
ONLINE APPENDIX: Andrea Lanteri, “The Market for Used Capital: Endogenous Irre-
versibility and Reallocation over the Business Cycle”1

Appendix A: Additional empirical evidence and data

sources

This appendix contains additional empirical evidence on capital reallocation and secondary
markets for investment goods. It also includes details on data sources and construction.

Evidence on capital reallocation

Figure 1 and Table 1 break down capital reallocation into its two components, namely
Sales of Plants, Property and Equipment and Acquisitions and shows the cyclical properties
of each of these two series. While Acquisitions are more volatile, both series, as well as total
capital reallocation, display positive correlation with GDP. Figure 2 plots the time series of
the cyclical components of global secondary-market sales of commercial ships. Figure 3 plots
the shares of used capital expenditures from the Annual Capital Expenditures Survey.

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
-0.2

0

0.2

S
P

P
E

-0.5

0

0.5

A
cq

ui
si

tio
ns

SPPE
Acquisitions

Figure 1: Components of capital reallocation (cyclical components)

Log-deviations from HP trend (λ = 6.25) of (i) Sales of Property, Plants and Equipment, (ii) Acquisitions.

Variables deflated using the US GDP deflator, yearly frequency.

1Email: andrea.lanteri@duke.edu
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Figure 2: Sales of used ships over the business-cycle (cyclical components)

Top panel: log-deviations from trend (HP-filtered, λ = 6.25) of the number of sales of used commercial ships.

Bottom panel: log-deviations from trend of real US GDP. Yearly frequency.
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Figure 3: Share of used capital in capital expenditures

Annual Capital Expenditures Survey data on the share of used capital in total capital expenditures (first

panel) and its two components: structures (second panel) and equipment (third panel). These data do not

include Acquisitions.
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Statistic Reall SPPE Acq

σ(.) 0.159 (0.013) 0.075 (0.009) 0.221 (0.019)
corr(.,GDP) 0.712 (0.059) 0.305 (0.096) 0.765 (0.050)
autocorr 0.199 (0.110) 0.192 (0.166) 0.182 (0.102)

Table 1: Business-cycle properties of capital reallocation

Standard deviations, correlation coefficients with US GDP and coefficients of autocorrelation of the cyclical
components of capital reallocation and its two components (SPPE and Acquisitions). Annual frequency
1971-2011. All variables in logs, deflated using GDP deflator and HP-filtered (λ = 6.25). Standard errors,
in parentheses, are computed using a GMM Newey-West (1987) procedure. Source: Compustat, aggregate
measures kindly made available by Andrea Eisfeldt on her webpage, author’s calculations.
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Evidence on prices in secondary markets

Aircraft. Starting with a dataset on the value of all Western-built commercial aircraft
from 1967 to 2009, I construct a price index of used aircraft. This dataset was compiled by
Aircraft Values (The Aircraft Value Analysis Company), a UK-based specialized consulting
company that evaluates aircraft based on transactions prices for which the seller was not
bankrupt. The dataset includes prices of all the different vintages of 38 types of aircraft, from
their first production year onward. I restrict the attention to the values of aircraft starting one
year after production (the notion of used capital consistent with my model). The observation
unit is an aircraft of type j, vintage v in year t, with price pjvt. To construct the index, I first
deflate all prices using the US GDP deflator. Then, I create dummy variables for year, age
and type (and interaction terms) and run a regression of log(pjvt) on these dummies. In each
subsample (new and used), the coefficients on the time dummies are the quality-age-adjusted
price index of aircraft. Finally, I detrend the series using an HP filter, with a smoothing
coefficient λ = 6.25. As a measure of new aircraft prices I use PPI Aircraft and Aircraft
Equipment. To consider an alternative price index of new aircraft, I also repeat the same
exercise described above for age-0 aircraft in my dataset. This leads to a procyclical index,
with smaller volatility than the used price index, consistent with a procyclical relative price of
used capital. However, this alternative measure is based on substantially fewer observations
(relative to the used price index), particularly in the later part of the sample, resulting in a
difficulty to reliably estimate the cyclical moments: alternative specifications of the controls
(aircraft model types) lead to relatively large differences in business-cycle statistics for this
series, inducing me to rely on the PPI index as the baseline measure of new aircraft prices in
Section 2.

Ships. I gather price indices for new and used ships for the period 1996-2013 from
Clarksons and VesselsValue, two specialized companies that collect transaction prices and
assess ships’ resale market values on behalf of financial institutions. It is interesting to
observe that prices and quantities traded fell contemporaneously in 2008, and that the price
index of used ships is more volatile than the price index of new ships (Figures 2 - in the
paper- and 2 in this Appendix). Similar to the points made about aircraft in Section 2, in the
case of ships, the resale price of more specific models (e.g. the very heavy and large Capesize
bulk carrier) in terms of possible routes also grew more strongly in the period 2006-2008
and then fell by a larger fraction towards the end of 2008 than the price of less specific ones
(e.g. the more flexible and small Handysize bulk carrier). This is shown in Figure 4. As
an alternative price index of new ships, I also consider the PPI Ships index. This measure
is also less volatile than the Clarksons price index of used ships (the standard deviation of
its cyclical component is 0.008. Moreover, it is negatively correlated with GDP (at yearly
frequency, the correlation between the cyclical components of PPI Ships and GDP is -0.55).
Hence, this alternative measure also leads to a highly procyclical relative price of used ships.

Vehicles. In the case of vehicles and trucks, I compare two separate separate CPI series,
one for new (CPI new vehicles) and one for used (CPI used cars and trucks) in the sample
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1953-2013. It emerges that the price of used vehicles is more volatile and more procyclical than
that of new ones, which is actually acyclical. The volatility of prices of used vehicles is smaller
than that of other goods considered, possibly because vehicles are a less specific type of asset.
The procyclicality of the relative price of used vehicles is more pronounced in the second half
of the sample, 1985-2013, as illustrated in Figure 5. As an alternative price index of new
vehicles, I also consider PPI Motor Vehicles. This measure is also less volatile than my price
index of used vehicles (the standard deviation of its cyclical component is 0.012). Moreover, it
is negatively correlated with GDP (at quarterly frequency, the correlation between the cyclical
components of PPI Motor Vehicles and GDP is -0.41). Hence, this alternative measure also
leads to a procyclical relative price of used vehicles.

Construction equipment. Edgerton (2011) constructs an index of the price of used
construction machinery by collecting data on auctions in which this equipment is reallocated
across US construction firms in the time period 1994-2011. The index is constructed following
the same procedure described for aircraft above (regressing prices on observable characteristics
and time fixed effects). Different from the other price indices, however, this index is available
as not deflated and linearly detrended instead of HP-filtered. To be consistent with this
feature, when I compute the relative price of used construction (relative to new) and study its
cyclical properties I use a linear trend also for the price of new (PPI Construction Machinery
and Equipment) and for GDP. The price of used construction equipment fell by more than
the corresponding PPI (price index of new construction machinery) both in the 2001 and
in the 2009 recession and was, in general, significantly more volatile. In particular in 2009,
the index of used construction equipment was approximately 20% below trend, while the
corresponding PPI of new construction machinery was slightly above trend.

Standard errors for the business-cycle statistics of reallocation and prices in Section 2 are
constructed using Constantino Hevia’s Matlab routines available on the World Bank website.
For each series, I use a Newey-West procedure with a number of lags equal to the integer
part of the power 1/4 of the sample size.
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Figure 4: Ships: price of used Capesize and used Handysize

Prices in million $ of second-hand 5 year-old Capesize (more specific) and Handysize (less specific). Weekly

frequency: estimated values based on actual transactions and shipping market information.
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Figure 5: The price of used vehicles relative to new, 1985-2013

Cyclical components of the relative price of used vehicles (blue line) and US real GDP (black line with

crosses). Subsample 1984-2013. Quarterly frequency (HP filtered, λ=1600).
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VAR evidence

To provide further evidence on the cyclical behavior of the relative price of used capital as
well as its response to business cycle shocks, I consider the two types of assets for which I have
a long and unfiltered time series of prices and run bivariate VARs with real GDP. Figures
6 and 7 show the Impulse Response Function (IRF) of the relative price of used aircraft
and vehicles respectively, to a shock to real GDP. Both relative prices show a statistically
significant positive response to the shock, as well as a slowly mean-reverting dynamics of
prices, which is qualitatively consistent with the implications of the quantitative model.
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Figure 6: IRF of relative price of used aircraft to a positive shock to GDP

Bivariate VAR: real GDP and price index of used aircraft (relative to new). Yearly frequency, VAR estimated

in levels. Cholesky identification with output ordered first. 95% confidence bands in grey.
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Figure 7: IRF of relative price of used vehicles to a positive shock to GDP

Bivariate VAR: real GDP and CPI price index of used vehicles (relative to new). Quarterly frequency, VAR

estimated in levels. Cholesky identification with output ordered first. 95% confidence bands in grey.
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Appendix B: Static Model

This Appendix contains the Proof of Proposition 1, the parameter values used in Figure 5
in the paper (Table 2 below) and presents an extension of the static model of Section 3 with
positive new investment ĩnew.

Proof of Proposition 1

(i) By equating demand and supply for used capital - equations (5) and (6) in the paper
-, the market-clearing condition for used capital can be written as follows:

G(q, z, ǫ) ≡ θ(q)

∫

sI

[(
αzs

Q(q)

) 1

1−α

− k0

]
dF (s)−

∫ sD
[
k0 −

(
αzs

q

) 1

1−α

]
dF (s) = 0. (1)

where sI = Q(q)

αzkα−1

0

, sD = q

αzkα−1

0

, Q(q) = [η+(1−η)(q+γ)1−ǫ]
1

1−ǫ , θ(q) = ( q+γ

Q(q)
)−ǫ(1−η) is the

ratio of used investment to total investment for investing firms, and I have left implicit the
dependence of θ, q and Q on ǫ. Equation (1) defines the market-clearing price q as an implicit
function of the aggregate productivity parameter z and the elasticity of substitution between
new and used capital ǫ. We can obtain the derivative of q with respect to z by applying the
Implicit Function Theorem to function G, and we get2

dq

dz
= −

Gz

Gq

(2)

with

Gz =
θ

(1− α)z

∫

sI

(
αzs

Q

) 1

1−α

dF (s) +
1

(1− α)z

∫ sD
(
αzs

q

) 1

1−α

dF (s)

and

Gq = θq

∫

sI

[(
αzs

Q(q)

) 1

1−α

− k0

]
dF (s)−

θQq

(1− α)Q

∫

sI

(
αzs

Q

) 1

1−α

dF (s)−
1

(1− α)q

∫ sD
(
αzs

q

) 1

1−α

dF (s)

In applying Leibniz rule to derive these expressions, we do not need to worry about the
derivatives of the end points sD and sI because, by their definition, the respective integrands
are equal to zero when evaluated at these points. Note that Gz is positive and Gq is negative
(as θq < 0), hence q is increasing in z.

(ii) The elasticity of q with respect to z, call it φq,z(ǫ) ≡
dq

dz
z
q
, is given by

φq,z(ǫ) =

θ
(1−α)

∫
sI

(
αzs
Q

) 1

1−α

dF (s) + 1
(1−α)

∫ sD
(

αzs
q

) 1

1−α

dF (s)

−θqq
∫
sI

[(
αzs
Q(q)

) 1

1−α

− k0

]
dF (s) + θQqq

(1−α)Q

∫
sI

(
αzs
Q

) 1

1−α

dF (s) + 1
(1−α)

∫ sD
(

αzs
q

) 1

1−α

dF (s)

(3)

2Notation: Call fx be the partial derivative of function f with respect to argument x.
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Now, note that when ǫ = 0 (Leontief investment technology), the share of used capital
to total investment becomes θ = 1 − η, so that θq = 0, while the price index becomes
Q = η + (1− η)(q + γ), so that we get Qq = 1− η. Hence, we can write

φq,z(0) =
(1− η)

∫
sI

(
αzs
Q

) 1

1−α

dF (s) +
∫ sD

(
αzs
q

) 1

1−α

dF (s)

(1− η)2 q

η+(1−η)(q+γ)

∫
sI

(
αzs
Q

) 1

1−α

dF (s) +
∫ sD

(
αzs
q

) 1

1−α

dF (s)

(4)

and this establishes that φq,z(0) > 1 as q < 1 ⇒ (1− η) q

η+(1−η)(q+γ)
< 1. Standard arguments

can be used to show that φq,z is continuous.
To show that reallocation is increasing in z, it suffices to observe that the equilibrium

supply of used capital S∗

used - i.e. total reallocation - is a decreasing function of z
q
(as above,

we can disregard the derivative of sD as the integrand is zero when evaluated at sD):

S∗

used =

∫ sD
[
k0 −

(
αzs

q

) 1

1−α

]
dF (s) (5)

Thus, the sign of its derivative with respect to z is the sign of φq,z − 1. This establishes
that in the limit for sufficiently low elasticity of substitution between new and used capital,
reallocation is increasing in z - i.e. “procyclical”.
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Parameter Value

α 1/3
k0 0.2

F (s) uniform(0.85,1.15)
η 0.75
γ 0.1

Table 2: Parameter values used in Figure 5 in
the paper
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Extension: a model with ĩnew > 0
In this extension, I present a model in which expanding firms employ a positive amount

of new goods both in the bundle with used goods and as fully new investment, unrelated
to reallocation of used capital. I show that the key insights of Section 3 are robust to this
extension. This clarifies that the fact that used investment affects the marginal product of
all new investment in the model of Section 3 is not important to determine the results.

Consider this more general firm-level investment technology for expanding firms, i.e.,
choosing k′ ≥ (1− δ)k:

k′
− (1− δ)k = ĩnew + g(inew, iused)

where g is a CES aggregator with elasticity ǫ and, additionally,

ĩnew ≥ ω [k′
− (1− δ)k]

where both ĩnew and inew are new investment goods, iused are used investment goods and
ω ∈ [0, 1]. In this modified model, firms need to use new investment goods at least for a
fraction ω of their desired expansion.

Notice that a standard one-sector model is nested in this formulation for ω = 0 and ǫ = ∞.
The model of Section 3 is nested for ω = 0 and ǫ < ∞.

Consider the case ω > 0 and ǫ < ∞. Under this assumption, at least a fraction ω of
the investment is always made using new goods. This formulation separately accommodates
both positive investment directly employed in the refurbishment of used capital (inew) and
other, unrelated new investment (̃inew).

Firm optimization implies ĩnew = ω [k′ − (1− δ)k] whenever the cost of a unit of used
capital is less than the cost of a unit of new capital, which is the empirically relevant case.
As the price of new capital in the model is 1, the overall cost of a unit of future capital k′

for expanding firms is Q = ω + (1 − ω)Qg where Qg is the price index associated with the

CES bundle g, given by equation (4) in the paper. Notice that the marginal product of ĩnew,
which is now positive, is independent of iused.

In order to illustrate the result and obtain a numerical range for ǫ with procyclical re-
allocation, I repeat the exercise illustrated in Figure 5 in the paper using this alternative
specification. The value of the parameter η has to be reduced in the model with positive ω
because part of the new goods are now employed in the component ĩnew. To allow for a fair
comparison between my assumptions (ω=0) and this version of the model, I set ω = .5 and
η = .5 in order to (approximately) match the share of used goods in investment in the two
cases. Figure 8 illustrates the outcome. As in Figure 5 in the paper, the top panel shows the
elasticity of the price of used capital with respect to the aggregate productivity parameter
z, as a function of the elasticity ǫ. The bottom panel illustrates capital reallocation for two
values of z, also as a function of ǫ. First, notice that the results are qualitatively similar to
those obtained in the baseline model with ω = 0. The elasticity of the price of used capital
with respect to the aggregate productivity parameter z is larger than 1 and reallocation is still
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Figure 8: Elasticity of substitution ǫ, price adjustment and capital reallocation with ω > 0
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Top panel: φq,z, the elasticity of the price of used capital with respect to aggregate productivity z, as a

function of ǫ, the elasticity of substitution between new and used capital. Bottom panel: Capital reallocation

(as a fraction of aggregate capital k0), as a function of ǫ, for z = 1 (blue solid line) and z = .99 (red

dashed-dotted line).

procyclical for sufficiently low elasticity of substitution ǫ. Furthermore, the threshold for ǫ
under which reallocation is procyclical actually increases substantially relative to the version
of the model in the paper (from 20 to 37) and for any given ǫ reallocation is more procyclical
under the alternative version of the model that satisfies the three desired properties. For
instance, when ǫ = 10, reallocation is 5% higher in the high z state in my baseline model and
7.5% higher in the alternative model with positive ω.

It is also easy to verify that Proposition 1 holds in the extended model with ω, following
the same steps as in the proof presented above. Furthermore, while in the model of Section 3
I abstract from convex adjustment cost, similar results can be obtained obtained by adding
standard quadratic adjustment costs on new investment ĩnew in this modified model.

13



Appendix C: Algorithm for DSGE model, more aggre-

gate results and robustness exercises

This appendix contains details of the solution method for the DSGE model of Sections 4-5
and discusses accuracy of the solution. It also displays additional results and illustrates the
robustness of the quantitative results to different parameter values.

Algorithm

I solve the model using an extension of the method of Krusell and Smith (1998) and Khan
and Thomas (2008, 2013), which takes care of market clearing in the market for used capital.
In Khan and Thomas (2008, 2013), there is one endogenous price to solve for (the wage, or,
equivalently, the marginal utility valuation of the output good). In my model, there are two
equilibrium prices to solve for: the wage and the price of used capital. The price index Qt is
then obtained analytically given the CES price index formula.

Key steps of the algorithm:

• I approximate the distribution m with its first moment, aggregate capital K, and the
covariance between firm-level capital and idiosyncratic productivity, covks. Agents per-
ceive laws of motion:

log(K ′) = φ̂K
0 + φ̂K

1 log(K) + φ̂K
2 I(z

H) + φ̂K
3 log(K)I(zH)

log(cov′ks) = φ̂cov
0 +φ̂cov

1 log(K)+φ̂cov
2 I(zH)+φ̂cov

3 log(K)I(zH)+φ̂cov
4 log(covks)+φ̂cov

5 log(covks)I(z
H)

where I(zH) is an indicator function for the high-productivity aggregate state.

• Agents perceive price functions:

log(w) = φ̂w
0 + φ̂w

1 log(K) + φ̂w
2 I(z

H) + φ̂w
3 log(K)I(zH)

log(q) = φ̂q
0+φ̂q

1 log(K)+φ̂q
2I(z

H)+φ̂q
3 log(K)I(zH)+φ̂q

4 log(covks)+φ̂q
5 log(covks) log(K)

While for aggregate capital and wage a rule based only on aggregate capital achieves
very high accuracy, the covariance term helps achieve high accuracy in the prediction
of the price of used capital. I also experimented with different interaction terms in the
regressions, with similar results.

• Given these perceived laws of motion, I solve the individual firm’s problem by value
function iteration and obtain the policy functions (inner loop).

• I simulate a continuum of firms for 5000 periods using the simulation method of Young
(2010) and update the price functions by explicitly imposing market clearing in the
used capital market along the simulation.
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• To impose market clearing, in each period, I interpolate the continuation value function
at the current approximate aggregate state (K, covks, z), allow current prices to be free
parameters, re-solve the individual firm problem (using interpolation on the capital
grid) at each candidate vector of prices and solve for the values of the prices that clear
markets.

• I update the laws of motion for aggregate capital, covariance and prices (outer loop)
using standard regression methods up to convergence.

The state vector has overall 84000 nodes (1,000 for k, 7 for s, 2 for z, 3 for K and 2
for covks). A single iteration of the outer loop requires approximately thirty minutes on a
twelve-workers Matlab cluster. Hence, I first solve the model with a shorter simulation (2000
periods), and without explicitly clearing markets, instead gradually updating prices in the
direction implied by the sign of excess demand in each market in every period. When both
the average excess demand and the forecast errors are sufficiently small, markets are cleared
as a system using a non-linear solver and I proceed with the full simulation of 5000 periods.

Furthermore, the long simulation is divided into ten smaller simulations of equal size that
I run in parallel. In every new iteration of the outer loop, I start each of this sub-simulations
at the initial distribution implied by the end of the previous sub-simulation. I thank Aubhik
Khan for kindly sharing this insight to gain efficiency in simulation-based solution algorithms.
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Accuracy

The R2 (maximum and mean error in parenthesis) of the regressions for future aggregate
capital, future covariance, wage and price of used capital are 0.9999 (0.0019, 0.0002), 0.9998
(0.0028, 0.0004), 0.9999 (0.0030, 0.0003) and 0.9938 (0.0025, 0.0004) respectively.

The lower variance of q relative to the other approximated variables explains its somewhat
lower R2 even for a similar size of mean and maximum errors. This point is consistent with
the analysis of den Haan (2010), who proposes the following accuracy check. To formally test
for accuracy, I perform a long simulation of the model (5000 periods) and compare the paths
of the approximated variables with an alternative simulation obtained iterating only on the
estimated laws of motion. I compute the maximum and mean distance of each approximated
variable from the value taken in the actual simulation. These values are reported in Table
3. As all variables are in logs, the errors can be interpreted as percentage deviations. These
results show that the solution is not only accurate in the sense of producing accurate one-step
ahead forecasts, but also that the forecast errors do not accumulate over time.

Error K covks w q

max 0.0031 0.0041 0.0034 0.0026
mean 0.0007 0.0009 0.0004 0.0004

Table 3: den Haan (2010) accuracy test. Maximum and mean errors in long simulation based
on subjective laws of motion

I also compare the solution with an alternative solution that only uses aggregate capital to
the price of used capital, abstracting from dynamics in the covariance term. While the main
quantitative business-cycle properties of the model display only very small differences, the
accuracy of the solution is lower: in this case, the R2 of the regression for q decreases to .9830
and the maximum and mean forecast errors during the simulation are twice as large relative
to the baseline solution with covariance: they are .0053 and .0008 respectively. I verify that
including second and third order powers of capital leads to similar results. This shows that
the covariance term covks is a valuable moment to forecast the equilibrium dynamics in the
market for used capital.
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Additional model figures

I present three additional figures: Figure 9 shows a 3-D plot of the joint distribution of
firm-level capital and idiosyncratic productiviy shocks in the stationary equilibrium of the
model; Figure 10 plots the distribution of firm-level investment rates in stationary equilib-
rium; Figure 11 plots the response of standard business-cycle variables (output, consumption,
investment, capital and employment) to a negative aggregate TFP shock.
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Figure 10: Stationary distribution of investment rates
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Figure 11: Aggregate shock: response of standard RBC variables

Transition from long sequence zt = zH to long sequence zt = zL. Response of output (Y), consumption (C),

investment (I), capital stock (K) and employment (N). Unfiltered data. Series normalized to one before the

shock hits.
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Robustness checks

The following tables report business-cycle statistics for different values of model parame-
ters and HP-filtering smoothing parameter.

Specifically, Table 4 refers to the version of the model in which I set η = 0.92 to exclude
Acquisitions from the notion of reallocation. Tables 5 and 6 reports the results of robustness
checks with respect to ǫ, by setting this parameter equal to 1 and 10 respectively. In all these
three cases, no other parameter values are changed relatively to the baseline calibration.
Procyclical reallocation is robust to all these modifications of the parameter values.

Table 7 refers to a model in which I change the process of idiosyncratic productivity
and reallocation cost to obtain a higher fraction of lumps (investment rate above 20%),
specifically equal to 0.18 (Cooper and Haltiwanger, 2006). The parameter values that differ
from the baseline calibration are as follows: (σinn,s = 0.106, ρs = 0.63, γ = 0); besides a
fraction of lumps of 0.18, these parameter values induce a standard deviation of investment
rates of 0.27 (my model does not appear to allow to exactly match the standard deviation
of investment rates jointly with the fraction of lumps, partly because of the non-negativity
constaint on γ), autocorrelation of investment rates equal to 0.057 and fraction of firms doing
negative investment equal to 0.116. The idiosyncratic shock is then discretized with a Tauchen
(1986) procedure. The business-cycle properties of the model are very similar to the ones
obtained under the baseline calibration. With the caveat of a smaller standard deviation
of investment rates, this exercise suggests that the key results are robust with respect to
empirically plausible changes in the fraction of firms doing large adjustments.

Tables 8, 9 and 10 show the business-cycle statistics of the baseline model, constant-q
model and US data for a HP smoothing parameter equal to 100, in order to facilitate the
comparison of the results with Khan and Thomas (2013) .

Statistic Y C I K N r q q/Q reall

mean 0.612 0.508 0.104 1.59 0.336 0.041 0.888 0.896 0.012
σ(.)/σ(Y ) (1.54) 0.469 3.758 0.248 0.549 0.08 0.168 0.15 3.136
corr(.,Y ) 1 0.979 0.987 -0.332 0.984 0.872 0.977 0.977 0.981
autocorr 0.08 0.152 0.056 0.495 0.053 -0.023 0.246 0.246 0.017

Table 4: Business-cycle statistics: excluding Acquisitions (η = 0.92, HP filter λ = 6.25)

Rows: mean, standard deviation relative to standard deviation of output, autocorrelation. Columns: output,

consumption, investment, capital, hours, real interest rate, price of used capital, degree of irreversibility (price

of used capital relative to marginal cost of expanding a firm), SPPE (value in terms of output good).
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Statistic Y C I K N r q q/Q reall

σ(.)/σ(Y ) (1.51) 0.493 3.607 0.238 0.524 0.076 0.203 0.153 3.61
corr(.,Y ) 1 0.982 0.988 -0.334 0.984 0.839 0.978 0.978 0.988
autocorr 0.081 0.15 0.051 0.495 0.049 -0.048 0.214 0.214 0.052

Table 5: Business-cycle statistics: ǫ = 1, HP filtered, λ = 6.25

Rows: standard deviation relative to standard deviation of output, autocorrelation. Columns: output, con-

sumption, investment, capital, hours, real interest rate, price of used capital, degree of irreversibility (price

of used capital relative to marginal cost of expanding a firm), capital reallocation (value in terms of output

good).

Statistic Y C I K N r q q/Q reall

σ(.)/σ(Y ) (1.52) 0.486 3.654 0.245 0.53 0.071 0.157 0.105 2.31
corr(.,Y ) 1 0.983 0.989 -0.336 0.986 0.87 0.986 0.986 0.981
autocorr 0.083 0.141 0.064 0.503 0.06 -0.048 0.176 0.177 -0.004

Table 6: Business-cycle statistics: ǫ = 10, HP filtered, λ = 6.25

Rows: standard deviation relative to standard deviation of output, autocorrelation. Columns: output, con-

sumption, investment, capital, hours, real interest rate, price of used capital, degree of irreversibility (price

of used capital relative to marginal cost of expanding a firm), capital reallocation (value in terms of output

good).

Statistic Y C I K N r q q/Q reall

σ(.)/σ(Y ) (1.56) 0.449 3.822 0.251 0.568 0.07 0.138 0.097 3.283
corr(.,Y ) 1 0.979 0.989 -0.348 0.987 0.867 0.981 0.982 0.987
autocorr 0.07 0.157 0.035 0.488 0.025 -0.149 0.16 0.158 0.014

Table 7: Business-cycle statistics: model with fraction of lumps = 18%, HP filtered, λ = 6.25

Rows: standard deviation relative to standard deviation of output, autocorrelation. Columns: output, con-

sumption, investment, capital, hours, real interest rate, price of used capital, degree of irreversibility (price

of used capital relative to marginal cost of expanding a firm), capital reallocation (value in terms of output

good).
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Statistic Y C I K N r q q/Q reall

σ(.)/σ(Y ) (2.28) 0.533 3.542 0.415 0.511 0.064 0.192 0.136 2.814
corr(.,Y ) 1 0.96 0.974 0.041 0.956 0.704 0.955 0.956 0.974
autocorr 0.499 0.598 0.454 0.839 0.449 0.292 0.556 0.555 0.426

Table 8: Business-cycle statistics: baseline model, HP filtered, λ = 100

Rows: standard deviation relative to standard deviation of output, autocorrelation. Columns: output, con-

sumption, investment, capital, hours, real interest rate, price of used capital, degree of irreversibility (price

of used capital relative to marginal cost of expanding a firm), capital reallocation (value in terms of output

good).

Statistic Y C I K N r reall

σ(.)/σ(Y ) (2.37) 0.495 3.869 0.449 0.57 0.076 1.316
corr(.,Y ) 1 0.93 0.963 0.057 0.947 0.818 -0.864
autocorr 0.486 0.624 0.441 0.831 0.438 0.397 0.554

Table 9: Business-cycle statistics: constant q, HP filtered, λ = 100

Rows: mean, standard deviation relative to standard deviation of output, autocorrelation. Columns: output,

consumption, investment, capital, hours, real interest rate, price of used capital, capital reallocation.

Statistic Y C I K N w r TFP reall SPPE only

σ(.)/σ(Y ) (2.16) 0.567 2.821 1.129 1.14 0.575 0.711 0.522 12.031 6.981
corr(.,Y ) 1 0.828 0.791 0.585 0.857 0.312 -0.024 0.452 0.671 0.370
autocorr 0.534 0.608 0.546 0.696 0.517 0.537 0.325 0.571 0.558 0.655

Table 10: Business-cycle statistics: US annual data, HP filtered with λ = 100

US business-cycle statistics 1947-2015. Rows: standard deviation relative to standard deviation of GDP, cor-

relation with GDP, autocorrelation. Columns: real GDP, consumption (personal consumption expenditures

on non-durables and services, deflated with GDP deflator), investment (fixed private investment and personal

consumption expenditures on durables, deflated with GDP deflator), capital (fixed private assets and stock

of consumer durables, deflated with GDP deflator), hours (all persons, nonfarm business sector), real wage

(real compensation per hour, nonfarm business sector), real interest rate (three-month T-bill, net of ex-post

GDP-deflator inflation), aggregate TFP (constructed as in the model, i.e. log(GDP )−α log(K)− ν log(N)),

capital reallocation (SPPE + Acquisitions) and SPPE (1971-2011), deflated with GDP deflator. Sources:

BEA, BLS, Board of Governors of the Federal Reserve System, Compustat, author’s calculations.
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Appendix D: The constant-q model

In this appendix, I provide some more details on the comparison model with constant partial
irreversibility. The household’s problem is the same as for the model with endogenous irre-
versibility, hence I do not repeat its description. Firms’ dynamic program is also the same,
except for the fact that qt and Qt are constant. This can be rationalized under the following
technological assumptions:

• one unit of output good can be transformed into Q−1 units of capital that can be freely
specialized and installed by any firm;

• one unit of capital can be re-transformed into q units of output good.

Hence, investing firms buy each unit of extra capital at price Q, while disinvesting firms
sell capital at price q. The aggregate resource constraint reads

Ct +QI+t − qI−t = Yt (6)

where I+t is total positive investment of expanding firms and I−t is total disinvestment of
downsizing firms.

Notice that if q < Q = 1 this model coincides with a standard RBC model with production
heterogeneity and partial irreversibility (e.g. Veracierto, 2002). However, in parametrizing
the model, I choose not to set Q = 1. This is because I want this comparison model to
only differ from my model in terms of the dynamic properties of capital prices. Hence, I
exogenously set both q and Q to be equal to their steady-state equilibrium values in the
baseline model with endogenous q. This way, the stationary equilibria of the two economies
coincide exactly. This implies that all calibrated parameters also hit the same targets. When
they are hit by aggregate shocks, however, the two economies differ in that capital prices only
adjust in my model.

The solution method is analogous to the one described for the baseline model, with the
simplification that the wage is the only endogenous price.
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