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A1. The bargaining set

Consider the non-monetary economy first. In a match between an entrepreneur and a bank,

the surpluses are Se = f(k)− k − φ and Sb = φ. If the pledgeability constraint is slack, the

surplus is maximized at f(k∗)− k∗. Then the frontier is linear, Se + Sb = f(k∗)− k∗, as in

the right panel of Figure 1. The constraint is slack if φ ≤ χbf(k∗)− k∗. Hence, the frontier

has a linear portion iff χb ≥ k∗/f(k∗), and is entirely linear if f(k∗) − k∗ ≤ χbf(k∗) − k∗,

which only occurs when χb = 1.
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Figure 1: Pareto frontier for bank loans

If the pledgeability constraint binds, then φ = χbf(k)−k, as in the left panel of Figure 1.

Take a pair (φ, k) below the curve χbf(k)− k such that k < k∗. By raising k, Se increases.

Moreover, k ≥ k̂ = arg max [χbf(k)− k], since otherwise one could raise φ = χbf(k)− k and

increase both surpluses. Hence, the frontier when the constraint binds is{
(Se, Sb) ∈ R2+ : Se = (1− χb)f(k), Sb = χbf(k)− k, k ∈

[
k̂, k̄
]}

,

where k̄ = k∗ if χbf(k∗) ≥ k∗, and k̄ is the largest solution to χbf(k̄) − k̄ = 0 otherwise.

It is easy to check the frontier is downward sloping, ∂Se/∂Sb < 0, and ∂Se/∂Sb → −∞ as
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k → k̂. If χbf(k∗) ≥ k∗ then ∂Se/∂Sb → −1 as k → k∗. The bargaining set is not convex

since the point on the frontier that maximizes Sb, χbf(k̂) − k̂, is above the horizontal axis.

Hence, the entrepreneur enjoys a positive surplus, (1− χb)f(k̂), due to limited pledgeability.

We now characterize the Pareto frontier of a pairwise meeting between a bank and an

entrepreneur in the monetary economy. Suppose the entrepreneur holds aem real balances.

The equation of the Pareto frontier is determined by:

Se = max
k,d,φ

[f(k)− k − φ−∆m(aem)] st φ ≥ Sb and k + φ ≤ χbf(k) + aem.

Suppose the borrowing constraint does not bind. Then, k = k∗ and

Se + Sb = f(k∗)− k∗ −∆m(aem).

The frontier is linear. The borrowing constraint does not bind if Sb ≤ χbf(k∗)− k∗ + aem. If

it binds then φ = Sb and k + φ = χbf(k) + aem and hence the Pareto frontier is given by

Se = (1− χb)f(k)− aem −∆m(aem)

Sb = χbf(k)− k + aem,

where k ≥ k̂, Se ≥ 0 and Sb ≥ 0. For given Se,

∂Sb

∂aem
=

χbf
′(k)− 1

(1− χb)f ′(k)
[1 + ∆′(aem)] + 1

=
f ′(aem) [χbf

′(k)− 1] + (1− χb)f ′(k)

(1− χb)f ′(k)
.

The Pareto frontier shifts inward as aem increases if

(1− χb)f ′(k)

1− χbf ′(k)
≤ f ′(aem).

We show with the numerical examples below that this condition does not always hold, i.e.,

the Pareto frontier can shift outward as aem increases because of the complementarity between

money and credit when the borrowing constraint binds. As an example, see Figure 2, which

sets χb = 0.2 and plots the family of Pareto frontiers for different values of aem.
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Figure 2: Pareto frontier for different real balances

A2. An alternative bargaining solution

As an alternative to the Nash solution, many recent models use Kalai’s proportional bar-

gaining solution, which in this context is given by:

max
φ,k

Sb = φ st Se ≥ 1− θ
θ

Sb and k + φ ≤ χbf(k).

Thus, a bank chooses (φ, k) to maximize Sb subject to the entrepreneur getting at least a

fraction 1− θ of the total surplus. In fact, the strict proportional solution requires a strict

equality in the first constraint; we use an inequality to guarantee existence despite noncon-

vexity of the bargaining set, which formally corresponds to the lexicographic proportional

solution. Provided χb ≥ χ∗b , the pledgeability constraint is slack and Kalai coincides with

Nash. If the constraint binds, k solves

(χb − θ) f(k) = (1− θ)k if χb > θ and k ≥ k̂; k = k̂ otherwise.

Thus, the solution k ≥ k̂ splits the surplus so the bank gets a share θ of the surplus and

satisfies the constraint. If k < k̂, the solution is not Pareto optimal: by increasing k to k̂, Sb

reaches its maximum, while Se increases. In that case, we select k = k̂, in accordance with

the lexicographic proportional solution. The lending rate when the constraint binds is

rb =
θ(1− χb)
χb − θ

if θ ≤ θ̂ ≡ χbf(k̂)− k̂
f(k̂)− k̂

; rb =
θ̂(1− χb)
χb − θ̂

otherwise.
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Provided θ is not too large, rb decreasing with χb. If f(k) = zkγ, e.g., one can check rb

and k are given by:

rb =

θ(1−γ)
γ

θ(1−χb)
χb−θ
1−γ
γ

and k =

(γz)
1

1−γ[
(χb−θ)z
1−θ

] 1
1−γ

(χbzγ)
1

1−γ

if χb

≥ (1− θ)γ + θ

∈
[

θ
1−γ(1−θ) , (1− θ)γ + θ

)
< θ

1−γ(1−θ)

For low χb, rb is maximized and independent of χb and θ; in this case the constraint binds

and k maximizes Sb. For intermediate χb, rb is decreasing in χb and increasing in θ. For

high χb, the constraint is slack, so k and rb are independent of χb.

A3. Limited commitment

In the text, the entrepreneur’s borrowing limit is a fraction χb of f(k). This can be motivated

by, instead of moral hazard, limited commitment. Assume banks can no longer seize output:

entrepreneurs can abscond with it all and default on the loan. However, banks have a

record of repayment histories, and can punish defaulters by exclusion from future credit.

An endogenous debt constraint ensures entrepreneurs repay debts, which depends on W̄ e =

W e(0, 0) = β{αλ[f(k) − k − φ] + W̄ e}. An entrepreneur in stage 2 with no wealth has an

investment opportunity in the next period with probability αλ, in which case he gets surplus

f(k)− k − φ. Solving for W̄ e, we obtain

W̄ e =
αλ [f(k)− k − φ]

ρ
. (1)

Thus, the value of being an entrepreneur is the discounted sum of profits, net of fees. By

defaulting, an entrepreneur is banished to autarky and loses W̄ e, making the borrowing

constraint ψ + φ ≤ W̄ e.

Under Nash bargaining the loan contract solves

(k, φ) ∈ arg max [f(k)− k − φ]1−θ φθ st k + φ ≤ W̄ e. (2)

The problem is convex, since W̄ e is independent of k. The frontier is

Se + Sb = f(k∗)− k∗ if Sb ≤ W̄ e − k∗; ∆−1(Se + Sb) + Sb = W̄ e otherwise,
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where ∆(k) ≡ f(k) − k is the total surplus when the constraint binds. Relative to Figure

1, the frontier now intersects the horizontal axis at Se = 0. Notice k = k∗ and φ =

θ [f(k∗)− k∗] if W̄ e ≥ k∗+φ. Using this, the value of an entrepreneur who is not constrained

is W̄ e = αλ (1− θ) [f(k∗)− k∗] /ρ. Accordingly, entrepreneurs are not constrained if

ρ ≤ ρ∗ ≡ αλ (1− θ) [f(k∗)− k∗]
(1− θ)k∗ + θf(k∗)

.

Next suppose the constraint binds. The solution to (2) is

W̄ e =
θf(k) + (1− θ)f ′(k)k

(1− θ)f ′(k) + θ
. (3)

Now the borrowing limit W̄ e is a weighted average of f(k) and the supplier’s cost, k. In this

case,

W̄ e =
αλ

ρ+ αλ
f(k). (4)

The limit from (4) is analogous to the pledgeability constraint in Section 4 where χb =

αλ/(ρ + αλ). Here pledgeability depends on ρ, λ and α. A difference however is that the

RHS of (4) uses future output.

Substituting W̄ e from (4) into (3), k solves

k

f(k)
=

αλ(1− θ)f ′(k)− ρθ
(ρ+ αλ) (1− θ)f ′(k)

. (5)

Notice k = 0 always solves (5), as is standard. In addition, there is solution k > 0 uniquely

determined, since the LHS (5) is increasing in k while the RHS is decreasing for all k such

that αλ(1− θ)f ′(k) > ρθ. The positive solution increases with α and λ and decreases with

ρ and θ. The lending rate is

rb =
W̄ e − k

k
=

αλ

ρ+ αλ

f(k)

k
− 1,

which increases with θ. Notice rb depends on ρ, since the debt limit is determined by future

surpluses, as well as λ and α.

Given f(k) = zkγ, when the borrowing constraint is slack, k∗ = (γz)
1

1−γ and rb =

θ (1− γ) /θ, identical to Section 4. When it binds,

k =

[
χb(1− θ)zγ

(1− θ)γ + (1− χb)θ

] 1
1−γ

and rb =
(1− χb)θ
(1− θ)γ ,

where χb ≡ αλ/(ρ+ αλ). Now k increases while rb decreases with pledgeability.
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A4. Strategic foundations for bargaining

While the strategic foundations of Nash bargaining are very well known, there are some

nuances here, like commitment issues and nonconvexities; therefore, we provide the details.

Consider a game with alternating offers between the entrepreneur and bank. There is no

discounting, but an exogenous risk of breakdown. At the initial stage, the entrepreneur

makes an offer (ke, de, φe), and the bank can say either yes or no. If it says yes, the offer is

implemented. If it say no, the game continues. With probability δe negotiations end with

no loan; with probability 1 − δe the bank makes an offer (kb, db, φb), and the entrepreneur

can either say yes or no. If he says yes, the offer is implemented. If he say no, the game

continues. With probability δb negotiations end; with probability 1− δb the games continues

as in the initial stage. See the game tree in Figure 3. A node with two players corresponds

to a simultaneous move and the risk of breakdown is a move by Nature.
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Figure 3: Game tree

Consider stationary equilibria with offers, (ke, de, φe) and (kb, db, φb). We restrict at-

tention to acceptance rules in the form of reservation surpluses, Re and Rb, that spec-

ify a minimum surplus required for an agent to accept. Entrepreneurs accept an offer if

f(k)− ψ − φ ≥ Re, and banks accept if φ ≥ Rb. When it is the entrepreneur turn to make

an offer,

Se(Rb) = max
k,φ

{
[f(k)− k − φ] I{φ≥Rb}

}
st k + φ ≤ χbf(k) + aem,

where I{φ≥Rb} is an indicator function that equals one if φ ≥ Rb (we ignore the down payment
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d, because the entrepreneur uses his real balances before requesting a loan). The solution is:

Se(Rb) = f(k∗)− k∗ −Rb if Rb ≤ χbf(k∗)− k∗ + aem (6)

= f(k)− k −Rb if Rb ∈ (χbf(k∗)− k∗ + aem, χbf(k̂)− k̂ + aem] (7)

where k is the largest solution to χbf(k) − k = Rb − aem. If the reservation surplus of the

bank is suffi ciently low, the entrepreneur can finance k∗ and φ = Rb; if Rb is larger but not

too large, the entrepreneur asks for the largest loan satisfying the liquidity constraint; if Rb

is too large the entrepreneur cannot satisfy φ ≥ Rb and get a surplus. It can be checked that

Se(Rb) is decreasing and concave with Se(0) > 0.

Similarly, the bank’s surplus when it is his turn to make an offer is

Sb(Re) = max
k,φ

{
φI{f(k)−k−φ≥Re}

}
st k + φ ≤ χbf(k) + aem.

The bank maximizes his payoff subject to the acceptance rule and liquidity constraint. The

solution is

Sb(Re) = f(k∗)− k∗ −Re if Re ∈ [(1− χb)f(k∗)− aem, f(k∗)− k∗] (8)

= χbf(k̂)− k̂ + aem if Re ≤ (1− χb)f(k̂)− aem (9)

= f(k)− k −Re otherwise, (10)

where k solves (1 − χb)f(k) = Re + aem. If the entrepreneur’s reservation surplus is large

but not so large the bank would not participate, the bank offers to finance k∗; if Re is low,

the bank asks for a payment such that the constraint binds; and below a threshold for Re,

k maximizes χbf(k) − k. It can be checked that Sb(Re) is nondecreasing, concave, and

Sb(Re) > 0.

The endogenous reservations surpluses solve

Re = (1− δb)Se(Rb) + δb∆m(aem) (11)

Rb = (1− δe)Sb(Re). (12)

Thus, Re is the surplus that makes the entrepreneur indifferent between accepting or reject-

ing, and similarly for (12). Note that after a breakdown the bank receives no surplus.
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Figure 4 shows (11) in blue and (12) in red; both are downward sloping and concave.

To establish existence, let R̄e > 0 be the Re such that Sb(Re) = 0. By the duality of

the entrepreneur and bank problems, R̄e = Se(0). Moreover, provided that aem < k∗ then

∆m(aem) < Se(0). Hence, the blue curve is below the red curve at Rb = 0. The red curve

has a maximum (1 − δe)Sb(0) < χbf(k̂) − k̂ + aem. So at R
b = χbf(k̂) − k̂ + aem the blue

curve is to the right of the red curve. Hence, they intersect, so a solution exists. Uniqueness

follows from concavity of the relationships and the fact that when they are linear, they have

different slopes.
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Figure 4: Determination of (Rb, Re)

A stationary, subgame perfect equilibrium is composed of two offers, (ke, de, φe) and

(kb, db, φb), and two reservation surpluses, Re and Rb, solving the above conditions, as is

completely standard. Existence and uniqueness here follow from the above discussion. Now

consider letting the risk of breakdown get small by rewriting δe = εδ̄
e and δb = εδ̄

b. As

ε → 0, Se(Rb) − Re → 0 and Sb(Re) − Rb → 0 (i.e., when the breakdown risk gets small,

first-mover advantage vanishes). Graphically, the reservation values at the intersection of

the curves in Figure 4 converge to a point on the dashed curve.

Suppose first the borrowing constraint does not bind. Then Se(Rb) = f(k∗) − k∗ − Rb

and Sb(Re) = f(k∗)− k∗−Re. Thus, both the entrepreneur and bank offer k∗, and use φ to
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satisfy the acceptance rules. Taking the limit as ε→ 0,

Re → δ̄
e
[f(k∗)− k∗] + δ̄

b
∆m(aem)

δ̄
e

+ δ̄
b

(13)

Rb → δ̄
b

δ̄
e

+ δ̄
b

[f(k∗)− k∗ −∆m(aem)] . (14)

The banks’surplus approaches a fraction δ̄b/(δ̄e + δ̄
b
) of the total surplus, coinciding with

the Nash solution with θ = δ̄
b
/
(
δ̄
e

+ δ̄
b
)
.

Now suppose the liquidity constraint binds. Then Se(Rb) = f(ke)− ke − Rb where ke is

the highest solution to ke + Rb = χbf(ke) + aem, and S
b(Re) = f(kb) − kb − Re where kb is

the solution to (1− χb)f(kb) = Re + aem. Now (ke, kb, Re, Rb) solves

Re = (1− δ̄bε)
[
f(ke)− ke −Rb

]
+ δ̄

b
ε∆m(aem) (15)

Rb = (1− δ̄eε)
[
f(kb)− kb −Re

]
(16)

Rb = χbf(ke)− ke + aem (17)

Re = (1− χb)f(kb)− aem. (18)

Rearranging (15)-(16) we obtain

Re =
(1− δ̄bε)

{
f(ke)− ke − (1− δ̄eε)

[
f(kb)− kb

]}
+ δ̄

b
ε∆m(aem)

1− (1− δ̄bε)(1− δ̄eε)
.

Letting ε→ 0 and using L’Hopital’s rule, we get

Re =
δ̄
e
[f(k)− k] + [f ′(k)− 1]

(
dke

dε
− dkb

dε

)
+ δ̄

b
∆m(aem)

δ̄
b

+ δ̄
e

. (19)

The terms dke/dε and dkb/dε are obtained by differentiating (15)-(18) in the neighborhood

of ε = 0,
dke

dε
− dkb

dε
=
δ̄
e
[f(k)− k −Re]

1− χbf ′(k)
. (20)

Substituting (20) into (19) and replacing Re by (1− χb)f(k)− aem, we get(
δ̄
b

δ̄
e

)
1− χbf ′(k)

(1− χb)f ′(k)
=

χbf(k)− k + aem
(1− χb)f(k)− aem −∆m(aem)

. (21)

This corresponds to the FOC from Nash bargaining with θ = δ̄
b
/(δ̄

e
+ δ̄

b
). As usual, subgame

perfect equilibrium in the game generates the same outcome as Nash bargaining.
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A6. Introducing a corporate bonds market

In the presence of the corporate bonds market, the profits of the unbanked entrepreneurs

from an investment opportunity are

∆m = max
k≥0
{f(k)− (1 + ie)k} ,

where ie is the interest rate on a loan in the (corporate bonds) market where entrepreneurs

can borrow and lend their cash. The solution is such that (1 + ie)k ≤ f(k), hence we can

omit the borrowing constraint. The cost of borrowing, ie, coincides with the opportunity cost

of financing k with aem, which is the foregone interest from not lending aem in the corporate

bonds market. So we can think of the entrepreneur as both borrowing on the corporate

bonds market to finance k and lending aem at the same rate ie. Importantly, the lending of

aem in the corporate bonds market happens whether the entrepreneur is banked or unbanked.

Hence, the surplus from being banked is

f(k)− k − φ− (k − `)ie −∆m.

It is independent of aem. The third and fourth terms correspond to two types of interest

payments: φ is the interest payment to the bank while (k − `)ie is the interest payment

to other entrepreneurs in the corporate bonds market. The generalized Nash bargaining

problem between the bank and the entrepreneur is

max
k,`,φ

[f(k)− k − φ− (k − `)ie −∆m]1−θ φθ,

where ` ≤ k is the bank loan and k−` is the amount borrowed in the corporate bond market.

For all ie > 0 it is jointly effi cient to save the borrowing cost on the corporate bonds market,

k = ` = k∗ and φ = θ [f(k∗)− k∗ −∆m].

The value of an entrepreneur in the first stage solves:

V e(am) = (1 + ie)am + λ∆m + λα(1− θ) [f(k∗)− k∗ −∆m] +W e(0, 0), (22)

where we omit illiquid bonds. The entrepreneur lends his real balances in the corporate bonds

market at the interest rate ie. With probability λ, he receives an investment opportunity
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and can secure a surplus equal to ∆m. With probability α, he meets a bank and raises his

surplus by (1− θ) [f(k∗)− k∗ −∆m].

The entrepreneur’s choice of real balances in stage 2 is the solution to

max
âm≥0

{
− âm

1 + rm
+ βV e(âm)

}
.

Substituting V e(âm) by its expression in (22), the choice of real balances reduces to

max
âm≥0

{(ie − i) âm} .

So a positive solution exists if ie = i. The interest rate in the corporate bonds market com-

pensates entrepreneurs for the holding cost of cash. As a result, in equilibrium entrepreneurs

are indifferent between bringing cash in the corporate bonds market or not. Market clearing

in the corporate bonds market implies Am = λ(1− α)km, aggregate real balances are equal

to the aggregate investment of unbanked entrepreneurs.

While the expression for φ is similar to the one in the economy without corporate bonds

market, the expression for ∆m differs. Without corporate bonds market:

∆̃m = f(k̃)− k̃ where i = λ [1− α(1− θ)]
[
f ′(k̃)− 1

]
.

Using that ie = i, it follows that km > k̃. Because money holdings can be allocated to un-

banked entrepreneurs with an investment opportunity through the corporate bonds market,

there are no idle money balances and hence investment increases. However, ∆m includes the

borrowing cost whereas ∆̃m does not include the cost of holding money which is sunk at

the time of the investment. Therefore, ∆̃m can be larger than ∆m. For instance, if λ = 1

and α ≈ 0, then k̃ ≈ km but ∆̃m > ∆m. As a result, the intermediation fee is larger in

the economy with the corporate bonds market. Intuitively, because the cost of internally

financing the investment has been sunk in the economy without a corporate bonds market,

the entrepreneur ends up being in a stronger position to bargain over the interest payment

with the bank.

A7. Structure of interest rates

We extend our model to characterize the structure of rates of return across different assets.

First, we assume that one-period government bonds are partially liquid in the following

11



sense: an investor holding aeg units of bonds in stage 1 can trade a fraction χg ∈ [0, 1] in

exchange for k. Second, in order to make bank loans comparable to one-period bonds we

assume that they are repaid after one period. More precisely, investment opportunities in

stage 1 of period t generate output f(k) in stage 2 of period t+ 1 and bank loans offered in

t are repaid at the time when investment pays off. Banks who issue IOUs in period t can

commit to redeem them in stage 2 of period t. Because there is now a mismatch between

the maturity of banks’liabilities and the maturity of the loans we allow banks to produce

the numéraire at a unit cost (alternatively, we could assume banks are large entities with a

large number of loans and liabilities, or that banks’IOUs are repaid in t+ 1).

The surplus of an unbanked entrepreneur is

∆m(aem + χga
e
g) = βf(km)− km where km = min{aem + χga

e
g, k
∗},

where f ′(k∗) = β−1 = 1+ρ. In contrast to the formulation in the main text, output is product

with a one-period lag, hence the discounting. Note that the liquid assets of the entrepreneur

are composed of real balances, aem, and the pledgeable bonds, χga
e
g. The bargaining problem

with the bank is

max
k,d,φ

[
βf(k)− d− βΦ−∆m(aem + χga

e
g)
]1−θ

[−(k − d) + βΦ]θ

st Φ ≤ χbf(k) and d ≤ aem + χga
e
g,

where Φ = k−d+φ is the sum of the principal and interest payments paid by the entrepreneur

to the bank in t+1. The surplus of the bank is the difference between the IOU it must repay

in t, k− d, and the discounted value of the repayment by the entrepreneur in t+ 1, βΦ. The

down payment can now be composed of real balances and bonds and it cannot exceed the

liquid wealth aem + χga
e
g. If the liquidity constraint does not bind, k

c = k∗ and

Φ =
(k∗ − km) + θ

[
βf(k∗)− k∗ −∆m(aem + χga

e
g)
]

β
.

The discounted payment to the bank, βΦ, is the sum of the repayment of the loan and a

fraction θ of the surplus generated by the bank loan. The liquidity constraint does not bind

if

aem + χga
e
g + θ∆m(aem + χga

e
g) ≥ (1− θ)k∗ + (θ − χb)βf(k∗). (23)
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Using the definition of Φ, interest payments are equal to

φ = ρ(k∗ − km) +
θ
[
βf(k∗)− k∗ −∆m(aem + χga

e
g)
]

β
.

The first term is the interest payment if banks had no bargaining power. In that case, the

real rate of return of the loan would be equal to the rate of time preference. The second

term is a rent that the bank can extract given its bargaining power. Dividing by the loan

size, k∗ − km, the real lending rate is

rb = ρ+
θ
[
βf(k∗)− k∗ −∆m(aem + χga

e
g)
]

β(k∗ − km)
. (24)

So the real lending rate is the sum of the rate of time preference and an intermediation

premium that depends on banks’bargaining power.

Suppose next that the liquidity constraint does bind. The solution to the bargaining

problem is

χbβf(k)− k + aem + χga
e
g

(1− χb)βf(k)− (aem + χga
e
g)−∆m(aem + χga

e
g)

=
θ

1− θ
1− χbβf ′(k)

(1− χb)βf ′(k)

Φ = χbf(k).

These equations are analogous to the ones in the main text where the production function

is scaled by β and aem is replaced with a
e
m + χga

e
g. In this case the real lending rate is

rb =
χbf(k)

k − (aem + χga
e
g)
− 1.

From (2), the entrepreneur’s choice of money balances and bond holdings solves

max
aem,a

e
g≥0

{
−iaem −

(
i− ig
1 + ig

)
aeg + λ (1− α) ∆m(aem + χga

e
g) + αλ∆c(aem + χga

e
g)

}
, (25)

where

∆c(aem) =

{
(1− θ) [βf(k∗)− k∗] + θ∆m(aem + χga

e
g) if aem + χga

e
g ≥ a∗

(1− χb)βf(kc)−
(
aem + χga

e
g

)
if aem + χga

e
g < a∗,

where a∗ is the value of aem + χga
e
g such that (23) holds at equality.

In order to get closed form expressions, consider the regime where the liquidity constraint

does not bind. Using a second-order approximation for ∆m(aem + χga
e
g),

∆m(aem + χga
e
g) ≈ βf(k∗)− k∗ + βf ′′(k∗)

(km − k∗)2

2
.

13



Plug this expression into (24) to obtain

rb ≈ ρ− θf ′′(k∗)(k∗ − km)

2
. (26)

Assuming interior solutions the FOC from (25) gives

λ [1− α(1− θ)] [βf ′(km)− 1] = i =
i− ig

χg (1 + ig)

In order to guarantee that the solution is interior we would have to check that χga
e
g < km.

It follows that the spread between illiquid and liquid bonds is

i− ig
1 + ig

=
ρ− rg
1 + rg

= χgi.

Using a first-order approximation of the LHS,

km − k∗ ≈ i

βf ′′(k∗)λ [1− α(1− θ)] . (27)

Substitute km − k∗ from (27) into (26), the lending rate can be approximated as:

rb ≈ ρ+ (1 + ρ)
θi

2λ [1− α(1− θ)] . (28)

If ρ = 0, the expression for rb corresponds to the one in the text. Alternatively, the yield

difference between a bank loan and a risk-free (illiquid) bond is

rb − ρ
1 + ρ

≈ θi

2λ [1− α(1− θ)] . (29)

A8. Long-lived investment projects

In the main text, investment projects are short-lived: investment opportunities in the first

stage have a single pay-off in the second stage. In many macroeconomic applications invest-

ment opportunities have long-lasting payoffs, e.g., firms in the Pissarides or Melitz models

or Lucas trees. Suppose that entrepreneurs can create long-lived assets (akin to Lucas trees)

that generate a payoff f(k) every period that depends on the initial investment, k. (The in-

vestment is putty-clay.) Those assets fully depreciate at the end of a period with probability

δ. (One can think of it as the death rate of a firm/job.) The discounted sum of the output

flows generated by this investment project is:

F (k) =
f(k)

1− (1− δ)β .
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The benchmark version of our model corresponds to the case δ = 1.

For simplicity we set χs = 0. We consider a lending contract composed of an investment

size, k, an initial down payment, d, and a payment to the bank every period, Φ. The

per-period payment to the bank is subject to the pledgeability constraint, Φ ≤ χbf(k).

Equivalently, we can write the liquidity constraint as:

Φ

1− (1− δ)β ≤ χbF (k),

where the left side is the entrepreneur’s debt expressed as the discounted sum of the payments

to the bank and the right side is a fraction χb of the value of the investment project. The

discounted sum of the banks’profits are:

−(k − d) +
Φ

1− (1− δ)β .

The first term is the loan size, k−d. The second term is the discounted sum of the payments

to the bank. If we denote φ = Φ − [1− (1− δ)β] (k − d) the discounted sum of the bank’s

profits can be expressed as φ/ [1− (1− δ)β]. The surplus of the entrepreneur from a bank

loan is

F (k)− d− Φ

1− (1− δ)β −∆m(aem),

where ∆m(aem) is the surplus if the entrepreneur self-finances the investment. The first term

is the value of the investment project, the second term is the down payment, and the third

term corresponds to the interest payments to the bank. Using the definitions of φ and F (k)

we can reexpress this surplus as

f(k)− φ
1− (1− δ)β − k −∆m(aem).

The bargaining problem between the bank and entrepreneur becomes:

max
k,d,φ

[
f(k)− φ

1− (1− δ)β − k −∆m(aem)

]1−θ [
φ

1− (1− δ)β

]θ
(30)

s.t. φ+ [1− (1− δ)β] (k − d) ≤ χbf(k) and d ≤ aem. (31)

This bargaining problem coincides with the one in the main text when δ = 1. The disagree-

ment point, ∆m(aem), is computed as before where f(k) is replaced with F (k), i.e.,

∆m(aem) = F (km)− km where km = min{aem, k∗},
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where k∗ is such that F ′(k∗) = 1. If the liquidity constraint does not bind, then the solution

to (30)-(31) is

f ′(k) = 1− (1− δ)β (32)

φ = θ {f(k)− [1− (1− δ)β] [k + ∆m(aem)]} . (33)

Equation (32) equalizes the marginal product of capital with the rate of time preference

adjusted by the depreciation rate. Equation (33) gives the flow payment that splits the

match surplus. If the liquidity constraint does bind then the bargaining problem (30)-(31)

reduces to:

max
k≥0

[
(1− χb)f(k)

1− (1− δ)β − a
e
m −∆m(aem)

]1−θ [
χbf(k)

1− (1− δ)β − (k − aem)

]θ
.

The FOC is:

χbf(k)− [1− (1− δ)β] (k − aem)

(1− χb)f(k)− [1− (1− δ)β] [aem + ∆m(aem)]
=

θ

1− θ
1− (1− δ)β − χbf ′(k)

(1− χb)f ′(k)

φ = χbf(k)− [1− (1− δ)β] (k − aem).

The comparative statics are similar to the ones in the benchmark model when δ = 1.

We compute the rate of return on the loan as

rb =
Φ

k − d − δ.

The first term corresponds to the interest payment as a frcation of the loan size, k− d. The

second term is the probability at which the loan is terminated. It follows that

rb = (1− δ) (1− β) +
φ

k − d.

The second term on the RHS is the lending rate as computed in the main text. The first

term on the RHS is the return necessary to compensate for the rate of time preference and

the termination rate.

Assuming the pledgeability constraint does not bind, the entrepreneur’s choice of money

balances solves

max
aem≥0

{−iaem + λ (1− α) ∆m(aem) + αλ∆c(aem)} ,
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where ∆c(aem) = (1− θ) [F (k∗)− k∗] + θ∆m(aem). The FOC is

i

λ [1− α(1− θ)] =
f ′(k)

1− (1− δ)β − 1.

Using the same approximations as in the main text,

rb ≈
(1− δ) ρ

1 + ρ
+

(ρ+ δ) θi

2(1 + ρ)λ [1− α(1− θ)] .

The first term is the frictionless rate while the second term is the premium arising from

frictions in the credit market.

A9. Money, trade credit, and bank credit

We now let entrepreneurs accumulate real balances and use trade credit. The surplus of an

unbanked entrepreneur with aem real balances is now

∆m(aem;χs) = max {f(km)− km} st km ≤ aem + χsf(km).

It is easy to check that km = k∗ if aem ≥ k∗ − χsf(k∗) and km − χsf(km) = aem otherwise.

Moreover, the marginal value of real balances is

∆m′(aem;χs) =
f ′(km)− 1

1− χsf ′(km)
if aem < k∗ − χsf(k∗),

where we used that ∂km/∂aem = 1/ [1− χsf ′(km)]. Money has a multiplier effect on trade

credit. An additional unit of real balances allows entrepreneurs to increase investment and

hence pledgeable output, which in turn allows suppliers to offer bigger loans. Using a second-

order Taylor series expansion for aem close to a
∗
m = k∗ − χsf(k∗) so that km is close to k∗:

∆m(aem;χs) = ∆m(a∗m;χs) + ∆m′′(a∗m;χs)
(a∗m − aem)2

2

= f(k∗)− k∗ +
f ′′(k∗)

(1− χs)
2

(a∗m − aem)2

2
,

where we used that ∆m′(a∗m;χs) = 0 in the first equality, i.e., a change in real balances only

has a second-order effect on the entrepreneur’s surplus when km is close to k∗. To obtain

the second equality we used that

∆m′′(aem;χs) =
f ′′(km) [1− χsf ′(km)] + [f ′(km)− 1]χsf

′′(km)

[1− χsf ′(km)]2
∂km

∂aem

=
f ′′(k∗)

(1− χs)
2 .
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Consider next an entrepreneur in contact with a bank, where loan contracts now specify

an investment level k, a down payment d, and the bank’s fee φ. If the loan negotiations are

unsuccessful, the entrepreneur can purchase k with cash and trade credit. So his surplus

from the bank loan is f(k)− k − φ−∆m(aem;χs). Then the bargaining problem is

max
k,d,φ

[f(k)− k − φ−∆m(aem;χs)]
1−θ φθ st k − d+ φ ≤ χbf(k) and d ≤ aem.

This problem is formally equivalent to the one studied earlier where the threat point,

∆m(aem;χs), has been generalized. Notice that the contract does not specify if part of the

loan, k − d, is provided by suppliers since it would not affect payoffs.

We consider equilibria where i is small so that the liquidity constraints, k−d+φ ≤ χbf(k)

and d ≤ aem, do not bind. Assuming an interior solution, the entrepreneur’s money demand

is given by:
i

λ [1− α(1− θ)] =
f ′(km)− 1

1− χsf ′(km)
.

An interior solution exists if χs is less than some threshold. A first-order approximation of

the RHS gives
i

λ [1− α(1− θ)] =
f ′′(k∗)

(1− χs)
2 (aem − a∗m). (34)

The intermediation payment to the bank is

φ = θ [f(k∗)− k∗ −∆m(aem;χs)] .

Using the approximations above,

φ ≈ −θ [(1− χs) i]
2

2λ2 [1− α(1− θ)]2 f ′′(k∗)
.

The availability of trade credit, χs > 0, reduces the pass through from i to φ.

We consider two alternative assumptions for the distribution of loans to the entrepreneur

and hence the definition of the lending rate. Suppose first that the bank is offering the full

loan of size k∗− aem. The lending rate is then defined as:

rb =
θ [f(k∗)− k∗ −∆m(aem;χs)]

k∗ − aem
.

From the approximation for ∆m(aem) above and the fact that k∗ − aem ≈ k∗ − a∗m, a change

in i only has a second-order effect on rb.
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Alternatively, suppose that the supplier borrows a∗m − aem from the bank and k∗ − a∗m =

χsf(k∗) from the supplier. The lending rate is now defined as

r′b =
θ [f(k∗)− k∗ −∆m(aem;χs)]

k∗ − χsf(k∗)− aem

Plugging the approximation for ∆m(aem) into the expression for r′b gives

r′b =
−θf ′′(k∗)
(1− χs)

2

(a∗m − aem)

2

=
θi

2λ [1− α(1− θ)] .

Better access to unintermediated credit, through a higher χs, does not affect the pass through

from the policy rate to the lending rate.

A first-order approximation of km − χsf(km) in the neighborhood of k∗ gives

km − χsf(km) = a∗m + (1− χs) (km − k∗).

Hence, aem − a∗m = (1− χs) (km − k∗). Substituting this expression into (34),

km =
(1− χs) i

λ [1− α(1− θ)] f ′′(k∗) + k∗.

Investment becomes less responsive to changes in the policy rate as χs increases.
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