = ∂cf(ct, U
0
t )φtqtktνt (24)

3.3 HJB equation

Because of homothetic preferences, the value function for the principal’s cost minimization
problem takes the form Jt = ξtxt. Here xt =

(
(1− γ)U0

t

) 1
1−γ > 0 is a monotone (and

concave) transformation of the intermediary’s continuation utility. As a result, we can also
interpret it as the intermediary’s continuation utility. The stochastic process ξ = {ξt; t ≤ τ}
captures the investment opportunity set, and has a law of motion

dξt
ξt

= µξ,tdt+ σξ,tdZt +
(
(ξtζt)

−1 − 1
)
dNt (25)

It depends only on the aggregate shocks Z that affect market prices, and on whether the
intermediary has retired. The last term ensures that ξτ = ζ−1

τ .
Use the following normalization: kt = k̂txt, ct = ĉtxt, σU,t = σx,t(1 − γ)U0

t , σ̃U,t =

ĉ
− 1
ψ

t φqtk̂tνt(1− γ)U0
t , and λt = λ̂t(1− γ)U0

t . Then we can write

dxt
xt

=

(
1

1− 1
ψ

(
ρ− ĉ

1− 1
ψ

t

)
+

1

2
γσ2

x,t +
1

2
γ
(
ĉ
− 1
ψ

t φtqtk̂tνt
)2

+ θλ̂t

)
dt (26)

+σx,tdZt +
(
ĉ
− 1
ψ

t φtqtk̂tνt
)
dWt +

((
1− λ̂(1− γ)

) 1
1−γ − 1

)
dNt

The principal’s cost minimization problem is now a standard optimal control problem. The
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associated HJB BSDE is

rtJtdt = min
c,k,σx,λ

(c− qtkαt)dt+ EQt [dJt] (27)

subject to (25), as well as c ≥ 0 and k ≥ 0. Using the normalization of the controls, the
form of the value function, and the fact that Zt = ZQt −

∫ t
0 πudu, where Z

Q is a brownian
motion under Q, we can rewrite the HJB equation

rtξt = min
ĉ,k̂,σx,λ̂

ĉ− qtk̂αt + ξt

{
1

1− 1
ψ

(
ρ− ĉ

1− 1
ψ

t

)
− σx,tπt + µξ,t − σξ,tπt (28)

+
1

2
γσ2

x,t +
1

2
γ
(
ĉ
− 1
ψφtqtk̂νt

)2
+ σξ,tσx,t + θ

((
1− λ̂(1− γ)

) 1
1−γ

1

ζtξt
− 1 + λ̂

))}
This should be interpreted together with (25).9 The expression on the right hand side is
convex if ψ > 2, and the FOC are sufficient. If ψ ≤ 2 then the optimal contract does not
exist, unless capital pays zero excess return, as explained in the paper. Focusing on the
ψ > 2 case, we get the following FOC

ξtĉ
− 1
ψ

t + ξt
γ

ψ

(
φtqtk̂tνt

)2
ĉ
− 2
ψ
−1

t = 1 (29)

a− ιt(gt)
qt

+ gt + µq,t + σtσ
′
q,t − (rt + τkt ) = (σt + σq,t)πt︸ ︷︷ ︸

agg. risk premium

+ γξt

(
ĉ
− 1
ψ

t φtνt

)2

qtk̂t︸ ︷︷ ︸
id. risk premium

(30)

σx,t =
πt
γ
−
σξ,t
γ

(31)

(
1− λ̂(1− γ)

) γ
1−γ 1

ζtξt
= 1 (32)

The FOC for ĉ has the cost of delivering consumption to the intermediary on the right
hand side, and the benefit of a lower promised utility on the left hand side. This is the
standard tradeoff we would expect. In addition, however, there is another benefit to giving
consumption to the agent: it relaxes the “skin in the game constraint”. By front loading
consumption, the principal can reduce the marginal private benefit of stealing and con-
suming, and therefore improve idiosyncratic risk sharing. As a result, there is a tradeoff
between distortions in intertemporal consumption and idiosyncratic risk sharing.

The FOC for k̂ gives us a pricing equation for capital. As usual, capital pays an excess
return because it is exposed to aggregate risk with a market price of πt. But in addition,
capital must also pay an excess return for its exposure to idiosyncratic risk, even though

9That is, a solution to (28) is a process ξ that satisfies (25) for some µξ and σξ, and (ξ, µξ, σξ) satisfy
(28).
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this risk is not priced by the financial market. The reason for this is that the principal
knows that if he gives more capital to the intermediary, he will have to expose him to risk
for incentive reasons, and this is costly because the intermediary is risk averse.

The FOC for σx has the following interpretation. Delivering utility to the intermediary
is costly for the principal. He would therefore prefer to promise him more utility in states
of the world where it is relatively cheaper. This can happen because the value of a unit
of consumption in that state is lower (captured by the πt term) or because the cost of
delivering utility in that state is lower (captured by the σξ,t term). A similar logic explains
the FOC for λ̂. After retirement the intermediary cannot manage capital any longer, so
delivering utility to him is more costly. This is captured by ζ−1

t ≥ ξt. As a result, the
optimal contract has λ̂ ≥ 0. The principal prefers to promise the intermediary less utility
after he retires (when it is more costly to deliver utility to him) even if it means promising
him more utility while he doesn’t retire.

We can plug in the FOC into the HJB equation (28). If we find a solution ξ to the
HJB equation, we can use it to build the optimal contract using the policy functions ĉ, k̂,
σx, and λ̂ (so the HJB holds with equality) and the law of motion of x, (26) with initial
condition x0 = ((1− γ)u0)

1
1−γ . Let C∗ = (c∗, Ū∗, k∗) be the candidate optimal contract

thus constructed, with associated state x∗. We have the following verification theorem.

Theorem 1. Let ξ be a strictly positive solution to the HJB equation (28) bounded above
by ζ−1. Then,

1) For any incentive compatible contract C that delivers at least utility u0 to the agent,
we have ξ0 ((1− γ)u0)

1
1−γ ≤ F0(C).

2) Let C∗ be a candidate contract constructed as described above. If C∗ is admissi-
ble and delivers utility u0 to the agent, then it is optimal, with cost F0(C∗) = J0(u0) =

ξ0 ((1− γ)u0)
1

1−γ .

Proof. For the first part, consider an incentive compatible contract C = (c, Ū , k) that de-
livers utility u0 to the agent, and has an associated state variable x. Use the HJB equation
to obtain

e−
∫ τn∧τ
0 ruduξτn∧τxτn∧τ ≥ ξ0x0 −

∫ τn∧τ

0
e−

∫ t
0 rudu (ct − qtktαt) dt

+

∫ τn∧τ

0
e−

∫ t
0 ruduξtxt (σξ,t + σx,t) dZ

Q
t +

∫ τn∧τ

0
e−

∫ t
0 ruduξtxt

(
ĉ
− 1
ψ

t φqtk̂tνt
)
dWt

+

∫ τn∧τ

0
e−

∫ t
0 ruduξtxtθ

((
1− λ̂(1− γ)

) 1
1−γ

1

ζtξt
− 1
))

(dNt − θdt)
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Here we are using the localizing sequence {τn}n∈N:

τn = inf

{
T ≥ 0 :

∫ T

0

∣∣∣e− ∫ t
0 ruduξtxt (σξ,t + σx,t)

∣∣∣2 dt+

∫ T

0

∣∣∣∣e− ∫ t
0 ruduξtxt

(
ĉ
− 1
ψ

t φqtk̂tνt
)∣∣∣∣2 dt ≥ n

}

The stochastic integrals are therefore martingales, so we can take expectations under Q to
obtain

EQ0
[
e−

∫ τn∧τ
0 ruduξτn∧τxτn∧τ

]
≥ ξ0x0 − EQ0

[∫ τn∧τ

0
e−

∫ t
0 rudu (ct − qtktαt) dt

]
Now we will use the dominated convergence theorem to take the limit n→∞. First,∣∣∣∣∫ τn∧τ

0
e−

∫ t
0 rudu (ct − qtktαt) dt

∣∣∣∣ ≤ ∫ τn∧τ

0
e−

∫ t
0 rudu |ct − qtktαt| dt

≤
∫ τ

0
e−

∫ t
0 rudu |ct − qtktαt| dt

which is integrable because C is admissible. Second,

e−
∫ τn∧τ
0 ruduξτn∧τxτn∧τ ≤ sup

t≤τ
e−

∫ t
0 ruduξtxt ≤ sup

t≤τ
e−

∫ t
0 ruduζ−1

t xt

which is also integrable because C is admissible. So letting n→∞, we get τn ∧ τ → τ a.s.
and therefore using ξτ = ζ−1

τ :

EQ0
[
e−

∫ τ
0 ruduζ−1

τ xτ

]
≥ ξ0x0 − EQ0

[∫ τ

0
e−

∫ t
0 rudu (ct − qtktαt) dt

]
Rearranging we get the desired result.

For the second part, let C∗ be the candidate optimal contract with associated utility
process x∗. By construction, the HJB holds with equality, so the same argument shows
that C∗ in fact has a cost F0(C∗) = ξ0 ((1− γ)u0)

1
1−γ . We know C∗ delivers utility u0 by

assumption, and Lemma 2 ensures it is incentive compatible.

3.4 Implementation

Finally, from (27) we can easily see that the net worth of the agent nt = Jt = ξtxt follows
the law of motion

dnt = (rtnt + qtktαt − ct + σn,tntπt)dt+ σn,tntdZt + φ̃tqtktνtdWt + λn,tnt(dNt − θdt)

where c, and λn,t = λ̂t(γ − 1). With θ = 0 we obtain equation (5) in the main body.
We can implement the optimal contract (c, k) with a constrained portfolio problem as

follows. Set a required retained equity stake φ̃t = ξtĉ
−1/ψφ, and the consumption rate
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c̃t = ct/(ξtxt) as functions of the history of returns R and aggregate shocks Z. This is a
lower bound on the fraction of retained equity, but since the intermediary wants to keep as
little idiosyncratic risk as possible, it is always binding (he can get aggregate risk in other
ways). We then let the intermediary choose how much to invest in capital k̃t = kt/nt and
his exposure to aggregate risk σn,t to maximize his utility subject to the budget constraint.
Formally, the intermediary solves

max
k̃,σn

U(c̃n)

st :
dnt
nt

= (rt + qtk̃tαt − c̃t + σn,tπt)dt+ σn,tdZt + φ̃tqtk̃tνtdWt

and nt ≥ 0. Let (k̃, σn) be the solution to this constrained portfolio problem (c̃, φ̃), with
associated process for net worth n. We say the constrained portfolio problem (c̃, φ̃) imple-
ments the optimal contract (c, k) if c = c̃n and k = k̃n.

Lemma 3. Let C = (c, k) be an optimal contract, with associated processes ξ, ĉ, and x.
The constrained portfolio problem with retained equity stake φ̃t = ξtĉ

−1/ψφ and consumption
rate c̃t = ct/(ξtxt) implements the optimal contract.

Proof. Let the value function of the portfolio problem be Ut(n) = (ξ̃tnt)1−γ

1−γ for some stochas-
tic process ξ̃ with law of motion

dξ̃t

ξ̃t
= µξ̃,tdt+ σξ̃,tdZt

The HJB equation for the portfolio problem is

ρ

1− 1/ψ
= max

k̃,σn

c̃1−1/ψ

1− 1/ψ
ξ̃

1/ψ−1
t +rt+qtk̃tαt−c̃t+σn,tπt+µξ̃,t−

γ

2
σ2
ξ̃,t
−γ

2
σ2
n,t+(1−γ)σξ̃,tσn,t−

γ

2
(φ̃tqtk̃tνt)

2

(33)
with FOC

αt = γ(φ̃tνt)
2qtk̃t

πt = γσn,t − (1− γ)σξ̃,t

Now guess and verify that the solution is ξ̃ = ξ−1, k̃ = k̂/ξt, and σn = σξ + σx. We can
check that the FOCs hold using the FOC of the HJB of the optimal contract. If we plug
this into the HJB (33), and use also the definition of φ̃ and c̃, we will obtain the HJB of
the optimal contract:

ρ

1− 1/ψ
=

ĉ1−1/ψ

1− 1/ψ
+rt+

1

ξt

(
qtk̂tαt − ĉt

)
+(σξ,t+σx,t)πt−µξ,t+σ2

ξ,t−
γ

2
σ2
ξ,t−

γ

2
(σξ,t+σx,t)

2

−(1− γ)σξ,t(σξ,t + σx,t)−
γ

2
(ĉ−1/ψφqtk̂tνt)

2
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multiply throughout by ξt

0 = qtk̂tαt − ĉt + ξ

{
ĉ1−1/ψ − ρ
1− 1/ψ

+ rt + (σξ,t + σx,t)πt − µξ,t + σ2
ξ,t −

γ

2
σ2
ξ,t −

γ

2
(σξ,t + σx,t)

2

−(1− γ)σξ,t(σξ,t + σx,t)−
γ

2
(ĉ−1/ψφqtk̂tνt)

2
}

and expand the squares and simplify to obtain:

0 = qtk̂tαt−ĉt+ξ

{
ĉ1−1/ψ − ρ
1− 1/ψ

+ rt + (σξ,t + σx,t)πt − µξ,t −
γ

2
σ2
x,t − σξ,tσx,t −

γ

2
(ĉ−1/ψφqtk̂tνt)

2

}

We can do the process in reverse. Since we know that the HJB of the optimal contract
holds, the HJB of the portfolio problem holds as well, which verifies our guess. Finally, if we
let n = ξx, and use k̃ = k̂/ξt, σn = σξ +σx, along with φ̃t = ξtĉ

−1/ψφ and c̃t = ct/(ξtxt) we
get the budget constraint. This means that n = ξx is the process for net worth associated
with the solution to the portfolio problem. So we get that k = k̂x = k̃ξx = k̃n and
c = ĉx = c̃ξx = c̃n. This shows that the portfolio problem implements the optimal
contract.

3.5 Renegotiation

Suppose at any time the principal and the intermediary can write a new continuation
contract that is also incentive compatible looking forward and delivers at least the same
utility to both the principal and the intermediary. An incentive compatible contract is
renegotiation-proof if the best such contract they can write at any time is the continuation
contract.

Lemma 4. The optimal long-term contract is renegotiation proof.

Proof. We can see that the optimal contract is renegotiation-proof by noticing that the
continuation contract after any history is incentive compatible (or the optimal contract
wouldn’t be IC), and it must minimize the continuation cost to the principal subject to
delivering the promised utility to the intermediary at that point, within the class of IC con-
tracts. Otherwise we could replace this continuation with a better IC continuation contract
and obtain an IC contract that dominates the optimal contract. We can patch IC contracts
this way because for incentive purposes only the promised utility of the continuation con-
tract matters. So the only way in which they could improve on the optimal contract at this
point is if giving more utility to the intermediary reduced the cost to the principal: ξt < 0.
But we know that ξt > 0, or else the optimal contract would not exist. This proves that
the optimal contract is indeed renegotiation-proof.
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4 Numerical solution

In this section I show how the competitive equilibrium and the planner’s allocation can be
solved as a system of PDEs. In Section 3 I illustrate the method with a concrete example
where the economy is hit by uncertainty shocks. It is useful to introduce retirement among
intermediaries as explained in Section 3, in order to obtain a non-degenerate stationary
distribution for the economy. Retirement arrives with Poison arrival rate θ, at which point
the intermediary becomes a household. If we set θ → 0 we obtain the setting in the paper.

4.1 Competitive equilibrium

The HJB equation for intermediaries with retirement is given by (28), with FOCs (29),
(30), (31), and (32). These are the same as in the paper, except for the FOC for λ̂t.
The representative household’s HJB and FOC are unchanged, as are the market clearing
conditions. The only equilibrium condition that needs to be tweaked is the drift of the
endogenous state variable Xt =

∫
It
xi,tdi

kt

µX =
ρ

1− 1/ψ
− ĉ1−1/ψ

1− 1/ψ
+
γ

2
σ2
x +

γ

2
(ĉ−1/ψ φι

′(g)ν

X
)2 − g − σσx + σ2 + θ

(
λ̂− 1

)
(34)

Notice how with θ = 0 we obtain equation (18)) in the paper. With θ > 0, because each
intermediary’s utility will jump down on retirement, it must drift up while they don’t retire
to compensate them. As a result, X gains a positive drift θλ̂. On the other hand, when
intermediaries retire their continuation utility is not counted in X any longer, since they
are now households, so we get the term −θ.

The strategy to solve the competitive equilibrium is to use Ito’s lemma to transform
the problem into a system of PDEs for q, ξ, and ζ. Suppose we are given these functions.
We can build S = ζ(q − ξX) and Λ = ξζ, and use Ito’s lemma to compute the drift and
volatility of all these objects, in terms of µX and σX , which we still don’t know, and µY
and σY , which are exogenously given. From the equilibrium condition for the allocation of
aggregate risk, (??), we obtain

σX − σS = −1

γ
σΛ

From Ito’s lemma we get

σΛ =
ΛX
Λ
σXX +

ΛY
Λ
σY σS =

SX
S
σXX +

SY
S
σY

There is a two-way feedback loop: σX depends on how the MRT Λ, responds to aggregate
shocks, σΛ; but σΛ is an endogenous object that depends, among other things, on how X
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responds to aggregate shocks, σX . We can solve for a fixed point for σX to obtain

σX =

SY
S −

1
γ

ΛY
Λ

1−
(
SX
S −

1
γ

ΛX
Λ

)
X
σY (35)

At this point we have σX and therefore the volatility of q, ξ, ζ (and therefore S and Λ) in
terms of their first and second derivatives. Now we can use the definition of σX to write
σx = σX + σ, and use the FOC for σx to write π = γσx + σξ. Then using the FOC for σw,
in households’ HJB, we get σw = π

γ + 1−γ
γ σζ . Now we need to compute the drifts. First,

use the FOCs to obtain ĉ and ĉh, and we can use the definition of µX to compute it. With
this we have the drift of q, ξ, ζ (and therefore S and Λ).

Finally, use households’ HJB to compute r. We end up with intermediaries’ HJB (with
k̂ = X−1 from market clearing for capital), the FOC for capital, and the market clearing
condition for consumption goods. This is a system of two second order PDEs and an
algebraic constraint (the market clearing for consumption goods) for q, ξ, and ζ.

Boundary conditions. We don’t need to impose conditions at the boundary of the
domain. Rather, we have global conditions. We are looking for a solution with p, ξ, and ζ
strictly positive, as well as q − ξX (households’ wealth). ξ and ζ should be bounded away
from zero (so ξ1−γ and ζ1−γ are bounded above), and we want the resulting process for
X and S to remain positive, and intermediaries’ and households’ plans to be admissible
and deliver utility (Sk)1−γ

1−γ and (Xk)1−γ

1−γ . If we find a solution with these properties, then we
have a competitive equilibrium. We know the HJB, their FOCs, and the market clearing
conditions hold by construction. We only need to make sure these plans are truly optimal:
with ξ1−γ and ζ1−γ bounded above this is guaranteed (Theorem 1 for intermediaries and
standard arguments for households).

Numerical algorithm. The system of equations can be solved by adding a fictitious
finite time horizon T , with some terminal values for these functions. A time derivative
must be added to the computation of all drifts, and we can then solve backwards in time.
In this respect we have a system of first order ODEs with respect to time, which can
be solved with a standard integrator, such as Runge-Kutta 4 for example. If the time
derivatives vanish as we solve backwards, we have a solution to the system of PDEs we
were interested in (infinite horizon). Terminal conditions are not important as long as the
time derivatives vanish in the limit. Since the market clearing condition for consumption
is an algebraic constraint, it is easier to differentiate it with respect to time to obtain a
differential equation. We just need to make sure that terminal conditions are consistent
with market clearing for consumption goods, and the algorithm will preserve this as we
solve backwards. We can also verify ex-post that this condition is satisfied by the solution.
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There are two complications. The first is that the FOC for ĉ cannot be solved ana-
lytically, and solving it numerically at each step would make the algorithm much slower.
What we can do is add ĉ as a function to be solved for, and differentiate the FOC for ĉ with
respect to time, like we did for market clearing for consumption. We get an extra unknown
but also an extra differential equation, and terminal conditions must be chosen so that the
FOC for ĉ is satisfied. This can also be verified ex-post (the benefit is we only solve the
FOC for ĉ once at the beginning).

The second complication is that the domain of the system (X,Y ) ∈ D ⊂ R2
+ is unknown.

Basically, for a given Y we know that X ∈ (0, X̄(Y )), but we don’t know what is the
maximum utility that can be delivered to intermediaries for each exogenous state Y . To
deal with this we can do a change of variables, such as X̃ = X

X+ζ(q−ξX) ∈ (0, 1), and solve
the resulting system.

4.2 Planner’s problem

Retirement requires modifying the planner’s HJB equation and the law of motion of X.
First, X now captures the continuation utility of currently remaining intermediaries. Like-
wise, S is the continuation utility of current households, including previously retired inter-
mediaries. The HJB becomes

ρ

1− 1
ψ

= max
g,ĉ,σx,λ̂

(a− ι(g)− ĉX)
1− 1

ψ

1− 1
ψ

S
1
ψ
−1

+ µS + g − γ

2
σ2
S −

γ

2
σ2 + (1− γ)σSσ (36)

− θX
S

(
1− λ̂(1− γ)

) 1
1−γ (37)

The θ term captures the fact that current households only get a part of future continuation
utility of households in the future, because future households include current intermediaries
that will retire in the meantime. Because retirement for each intermediary is observable and
contractible, their continuation utility can jump down on retirement. The λ̂ term captures
this. Likewise, µX is the same as in the competitive equilibrium, (34). We use Ito’s lemma
to obtain µS and σS , and plug it into the HJB equation:

µS =
SY
S
µY +

SX
S
µXX +

1

2

SY Y
S

σ2
Y +

1

2

SXX
S

(σXX)2 +
SXY
S

σXXσY (38)

σS =
SX
S
σXX +

SY
S
σY (39)

Now we have an extra FOC for λ̂:

S′X
S
X +

X

S

(
1− λ̂(1− γ)

) 1
1−γ−1

= 0
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=⇒ λ̂ =
1− Λ

1−γ
γ

1− γ

All the other FOC are unchanged. Notice that the planner’s FOC for λ̂ coincides with the
private FOC (32), using Λ = ξζ. Asa result, it is still the case that the only inefficiency is
in the FOC for g, because of the hidden trade. Retirement does not introduce any source
of inefficiency.

Numerical solution. The planner’s HJB is a PDE for S(X,Y ). As in the competitive
equilibrium, we can solve it by adding a fictitious finite horizon T . This requires us to add
a time derivative when computing µS . We can then solve backward for arbitrary terminal
conditions. If the time derivative vanishes as we solve back, we found the original PDE.

Just like in the competitive equilibrium case, we need to deal with two complications.
The first is that now the FOC for both ĉ and g are difficult to solve analytically, so we
add both as functions of (X,Y ) and differentiate the FOCs with respect to time to obtain
two more PDEs. We just need to ensure that terminal conditions satisfy the FOCs (the
benefit, as before, is that we only solve them numerically once). We can check at the
end that the FOC are satisfied. The second problem is that as before we don’t know the
domain, so we need to do a change of variables as in the competitive equilibrium, such as
X̃ = X

X+S ∈ (0, 1), and solve the resulting system.

Appendix C
I provide a discrete-time version of the setting in the paper.

Setting

There is an aggregate shock z = {zt} and an intermediary-specific idiosyncratic shock
wi = {wit} for each intermediary, all independent. Both take values in {−∆,∆} for some
small ∆ > 0, with equal probability each period. Denote zt and wti the history of shocks
up to time t. For simplicity, time is finite, t = 0, 2...T .

The aggregate state of the economy depends on the history of aggregate shocks; that is,
σt(z

t), νt(zt), ιt(g; zt). The price of capital qt(zt) also depends on the history of aggregate
shocks, as well as aggregate investment gt(zt) = (ι′t)

−1(qt(z
t); zt) and the tax on capital

τkt (zt). There is a complete financial market, where the price of a consumption good after
aggregate history zt is denoted ηt(zt). Idiosyncratic risk is spanned by the market, but it’s
priced fairly because idiosyncratic risk can be eliminated in the aggregate.10

10So the price of a consumption good after aggregate history zt and idiosyncratic history wti for agent i
is simply ηt(zt)Prob(wti).
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The representative household’s problem is to pick a consumption path ch = {ct(zt)} to
maximize U(ch) subject to the budget constraint

T∑
t=0

∑
zt

ηt(z
t)cht(z

t) ≤ w0

Intermediaries’ contracts. Each intermediary signs a contract C = (c, k) specifying his
consumption c = {ct(zt, w̃t) ≥ 0} and capital under management k = {kt(zt, w̃t) ≥ 0} after
every history (zt, w̃t) of observable aggregate shocks zt and reported idiosyncratic shock w̃t

(dropping the i to avoid clutter).
The moral hazard problem arises because the true idiosyncratic shock wt is not con-

tractible. After observing the current period’s shocks zt and wt, the agent can choose to
steal st such that he reports w̃t = wt − st ∈ {−∆,∆}. This means that if his true idiosyn-
cratic shock is good, wt = ∆ he can pick st ∈ {0, 2∆}, but if his true shock is wt = −∆ he
can only choose st = 0. When he steals he diverts capital kt−1νt−1st keeps a fraction φ and
sells it at price qt, and immediately consumes the proceeds, so he adds φqtkt−1νt−1st to his
current consumption ct. After signing the contract the agent chooses a stealing strategy
s = {st(zt, wt)}. We say a contract C = (c, k) is incentive compatible if it is optimal for the
intermediary to not steal:

0 ∈ arg max
{st(zt,wt)}

U({ct(zt, w̃t) + φqt(z
t)kt−1(zt−1, w̃t−1)νt−1(zt−1)st(z

t, wt)}) (40)

The principal’s objective function is to minimize the cost of delivering utility to the
intermediary:11

J0(u0) = min
(c,k)

T∑
t=0

∑
zt

∑
wt

ηt(z
t)Prob(wt)

(
ct(z

t, wt)− (a− ιt(gt(zt); zt))kt(zt, wt)

+ qt(z
t)kt(z

t, wt)(1 + τk(zt))

−qt(zt)kt−1(zt−1, wt−1)(1 + gt−1(zt−1)(1 + σt−1(zt−1)zt)(1 + νt−1(zt−1)wt)
)

subject to:
U(c) ≥ u0

(c, k) is incentive compatible

The intermediary’s initial utility is pinned down by free-entry on the principal’s side:
J0(u0) = n0.

11with the convention that kt−1 = 0 as well as gt−1.
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Resource constraints. The aggregate capital stock k = {kt(zt)} follows the law of
motion

kt(z
t) = kt−1(zt−1)(1 + gt−1(zt−1))(1 + σt−1(zt−1)zt) (41)

where the idiosyncratic shocks wit are aggregated away.
The resource constraints in the economy are∫ 1

0
cit(z

t, wti)di+ cht(z
t) = kt(z

t)(a− ιt(gt(zt); zt) (42)

∫ 1

0
kit(z

t, wti)di = kt(z
t) (43)

Competitive Equilibrium. Given an initial wealth distribution ({θi}, θh) and initial
capital stock k0 a competitive equilibrium is a sequence of aggregate stochastic processes
q, T , η, g, k; a contract Ci = (ci, ki) for each intermediary; and a consumption plan ch for
the representative household, such that:

i. The representative households’ plan and each intermediary’s contract is optimal, given
prices and initial wealth ni0 = θi(q0 + T0)k0 and w0 = θh(q0 + T0)k0.

ii. Investment is optimal: ι′t(gt(zt)) = qt(z
t)

iii. The value of government transfers is

Tt(z
t) =

T∑
s=t

ηt+s(z
t+s)

ηt(zt)
τkt+s(z

t+s)kt+s(z
t+s)

iv. Resource constraints (42) and (43) hold

v. The aggregate capital stock satisfies the law of motion (41) with initial k0.

Planner problem. The planner faces the same environment as private agents, with
moral hazard and hidden trade. The hidden price of capital is q̃ = {q̃t(zt)} with q̃t(zt) =

ι′t(gt(z
t); zt). The incentive compatibility constraint is therefore, for every intermediary:

0 ∈ arg max
{st(zt,wt)}

U({ct(zt, w̃t) + φι′t(gt(z
t); zt)kt−1(zt−1, w̃t−1)νt−1(zt−1)st(z

t, wt)}) (44)

The planner therefore chooses an allocation (ch, g, k, {ci, ki}) to maximize the utility of
the representative household U(ch) subject to delivering utility {ui0} to each intermediary,
and satisfying the resource constraints (42) and (43), and law of motion for capital (41)
with initial k0, and incentive compatibility (44) for each intermediary.
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