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Appendix B

B.1 Analysis of Alternative Decentralizations (Section III.E)

Proposition B1 Assume the economy has an AJ market structure, where the sovereign can issue
nonrenegotiable debt contingent on the realization of w and �, subject to borrowing constraints. Then,
the COA can be decentralized by an AJ equilibrium with borrowing constraints b0AJ;� � b̂(�). The
borrowing constraint is binding for � � � (B (b)) and slack otherwise, where b denotes the current debt
repayment and B and � are de�ned in De�nition 1.

Proof of Proposition B1. Let �-speci�c recession-contingent debt be denoted b0AJ;� = b
0
� and let

the recession- and normal-time value functions be given by WAJ and �WAJ , respectively. Since debt
is nonrenegotiable, the debt prices in recession and normal time are (1 � pAJ)f(�)R�1 and pAJR�1,
respectively, where pAJ is the expected e¤ort. The problem for a sovereign who owes b in recession is
then

WAJ (b) = max
fb0�g�2N ;�b0AJ

�
u

�
w � b+ pAJR�1 � �b0AJ + (1� pAJ)R�1 �

Z
N
b0� f (�) d�

�

�X (pAJ) + �
�
pAJ �WAJ

�
�b0AJ

�
+ (1� pAJ)

Z
N
WAJ

�
b0�
�
dF (�)

��
;

where pAJ = argmaxp2[p;�p]�X (p)+ �
h
p �WAJ

�
�b0AJ

�
+ (1� p)

R
N WAJ

�
b0�

�
dF (�)

i
, subject to a set of

no-default borrowing constraints b0� � J (�) 8� 2 N , and b0� � b, �b0AJ 2 [b;~b].
The proof strategy is to show that the market allocation of De�nition 1 is feasible, rules out default,
is consistent with the FOCs, and yields the same expected utility in the AJ economy. Let the policy
functions b̂ (�), � (b), �(b), �B

�
�b
�
, B (b), B (b; �), C(b), �C(�b), W (b), 	(b;�b), and ��

�
�b
�
be given by the

market allocation.
Guess that (i) the borrowing constraints are J (�) = b̂ (�), (ii) optimal debt issuance is given by:

b0� =

�
B(b) for � � � (B(b))
b̂(�) for � < � (B(b))

;

and �b0AJ = �B(b), and (iii) optimal consumption is CAJ(b) = C(b) and �CAJ(�b) = �C(�b). Since b0� =
B (B (b) ; �), the realized debt payments are equivalent to the market allocation. Equilibrium e¤ort
pAJ must therefore be as in the market economy. Recession debt revenue is identical in the two
economies, since

(1� pAJ)R�1 �
Z
N
b0� f (�) d� =

�
1�	(B(b); �B(b))

�
R�1 �

 
(1� F (� (B (b)))) �B (b)
+
R �(B(b))
�min

b̂ (�) f (�) d�

!
=

�
1�	(B(b); �B(b))

�
R�1 ��(B(b)):
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Hence, the proposed allocation
n
b0�;
�b0AJ ; CAJ ;

�CAJ ; pAJ

o
satis�es the budget constraint and is therefore

feasible. It follows that discounted value must be identical; �WAJ(b) = ��(b) and WAJ(b) =W (b). Since
WAJ(J(�)) =W (b̂(�)) = �� � 8� 2 N , it follows that J(�) is not too tight, in the sense that the PC
holds with equality at the borrowing constraint. Hence, J rules out default.

Finally, it is straightforward to verify that the proposed allocation satis�es the FOCs in the AJ
economy. Since the proposed allocation is feasible, satis�es the AJ optimality conditions, and at the
same time attains the same utility as in the COA, it must represent an equilibrium allocation in the
AJ economy.

B.2 Analysis of the One-Asset Economy (Section IV)

In this section, we provide the technical analysis of the results summarized in Section IV and one
related �gure. We consider the (Markov) market equilibrium for an economy where the sovereign can
issue only a one-period renegotiable noncontingent bond.32

We provide (i) a de�nition of the market equilibrium for the one-asset economy; (ii) a proof of
existence and uniqueness ofWR and the associated equilibrium functions when the e¤ort is exogenously
given; (iii) a derivation of the CEE in equation (38). All proofs are in a separate section of this appendix
below.

De�nition B1 A market equilibrium with noncontingent renegotiable debt is a set of value func-
tions

�
V R;WR

	
, a threshold renegotiation function �R, an equilibrium debt price function QR, and

a set of optimal decision rules fBR; BR; CR;	Rg such that, conditional on the state vector (b; �) 2�
[b;~b]� [�min; �max]

�
, the sovereign maximizes utility, the creditors maximize pro�ts, and markets

clear. More formally:

� The value function V R satis�es

V R (b; �) = max
�
WR (b) ; �� �

	
;

where WR (b) is the value function conditional on the debt level b being honored,

WR (b) = max
b02[b;~b]

u
�
QR

�
b0
�
� b0 + w � b

�
+ ZR

�
b0
�
; (B1)

continuation utility ZR is de�ned as

ZR
�
b0
�
= max
p2[p;�p]

�X (p) + �
�
p� ��R

�
b0
�
+ (1� p)� �R

�
b0
��
;

the value of starting in recession with debt b and in normal time with debt �b are �R (b) =R
N V

R (b; �) dF (�) and ��R(�b) = u
�
�w �

�
1�R�1

�
�b
�
= (1� �), respectively.

32The extension in which we rule out renegotiation is qualitatively similar. The only di¤erence is that the bond price
when renegotiation is allowed, given by equation (B2) in the below De�nition B1, becomes

QNR
�
b0
�
= R�1

�
	NR

�
b0
�
+
h
1�	NR

�
b0
�i
�
h
1� F

�
�NR

�
b0
��i�

when renegotiation is ruled out.
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� The threshold renegotiation function �R satis�es

�R (b) = ��WR (b) :

� The debt price function satis�es the following arbitrage condition:

QR
�
b0
�
� b0 = R�1

�
	R
�
b0
�
� b0 +

�
1�	R

�
b0
��
��R

�
b0
��

(B2)

where �R (b0) is the expected repayment of the noncontingent bond conditional on next period
being a recession,

�R (b) =
�
1� F

�
�R (b)

��
b+

Z �R(b)

�min

b̂R (�)� dF (�) ;

and where b̂R (�) =
�
�R
��1

(�) is the new post-renegotiation debt after a realization �.

� The set of optimal decision rules comprises:

1. A take-it-or-leave-it debt renegotiation o¤er:

BR (b; �) =
�
b̂R (�) if � � �R (b) ;
b if � > �R (b) :

2. An optimal debt accumulation and an associated consumption decision rule:

BR
�
BR (b; �)

�
= arg max

b02[b;~b]
u
�
QR

�
b0
�
� b0 + w � BR (b; �)

�
+ ZR

�
b0
�

CR
�
BR (b; �)

�
= QR

�
BR

�
BR (b; �)

��
�BR

�
BR (b; �)

�
+ w � BR (b; �) :

3. An optimal e¤ort decision rule:

	R
�
b0
�
= arg max

p2[p;�p]
�X (p) + �

�
p� ��R

�
b0
�
+ (1� p)� �R

�
b0
��
:

� The equilibrium law of motion of debt is b0 = BR
�
BR (b; �)

�
:

� The probability that the recession ends is p = 	R (b0).

Since the haircut b̂R (�) keeps the sovereign indi¤erent between accepting the creditors�o¤er and
defaulting, this implies the following indi¤erence condition,

WR(b̂R (�)) = �� �: (B3)

With some abuse of notation, let WR (b;�) denote the value function conditional on honoring debt
b in an economy with exogenous outside option � as de�ned above. In the analysis of Section IV,
we assume that in each economy (with and without renegotiation) the outside option is given by the
market equilibrium with a zero debt position. Namely, �R =WR(0;�R) in the case with renegotiation,
and �NR =WNR(0;�NR), when we rule out renegotiation.

We prove, next, that for an exogenously given e¤ort 	R = p a market equilibrium satisfying
De�nition B1 exists and that the set of equilibrium functions fV R;WR;�R; QR;BRg is unique.
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Proposition B2 Assume 	R = p 2 [p; �p] � R+. Then the Markov equilibrium with noncontingent
debt exists and is unique: (A) The equilibrium functions fV R;WR;�R; QR;BRg satisfying De�nition
B1 exist and are unique. The value functions

�
V R;WR

	
are continuous, WR is strictly decreasing in b,

and V R is nonincreasing in b; (B) There exists a unique �R satisfying the �xed point �R =WR (0;�R).

Finally, we derive formally the CEE of equation (38). Since the CEE is derived from �rst-order
conditions, the proposition must �rst establish appropriate di¤erentiability properties to ensure that
the �rst-order conditions are necessary conditions for an equilibrium. It turns out that in the one-asset
economy with renegotiation the equilibrium functions are not continuous and di¤erentiable everywhere.
However, we can prove that they are di¤erentiable at all interior level of debt that can be the result of
an optimal choice. Moreover, the discontinuities in the policy functions do not invalidate the fact that
the FOCs are necessary conditions for an equilibrium. It is then useful to de�ne B̂R as the set of debt
levels b0 that can be the result of an optimal interior choice given debt b.

De�nition B2 B̂R = fb0 2 (b;~b)jBR
�
BR (b; �)

�
= b0, for b 2 [b;~b]g.

Proposition B3 Let �CR(b) denote the consumption function in normal time. The equilibrium func-
tions WR(b0), �R(b0), QR(b0), and 	R(b0) are di¤erentiable for all b0 2 B̂R. Moreover, for any b0 2 B̂R,
the FOC (@=@b0)u(QR(b0)b0 + w � b) + (@=@b0)ZR(b0) = 0 and the envelope condition @WR(b0)=@b0 =
�u0(CR(b0)) holds true, such that the conditional Euler equation (CEE)

	R(b0)

(1�	R(b0)) [1� F (�R(b0))] + 	R(b0)
u0( �CR(b0))

u0(CR(b))
+

(1�	R(b0))
�
1� F (�R(b0))

�
(1�	R(b0)) [1� F (�R(b0))] + 	R(b0)

u0(CR(b0))

u0(CR(b))

= 1 +

�
	R
�0
(b0)

�
b0 ��R(b0)

�
(1�	R(b0)) [1� F (�R(b0))] + 	R(b0) ; (B4)

is a necessary condition for an interior optimum.

Note that the left-hand side of (B4) is the expected ratio between next-period and current-period
marginal utility conditional on debt being honored in the next period. More precisely, the term
u0(CR(b0))=u0(CR(b)) is the ratio of marginal utilities if the recession continues, whereas the term
u0( �CR(b0))=u0(CR(b)) is the ratio of marginal utilities if the recession ends. Therefore, equation (B4)
is identical to equation (38).

B.2.1 Figure B1

Figure B1 illustrates the properties of the one-asset economy with and without renegotiation. This
�gure is discussed in Section IV.A in the text.
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Figure B1: The top panels show the equilibrium debt issuance (top-left) and e¤ort (top-right) con-
ditional on repayment. The bottom panels show the equilibrium policy function for consumption
(bottom-left) and the equilibrium probability of repayment (bottom-right). The dashed lines illustrate
the Markov equilibrium with renegotiation, while the solid lines the equilibrium where renegotiation is
ruled out. The parameterization of these economies is described in Section B.4.
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B.3 Proofs

B.3.1 First-Best Allocation (Section II.A)

In this section, we provide the proof of Proposition 1.

Proof of Proposition 1. In the �rst part of the proof we take as given that the pro�t function �P
has the solution (9) and verify this below. Moreover, we also take as given that P is strictly decreasing,
strictly concave, and di¤erentiable in �. We defer the formal proof of these properties to Lemma B1
further below in this appendix.

The Lagrangian of the planner�s problem in recession reads as

L =

Z
N

�
w � c� + �

�
p� �P (�!�) + (1� p�)P (!�)

��
f(�)d�

+#

�Z
N
[u (c�)�X (p�) + � (p��!� + (1� p�)!�)] f(�)d�� �

�
where the Lagrange multiplier on the PK is given by #. The FOCs with respect to the controls c�, !�,
�!�, and p� yield:

f (�) = u0 (c�)# f (�) ; (B5)

#f (�) = �P 0 (!�) f (�) ; (B6)

#f (�) = � �P 0 (�!�) f (�) ; (B7)

�
�
�P (�!�)� P (!�)

�
f (�) = #f (�)

�
X 0 (p�)� � (�!� � !�)

�
; (B8)

while the envelope condition is given by
�P 0 (�) = #: (B9)

First, since f(�) > 0 over the relevant support of � the optimal allocation is independent of
the default cost realization. Thus, the planner fully insures the agent against the risk in �. The
optimality condition in (B7) implies that # > 0, since � �P 0 (�!�) > 0. The optimality conditions (B6)
and (B9) imply !FB(�) = � such that promised utility, consumption, and reform e¤ort stay constant
during recessions. Equations (B5)-(B7) together with (9) imply that the planner provides the agent
with full consumption insurance across the income states, u0

�
cFB(�)

�
= u0

�
�c(�!FB(�))

�
, cFB(�) =

�c(�!FB(�)) = u�1
�
(1� �)�!FB(�)

�
. Given the constant allocation, equation (8) in Proposition 1 follows

immediately from the PK (2). Moreover, since in normal time the agent gets the same consumption
as in recession (but reform e¤ort is absent), equation (8) implies that promised utility in normal time
can be expressed as �!FB(�) = �+X

�
pFB (�)

�
=
�
1� �

�
1� pFB (�)

��
= u(cFB(�))=(1��). The FOC

with respect to e¤ort (B8) can then be expressed as

�
�
�P
�
�!FB(�)

�
� P (�)

�
= u0(cFB(�))�1

�
X 0 �pFB(�)�� � ��!FB(�)� ��� ; (B10)

where

�P
�
�!FB(�)

�
� P (�) = �w � w + �

�
1� pFB (�)

� �
�P
�
�!FB(�)

�
� P (�)

�
=

1

1� � (1� pFB (�)) ( �w � w)

�!FB(�)� � =
X
�
pFB (�)

�
1� � (1� pFB (�)) :
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Substituting for �P
�
�!FB(�)

�
�P (�) and �!FB(�)�� in (B10) yields equation (7) in Proposition 1. Note

that the pro�t function in recession

P (�) =
w � cFB(�)

1� � (1� pFB (�)) +
�pFB (�)

1� �
�w � cFB(�)

1� � (1� pFB (�))

=
�w � cFB(�)
1� � � �w � w

1� � (1� pFB (�)) ; (B11)

de�nes a positively sloped locus in the plane (p; c), while equation (7) de�nes a negatively sloped locus
in the same plane. The two equations pin down a unique interior solution for pFB(�) and cFB(�).
Now, consider the comparative statics with respect to �. An increase in � yields a strict increase in
consumption cFB(�) according to (B5) and (B9) since P is strictly concave, while (7) is independent
of � such that the increase in cFB(�) must come with a strict decrease in pFB(�). Finally, set w = �w
in (B11) to see that the pro�t function in normal time is indeed given by (9). This concludes the proof
of the proposition.

B.3.2 Constrained Optimum without Moral Hazard (Section II.B)

In this section, we provide the proof of Proposition 2. As a preliminary step, we state Lemma B1 that
is used in the proof of Proposition 2.

Lemma B1 The pro�t functions P and �P that solve the Bellman equation (1) subject to (2)-(3), or,
subject to (2)-(5), are strictly decreasing, strictly concave, and di¤erentiable at the interior of their
support. The FOCs of the planning problem are necessary and su¢ cient to characterize the COA.

Since the proof of Lemma B1 is long and uses standard methods, we defer it to Section B.3.6 below.

Proof of Proposition 2. In this proof we take as given Lemma B1, that is proved separately.
We limit the proof to the arguments that do not overlap with those in the proof of Proposition 3 in
Appendix A.

The Lagrangian of the planner�s problem is the same as in (A1), except that we can drop all terms
that involve the incentive constraint (�� = 0). The FOCs yield, then:

f (�) = u0 (c�) (# f (�) + ��) ; (B12)

# f (�) + �� = �P 0 (!�) f (�) ; 8!� > �; (B13)

# f (�) + �� = � �P 0 (�!�) f (�) ; (B14)

�
�
�P (�!�)� P (!�)

�
f (�) = (#f (�) + ��)

�
X 0 (p�)� � (�!� � !�)

�
: (B15)

The envelope condition yields �P 0 (�) = # > 0, 8� > �, and the slackness condition for �� reads
0 = �� (!� � �).

Since P is strictly concave, Lemma 1 implies that the solution is characterized by the unique
threshold ~�(�) in (13). The PC binds only for � < ~�(�).

The FOCs (B12)�(B15) imply equations (10)-(12) in the text. Combine equation (B13) and the
envelope condition to yield P 0 (�) = P 0 (!�) + ��=f(�) � P 0 (!�) for �; !� > �: Since P is strictly
concave this implies that promised utility is weakly increasing conditional on staying in recession,
!� � � > �. Note that this property extends to the lower bound where � = � = !(�) if the PC is slack.
This can be proved by a contradiction argument: Suppose that 9� > � such that !(�) � !(�). The
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optimal allocation associated with !(�) yields utility � > �. Thus, !(�) � !(�) would violate the PK,
which is not feasible. In summary, promised utility is weakly increasing !� � �, such that its lower
bound is never relevant and we can drop the multiplier �� from the subsequent analysis.

Since �� enters the optimality conditions, the solution will depend on whether the PC is slack or
binding:

1. When the PC is binding and the recession continues, � < ~�(�), �� > 0, !� > �, and

u (c�)�X (p�) + � [p��!� + (1� p�)!�] = �� �: (B16)

Then, (10), (11), (12), and (B16) determine jointly the solution for (c�; p�; !�; �!�). In this case,
there is no history dependence, i.e., � does not matter.

2. When the PC is not binding, � � ~�(�) and �� = 0: Then, !� = �, and c� = c (�), p� = p(�),
and �!� = �!�(�) are determined by (14), (10), and (12), respectively. The solution is history
dependent.

By the same argument made in the proof of Proposition 3, c (�) must be strictly increasing in �.
In turn 1=u0(c (�)) = 1=u0(�c (�!(�))) implies that also �!(�) is strictly increasing in �. Finally, equation
(12) implies that

u0 (c (�))
�
�P (�! (�))� P (�)

�
+ [�! (�)� �] = ��1X 0 (p (�)) :

For � > �, di¤erentiating the left-hand side yields

u00 (c (�)) c0 (�)�
�
�P (�! (�))� P (�)

�| {z }
<0

+
�
u0 (c (�))P 0 (�) + 1

� �
�!0 (�)� 1

�
= u00 (c (�)) c0 (�)�

�
�P (�! (�))� P (�)

�
< 0

since (11) implies that P 0 (�) = �1=u0 (c (�)) ; and we establish below that �P (�! (�)) � P (!(�)) =
�P (�! (�))�P (�) > 0. This implies that the right-hand side must also be strictly decreasing in �. Since
X is convex and increasing, this implies in turn that p (�) must be strictly decreasing in � > �. Note
that this property extends to the lower bound, p(�) > p(�) 8� > �. Suppose not, p(�) � p(�), then
� = !(�) > !(�) = � which contradicts the fact that !(�) and p(�) are optimal given � and the same
�. Thus, e¤ort p(�) must be strictly decreasing.

Finally, we must establish that �P (�!�(�)) � P (!�(�)) > 0; 8!�(�) > �: Suppose, to derive a
contradiction, that �P (�!�(�))� P (!�(�)) � 0. For simplicity, we write !� for !�(�): The FOCs of the
planner problem in equations (10) and (11) imply

�c(�!�) = c� = c(!�):

Recall that !� � �. Then, once the economy recovers, promised-utility and pro�ts remains constant
such that consumption can be written as

�c(�!�) = �w � �P (!�) + � �P (!�) = �w � �P (�!�) +
p�
R
�P (�!�) +

1� p�
R

�P (�!�)

> w � �P (�!�) +
p�
R
�P (�!�) +

1� p�
R

�P (�!�)

� w � P (!�) +
p�
R
�P (�!�) +

1� p�
R

P (!�)

� w � P (�) + p�
R
�P (�!�) +

1� p�
R

P (!�) = c�:
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To see why, note that [(1� p�)=R� 1] �P (�!�) � [(1� p�)=R� 1]P (!�) since [(1� p�)=R� 1] < 0 and
(by assumption) �P (�!�) � P (!�). The last inequality follows from !� � � and P 0(�) < 0. The
conclusion that �c(�!�) > c� contradicts �c(�!�) = c� which was derived above. Thus, we have proven
that �P (�!�)� P (!�) > 0.

This concludes the proof of Proposition 2.

B.3.3 Constrained Optimum with Moral Hazard (Section II.B)

This section contains three lemmas that are used in the analysis of the planner problem with moral
hazard in Section II.B. Lemma B2 provides a su¢ cient condition for the e¤ort function to be falling in
promised utility when � is su¢ ciently large. Lemmas B3 and B4 are instrumental to prove Proposition
3 in Appendix A.

Lemma B2 Suppose limc!1 u0(c) = 0 and that limp!pX 00 (p) > 0. Then lim�!1 p(�) = p.

Proof of Lemma B2. We conjecture that in the limit the COA is given by lim�!1 f�!(�)� !(�)g =
0, lim�!1 c(�) = lim�!1 c(!(�)) = lim�!1 �c(�!(�)) = 1, and lim�!1 p(�) = p, where p(�) �
�(�! � !). We verify that this allocation satis�es the necessary FOCs of the COA. First, eq. (2)
implies lim�!1 !(�) = lim�!1 �!(�) = 1. Second, lim�!1X 0 (p(�)) = 0 satis�es eq. (15). Third,
the lower bound on ! and the PC (4) become irrelevant when � is su¢ ciently large. Fourth, note that
�0 (�! � !) = �=X 00 (� (�! � !)). Equations (16)-(17) can then be rewritten as

1� p(�) = (1� p(�)) u0(c(�))

u0(c(!(�)))
+ u0(c(�))

�

X 00(p(�))

�
�P (�!(�))� P (!(�))

�
(B17)

p(�) = p(�)
u0(c(�))

u0(�c(�!(�)))
� u0(c(�)) �

X 00(p(�))

�
�P (�!(�))� P (!(�))

�
: (B18)

Consider the limit when � ! 1. Equations (B17)-(B18) hold as � ! 1 since lim�!1 p(�) = p,
lim�!1

�
�P (�!(�))� P (!(�))

	
= ( �w � w) =

�
1� �(1� p)

�
, lim�!1 u0(c(�)) = 0, lim�!1 fu0 [c(�)] =u0 [c(!(�))]g

= lim�!1 fu0 [c(�)] =u0 [�c(�!(�))]g = 1, and X 00(p) is bounded away from zero by assumption. Finally,
note that the conjectured COA coincides with the FB in the limit, since lim�!1 u0(cFB(�)) ( �w � w)
= 0 in (7). Thus, it must yield the maximal pro�ts given �. This implies that the conjectured limiting
allocation is indeed the COA.

Lemma B3 Assume P is strictly concave. Then, P is di¤erentiable at the interior of its support with
P 0(�) = �1=u0 (c(�)) < 0:

Proof of Lemma B3. The proof is an application of Benveniste and Scheinkman (1979, Lemma
1). Consider the pro�t of a pseudo planner that is committed to deliver the initial promise ~�, but
suboptimally chooses e¤ort and future promised-utility like in the optimal contract given an initial
promise �

eP (~�; �) �
Z ~�(~�)

�min

�
w � x(�; p�(�); �!�(�); !�(�)) + �

�
p�(�) �P (�!�(�))

+(1� p�(�))P (!�(�))

��
dF (�)

+

Z �max

~�(~�)

�
w � x(�(~�); p�(�); �!�(�); !�(�)) + �

�
p�(�) �P (�!�(�))

+(1� p�(�))P (!�(�))

��
dF (�);
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where consumption provided by the pseudo planner is determined by

x(�; p; �!; !) = u�1 (�� �+X(p)� � [p�! + (1� p)!])

and p�(�) = �(�!�(�) � !�(�)). Note that for ~� = �, the pseudo planner achieves the same pro�t as
in the optimal contract, eP (~�; ~�) = P (~�), but pro�ts must be weakly lower otherwise, eP (~�; �) � P (~�).
Furthermore, eP (~�; �) is twice di¤erentiable in ~� and strictly concave. Then, Lemma 1 in Benveniste and
Scheinkman (1979) applies and the pro�t function P (�) is di¤erentiable at the interior of its support
� with derivative

P 0(�) = eP1(�; �) = �1=u0 (c(�)) < 0:
This concludes the proof of the lemma.

Lemma B4 The FOCs of the planning problem are necessary for optimality.

Proof of Lemma B4. That the optimal e¤ort is interior follows from the assumed properties of the
X function (X 0(p) = 0, X 0(p) > 0 for p > p, and limp!�pX

0(�p) = +1). The optimality condition
for e¤ort X 0(p�(�)) = �(�!�(�)� !�(�)) implies then �!�(�) > !�(�), and that there exists an interior
maximum e¤ort level p+ = max fp�(�)g < �p. Since !�(�) � �; then �!�(�) > �: In conclusion, the
optimal choice of p� is interior and �!�(�) will never be at the lower bound !. Note that the possibility
!�(�) = � is taken into account by the stated FOCs.

Next, consider the upper bound ~! for !�(�) which is su¢ ciently high that none of the PCs will
bind if the economy starts at ~!, i.e., !�(~!) = !(~!) > ���min. Then, the FOC with respect to !� (17)
implies that - if the planner was not constrained by !� � ~! - pro�ts are maximized when !�(~!) < ~!.
This allocation is feasible in the constrained problem thus it must also be the optimal choice when
!�(�) is bounded by ~!. The same applies to any level of promised-utility below ~! when the PC is
slack. Finally, in states where the PC binds, !�(�) always remains below � � �min < ~!. Thus, !�(�)
always remains strictly below ~!. In turn, the optimality condition for e¤ort then implies that the �!�(�)
can never be higher than X 0(p+)=�+ ~! < ~�!, where X 0(p+) < +1. In summary, the optimal choices of
�!� and !� are also interior (apart from the corner solution, !� = �). Finally, consumption must always
be positive since limc!0 u(c) = �1 and it is interior because promised-utility and e¤ort is interior.
Thus, the solution to the planner problem must be interior and the stated FOCs are necessary.

B.3.4 Decentralization (Section III.B)

This section contains the complete proofs of two lemmas that are stated in the proof of Proposition 4
in Appendix A.

Proof of Lemma A1. We prove that the mapping T� de�ned in eq. (A6), satis�es Blackwell�s su¢ -
cient conditions on the complete metric space (�; d1), thereby being a contraction mapping. Therefore,
W� = limn!1 T

n
� () exists and is unique (see Stokey, Lucas, and Prescott 1989, Theorem 3.3).

Claim (i): T� is strictly decreasing in b for all b such that T�()(b) > � � �max, otherwise T� =
���max; in particular, T�()(~b) = ���max. Proof of the claim: For any " > 0; eT� () (b+ ") < eT� () (b)
since

eT� () (b+ ") = O(b+ ";B� (b+ ") ; �B
�
 (b+ ") ; (B

�
 (b+ ")); �)

< O(b; B� (b+ ") ; �B
�
 (b+ ") ; (B

�
 (b+ ")); �)

� O(b; B� (b) ; �B
�
 (b) ; (B

�
 (b)); �) = eT� () (b) ;

10



where


�B�(b); B

�
(b)

�
= argmax�b0;b02[b;~b];��(b0)��b0 O(b; b

0;�b0; (b0); �). The strict inequality follows from

b + " > b and u0(�) > 0. The weak inequality follows from the fact that


�B�(b); B

�
(b)

�
is the optimal

policy for the debt level b. Since eT� is strictly decreasing in b 2 (b; b0(�)), and limb!b0(�) eT�()(b) =
�1 < ���max; then, T�()(b) is strictly decreasing in b for all b such that T�()(b) > ���max; being
constant at �� �max otherwise. Finally, since b0(�) < ~b (A5) implies that T�()(~b) = �� �max.

Claim (ii): T� maps � into �: Proof of the claim: Recall that T� is bounded from below by ���max.
T� is also bounded from above because consumption, reform e¤ort, the support of the default cost, and
the elements of � and � are bounded. Continuity of eT� in b 2 [b; b0(�)) follows by the Theorem of the

Maximum. Since limb!b0(�) eT�()(b) = �1 < � � �max, then T� () (b) = max
neT� () (b); �� �maxo

is also continuous in b. Finally, we have already established above that T� is nonincreasing in b and
that T�()(~b) = �� �max. Thus, T�() 2 �.

Claim (iii): T� discounts: for any scalar a � 0 and  2 �, T�( + a)(b) � T�()(b) + �a. Proof of
the claim: Let a � 0 be a real constant. Then

eT� ( + a) (b) � max
�b0;b02[b;~b];��(b0)��b0

u

�
w � b+ �	�

�
 (b0) + a;�b0

�
�b0

+�
�
1�	�

�
 (b0) + a;�b0

��
��(b

0)

�
+ Z�

�
(b0);�b0

�
+ �a (B19)

� max
�b0;b02[b;~b];��(b0)��b0

u

�
w � b+ �	�

�
 (b0) ;�b0

�
�b0

+�
�
1�	�

�
 (b0) ;�b0

��
��(b

0)

�
+ Z�

�
(b0);�b0

�
+ �a (B20)

= eT� () (b) + �a.
The �rst inequality follows from an envelope argument which implies that

dZ�((b0) + a;�b0)=da = �
�
1�	�

�

�
b0
�
+ a;�b0

�� �
1� F

�
��((b0) + a)

��
2 [0; �] :

Therefore, a linear expansion yields Z�
�
(b0) + a;�b0

�
� Z�

�
(b0);�b0

�
+ �a. The second inequality

follows from observing that 	�
�
 (b0) + a;�b0

�
� 	�

�
 (b0) ;�b0

�
and �b0 � ��(b

0), implying that debt
revenue and utility are (weakly) higher in (B20) than in (B19). So, ~T� discounts. The de�nition of T�
implies that if ~T� discounts, so does T�:

Claim (iv): T� is a monotone mapping, i.e., 8; + 2 � such that + (b) �  (b), T� (+) (b) �
T� () (b) 8b 2 [b;~b]. Proof of the claim: Let ; + 2 � with + (b) �  (b), 8b 2 [b;~b]. We �rst establish
that +(b) � (b) ) eT� (+) (b) � eT� () (b). To this aim, let �b0;�b0� = �B�+ (b) ; �B�+ (b)� denote the
optimal debt issuance under the function +: Let � (b) � 0 be such that +

�
B�(b) + � (b)

�
= (B�(b)).

(That such a positive function exists follows immediately from the properties of + and .) Suppose,
�rst, that b is such that ��

�
B�(b) + � (b)

�
� �B� (b), so that the LSS constraint is satis�ed. Then, the

following sequence of inequalities holds true:

eT� �+� (b) = O
�
b; B�+ (b) ;

�B�+ (b) ; 
+
�
B�+ (b)

�
; �
�

� O
�
b; B�(b) + � (b) ; �B

�
 (b) ; 

+
�
B�(b) + � (b)

�
; �
�

= O
�
b; B�(b) + � (b) ; �B

�
 (b) ; 

�
B�(b)

�
; �
�

� O
�
b; B� (b) ; �B

�
 (b) ; 

�
B� (b)

�
; �
�
= eT� () (b):

The �rst inequality follows from the fact that, under +; the choice
�
b0;�b0

�
=
�
B�(b) + � (b) ; �B

�
+ (b)

�
is feasible and suboptimal. The second inequality follows from the fact that the expression in the third
line has a larger b0 than that in the fourth line, while e¤ort is held constant across the two expressions.
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Thus, the former grants (weakly) higher consumption than the latter.
Consider, next, the case when the LSS binds, i.e., ��

�
B�(b) + � (b)

�
> �B� (b). De�ne ~�(b) such that

��(B
�
(b) +

~� (b)) = �B�(b) and note that 0 � ~� (b) < � (b). Then,

eT� �+� (b) = O
�
b; B�+ (b) ;

�B�+ (b) ; 
+
�
B�+ (b)

�
; �
�

� O
�
b; B�(b) + ~� (b) ; �B

�
 (b) ; 

+
�
B�(b) + ~� (b)

�
; �
�

= u
�
w � b+ � �B� (b)

�
+ Z�

�
+
�
B�(b) + ~� (b)

�
; �B� (b)

�
� O

�
b; B� (b) ; �B

�
 (b) ; 

�
B� (b)

�
; �
�
= eT� () (b):

The �rst inequality follows from the fact that, under +; the choice
�
b0;�b0

�
=
�
B�(b) + ~� (b) ; �B

�
+ (b)

�
is suboptimal. The second equality follows from the fact that p��(B�(b)+~� (b))+(1�p) �B�(b) = �B�(b).
The second inequality follows from the observation that both consumption and continuation utility are
higher in the expression in the third line than in the one in the fourth line. Consumption is higher
because (by the LSS) �B�(b) � ��(B

�
(b)). Continuation utility is higher because (i) ~� (b) � � (b) )

+
�
B�(b) + ~� (b)

�
� +

�
B�(b) + � (b)

�
= 

�
B�(b)

�
and (ii) Z� (y+; x) � Z� (y; x).

This establishes that ~T� is a monotone mapping. Next, observe that T� (+) = maxf eT� (+) ; � �
�maxg � maxf eT� () ; �� �maxg = T�(). Thus, T� is also a monotone mapping.

By Blackwell�s theorem, Claims (i)�(iv) jointly imply that T� () is a contraction operator on the
complete metric space (�; d1), thus its �xed point W� = limn!1 T

n
� () exists in � and is unique.

Proof of Lemma A2. First, note that S(�) is bounded by [b;~b], continuous and nondecreasing in �
since W�(b) is continuous and nonincreasing in b. Thus, S is an operator on the complete metric space
(d1;�). We now verify Blackwell�s su¢ cient conditions for S being a contraction mapping.

Monotonicity: Let �+; � 2 � and assume �+ � �. We claim that S(�+) � S(�). Corollary B1
below establishes that �+ � � ) W�+(b) � W�(b), 8b 2 [b;~b]. This property must also hold true for
b = S(�)(�), so W�+(S(�)(�)) �W�(S(�)(�)). To prove the claim, we distinguish two cases:
(i) W�(b) � � � �: The de�nition of S implies that W�+(S(�

+)(�)) = � � � and W�(S(�)(�)) =
� � �, implying that W�+(S(�

+)(�)) = W�(S(�)(�)). Joint with the above inequality this yields
W�+(S(�)(�)) �W�+(S(�

+)(�)). Since W�+(b) is monotone decreasing in b, then, S(�)(�) � S(�+)(�).
(ii) W�(b) < �� �: The de�nition of S yields S(�)(�) = b, implying S(�+)(�) � S(�)(�) = b.

Discounting: Let a � 0. We claim that S(�+a) � S(�)+�a. Corollary B1 below establishes that
for any b 2 [b;~b] 9~�(b) 2 [0; �] such that W�(b) = W�+a(b + ~�(b)a). This property must also hold for

b = S(�)(�). Thus, 9~�� 2 [0; �] such that W� (S(�)(�)) =W�+a

�
S(�)(�) + ~��a

�
. We now distinguish

three cases to prove the claim.
(i) W�(b) � �� �: The de�nition of S implies W� (S(�)(�)) = �� � and W�+a (S(� + a)(�)) = �� �.
Thus,W�+a(�+a) (S(� + a)(�)) =W� (S(�)(�)) =W�+a

�
S(�)(�) + ~��a

�
, implying that S(�+a)(�) =

S(�)(�) + ~��a � S(�)(�) + �a.
(ii) W�(b) < ��� andW�+a(b) � ���: The de�nition of S implies S(�)(�) = b andW�+a (S(� + a)(�)) =
���. The above equality implies thatW�(b) =W�+a(b+~�(b)a) = ���. It follows thatW�+a (S(� + a)(�)) =
�� � =W�+a(b+ ~�(b)a) and therefore S(� + a)(�) = b+ ~�(b)a � S(�) + �a.
(iii) W�+a(b) < ���: The de�nition of S implies that S(�)(�) = b and S(�+a)(�) = b, implying that
S(� + a)(�) = S(�)(�) � S(�)(�) + �a is necessarily satis�ed.
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Thus, S is a contracting operator with a unique �xed point �̂(�) = limn!1 Sn(�) in �. This
concludes the proof of the lemma.

The following corollary of Lemma A1 was used in the proof of Lemma A2.

Corollary B1 W� has the following properties: (a) W� is monotone in �: if �+ � �, then W�+(b) �
W�(b) 8b 2 [b;~b]; (b) for any b 2 [b;~b] and a � 0, 9~�(b) 2 [0; �]: W�+a(b+ ~�(b)a) =W�(b).

Proof of Corollary B1. Part (a): First, note that T�+()(b) � T�()(b). The reason is that
�+ � � ) ��+(b

0) � ��(b
0). Moreover, any feasible debt revenue under � (�

�
p�b0 + (1� p)��(b0)

�
) is

also feasible under �+ while yielding a weakly higher continuation value than Z�
�
(b0);�b0

�
. Since T�

is a monotone contraction mapping, it follows that W�+(b) � W�(b). Part (b): Part (a) implies thateT�()(b) is bounded from above by eT�+a () (b). eT�()(b) is also bounded from below by

eT�()(b) = max
�b0;b02[b;~b];��(b0)��b0

u

�
w � b+ �	�

�
 (b0) ;�b0

�
�b0

+�
�
1�	�

�
 (b0) ;�b0

��
��(b

0)

�
+ Z�

�
(b0);�b0

�
� max

�b0;b02[b;~b];��(b0)��b0
u

�
w � b+ �	�

�
 (b0) ;�b0

�
�b0

+�
�
1�	�

�
 (b0) ;�b0

��
[��+a(b

0)� a]

�
+ Z�

�
(b0);�b0

�
� max

�b0;b02[b;~b];��+a(b0)��b0
u

�
w � b� �a+ �	�

�
 (b0) ;�b0

�
�b0

+�
�
1�	�

�
 (b0) ;�b0

��
��+a(b

0)

�
+ Z�

�
(b0);�b0

�
= eT�+a () (b+ �a).

The �rst inequality follows from the fact that ��+a(b) � a � ��(b) for all b 2 [b;~b]. The second
inequality follows from 1 � 	�

�
 (b0) ;�b0

�
� 1 and the fact that ��+a(b0) � �b0 is a tighter constraint

than ��(b0) � �b0. Since the function eT�+a () (x) is continuous in x, there must exist a ~�(b) 2 [0; �]
such that eT�+a () (b + ~�(b)a) = eT�()(b). This implies that T�+a () (b + ~�(b)a) = T�()(b). Since T�
is a contraction mapping, the same holds true at the �xed point.

B.3.5 Less Complete Markets (Section III.B)

Proof of Proposition B2. Part (A): We follow the same strategy used to prove Proposition
4. First (Step 1), we de�ne an inner operator T� that maps value functions into value functions
conditional on an arbitrary debt threshold function �(�). We show that this operator has a unique
�xed point W� = limn!1 Tn� that satis�es (B1). Second (Step 2), we de�ne an outer operator S
that maps debt threshold functions into debt threshold functions. We show that this operator has a
unique �xed point b̂R(�) = limn!1 Sn (�) that satis�es (B3) when W� is evaluated at �(�) = b̂R(�),

i.e., Wb̂R(b̂
R(�)) = � � �. Let WR = Wb̂R . Then, the �xed point

D
WR; b̂R

E
must be unique. The

uniqueness of the remaining equilibrium functions follows then from De�nition (B1).
Step 1: Let � be the space of bounded, continuous, and nonincreasing functions  : [b;~b] !

[���max; u( �w+(1� �)b)=(1� �)]. Moreover, let � be the space of bounded and continuous functions
� : N ! [b;~b]. De�ne d1(y; z) � supx2X jy(x)� z(x)j such that (�; d1) and (�; d1) are complete
metric spaces. Let  2 � and � 2 � and de�ne the mapping:

eT� () (b) = max
b02[b;~b]

u

�
w � b+ �pb0

+� (1� p)��(b0)

�
+ Z�

�
(b0); b0

�
;

� max
b02[b;~b]

O
�
b; b0; (b0); �

�
; (B21)
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where ��(b0) =
R
N minfb

0; �(�)gdF (�) and Z�((b0); b0) = �X(p) + � [p��(b0) + (1� p)��(b0)] : In turn,
�� ((b0)) is de�ned in analogy with �(b0) in De�nition B1, i.e., �� ((b0)) = (1� F (��((b0)))) �
(b0) +

R ��((b0))
�min

[�� �] dF (�); where �� ((b0)) = � � (b0). Replacing 1=R with � in (B21) will be

convenient throughout the proof. Note that eT�() maps  for a given debt threshold function �(�) and
e¤ort is exogenously given by p. De�ne, next,

T�()(b) =

(
max

neT�()(b); �� �maxo if b 2 [b; b0(�)]
�� �max if b 2 (b0(�);~b]

; (B22)

where
b0(�) � w � b+ �p~b+ � (1� p)��(~b) < ~b = �w=(1� �),

denotes the largest b for which nonnegative consumption is feasible. The de�nition of T� extends the
mapping to a possible range in which eT� is not well-de�ned.
Lemma B5 For any � 2 � the mapping T�() has a unique �xed point W� = limn!1 T

n
� () 2 �.

Proof of Lemma B5. The same argument used in the proof of Lemma A1 establishes that T� in
(B22) maps � into � and is strictly decreasing in b for all b such that T�()(b) > � � �max, otherwise
T� = �� �max. Moreover T� discounts by the same argument used in the proof of Lemma A1 �noting
that e¤ort is exogenous. Finally, T� is also monotone since +(b) � (b)) Z�(+(b0); b0) � Z�((b0); b0)
such that

eT�(+)(b) � O(b; B�(b); 
+(B�(b)); �)

� O(b; B�(b); (B
�
(b)); �) = eT�()(b);

whereB�(b) = argmaxb02[b;~b]O(b; b
0; (b0); �). Then, eT� satis�es Blackwell�s su¢ cient conditions (monotonic-

ity and discounting) on the complete metric space (�; d1), thereby being a contraction mapping.
Therefore, W� = limn!1 T

n
� () exists and is unique (see Stokey, Lucas, and Prescott 1989, Theorem

3.3).

Step 2: We establish that there exists a unique threshold function b̂R 2 � such that
D
Wb̂R ; b̂

R
E

satis�es equation (B3). Let � 2 �. De�ne the mapping:

S(�)(�) =

(
min

n
b 2 [b;~b] :W�(b) = �� �

o
if W�(b) � �� �

b if W�(b) < �� �
; 8� 2 N :

Lemma A2 then establishes that S has a unique �xed point �̂ � limn!1 Sn (�) 2 � andW�̂(�̂(�)) =
�� �, 8� 2 N :

Since the �xed point �̂ meets the indi¤erence condition (B3) and W�̂ satis�es the Bellman equation

of the market equilibrium, Lemma B5 and Lemma A2 imply that
D
Wb̂R ; b̂

R
E
is the unique pair of value

and threshold functions satisfying the market equilibrium conditions.
Then, the uniqueness of V R, �R, QR, and BR follows from De�nition B1. Note that we do not claim

uniqueness of BR and CR. The continuity of the value function WR(b) in b follows from the Theorem
of the Maximum, and implies that also the equilibrium functions V R, �R, and QR are continuous in b:
Since eTb̂R( ) maps decreasing functions into strictly decreasing functions, it follows that the �xed-point
WR is strictly decreasing in b and, hence, V R(b; �) = max

�
WR(b); �� �

	
is nonincreasing in b.
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Part (B): Having proved the existence and uniqueness of a �xed point WR conditional on �, we
now show that there exists a unique �R 2 [WMIN ;WMAX ] � [� � �max; u( �w + (1 � �)b)=(1 � �)]
such that WR (0;�R) = �R 2 (WMIN ;WMAX) (with slight abuse of notation we add � as a function
argument in WR(b;�) and ��((b);�)) . To see why, note that, by the Theorem of the Maximum,
WR (b;�) is continuous in �. Moreover, since WR 2 [WMIN ;WMAX ], then, Brouwer�s �xed-point
theorem ensures that there exists an � 2 [WMIN ;WMAX ] such that WR (0;�) = �. Since WR (0;�) =
����

�
WR(0;�);�

�
, then ��

�
WR(0;�);�

�
= 0: To prove that such an � is unique, we note that �� is

monotone increasing in � (the set of states of nature in which the outside option is preferred expands
as � increases). Therefore, there exists a unique �xed point �R such that ��

�
WR(0;�R); �R

�
= 0. In

particular, �R =WR (0;�R) 2 (WMIN ;WMAX).
This concludes the proof of the Proposition B2.

Proof of Proposition B3. The proof is an application of the generalized envelope theorem in Clausen
and Strub (2016) which allows for discrete choices (i.e., repayment or renegotiation) and nonconcave
value functions. Consider the programWR(b) = maxb02[b;~b]O(b

0), O(b0) � u(QR(b0)b0�b+w)+�ZR(b0).
Theorem 1 in Clausen and Strub (2016) ensures that if we can �nd a di¤erentiable lower support function
(DLSF) for O, then O is di¤erentiable at all interior optimal debt choices b0 2 B̂R where B̂R was de�ned
in De�nition B2 above.

To construct a DLSF for O, we follow the strategy of Benveniste and Scheinkman (1979), and
consider the value function of a pseudo borrower with post-renegotiation debt b that chooses debt
issuance b0 = BR(x) instead of the optimal b0 = BR(b),

fW (b; x) � u
�
QR

�
BR (x)

�
BR (x)� b+ w

�
+ ZR

�
BR (x)

�
:

Note that fW is di¤erentiable and strictly decreasing in b: Since debt issuance is chosen suboptimally, it
must be that fW (b; x) � WR(b) with equality holding at x = b. Furthermore, let the pseudo borrower
set the default threshold at the level e� (b; x) = WR(0) �fW (b; x), where e� (b; x) � �R (b). Thus, the
pseudo borrower renegotiates even for some � larger than �R(b). Note that e� (b; x) is di¤erentiable
and strictly increasing in b: Thus, the inverse function exists and is such that e��1x (�) � b̂R(�) (where
we de�ne e�x (b) � e� (b; x)).

Let eO �b0; x� = u
� eQ(b0; x)b0 � b+ w�+ eZ(b0; x);

where eQ(b0; x)b0 and eZ(b0; x) are given by
eQ �b0; x� b0 = R�1

"�
1� e	(b0; x)� h1� F (e� �b0; x�)i b0 + Z e�(b0;x)

�min

e��1x (�)dF (�)
!
+ e	(b0; x)b0# ;

eZ(b0; x) = �X(e	(b0; x)) + � " e	(b0; x)��R(b0) + (1� e	(b0; x))
�
�h
1� F (e� (b0; x))ifW (b0; x) +

R e�(b0;x)
�min

�
WR(0)� �

�
dF (�)

� # ;
having de�ned e	(b0; x) as
e	(b0; x) = �X 0��1 � "��R(b0)� h1� F (e� �b0; x�)ifW �

b0; x
�
+

Z e�(b0;x)
�min

�
WR(0)� �

�
dF (�)

!#!
:

Note that eQ; eZ and e	 are di¤erentiable in b0 since we established above thatfW and e� are di¤erentiable.
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Then, eO is a DLSF for O such that eO(b0; x) � O(b0) with equality (only) at b0 = x. Thus, Theorem
1 in Clausen and Strub (2016) ensures that O (b0) is di¤erentiable at all optimal interior choices b0 2 B̂R
and that @O(BR (b))=@BR (b) = @ eO(BR (b) ; BR (b))=@BR (b) = 0. In this case, a standard FOC holds

@u
�
QR(BR(b))BR(b)� b+ w

�
@BR(b)

+
@ZR(BR(b))

@BR(b)
= 0:

Moreover, Lemma 3 in Clausen and Strub (2016) ensures that also the functions WR(b0), ZR(b0),
�R(b0), QR(b0), and 	R(b0) are di¤erentiable in b0 2 B̂R and that a standard envelope condition applies,
namely,

@ZR(BR(b))

@BR(b)
= �

�
(1�	R(BR(b)))

�
1� F (�R(BR(b)))

� @WR(BR(b))

@BR(b)
+ 	R(BR(b))

@��R(B(b))

@BR(b)

�
;

@WR(BR(b))

@BR(b)
= �u0

�
CR(BR(b))

�
< 0:

This proves that the FOC stated in Proposition B3 is necessary for an interior optimum.

B.3.6 Proof of Lemma B1

In this section, we prove Lemma B1. The proof strategy follows Thomas and Worrall (1990, Proof
of Proposition 1). We show �rst that the planner�s problem is a contraction mapping with a strictly
concave �xed-point P . The di¤erentiability of P follows from Benveniste and Scheinkman (1979,
Lemma 1). Note that �P is given by (9) and has the same properties. Finally, we prove that P and �P
pin down uniquely interior promised utilities, e¤ort and consumption.

We prove the results in the form of �ve claims. Each of them has a separate proof below. We demon-
strate the proof for the COA. The properties of the �rst-best planning problem follow immediately by
dropping the PC and adjusting the boundary conditions appropriately.

De�ne, �rst, the mapping T ()(�) as the right-hand side of the planner�s functional equation

T ()(�) = max
(fc�;p�;�!�;!�g�2N )2�(�)

Z
N

�
w � c� + �

�
p� �P (�!�)

+(1� p�)(!�)

��
dF (�)

where maximization is constrained by the set �(�) de�ned byZ
N
[u(c�)�X(p�) + � [p��!� + (1� p�)!�]] dF (�) = �

u(c�)�X(p�) + � [p��!� + (1� p�)!�] � �� �; 8� 2 N ;
c� 2 [0; ~c]; p� 2 [p; �p]; �; !� 2 [�; ~!] ; �!� 2 [!; ~�!] :

We take as given that �P is strictly concave and bounded between �PMIN and �PMAX .

Claim 1 T () maps concave functions into strictly concave functions.

Proof of Claim 1. Let � 0 6= � 00 2 [�; ~!], � 2 (0; 1), � = �� 0 + (1 � �)� 00, Pk(�) = T (Pk�1)(�), and
Pk�1 be concave. Then,

Pk�1(��
0 + (1� �)� 00) � �Pk�1(� 0) + (1� �)Pk�1(� 00):
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We follow the strategy of Thomas and Worrall (1990, Proof of Proposition 1), i.e., we construct a

feasible but (weakly) suboptimal contract,
n
co�(�); p

o
�(�); �!

o
�(�); !

o
�(�)

o
�2N

, such that even the pro�t

generated by the suboptimal contract P ok (��
0 + (1 � �)� 00) � Pk(��

0 + (1 � �)� 00) is higher than the
linear combination of maximal pro�ts �Pk(� 0) + (1� �)Pk(� 00). De�ne the weights �; �� 2 (0; 1) and the
4-tuple (co�(�); p

o
�(�); !

o
�(�); �!

o
�(�)) such that

� � � [1� p�(� 0)]
�(1� p�(� 0)) + (1� �)(1� p�(� 00))

� �1� p�(�
0)

1� po�(�)

�� � �p�(�
0)

�p�(� 0) + (1� �)p�(� 00)
� � p�(�

0)

po�(�)

!o�(�) = �!�(�
0) + (1� �)!�(� 00)

�!o�(�) = ���!�(�
0) + (1� ��)�!�(� 00)

co�(�) = u�1
�

�u(c�(�
0)) + (1� �)u(c�(� 00))

� [�X(p�(� 0)) + (1� �)X(p�(� 00))] +X (�p�(� 0) + (1� �)p�(� 00))

�
:

Hence,

(1� po�(�))!o�(�) = �
�
1� p�(� 0)

�
!�(�

0) + (1� �)(1� p�(� 00))!�(� 00)
po�(�)�!

o
�(�) = �p�(�

0)�!�(�
0) + (1� �)p�(� 00)�!�(� 00)

u
�
co�(�)

�
�X(po�(�)) = �u(c�(�

0)) + (1� �)u(c�(� 00))�
�
�X(p�(�

0)) + (1� �)X(p�(� 00))
�

By construction the suboptimal allocation satis�es

co�(�) 2 [0; ~c]; po�(�) 2 [p; �p]; !o�(�) 2 [�; ~!]; �!o�(�) 2 [!; ~�!];

and, given the promised-utility �, is also consistent with the PKZ
N

�
u
�
co�(�)

�
�X(po�(�)) + �

�
po�(�)�!

o
�(�) + (1� po�(�))!o�(�)

��
dF (�)

=

Z
N

24 �u (c�(� 0)) + (1� �)u (c�(� 00))� [�X(p�(� 0) + (1� �)X(p�(� 00))]+� [�(1� p�(� 0))!�(� 0) + (1� �)(1� p�(� 00))!�(� 00)]
+� [�p�(�

0)�!�(�
0) + (1� �)p�(� 00))�!�(� 00)]

35 dF (�)
= �� 0 + (1� �)� 00 = �:

Moreover, the PC for any � yields

u
�
co�(�)

�
�X(po�(�)) + �

�
po�(�)�!

o
�(�) + (1� po�(�))!o�(�)

�
=

24 �u (c�(� 0)) + (1� �)u (c�(� 00))� [�X(p�(� 0) + (1� �)X(p�(� 00))]+� [�p�(�
0)�!�(�

0) + (1� �)p�(� 00))�!�(� 00)]
+� [�(1� p�(� 0))!�(� 0) + (1� �)(1� p�(� 00))!�(� 00)]

35
= �

�
u
�
c�(�

0)
�
�X(p�(� 0) + �p�(� 0)�!�(� 0) + �(1� p�(� 0))!�(� 0)

�
+(1� �)

�
u(c�(�

00))�X(p�(� 00)) + �p�(� 00))�!�(� 00) + �(1� p�(� 00))!�(� 00)
�

� � (�� �) + (1� �) (�� �) = �� �;
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Thus, we have proven that the suboptimal allocation
n
co�(�); p

o
�(�); !

o
�(�); �!

o
�(�)

o
�2N

is feasible. Namely,

it satis�es the PCs and delivers promised utility �. The pro�t function evaluated at the optimal contract
fc�(�); p�(�); !�(�); �!�(�)g�2N then implies the following inequality,

�Pk(�
0) + (1� �)Pk(� 00)

= �T (Pk�1)(�
0) + (1� �)T (Pk�1)(� 00)

=

Z
N

24 w � [�c�(� 0) + (1� �)c�(� 00)]
+�
�
�p�(�

0) �P (�!�(�
0)) + (1� �)p�(� 00) �P (�!�(� 00))

�
+� [�(1� p�(� 0))Pk�1(!�(� 0)) + (1� �)(1� p�(� 00))Pk�1(!�(� 00))]

35 dF (�)
=

Z
N

24 w � [�c�(� 0) + (1� �)c�(� 00)]
+�po�(�)

�
�� �P (�!�(�

0)) + (1� ��) �P (�!�(� 00))
�

+�(1� po�(�)) [�Pk�1(!�(� 0)) + (1� �)Pk�1(!�(� 00))]

35 dF (�)
<

Z
N

24 w � u�1 (�u(c�(� 0)) + (1� �)u(c�(� 00)))
+�po�(�)

�P (���!�(�
0) + (1� ��)�!�(� 00))

+�(1� po�(�))Pk�1(�!�(� 0) + (1� �)!�(� 00))

35 dF (�)

<

Z
N

2664 w � u
�1
�

�u(c�(�
0)) + (1� �)u(c�(� 00))

� [�X(p�(� 0)) + (1� �)X(p�(� 00))] +X�p�(� 0) + (1� �)p�(� 00)

�
+�po�(�)

�P (���!�(�
0) + (1� ��)�!�(� 00))

+�(1� po�(�))Pk�1(�!�(� 0) + (1� �)!�(� 00))

3775 dF (�)
=

Z
N

�
w � co�(�) + �

�
po�(�)

�P (�!o�(�)) + (1� po�(�))Pk�1(!o�(�))
��
dF (�)

� P ok (�) � Pk(�) = Pk(�� 0 + (1� �)� 00):

The �rst inequality follows from the strict concavity of u and �P , along with the concavity of Pk�1. The
second inequality follows from 0 � X (�p�(� 0) + (1� �)p�(� 00)) < �X(p�(� 0))+(1��)X(p�(� 00)) sinceX
is strictly convex. The third inequality, P ok (�) � Pk(�) follows from the fact that the optimal allocation
delivers (weakly) larger pro�ts than the suboptimal one. We conclude that Pk(�� 0 + (1 � �)� 00) >
�Pk(�

0) + (1� �)Pk(� 00), i.e., Pk is strictly concave. This concludes the proof of the lemma.

Let � denote the space of continuous functions de�ned over the interval [�; ~!] and bounded between
PMIN =

�
w � ~c+ �p �PMIN

�
=(1 � �(1 � p)) and PMAX = �w=(1 � �). Moreover, let d1 denote the

supremum norm, such that (�; d1) is a complete metric space.

Claim 2 The mapping T () is an operator on the complete metric space (�; d1), T () is a contraction
mapping with a unique �xed-point P 2 �.

Proof of Claim 2. By the Theorem of the Maximum T ()(�) is continuous in �. Moreover, T ()(�)
is bounded between PMIN and PMAX since even choosing zero consumption for any realization of �
would induce pro�ts not exceeding PMAX

w + �

Z
N

�
p� �P (�!�) + (1� p�)(!�)

�
dF (�) < �w + �=(1� �) �w

= �w=(1� �) = PMAX ,

and choosing the maximal consumption ~c and promised utility ~! and ~�! for any � would induce pro�ts
no lower than PMIN . Thus, T ()(�) is indeed an operator on (�; d1):
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According to Blackwell�s su¢ cient conditions T () is a contraction mapping (see Stokey, Lucas,
and Prescott 1989, Theorem 3.3) if: (i) T is monotone, (ii) T discounts.

1. Monotonicity: Let +;  2 � with +(�) � (�), 8� 2 [�; ~!]. Then

T (+)(�) = max
(fc�;p�;�!�;!�g�2N )2�(�)

Z
N

�
w � c� + �

�
p� �P (�!�)

+(1� p�)+(!�)

��
dF (�)

� max
(fc�;p�;�!�;!�g�2N )2�(�)

Z
N

�
w � c� + �

�
p� �P (�!�)

+(1� p�)(!�)

��
dF (�)

= T ()(�):

2. Discounting: Let  2 � and a � 0 be a real constant. Then

T ( + a)(�) = max
(fc�;p�;�!�;!�g�2N )2�(�)

Z
N

�
w � c� + �

�
p� �P (�!�)

+(1� p�) ((!�) + a)

��
dF (�)

= T ()(�) + �a

Z
N
(1� p�)dF (�)

� T ()(�) + �a

and � 2 (0; 1):

Thus, T () is indeed a contraction mapping and according to Banach�s �xed-point theorem (see
Stokey, Lucas, and Prescott 1989, Theorem 3.2) there exists a unique �xed-point P 2 � satisfying the
stationary functional equation,

P (�) = T (P )(�):

Claim 3 The pro�t function P is strictly concave.

Proof of Claim 3. This claim follows immediately from Stokey, Lucas, and Prescott 1989, Corollary
1). Since the unique �xed-point of T () is the limit of applying the operator n times starting from any
element  in � (and, in particular the concave elements), and the operator T () maps concave into
strictly concave functions the �xed-point P must be strictly concave.

Claim 4 The pro�t function P is di¤erentiable at its interior support with P 0(�) = 1=u0 (c(�)) < 0.

Proof of Claim 4. Given the strict concavity of the pro�t function, the proof is the same as for
Lemma B3. The only di¤erence is that p�(�) denotes the optimal e¤ort stated in Proposition 2 instead
of Proposition 3.

We can now establish that the FOCs of the COA are necessary and su¢ cient.

Claim 5 The FOCs of the planner problem without moral hazard are necessary and su¢ cient for
optimality.
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Proof of Claim 5. Lemma 1 implies that there cannot be two optimal contracts with distinct

!� and �!�. Suppose not, so that there exists a 4-tuple of promised utilities
n
!0�; !

00
�; �!

0
�; �!

00
�

o
such

that either !0�(�) 6= !00�(�) or �!
0
�(�) 6= �!00�(�) (or both). Then, from the strict concavity of P and �P ;

it would be possible to construct a feasible allocation that dominates the continuation pro�t implied
by the proposed optimal allocations, i.e., either P (�!0� + (1 � �)!00�) > �P (!0�) + (1 � �)P (!00�), or
�P (���!0� + (1 � ��)�!00�) > �� �P (�!0�) + (1 � ��) �P (�!00�) (or both). This contradicts the assumption that the
proposed allocations are optimal, establishing that the optimal contract pins down a unique pair of

promised utilities,
n
!�; �!

0
�

o
:

Finally, we show that a unique pair of promised utilities pins down uniquely e¤ort and consumption.
The assumptions on X rule out corner solutions for e¤ort, the assumptions on u and the fact that
promised utility is interior (!� and �!� remain constant for � � ���min) implies that also consumption
is interior. Then the FOCs in (10) and (12) imply that

� �P 0 (�!�(�))�1 = u0(c�(�));

X 0 (p�(�)) = �
�
� �P 0 (�!�(�))�1

�
�P (�!�(�))� P (!�(�))

�
+ (�!�(�)� !�(�))

�
;

which shows that, given � and �, e¤ort and consumption are uniquely determined as well.
This concludes the proof of Lemma B1.

B.4 Parameterization

In this section, we provide details of the parameterization underlying the numerical examples shown
in the �gures of the paper. We focus on the quantitative properties of the one-asset economy (with
renegotiation) of Section IV since this is a more realistic positive representation of the world. We
choose parameters so as to match salient moments observed for Greece, Ireland, Italy, Portugal, and
Spain (GIIPS) during the Great Recession.

A model period corresponds to one year. We normalize the GDP during normal time to �w = 1 and
assume that the recession causes a drop in income of 25 percent, i.e., w = 0:75� �w. This corresponds
to the fall of real GDP per capita for Greece between 2007 and 2016.33 The annual real gross interest
rate is set to R = 1:02. The utility function is assumed to be CRRA with a relative risk aversion of 2.
We assume an isoelastic e¤ort cost function, X(p) = �p1+1=10= (1 + 1=10), and calibrate � = 14:371 so
that a country starting with a 100 percent debt-output ratio in recession recovers in expectation after
one decade (we have Greece in mind). Finally, we parameterize f(�) and its support. The maximum
default cost realization �max = 2:275 is calibrated to target a debt limit during recession, b

max=w, of
178 percent in line with Collard, Habib, and Rochet (2015, Table 3, Column 1).34 Finally, we assume
that �max � � is distributed exponential with rate parameter � = 1:625 and truncation point �max.35
The model then predicts an average default premium of 4.04 percent for a country with a debt-output
ratio of 100 percent in recession. This overlaps with the average debt and average default premium for
the GIIPS during 2008-2012 (Eurostat).
33Greece�s real GDP per capita fell from 22�700 to 17�100 Euro between 2007 and 2016 (Eurostat, nama_10_pc series).

Where the years 2007 and 2016 correspond to the peak and the trough, respectively, of real GDP per capita relative to a
2 percent growth trend with base year 1995.
34We ignore the value of 282 percent for Korea which is a clear outlier.
35More formally, � has the p.d.f.

f(�) =
�e��(�max��)

1� e���max , � 2 [0; �max]:

This also implies that �min = 0:
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