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1 Product Design Results

This section considers the product design problem faced by a durable goods monopolist. The

monopolist assembles products from a basket of characteristics. For instance, a smartphone

producer may decide which features to include in a new line of devices (such as screen

resolution, battery size, memory, and camera), or an automobile manufacturer may choose

how to blend performance, practicality, size, and fuel effi ciency. The way these characteristics

are assembled might generate dependence and dispersion in consumers’valuations for the

varieties. Therefore, we ask how different product designs affect the profit of the monopolist.

For instance, would the monopolist prefer vertically differentiated products or horizontally

differentiated ones? Should the monopolist produce mass products with low volatility in

valuations, or niche products with high dispersion in valuations? To tackle these questions,

we study how optimal market-clearing profits are affected by the distribution of buyers’

valuations. This approach relies implicitly on Proposition 3 and is legitimate for markets in

which the monopolist can frequently revise prices. We refrain from presenting an explicit

model in which products are constructed by bundling characteristics, for the sake of brevity.

The first result fixes the marginal distribution of buyers’valuations for each variety and

asks what correlation structure between varieties maximizes the profit of the monopolist.

This approach is valid whenever production costs depend only on the marginal distribution

of valuations and not on their correlation structure. Results exploit classical contributions on

copulas (Sklar 1959) to establish that the profit-maximizing design requires full horizontal

product differentiation. Horizontal differentiation increases profits, as a strong preference

for one variety tends to be associated with a low desire for the other. This favors market

segmentation and increases profits by minimizing the value of units that are never purchased.

One may conjecture that vertical product differentiation may then be the profit-minimizing

design. However, we establish that this is not the case in general, as independent products oc-

casionally generate smaller profits than vertically differentiated ones. The other substantive

contribution analyzes how volatility in valuations affects the seller’s profits. In particular, it

asks whether the monopolist prefers a distribution of values or its mean. In a single-variety

setting, the answer is trivial, as the monopolist always dislikes variance (in one case the

product is sold at the minimum value, while in the other at the average value). However

in multi-variety settings, two opposing forces are at play. Variance increases both the infor-

mation rents of buyers, thereby hurting the monopolist, and the value of the durable good

(that is, the value of the preferred variety), thereby benefitting the monopolist. The analysis

establishes that either of the two forces can dominate, and it provides suffi cient conditions for

both scenarios. This shows why low-volatility mass products need not be an optimal design

when multiple varieties can be sold.
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Classical Results on Copulas: Recall that Fi denotes the marginal cumulative distribution
of the consumers’valuations for variety i. For the rest of the analysis, let Fi be continuous,

and let its support be the compact set Vi = [0, vi] ⊆ [0, 1].1 Before proceeding to the design

problem, we briefly review the notion of copula and some of its properties. For a more

detailed discussion of these topics, we refer to Nelsen 2006.

A function C : [0, 1]2 → [0, 1] is said to be a copula if

(1) C(k, 0) = C(0, k) = 0 for every k ∈ [0, 1];

(2) C(k, 1) = C(1, k) = k for every k ∈ [0, 1];

(3) C(x) + C(y)− C(xa, yb)− C(ya, xb) ≥ 0 for every x, y ∈ [0, 1]2 such that x ≥ y.

Let C denote the set of all copulas. Sklar’s Theorem implies that for any joint distribution

function F with continuous marginal distributions Fi for i ∈ {a, b}, there exists a unique
copula C such that

F (v) = C(Fa(va), Fb(vb)) for all v ∈ Va × Vb.

A copula C can therefore be thought of as a suffi cient statistic of the dependence structure

between the two random variables. A commonly used copula exhibits no dependence between

the random variables and is associated with the joint distribution I(v) = Fa(va)Fb(vb). Two

other noteworthy copulas are known as the Frechét-Hoeffding (FH) bounds and are associated

with the two joint distributions

K(v) = min{Fa(va), Fb(vb)};
L(v) = max{Fa(va) + Fb(vb)− 1, 0}.

Figure 8 depicts the support of these three copulas when marginals are uniform on [0, 1]. In

a classical contribution, Frechét and Hoeffding establish that the two FH copulas bound any

other feasible copula C.

Proposition 3 Any joint distribution F consistent with the two marginals, Fa and Fb, sat-

isfies

L(v) ≤ F (v) ≤ K(v) for all v ∈ Va × Vb.

Random variables va and vb are said to be concordant if (vi − v′i)(vj − v′j) > 0 for any two

profiles v and v′ in the support of the joint distribution. The random variables are instead

1We restrict attention to the environments in which the lowest values equal 0 to make results directly
comparable to the one-variety no-gaps case where the Coase conjecture leads to 0 profits in the limit. The
compact support assumption and the continuity assumption are convenient, but not essential.
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said to be discordant if (vi − v′i)(vj − v′j) < 0 for any two profiles v and v′ in the support.

The FH bounds L and K characterize instances of extreme concordance and discordance,

respectively, and they are thus associated with a Kendall’s Tau of 1 and −1, respectively.2

Informally, the FH upper bound identifies the most concordant copula, as large values of one

random variable are associated with large values of the other, and small values of one with

small values of the other. Conversely, the FH lower bound identifies the most discordant

copula as large values of one random variable are associated with small values of the other,

and vice versa. For instance, if the marginal distributions are either uniform or Gaussian,

the FH bounds induce either perfect positive or perfect negative correlation between the two

random variables.

Independent FH Upper Bound FH Lower Bound

Figure 8: Three copulas for uniform marginals Fa(x) = Fb(x) = x.

The next result highlights a few well-known properties of the FH bounds that play an

important role in our product design analysis. A subset V of R2 is non-decreasing if for any

v, v′ ∈ V , va < v′a implies vb ≤ v′b. Similarly, a subset V of R2 is non-increasing if for any

v, v′ ∈ V , va < v′a implies vb ≥ v′b.

Proposition 4 The joint distribution F is equal to its:

(1) FH upper bound K if and only if its support V is a non-decreasing subset of Va × Vb;
(2) FH lower bound L if and only if its support V is a non-increasing subset of Va × Vb.
Moreover, random variable va is almost surely a strictly monotonic function of vb if and only

if the copula coincides with one of the FH bounds.

The result implies that it is possible to construct monotone correspondences va = k(vb)

and va = l(vb) that completely pin down the support of the FH bounds. The additional

assumptions imposed on the marginal distributions further imply that these correspondences

are functions such that k′(x) ∈ (0,∞) and l′(x) ∈ (−∞, 0) almost surely.
2For any two profiles v and v′ in the support of the joint distribution, Kendall’s Tau amounts to

τ(F ) = Pr
(
(vi − v′i)(vj − v′j) > 0

)
− Pr

(
(vi − v′i)(vj − v′j) < 0

)
.
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Product Design Results: Our product design exercises begin by analyzing how dependence
(or association) between the random variables va and vb affects the optimal market-clearing

profits. By the analysis carried out in Section 4, our conclusions also identify how dependence

affects the limiting stationary equilibrium profits of the dynamic pricing game. The first

result fixes the marginal distributions Fi (postulating that any costs incurred in generating

value depends only such marginals) and asks which joint distribution compatible with such

marginals maximizes optimal market-clearing profits. Formally, let V F denote the support

of a joint distribution F , and let π̄F denote the optimal market-clearing profits associated

with the joint distribution F . Specifically, we solve the following problem:

maxC∈C π̄
F s.t. F = C(Fa, Fb).

The next result establishes that optimal market-clearing profits are maximized at the FH

lower bound. Thus, the seller always benefits from selling varieties that are most discordant.

Intuitively, selling discordant varieties maximizes profits as segmenting the market guarantees

that no value is wasted on varieties that are never purchased.

Proposition 5 For any joint distribution F consistent with the two marginals, Fa and Fb,

π̄F ≤ π̄L.

The result implies that independent varieties are suboptimal since horizontal product differ-

entiation allows for more effective market segmentation. As the monopolist loses its ability

to intertemporally discriminate buyers (when the time between offers vanishes), statically

screening consumers by selling different varieties is the only option available to extract any

surplus. But such a task is most profitable when the market is segmented and values are

discordant.

The other product design contribution looks at how variance in valuations affects the

profitability of the monopolist. When a single product is for sale, the monopolist always

prefers to minimize variance, as the durable good necessarily trades at the lowest valuation

in the support. However, when multiple varieties can be sold, a trade-off emerges, since

variance increases both buyers’ information rents (which hurts profits) and total surplus

(which benefits profits) as the maximal value grows. Thus, we ask whether the monopolist

prefers a distribution F to the distribution F̂ in which all buyers value products at the

mean of F (that is, F̂ is a degenerate distribution with unit measure at EF (v)). The result

establishes that the answer to this question depends on the details of the measure F when

multiple varieties are for sale.
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Remark 8 Minimizing variance does not necessarily increase profits.

The next examples prove this observation and show why variance is most beneficial when

values are discordant and the support of the distribution is a concave map.

Product Differentiation Examples: Given that discordance increases profits by Propo-
sition 5, one may conjecture that a lower bound on optimal market-clearing profits may then

be pinned down by the other FH bound. This would be the case if separating high value

consumers for the two varieties were most diffi cult with concordance. But, such a conclusion

does not hold in general, as we show with the next example.

Consider two products with uniform marginal distributions on Va = [0, 1] and Vb = [0, x],

respectively, for some x ∈ (0, 1]. Three compatible designs are: (1) perfect concordance,

when the joint distribution of consumers’preferences is K and the support is

V K = {v ∈ Va × Vb|vb = xva} ;

(2) independence, when the joint distribution of consumers’preferences is I and the support is

V (I) = Va×Vb; (3) perfect discordance, when the joint distribution of consumers’preferences
is L and the support is

V L = {v ∈ Va × Vb|vb = x(1− va)} .

The first scenario corresponds to classical models of vertical price differentiation. The set of

market-clearing prices,MK , coincides with the set of price profiles in which at least one of the

two prices is non-positive. When varieties are independent, the set of market-clearing prices

does not change (that is, M I = MK). In both these scenarios, the optimal market-clearing

profits are found by setting the price of the worse variety to zero (that is, p̄b = 0), while

choosing the other price so as to maximize profits. When varieties are discordant, any price

in the support of the distribution V L clears the market, and optimal market-clearing prices

belong to the support. The solutions for the three cases respectively satisfy:

Case (1) (2) (2) (3)

Subcase x ∈ [0, 1] x ∈ [0, 2/3] x ∈ [2/3, 1] x ∈ [0, 1]

p̄a (1− x)/2 (2− x)/4 1/3 1/2

p̄b 0 0 0 x/2

d̄a 1/2 (2− x)/4 2/(9x) 1/2

π̄ (1− x)/4 (2− x)2/16 2/(27x) (1 + x)/4

where d̄a denotes the demand for variety a at the optimal market-clearing prices for the

proposed design. As argued in Proposition 5, the monopolist always prefers to choose a design
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that induces perfect discordance, as π̄L ≥ max{π̄I , π̄K}. Moreover, optimal market-clearing
profits increase in x when varieties are discordant, but they decrease in x otherwise (see

Figure 9). With vertically differentiated products, optimal market-clearing profits decrease

to 0 when products become less differentiated (that is, when x → 1), as expected from

Proposition 1. Surprisingly however, perfectly concordant varieties raise more revenue than

independently distributed ones when x is small. This follows because when x is small, the

monopolist sells the expensive product to a larger measure of buyers with concordance than

with independence at any market-clearing price.

Figure 9: Optimal market-clearing profits for the three copulas as a function of x.

The second example illustrates why reducing variance in valuations can have ambigu-

ous effects on optimal market-clearing profits. The insight provides a novel rationale for

a monopolist to sell products with volatile valuations (thus establishing why low-volatility

mass products are not necessarily a profit-maximizing design). First, consider the discordant

distribution

L(v) = max{v2
a + v2

b − 1, 0}.

The support of L is given by the decreasing set V L = {v | v2
a + v2

b = 1}. The degenerate
distribution L̂ = [EL(v)] has support V L̂ = {(2/3, 2/3)}. Optimal market-clearing profits
associated with L can be found by solving

π̄L = arg maxp pa(1− p2
a) + pb(1− p2

b) s.t. p2
a + p2

b = 1.

The monopolist optimally clears the market by selling all units at a price of 1/
√

2. In this

scenario, the seller benefits from the variance, as

π̄L = 1/
√

2 > 2/3 = π̄L̂.

More volatile niche products are optimal. When the measure of high-value buyers is large,
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the minimal valuation for the preferred variety exceeds the average valuation, and thus niche

products are preferred.

Liking Variance Disliking Variance

Figure 10: Effects of volatility on optimal market-clearing prices in two markets.

Next, consider the discordant distribution

L(v) = max{v1/2
a + v

1/2
b − 1, 0}.

The support of L is given by the decreasing set V L =
{
v | v1/2

a + v
1/2
b = 1

}
. The degenerate

distribution L̂ =
[
EL(v)

]
has support V L̂ = {(1/3, 1/3)}. The optimal market-clearing

profits associated with L can be found by solving

π̄L = arg maxp pa(1− p1/2
a ) + pb(1− p1/2

b ) s.t. p1/2
a + p

1/2
b = 1.

The monopolist optimally clears the market by selling all units at a price of 1/4. The

monopolist is now hurt by the variance, as

π̄L = 1/4 < 1/3 = π̄L̂.

Less volatile mass products are optimal. When the measure of low-value buyers is large,

the average valuation exceeds the minimal valuation for the preferred variety, and thus mass

products are preferred. Figure 10 depicts the measures considered and optimal market-

clearing prices for the last two examples.

One may postulate that the monopolist prefers variance whenever varieties are perfectly

discordant and the support is a concave map. However, this is not true in general. For

instance, when L(v) = max{v2
a + vb − 1, 0}, the monopolist dislikes variance despite the

support being concave.
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2 Mixing Example

Consider a market in which δ = 3/4, and in which the support of valuations is

V = (1, 1) ∪
{
v ∈ [0, 1]2 | vj = (1− vi)/3 for any vi ∈ [1/4, 1] & any i ∈ {a, b}

}
.

The dark blue region in Figure 11 depicts this support. As regularity is mainly needed for

existence, we consider an atomic example failing regularity for the sake of tractability. Of

course, similar conclusions would hold for regular markets in which the support is the convex

hull of V (the light blue shaded region in Figure 11) and in which almost all of the measure

is near V .

Figure 11: The support of the measure considered in the example and its convex hull.

Consider the following joint distribution on support V :

F (v) =


1 if v = (1, 1)

(6vj + 6vi − 3)/10 if vi ≥ 1/4 & vj ∈ [1/4, 1)

(18vj + 6vi − 6)/10 if vi ≥ 1/4 & vj ∈ [1− 3vi, 1/4]

0 if otherwise

.

Intuitively, such a distribution puts 1/10 of its measure on the atom at (1, 1), while 9/10 of

the measure is uniformly distributed on the rest of V . If so, the marginal distribution for

each variety amounts to

Fi(vi) =


9vi/5 if vi ∈ [0, 1/4)

(6vi + 3)/10 if vi ∈ [1/4, 1)

1 if vi = 1

.

For convenience, define the following function which identifies the larger component of the

support V :

g(x) = max{1/3− x/3, 1− 3x} for x ∈ [0, 1] .

9



Optimal Pricing: First consider the benchmark setting in which the monopolist can commit
ex-ante to a constant price profile. If so, for any p /∈M such that pi ≥ pj, the seller’s profits

would simply amount to

Π(p) = pi(9/10− Fi(pi)) + pj(1− Fj(pj)),

and the associated optimal commitment prices and profits would be equal to

p∗a = p∗b = 13/24 & Π∗ = 169/480 = 0.352.

Optimal Clearing: Then consider the alternative benchmark in which the monopolist must
set a price profile that clears the market instantaneously. Clearly, the seller would never set

prices in the interior of the market-clearing price set. Thus, if it sold variety i at price

pi ≥ 1/4, it would sell variety j at price pj = g(pi), and for any such a price profile p, profits

would amount to

Π(pi, g(pi)) = pi(9/10− Fi(pi)) + g(pi)(1/10 + Fi(pi)).

The associated optimal market-clearing prices and profits would then be equal to

p̄i = 5/12, p̄j = 7/36 & Π̄0 = 49/180 = 0.272.

Constructing Mixed Strategy Equilibria: We look for equilibria in which the market
clears in two periods, both varieties are sold at a common price in the first period, and

the seller randomizes with equal probability between two symmetric market-clearing price

profiles in the second period. Throughout the example, we denote by i the variety that is

sold at a higher price in the final period and by j the other variety.

We begin by constructing the equilibrium path of this symmetric mixed strategy equilib-

rium. To nest all cases, consider subgames in which a fraction 1− α of the measure at (1, 1)

has already purchased in the first period. Consider the equilibrium path active buyer set

A =
[
V ∩ [0, x]2

]
∪ (1, 1)

for some x ∈ [1/4, 1). In subgame A, the payoff to the monopolist at any market-clearing

price p0 ∈M\M̄ amounts to

Π(p0|A) = p0
i (Fi(x)− Fi(p0

i )) + g(p0
i )(α/10 + Fi(p

0
i )− Fi(g(x))).
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The subgame possesses two optimal market-clearing prices, which amount to

p̄0(x) = (p̄0
i (x), p̄0

j(x)) = ((9− α + 12x) /48, (39 + α− 12x) /144) for i ∈ {a, b} .

We look for fixed points of the game in which: (1) the seller sells both varieties at a

common price p in the initial period; (2) the atom at (1, 1) purchases in the initial period;

and (3) the boundary of the active player set is determined by buyers who are indifferent

between buying the same variety today and tomorrow. Fixed point conditions in general

require that the boundary of the active player set be pinned down by the incentive constraint

max{va, vb} − p = δmax

{
max{va, vb} −

p̄0
a(x) + p̄0

b(x)

2
,
va + vb

2
−min{p̄0

a(x), p̄0
b(x)}

}
.

As the boundary of the active player set x is determined by buyers who are indifferent between

buying a variety today and tomorrow,

x− p = δ
(
x−

(
p̄0
a(x) + p̄0

b(x)
)
/2
)
⇒ x(p) = (64p− 11) /20.

From this, the subgame prices can be pinned down as a function of the initial price quoted

by the seller:

p0(p) = p̄0(x(p)) = ((16p+ 1) /20, (19− 16p) /60) .

For the atom to be willing to purchase in the initial period, it must be that 1 − p ≥
δ
(
1− p0

j(p)
)
, which in turn requires that p < 13/32. Finally, to have such a fixed point,

the marginal buyer must satisfy

x(p)−
(
p0
i (p) + p0

j(p)
)
/2 ≥ (x(p) + g(x(p))) /2− p0

j(p),

which holds for p ≥ 1/4. Therefore, such a fixed point can exist and be consistent with

equilibrium behavior provided that p < 13/32.

The previous conjectures on the structure of the equilibrium imply that the objective

function of the monopolist at the initial stage when setting the same price p for the two

varieties simply amounts to

Π(p, p) = p(19/10− 2Fi(x(p))) + δΠ(p̄0(p)|x(p)).

Maximizing this objective function with respect to the initial price p identifies the optimal

opening as p1 = 311/864. Since p1 < 13/32, the monopolist’s behavior in the initial stage is

consistent with buyers with value (1, 1) purchasing in the first period. At such a price, the
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present value of profits amounts to

Π̄1 = 2521/8640 = 0.29178.

This profit exceeds the optimal market-clearing profit. Thus, the seller does not benefit from

clearing the market in the opening round. In the conjectured equilibrium, the monopolist

initially sells both varieties at price p1 = 311/864, then randomizes with equal probability

between two market-clearing profiles {(5/12, 7/36) , (7/36, 5/12)} in period 2.

Asymmetric Deviations and Consistent Beliefs: Next we construct strategies and

beliefs for asymmetric subgames in which the market is expected to clear in 2 periods. As

before, to nest all cases, let α denote the fraction of the measure at (1, 1) purchasing in the

second period. Consider asymmetric subgames in which the active buyer set satisfies

A = [V ∩ [0, xa]× [0, xb]] ∪ (1, 1),

for some vector x /∈M .3 Without loss of generality, further suppose that xi ≥ xj. In subgame

A, the payoff to the monopolist at a market-clearing price p0 ∈M\M̄ amounts to

Π(p0|A) = p0
i (Fi(xi)− Fi(p0

i )) + g(p0
i )(α/10 + Fi(p

0
i )− Fi(g(xj))).

In such a subgame, the optimal market-clearing prices satisfy

p̄0(x) = (p̄0
i (x), p̄0

j(x)) =


(

9−α+18xi−6xj
48

,
39+α−18xi+6xj

144

)
if xj ≥ 1

4(
8−α+2xi−18xj

16
,

3α−8−6xi+54xj
16

)
if xj ≤ 1

4
& xi + 7xj ≥ 2 + α

18

(1− 3xj, xj) if xj ≤ 1
4
& xi + 7xj ≤ 2 + α

18

.

Moreover, such prices are unique whenever xi > xj.

We look for fixed points of the game in which: (1) in the initial period, the seller posts

a price profile p such that pi ≥ pj; (2) the seller does not randomize in the final stage; (3)

the atom at (1, 1) purchases in the initial period; and (4) the boundary of the active player

set is determined by buyers who are indifferent between buying the same variety today and

tomorrow.

Restriction (4) requires that the boundary of the active player set be pinned down by the

two incentive constraints

xa − pa = δ
(
xa − p̄0

a(x)
)
and xb − pb = δ

(
xb − p̄0

b(x)
)
,

3If x ∈M , then A must have measure zero. Thus, we neglect this scenario.
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and it further requires that

xa − p̄0
a(x) ≥ g(xa)− p̄0

b(x) and xb − p̄0
b(x) ≥ g(xb)− p̄0

a(x).

As before, these conditions identify marginal buyers given the current prices, x(p), and

therefore they identify subgame prices as a function of current prices:

p0(p) = p̄0(x(p)) = ((5 + 24pi − 8pj) /36, (31 + 8pj − 24pi) /108) .

As restrictions (3) and (1) require that the atom purchase in the first period and that pi ≥ pj,

equilibrium further implies that 1− pj ≥ δ (1−min{p0
a(p), p

0
b(p)}).

Given the conjectures made about the fixed point, we look for equilibria in which pi ≥ pi

and xi(p) ≥ xj(p). The objective function of the monopolist at the initial stage when setting

prices for the two varieties amounts to

Π(p) = pi(9/10− Fi(xi(p))) + pj((10− a)/10− Fj(xj(p))) + δΠ(p̄0(p)|A(p)).

Solving this problem, we find that the opening prices set by the seller satisfy

p1 = (p1
i , p

1
j) = (171/416, 125/416) = (0.41106, 0.30048),

and consequently that marginal buyers satisfy

x(p1) =
(
xi(p

1), xj(p
1)
)

= (63/104, 57/104) = (0.60577, 0.54808) .

The monopolist’s behavior in the initial stage is consistent with buyers with value (1, 1)

purchasing in the initial period, as

1− p1
j = 291/416 > 51/104 = δ(1− p0

j).

Moreover, marginal buyers are not tempted by the other variety as

xi − p̄0
i (x) = 27/104 ≥ −9/104 = g(xi)− p̄0

j(x),

xj − p̄0
j(x) = 103/312 ≥ −61/312 = g(xj)− p̄0

i (x).

Thus, all fixed point conditions hold at such prices, and profits amounts to

Π̄1 = 479/1664 = 0.28786.
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Profits exceed the optimal market-clearing profits, but they are smaller than the profits

attainable when clearing the market symmetrically by randomizing in the final period.

Many Periods: If the seller were allowed a third period to clear the market, the most
profitable strategy consistent with clearing the market in exactly three periods would re-

quire: selling both varieties at a common price in the first period, p2 = (0.38033, 0.38033);

randomizing with equal probability between two price profiles in second period,

p1 ∈ {(0.32663, 0.25041) , (0.25041, 0.32663)} ;

setting one of two market-clearing price profiles in the third period contingent on the outcome

of the randomization in the previous period:

p0 =

{
(0.30097, 0.23300) if p1 = (0.32663, 0.25041)

(0.23300, 0.30097) if p1 = (0.25041, 0.32663)
.

Mixing would take place in the second period, as the seller always prefers to clear the market

asymmetrically once the atom has purchased,4 and because the atom necessarily purchases in

the first period in this example. Alternative strategies in which a measure of buyers purchases

goods in any one of the three periods are necessarily less profitable.

When following such a strategy, the present value of profits would amount to

Π̄2 = 0.29057

and would be smaller than the profits the seller was making by clearing the market symmet-

rically in two periods. Intuitively, in this example, discounting losses would dominate price

discrimination gains because buyers are suffi ciently patient. If the seller had more than three

periods in which to sell the product, a similar logic would hold, and profits would further

decline under any strategy in which a positive measure of buyers purchases products in more

than three periods.

MPE Beliefs: In any stationary equilibrium after any price history, the market clears in

at most two periods. In the notation of the proof of Proposition 2, X t = ∅ for any t > 2.

The seller never benefits by clearing the market in more than two periods if buyers’beliefs

are consistent and δ = 3/4. Moreover, given these beliefs, clearing the market in more than

two periods would be even less profitable since buyers would be more inclined to wait for a

discount if the market was expected to clear sooner.

4In any subgame in which the atom has purchased, the measure of active buyers is discordant, and clearing
the market asymmetrically maximizes the seller’s profit.
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In the desired equilibrium, the seller stochastically clears the market in two periods. In

such an equilibrium, whenever pa = pb = p and p ∈ X1, buyers believe that the prices in the

following period will coincide with the prices they would expect if the market had to clear

symmetrically in exactly two periods. Thus, buyers expect one of the following two profiles

with equal probability:

p0(p) = (p0
i (p), p

0
j(p)) = ((16p+ 1) /20, (19− 16p) /60) .

Whenever pi > pj and p ∈ X1, buyers believe that the prices in the following period will

coincide with the prices they would expect if the market had to clear asymmetrically in

exactly two periods:

p0(p) = (p0
i (p), p

0
j(p)) = ((5 + 24pi − 8pj) /36, (31 + 8pj − 24pi) /108) .

For brevity’s sake, we omit the derivation of beliefs associated with prices in X2, while beliefs

associated with prices in X0 are trivial. By construction, these beliefs are consistent with

the seller’s strategy, and the seller’s strategy maximizes profits given these beliefs.

3 Omitted Proofs

Proof Remark 1. (1) Consider the price pg = (vg, vg). Such a price belongs to M , as for

all v ∈ V ,
maxi∈{a,b}{vi − pgi } ≥ maxi∈{a,b} vi − vg ≥ 0.

By setting price pg, the monopolist obviously achieves a profit of vg. Thus, when va < vb,

optimal market-clearing profits weakly exceed vb and strictly exceed va.

(2) If varieties are unranked, further consider the market-clearing price profile pε = (vb +

ε, vb) for some small number ε > 0. By definition of static demand, limε→0 di(p
ε) ≥ F(vi > vj)

for any i ∈ {a, b}. As products are unranked, F(vi > vj) > 0. But if so, optimal market-

clearing profits must strictly exceed vb since da(p
ε) > 0 for ε suffi ciently small.

(3) If va = vb = v, again consider the market-clearing price profile pε = (v+ ε, v). Again,

it must be that limε→0 di(p
ε) ≥ F(vi > vj) for any i ∈ {a, b}. If at pε some consumers were to

purchase variety a, optimal market-clearing profits would strictly exceed v. If instead optimal

market-clearing profits were equal to v for any ε > 0, then limε→0 da(p
ε) = F(va > vb) = 0,

and thus va ≤ vb for any v ∈ V . A symmetric argument would then establish that vb ≤ va

for any v ∈ V . So, optimal market-clearing profits could be equal to v only if va = vb for any

v ∈ V . Similarly, if varieties were identical, any market-clearing price would set one of the
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two prices no higher than v, as (v, v) ∈ V .
(4) But if so, optimal market-clearing profits would amount v, as all players would pur-

chase the cheapest variety. Thus, profits equal 0 if and only if varieties are identical and

v = 0.

(5) If va = vb = v and (v, v) ∈ V , then vg = v. If varieties are not identical, it must be

that F(vi > vj) > 0 for some i ∈ {a, b}. If so, the price profile (pi, pj) = (v+ε, v) ∈M would

raise more profits than vg for ε suffi ciently small.

Proof Remark 2. To prove the first part note that by the proof of Remark 1 part (5),

the optimal market-clearing price must equal (pi, pj) = (v + ε, v) for some ε > 0 and some

i ∈ {a, b}. Since V is connected, v ∈ V , and (v, v) ∈ V , for any κ ∈ (0, ε) there exists a

vκ ∈ V such that

vκi − vκj = κ.

Thus, the price cannot be effi cient if ε > 0, as any buyer vκ purchases variety j despite

preferring variety i.

To prove the second part, suppose va ≤ vb. When varieties are unranked and V is

connected, effi ciency of a price (pa, pb) ∈ M requires pa = pb. Hence, the most profitable

effi cient market-clearing price must satisfy pa = pb = vb, because V is a Cartesian product.

But, such a price cannot be optimal by the proof of Remark 1 part (2).

Proof Remark 3. Assume v+
a ≥ ca. Consider setting price pε = (ca, cb + ε) for some ε > 0.

Such a price belongs to M , as for all v ∈ V +,

maxi∈{a,b}{vi − pi} ≥ va − pa = va − ca ≥ 0.

When varieties are unranked, F(va − ca > vb − cb) > 0. But if so,

limε→0 db(p
ε) = F(va − ca > vb − cb) > 0.

Hence, optimal market-clearing profits are strictly positive for ε suffi ciently small.

Proof Remark 4. The proof is essentially identical to that of Lemma 2 in the main text.

Let M̄+ denote the “interior” of the market-clearing price set M+. We show that, in any

PBE, all consumers accept any price in M̄+ at any information set. Suppose this were not

the case. Select any equilibrium, and let P denote the set of prices that are accepted by all

buyers in any possible subgame. By contradiction, suppose that M̄+ is not contained in P .

As before, p ∈ P whenever mini∈{a,b} pi < −1. To show the latter, observe that Lemma 1 is

unaffected by costs, and that its proof, as before, implies that buyers’value functions at any

buyer-history ĥ ∈ Ĥ are non-decreasing in v and have a modulus of continuity of less than
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1, since for v′ ≥ v,

U(ĥ, v′)− U(ĥ, v) ≤ maxi∈{a,b} {v′i − vi} .

Thus, in any PBE we have that U(ĥ, v) ≤ 1 for all v ∈ V , and that all buyers strictly prefer
to purchase a variety when mini∈{a,b} pi < −1, as

maxi∈{a,b} {vi − pi} > 1 > δU(ĥ, v) for all ĥ ∈ Ĥ. (1)

If so, for any ε > 0 there is a price p̂ ∈ M̄+\P 6= ∅ such that

pi ≤ p̂i − ε & pj ≤ p̂j for some i implies p ∈ P . (2)

To find such a price p̂, let p̃a = infq∈M̄+\P qa, and for some η ∈ (0, ε) let

p̃b = infq∈M̄+\P qb s.t. qa ≤ p̃a + η,

where mini∈{a,b} p̃i ≥ −1 by (1). Then set p̂ to be any price in M̄+\P such that p̂ ≤ p̃+(η, η).

Such a price exists by definition of p̃ for any suffi ciently small η. Moreover, (2) holds because:

(a) p ∈ P whenever pa ≤ p̂a− ε < p̃a by definition of p̃a; and (b) p ∈ P for any pa ≤ p̂a when

pb ≤ p̂b − ε by definition of p̃b.
But, when ε is suffi ciently small,

maxi∈{a,b} {vi − p̂i} > δmaxi∈{a,b} {vi − p̂i + ε} ⇔ ε <
1− δ
δ

maxi∈{a,b} {vi − p̂i} .

If so, all consumers would accept p̂ at any buyer-history (p̂, h) ∈ Ĥ. If a type was to reject
an offer, they could agree no sooner than tomorrow, and the most they could expect any one

price to drop is ε as any further drop would lead to acceptance by all buyers. Thus, for all

v ∈ V , the continuation value satisfies

maxi∈{a,b} {vi − p̂i + ε} ≥ U((p̂, h), v).

But this in turn implies that

maxi∈{a,b} {vi − p̂i} > δU((p̂, h), v) for any h ∈ H.

As p̂ /∈ P , the latter contradicts the definition of P and consequently establishes the result.

Since every consumer buys when prices belong to M̄+, the seller can secure a payoffarbitrarily

close to the optimal market-clearing profits π̄(A) > 0 (where A = A(h) denotes the active

player set associated with history h) by choosing a price in M̄+.
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The proof of the second part of the remark essentially coincides with the proof of Propo-

sition 3 and is omitted for sake of brevity.

Proof Remark 5. First, we introduce some notation. In this setting, all buyers are active

in every period. However, the measure of values evolves over time. For any profile of values

v ∈ V , denote the residual value of an owner of variety i by

vi = (vii, v
i
j) = (0, vj − vi).

LetRi(h
t) ∈ P∗([0, 1]2) denote the measure of residual values of consumers purchasing variety

i ∈ {a, b} at any history ht ∈ H. Then, define the measure of values at history ht as

F(E|ht) = F(E|ht−1) +
∑

i∈{a,b}
[
Ri(E|ht)−Di(E|ht)

]
for any E ∈ Ω([0, 1]2).

Let V (ht) be the support of F(ht). Define the set of buyers for whom gains from trade are

positive at history ht as

A∗(ht) = {v ∈ V (ht) | maxi∈{a,b}{vi − ci} > 0}.

Refer to buyers in A∗(ht) as essentially active. The proof then follows along the same steps of

Remark 3. We show that in any PBE, at any history h ∈ H, the set A∗(p, h) must be empty

if p ∈ M̄∗, where M̄∗ denotes the “interior”of the market-clearing price set M∗. Suppose

this were not the case. Select any equilibrium, and let P denote those prices p such that

A∗(p, h) = ∅ after any history h. By contradiction, suppose that M̄∗ is not contained in P .

First, we show that p ∈ P whenever p ∈ M̄∗ and mini∈{a,b} pi < −1. As before, buyers’

value functions are non-decreasing in v and have a modulus of continuity of less than 1 at any

buyer-history h ∈ Ĥ, since an argument equivalent to Lemma 1 implies that for all v′ ≥ v,

U(h, v′)− U(h, v) ≤ maxi∈{a,b} {v′i − vi} .

Thus, in any PBE we have that U(h, v) ≤ 1 for all v ∈ V . But then, all buyers must purchase
a variety when mini∈{a,b} pi < −1, as

maxi∈{a,b}

{
vi − pi + δU(ĥ, vi)

}
> 1 > δU(ĥ, v) for all ĥ = (p, h) ∈ Ĥ, (3)

where U(ĥ, vi) ≥ 0 denotes the continuation value of buyer v once the value transitions to

vi. But if so, as p ∈ M̄∗, for every player purchasing i we have that cj ≥ vj − vi = vij, and

similarly for every player purchasing j we have that ci ≥ vi − vi = vji . Thus, A
∗(ĥ) = ∅ and

p ∈ P .
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By the previous argument, for any ε > 0 there is a price p̂ ∈ M̄+\P 6= ∅ such that

pi ≤ p̂i − ε & pj ≤ p̂j for some i implies p ∈ P . (4)

To find such a price p̂, let p̃a = infq∈M̄+\P qa, and for some η ∈ (0, ε) let

p̃b = infq∈M̄+\P qb s.t. qa ≤ p̃a + η,

where mini∈{a,b} p̃i ≥ −1 by (3). Then set p̂ to be any price in M̄+\P such that p̂ ≤ p̃+(η, η).

Such a price exists by definition of p̃ for any suffi ciently small η. Moreover, (4) holds because:

(a) p̂ ∈ M̄+ given that p̃ ∈ M̄+; (b) p ∈ P whenever pa ≤ p̂a − ε < p̃a by definition of p̃a;

and (c) p ∈ P for any pa ≤ p̂a when pb ≤ p̂b − ε by definition of p̃b.
When ε is suffi ciently small though,

maxi∈{a,b} {vi − p̂i} > δmaxi∈{a,b} {vi − p̂i + ε} ⇔ ε <
1− δ
δ

maxi∈{a,b} {vi − p̂i} .

But if ε is small, all consumers must purchase a variety at any buyer-history (p̂, h) = ĥ ∈ Ĥ.
If a type was to reject an offer, they could agree no sooner than tomorrow, and the most

they could expect any one price to drop is ε as any further drop would lead to acceptance

by all buyers. But in that scenario, no more trade could be expected as p̂ − (ε, ε) ∈ P and

therefore no buyer would be essentially active. Thus, for all v ∈ V (h) the continuation value

must satisfy

maxi∈{a,b} {vi − p̂i + ε} ≥ U(ĥ, v).

In turn, this implies that for any (p̂, h) = ĥ ∈ Ĥ,

maxi∈{a,b}

{
vi − p̂i + δU(ĥ, vi)

}
> δmaxi∈{a,b} {vi − p̂i + ε} > δU(ĥ, v).

But then, all buyers must purchase a variety at p̂. As p̂ ∈ M̄∗, though, the latter implies that

A∗(ĥ) = ∅, which contradicts p̂ /∈ P . Thus, p̂ ∈ P and M̄∗ ⊆ P . As every consumer buys

when prices belong to M̄∗ and no more trades take place after that, the seller can always

secure a payoff arbitrarily close to the optimal market-clearing profits in M∗ by charging a

price in M̄∗.

The proof of the second part of the remark again coincides with the proof of Proposition

3 and is again omitted for sake of brevity.

Proof Remark 6. As the market is regular, F(A∞) = fL(A∞) for some f ∈
(
f, f

)
and

hence L(A∞) = 0. Thus, for any v ∈ A∞ and for any v′ ∈ V such that va − vb = v′a − v′b, it
must be that v′ ≥ v. If v′ < v, then v′ ∈ A∞ by part (3) of Lemma 1. But, this would lead

19



to a contradiction when the market is regular since it would imply that L(A∞) > 0, given

that all values in a neighborhood of v′ would also remain active as v′ ∈ V .
Moreover, A∞ must be an increasing set (that is, v′i > vi ⇒ v′j ≥ vj for any v, v′ ∈ A∞).

If this were not the case, buyer

v′′ = (max{va, v′a},max{vb, v′b})

would also prefer not to buy any variety by part (1) of Lemma 1 (that is, v′′ ∈ V ⇒
v′′ ∈ A∞). If so, by part (3) of the Lemma 1, any buyer v̂ ∈ V such that v̂ < v′′ would

strictly prefer not to buy (that is, v̂ ∈ A∞) provided that

δmaxi∈{a,b}{v′′i − v̂i} < mini∈{a,b}{v′′i − v̂i}. (5)

When the market is regular, however, V is convex, and thus there exist buyers

v(κ) = κv + (1− κ)v′ ∈ V for all κ ∈ (0, 1) .

If so, there exists a value κ̂ such that v′′a − v′′b = va(κ̂)− vb(κ̂) and consequently v(κ̂) ∈ A∞.
This, however, again leads to a contradiction, as L(A∞) would be strictly positive given that

a positive measure of buyers would fulfill (5) if v(κ̂) ∈ V .
At any history h, define the floor price of variety i at date t as pti(h) = mins≤t p

s
i . As

F(A∞) = 0, it must be that for any equilibrium history h∞ associated withA∞, limt→∞p
t(h∞) ∈

M , or else the market could not possibly clear. Thus, A∞ ⊆ M\M̄ , as only buyers whose
values are on the boundary of the market-clearing set M could remain active in the limit if

limt→∞p
t(h∞) ∈ M , by Lemma 1 and because F(A∞) = 0. However, M\M̄ is a decreasing

set (that is, p′i > pi ⇒ p′j ≤ pj for any p, p′ ∈M\M̄), as p > p′ and p ∈M imply p′ ∈ M̄ .
As A∞ is both an increasing and a decreasing set, there exists an i such that v, v′ ∈ A∞

implies vi = v′i. But if so, for all ε > 0, there must exist t suffi ciently large such that

|vi − v′i| ≤ ε for some i and for all v, v′ ∈ At.
Proof Remark 7. All of the operators defined in the first part of proof of Proposition 1

are independent of s when z is suffi ciently large. That is:

Πs(A) = Π(A); Bs(A) = B(A); U s(p, v) = U(p, v); As(p, ρ|A) = A(p, ρ|A).

Furthermore, the map Π(A) is equicontinuous in A. To see this, consider any two active

player sets A′ ⊆ A ⊆ V . Let p(A) denote any degenerate distribution in B(A). It follows

that

Π(A)− Π(A′) ≤ (F(A)−F(A′)) maxi pi(A) ≤ f(L(A)− L(A′)),
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where the first inequality follows because the seller could always set price p(A) even when it

believes that players in A′ are active; and where the second inequality follows because the

market is regular and v ≤ (1, 1) for all v ∈ V . Also, the operator A(p, ρ|A) is equicontinuous

in p and in ρ for all A ∈ K(V ), since U(ρ|v) is continuous in ρ by the proof of Lemma 1.

When vg = 0, consider a sequence of games where the measure of buyers {Fn}∞n=0 satisfies

fn(v) =

{
f(v) if v ≥ vn

0 otherwise

for a strictly positive decreasing sequence {vn}∞n=0 such that limn→∞ v
n = v. As each of these

games displays gaps (vng ≥ maxi v
n
i > 0), there exists a stationary equilibrium {σn, αn} in

each of these games by the first part of the proof of Proposition 1.

Since the sequence of functions {Πn, An}
∞
n=0 is equicontinuous, it has a uniformly conver-

gent sub-sequence converging to continuous functions {Π, A}. For notational ease, posit that
the sequence actually converges to this limit. For any A ∈ K(V ), label by J(A,Π, A, σ) the

limit problem of the seller,

maxρ∈P([0,1]2)
∫

[0,1]2
pd(p|A) + δΠ(A(p, σ(p)|A))dρ(p),

and by Jn(A,Πn, An, σn) the same problem for the nth element of the sequence of games.

Since Jn is Lipschitz continuous in (Πn, An, σn) in the uniform topology for all A ∈ K(V ), Jn
converges to J , and the limit points of σn must converge to an equilibrium of the limit game

σ at any continuity point of σ by the theorem of the maximum. Thus, for all p ∈ [0, 1]2, we

have that

limn→∞ σn(p) = σ(p) ⇒ σ(p) ∈ B(A(p, σ(p)|A)).

Consequently, σ is an equilibrium of the limit game, and thus a WME exists even when

vg = 0.

4 Additional Proofs

Proof Proposition 5. For clarity, let dFi (p) denote the static demand for product i when

prices are p and the measure of buyers is F . Recall that for a joint distribution F , the optimal

market-clearing profits satisfy

π̄F = dFa (p̄F )p̄Fa + (1− dFa (p̄F ))p̄Fb

≥ dFa (p)pa + (1− dFa (p))pb for any p ∈M(F ),
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where p̄F ∈ MF denotes the optimal market-clearing price (which exists by regularity). We

want to establish that π̄F ≤ π̄L. To do so, it suffi ces to find prices p ∈ML such that p ≥ p̄F

and dFa (p̄F ) = dLa (p). For any market-clearing price p ∈ MF such that pa ≥ pb, we have by

regularity that

dFa (p) = FF (va − vb ≥ pa − pb) .

Let V L denote the support of the distribution L. Since V L is a non-increasing set by Propo-

sition 4, va < pa implies vb ≥ pb for any v, p ∈ V L. Thus, V L ⊆ ML. Proposition 4 also

implies that for any p ∈ V L,

dLa (p) = FL (va − vb ≥ pa − pb) = FL (va − l(va) ≥ pa − l(pa)) = FL (va ≥ pa) = 1− Fa(pa),

where the second equality holds since V L is a non-increasing set, and the third holds since

l′ ≤ 0. As marginal distributions are continuous by regularity, they admit an inverse. Thus,

it is possible to find a price pa satisfying

pa = F−1
a (1− dFa (p̄F )).

To conclude, we establish that pa ≥ p̄Fa . By construction, it must be that

FF
(
va − vb ≥ p̄Fa − p̄Fb

)
= 1− Fa(pa).

However, since p̄F ∈MF , it is also the case that

FF
(
va − vb ≥ p̄Fa − p̄Fb

)
≤ 1− Fa(p̄Fa ),

as va− p̄Fa ≥ vb− p̄Fb implies va− p̄Fa ≥ 0 for any p̄F ∈MF . The last two observations together

imply that Fa(pa) ≥ Fa(p̄
F
a ), and thus pa ≥ p̄Fa . A similar argument applies for variety b.
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