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Online Appendix

B Proofs of Other Results from Main Text

B.1 Proof of Lemma 1

Proof. Under Assumption 2, a non-partisan student of type x faces maximization problem:

max
y
u(x, y) = v(x, y)− p(y).

The first-order condition is
∂v

∂y
(x, y)− p′(y) = 0.

For the first-order condition to hold at x = y, we have p′(y) = ∂v
∂y (y, y), which requires

p(y) =

∫ z=y

z=0

∂v

∂y
(z, z)dz,

while the second-order condition for maximization follows from the fact that v satisfies increasing

differences in x and y.2 Given this pricing rule,

∂u(x, y)

∂y
=
∂v

∂y
(x, y)− ∂v

∂y
(y, y),

which is strictly positive for x > y and strictly negative for x < y by the property of increasing

differences for v. Thus, u(x, y) = v(x, y) − p(y) is strictly increasing in y for y < x and strictly

decreasing in y for y > x, which verifies that u(x, y) is maximized at y = x given this pricing rule.

B.2 Proof of Proposition 1

Proof. We first show that a school choice equilibrium consist of an interval of types residing in

the town. Suppose that school quality in the town in a school choice equilibrium is ySC with price

pSC = p(ySC). A partisan of type x enrolls in the town if v(x, ySC)−p(ySC) + θ ≥ v(x, x)−p(x) or

θ ≥ [v(x, x)− v(x, ySC)]− [p(x)− p(ySC)].

1Avery: Harvard Kennedy School and NBER, e-mail: Christopher Avery@hks.harvard.edu. Pathak: MIT and

NBER, e-mail: ppathak@mit.edu
2Technically, this first-order condition would yield the result that p(y) =

∫ z=y

z=0
∂v
∂y

(z, z)dz + C, where C is a

constant, but since we assume that v(0, 0) = 0, we set this constant to 0.
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Since p(y) =
∫ y

0
∂v
∂y (z, z)dz, the incentive condition for enrolling in the town in integral form is

θ ≥
∫ x

ySC

[
∂v

∂y
(x, z)− ∂v

∂y
(z, z)

]
dz.

If x ≥ ySC , the right-hand side of this equation is increasing in x by Assumption 1, so the condition

holds for types in some range of types given by [x, xHSC ]. Similarly, if x ≤ ySC , the right-hand side

of the equation is decreasing in x, so the condition also holds for some range of types given by

[xLSC , x]. Putting these ranges together, a range of types around ySC will enroll in the town in a

School Choice equilibrium.

Suppose that the school qualities in a D-district neighborhood equilibrium are y1, y2, ..., yD

where yj > yj−1 and that the price for district j is pj = p(yj) + ∆j where ∆j ≥ 0. (At least

one of the prices is the competitive price on the outside market, so ∆j = 0 for at least one j.)

Following the analysis of the School Choice equilibrium above, a range of partisan types around yj

prefers district j to the outside option. Partisan type x prefers district k to district j with k > j if

v(x, yk)− pk + θ ≥ v(x, yj)− pj + θ which is equivalent to

v(x, yk)− v(x, yj)− [p(yk)− p(yj)] ≥ ∆k −∆j .

In integral form, the incentive condition for enrolling in district k rather than district j is then∫ yk

yj

[
∂v

∂y
(x, z)− ∂v

∂y
(z, z)

]
dz ≥ ∆k −∆j .

The integrand on the left-hand side of this equation is increasing in x, so there is some cutoff xjk

such that the condition holds iff x ≥ xjk. Thus, these pairwise comparisons between districts j

and k with j < k may adjust the lower bound of the range of types enrolling in district j and the

upper bound of the range of types enrolling in district k. The end result remains the same as in the

School Choice equilibrium: a range of partisan types enrolls in each district d in a Neighborhood

School equilibrium.

B.3 Proof of Proposition 2

Proof. We initially assume a Uniform distribution of types to provide intuition and then generalize

the counterexample so that it holds for other distributions of types. In a school choice equilibrium

with a neighborhood assignment rule, two districts and a uniform distribution of types, types from

0 to 0.5 enroll in district 1 while types from 0.5 to 1 enroll in district 2, so y1 = 0.25 and y2 = 0.75.

We proceed to construct a counterexample based upon the following key elements in the definition
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of v(x, y) that are designed to counteract the proof of Theorem 1. For expositional purposes, we

divide the [0, 1] x [0, 1] region into nine rectangular regions numbered from left to right then bottom

to top.

1. Region 1 (bottom left): [0, y1] x [0, y1];

2. Region 2 (bottom center): [0, y1] x [y1, y2];

3. Region 3 (bottom right): [0, y1] x [y2, 1];

4. Region 4 (middle left): [y1, y2] x [0, y1];

5. Region 5 (middle center): [y1, y2] x [y1, y2];

6. Region 6 (middle right): [y1, y2] x [y2, 1];

7. Region 7 (top left): [y2, 1] x [0, y1];

8. Region 8 (top center): [y2, 1] x [y1, y2];

9. Region 9 (top right): [y2, 1] x [y2, 1];

Regions 1, 5, and 9 include the 45-degree line where the values of v(x, y) determine the com-

petitive pricing function p(x). As we highlight in the proof of Theorem 1 below, θSC and θN only

increase on ranges of the function v(x, y) where ∂2v
∂x∂y > 0. So for the purpose of the counterexample,

we define v to be piecewise linear in Regions 1 and 9 and to have positive mixed partial derivative

in Region 5. To further simplify analysis, we set v(x, y) = 0 on the left and lower boundaries of

Region 5 and in Regions 1, 2, and 4. We leave v(x, y) momentarily undefined in Regions 3 and 7

as its value in these regions do not affect the calculations of θSC or θN .

Define v(x, y) on Regions 1, 2, 4, 5, 6, 8 and 9 as follows:

1. Regions 1 and 2: If y ≤ 0.25, 0 ≤ x ≤ 0.75, v(x, y) = 0

2. Regions 1 and 4: If x ≤ 0.25, 0 ≤ y ≤ 0.75, v(x, y) = 0

3. Region 5: If 0.25 ≤ x, y ≤ 0.75, v(x, y) = 192(x− 0.25)(y − 0.25)2

4. Region 6: If x ≥ 0.75 and 0.25 ≤ y ≤ 0.75, v(x, y) = 96(y − 0.25)2 + 48(x− 0.75)

5. Region 8: If y ≥ 0.75 and 0.25 ≤ x ≤ 0.75, v(x, y) = 48(x− 0.25) + 96(y − 0.75)
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6. Region 9: If x ≥ 0.75 and y ≥ 0.75, v(x, y) = 24 + 48(x− 0.75) + 96(y − 0.75)

The linear coefficients of v(x, y) in Region 6 (where v is linear in x), Region 8 (where v is linear in

y) and Region 9 (where v is linear in both x and y are set to the values of the partial derivatives

∂v
∂x = 48 and ∂v

∂y = 96 at the upper right corner of Region 5. Given this information, the competitive

price function is defined in three pieces:

• First, for x, y < 0.25, v(x, y) = 0 so clearly p(y) = 0.

• Next, for 0.25 ≤ x, y ≤ 0.75, v(y, y) = 192(x− 0.25)(y − 0.25)2, ∂v∂y = 384(x− 0.25)(y − 0.25)

and so for 0.25 ≤ y ≤ 0.75, p(y) =
∫ y

0.25 384(z − 0.25)2dz = 128(y − 0.25)3, so p(0.75) = 16.

• Finally, for x, y ≥ 0.75, v(x, y) = 48x+96y−84, ∂v∂y = 96, and so p(y) = p(0.75)+
∫ y

0.75 96dz =

16 + (y − 0.75) = 96y − 56.

The incentive condition for type x = 1 in a school choice equilibrium where all partisan types enroll

in the town is

v(1, 0.5)− p(0.5) + θ ≥ v(1, 1)− p(1),

or 18− 2 + θ ≥ 60− 40 or

θ ≥ 4.

The incentive condition for type x = 0 in a school choice equilibrium where all partisan types enroll

in the town is

v(0, 0.5)− p(0.5) + θ ≥ v(0, 0)− p(0),

or 0− 2 + θ ≥ 0− 0 or

θ ≥ 2.

Therefore, all partisan types will enroll in the town under school choice if

θ ≥ θSC = max(2, 4) = 4.

The minimum value of θ for all partisan types to enroll under neighborhood equilibrium with

competitive pricing is determined by the incentive conditions for the middle type x = 1/2. If

partisan types from 0 to 1/2 enroll in district 1 while partisan types from 1/2 to 1 enroll in district

2, then y1 = 1/4 and y2 = 3/4 given the uniform distribution of types. Type 1/2 prefers district 1

to the outside option if

v(1/2, 1/4)− p(1/4) + θ ≥ v(1/2, 1/2)− p(1/2)
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or 0− 0 + θ ≥ 3− 2 or

θ ≥ 1.

Type 1/2 prefers district 2 to the outside option if

v(1/2, 3/4)− p(3/4) + θ ≥ v(1/2, 1/2)− p(1/2)

or 12− 16 + θ ≥ 3− 2 or

θ ≥ 5.

Then partisan type 1/2 requires a bonus θ ≥ θN = 5 to enroll in either district 1 or district 2.

Therefore, we have θN = 5 and θSC = 4 and thus

θN > θSC .

This incomplete definition of v provides intuition for why it is possible to have θN > θSC even

under the assumption of (weakly) increasing differences in v(x, y). The value θSC represents the

cost for an extreme type (usually x = 1) to select a school with y = 1/2 in the town rather than the

outside option. With competitive pricing in a school choice equilibrium, type x = 1 must forego

gains equal to π(1) − (v(1, 0.5) − p(0.5)) = [v(1, 1) − v(1, 0.5)] − [p(1) − p(0.5)]. In integral form

(assuming that this cost is greater than the cost for type x = 0 to enroll in the town):

θSC =

∫ 1

1/2
[
∂v

∂y
(1, z)− ∂v

∂y
(z, z)]dz =

∫ 1

1/2

∫ 1

z

∂2v

∂x∂z
(a, z)dadz.

Similarly θN is the maximum cost for one of four boundary types to enroll in the town rather

to take the outside option: (1, 2) type x = 0 or type x = 1/2 enrolling in district 1 in the town

where y = y1 = E(x|x ≤ 1/2); (3, 4) type x = 1/2 or type x = 1 enrolling in district 2 in the town

where y = y2 = E(x|x ≥ 1/2). Possibilities (1) and (4) would yield θN ≤ θSC since types 0, 1 are

only offered y = 1/2 in the town in a school choice equilibrium – a school that is a worse match

for their types than the best choice in a neighborhood equilibrium.3 Thus, it is not surprising that

the preliminary version of the counterexample is based on (3), the cost for type x = 1/2 to enroll

at a school in the town with y = y2.

It is natural to anticipate θSC > θN since θN corresponds to a generally better match (type

x = 1 choosing a school with y = y2 - a distance of 1 − y2 from the ideal match) than the one

3In this discussion of the intuition for the counterexample, we leave out the price adjustment required by the

boundary indifference condition for pricing in a neighborhood equilibrium, as this complicates the discussion and

only makes it easier to produce a counterexample.
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required for θSC (type x = 1 choosing a school with y = 1/2, a distance of 1− 1/2 = 1/2 > 1− y2

from the ideal match). These distances are represented by the areas of the regions for the double

integrals above: θN and θSC are both double integrals of ∂2v
∂x∂z , but the double integral for θSC is over

a wider region of values. But with ∂2v
∂x∂z = 0 except in Region 5 in the preliminary counterexample

above, θN and θSC reduce to double integrals of ∂2v
∂x∂z over Region 5. Specifically θN is computed

for the region with x and y between 1/2 and 3/4 with x < y, while θN is computed for the region

with x and y between 1/2 and 3/4 with x > y – the upper and lower triangles of the same square.

Since these two regions of integration have the same area, the comparison can go either way.

If function v is symmetric in x, y through Region 5 - for example, if v(x, y) = (x−0.25)(y−0.25)

- then the computations of θN and θSC are essentially identical in Region 5. In constructing the

preliminary version of the counterexample, we set v(x, y) to take the form (x − 0.25)(y − 0.25)2

to break this tie so that θN > θSC . With v(x, y) = 192(x − 0.25)(y − 0.25)2, the mixed partial

derivative ∂2v
∂x∂z = 384(y−0.25), which takes larger values in the square from (0.5, 0.5) to (0.75, 0.75)

for the upper triangle with y > x than for the lower triangle with y < x. Since the values of ∂2v
∂x∂z in

the upper triangle determines θN whereas the values of ∂2v
∂x∂z in the lower triangle determines θSC ,

this choice of v produces θN > θSC .4

Generalizing the Counterexample

This preliminary version of the counterexample is not differentiable at the boundaries between

regions. We address this point in completing the counterexample by choosing a smooth function

with the same properties. We assume a general distribution of types that is symmetric about 1/2,

denote L = E(x|x ≤ 1/2), H = E(x|x ≥ 1/2) and choose positive constants A,B > 0, and use them

to define v as follows:

1. Regions 1 and 2: If y ≤ L, 0 ≤ x ≤H, v(x, y) = Ax+By;

2. Regions 1 and 4: If x ≤ L, 0 ≤ y ≤H, v(x, y) = Ax+By;

3. Region 5: If L ≤ x, y ≤ H,

v(x, y) = Ax+By+[−2x3+3(H+L)x2−6LHx+L2(3H−L)][−2y3+3(H+L)y2−6LHy+L2(3H−L)]2;

4. Region 6: If x ≥ H and L ≤ y ≤ H, v(x, y) = B(y −H) + v(H, y);

4By similar logic, if v(x, y) = (x − 0.25)2(y − 0.25), a value function that emphasizes the value of x rather than

the value of y, the result would be reversed so that θSC > θN .
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5. Region 8: If y ≥ H and L ≤ x ≤ H, v(x, y) = A(x−H) + v(x,H):

6. Region 9: If x ≥ H and y ≥ H, v(x, y) = A(x−H) +B(y −H) + v(H,H).

The function g(x) = [−2x3 + 3(H +L)x2 − 6LHx+L2(3H −L)] is central to this construction. It

has the following desirable properties:

1. g(L) = 0;

2. g′(x) = 6(−x2 + x− 6LH) = 6(H − x)(x− L), so g′(L) = g′(H) = 0;

3. Both g(x) and g′(x) are strictly positive for L < x < H.

Because of these properties, it is possible to add g(x)[g(y)]2 to the baseline value Ax + By in

Region 5 while maintaining both differentiability and continuity of v on all boundaries between

other regions and Region 5. In addition, ∂2v
∂x∂y = 2g′(x)g′(y)g(y) on Region 5, which is strictly

positive on the interior of Region 5. As in the preliminary version of the counterexample, θN is

determined by the double integral of ∂2v
∂x∂z over the x, y between 1/2 and 3/4 with x < y, while

θN is computed for the region with x, y between 1/2 and 3/4 with x > y – the upper and lower

triangles of the same square. Since these regions are reflections of each other, we can combine two

separate double integrals into one:

θN − θSC =

∫ H

0.5

∫ z

0.5

∂2v

∂a∂z
(a, z)dadz −

∫ H

0.5

∫ H

z

∂2v

∂a∂z
(a, z)dadz

or

θN − θSC =

∫ H

0.5

∫ z

0.5
[
∂2v

∂a∂z
(a, z)− ∂2v

∂a∂z
(z, a)]dadz.

Since v takes formAx+By+g(x)[g(y)]2 on Region 5, ∂2v
∂a∂z (a, z) = 2g′(a)g′(z)g(z) > 2g′(a)g′(z)g(a)

if z > a. This shows that the integrand in the calculation of θN − θSC is positive, so θN > θSC .

One last point is that the generalized counterexample exhibits weakly rather than strictly

increasing differences in x, y. To address this point, we can add a term of infinitesimal magnitude,

such as εx2y2 (where ε is a very small positive constant) to the definition of v(x, y) in all regions. The

adjusted definition of v provides a continuous and differentiable function with strictly increasing

differences in x, y, and for ε sufficiently small, it remains the case that θN > θSC . This completes

the definition of the generalized counterexample.
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B.4 Proof of Proposition 3

Proof. We define the left-hand loss for a district with partisan types on the interval [a, b] as

C(a, y(a, b)), where y(a, b) = E(x|a ≤ x ≤ b). Similarly, we define the right-hand loss for that

district as C(b, y(a, b)). Since y(a, b) is increasing in each of a and b, the left-hand loss function for

interval [a, b] is increasing in b while the right-hand loss function is decreasing in a.5

Claim 1: There exists a School Choice equilibrium.

Define h(y) to be the expected value of partisan types enrolling in the town when everyone

anticipates school quality y and (competitive) price p(y) in the town. This function h is continuous

in y since v is continuous in x and y. If θ > 0, then some types x > 0 enroll in the town if y is

anticipated to be equal to 0, so h(0) > 0 and similarly h(1) < 1. Therefore, there is a fixed point

of h between 0 and 1 and this fixed point corresponds to a School Choice equilibrium. �

Claim 2: If there is a unique School Choice equilibrium, then there is a two-district Neighborhood

School equilibrium where a superset of the partisan types who enroll in the town under school choice

enroll under neighborhood assignment.

Define L2R(x, θ) as the right-side loss function in district 2 when

(a) district 1 consists of types (x, xM (x, θ)) where xM (x, θ) is chosen so that the left-hand loss

function is equal to θ, and

(b) district 2 consists of types (xM (x, θ), xH(x, θ)) where xH(x, θ) is chosen so that the left-hand

side loss function in district 2 is equal to right-hand side loss function in district 1.

Here xM (x, θ) and xH(x, θ) are well defined since C(x, b) is increasing in b for b ≥ x.6

First, suppose that there is a boundary equilibrium where partisan types [0, xSCH < 1] enroll in

the town under school choice, and that this is the unique school choice equilibrium.7 Then the left-

hand loss on [0, xSCH ] is less than θ and the right-hand loss on [0, xSCH ] equals θ. We expect to find a

5Since a change in a increases both the lower limit of the interval and y(a, b), the effect of a change in a on the

left-hand loss function is ambiguous in sign and similarly the effect of a change in b on the right-hand loss function

is ambiguous in sign.
6If the left-hand loss on [x, 1] is less than θ, then x is greater than the lowest partisan type enrolling under school

choice and is not relevant to the analysis. If the left-hand loss on [xM (x, θ), 1] is less than the right-hand loss on

[x, xM (x, θ), then set L2R(x, θ) as the right-hand loss on [xM (x, θ), 1].
7Given the assumptions of symmetric single-peaked distribution and positive third-order mixed partial derivatives

of v, the right side loss for any interval [x, 1] is greater than the left-side loss for that interval, so there cannot be a

boundary equilibrium where types from x to 1 enroll in town t under school choice.
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similar boundary equilibrium under neighborhood equilibrium. To look for this, find the minimum

value of z such that L2R(0, z) = θ, with intervals [0, xM (z, θ)] in district 1 and [xM (z, θ), xH(z, θ)]

in district 2.8 Denote xM and xH as the values of xM (z, θ) and xH(z, θ) corresponding to this

minimum value of z.

If the left-hand loss in district 2 (which equals the right-hand loss in district 1 by construction)

is greater than θ, then (1) the boundary school choice equilibrium with interval [0, xSC ] has right-

hand loss equal to θ and left-hand loss less than θ, and (2) the left-hand loss on [xM , xH ] is greater

than θ and the right-hand loss on this interval is equal to θ. By the Intermediate Value Theorem,

there must be an interval [x1, x2] where xSC < x2 < xH with left-hand and right-hand losses each

equal to θ. Then there is a second school choice equilibrium where types [x1, x2] enroll in the town,

which contradicts the assumption of a unique school choice equilibrium.

If the left-hand loss in district 1 is greater than θ (i.e. z > θ), then there is one interval [0, xSC ]

with left-hand loss less than θ and right-hand loss equal to θ and another interval [0, xH ] with

left-hand loss greater than θ and right-hand loss less than θ, so xSC < xH . If we keep extending

the right-hand limit of the interval, then there must be some point xHH > xH so that the interval

[0, xHH ] has left-hand loss greater than θ and right-hand loss equal to θ. Therefore, there must be

a value m between xH and xHH with left-hand and right-hand losses each equal to θ on [0,m]. But

then this would be a second school choice equilibrium, which is a contradiction.

Therefore, if there is a unique school choice equilibrium and it is a boundary equilibrium where

partisan types on [0, xSC < 1] enroll in the town under school choice, there is also a boundary equi-

librium under neighborhood assignment with [0, xM ] enrolling in district 1 and [xM , xH ] enrolling

in district 2. The right hand loss in the interval [xM , xH ] = θ, so the right-hand loss for the interval

8If there is no such value of z, then there must be intervals [0, a], [a, 1] where the right-hand loss on [0, a] equals

the left-hand loss on [a, 1] and the right-hand loss on [a, 1] is less than θ. Since the right-hand loss is greater than

the left-hand loss on all intervals of form [a, 1], the left-hand loss on [a, 1], which equals the left-hand loss on [0, a],

is less than θ. If the left-hand loss on [0, a] is also less than or equal to θ, then we have identified a neighborhood

equilibrium where all partisan types enroll in the town. Alternately, if the left-hand loss on [0, a] is greater than θ,

then a > xSC since by assumption the left-hand loss on [0, xSC ] is less than θ. Then the left-hand loss on [0, 1] is

larger than the left-hand loss on [0, a] so must be greater than θ and the right-hand loss on [0, 1] is even larger, so

also is greater than θ. We can find a value b between a and 1 so that the right-hand loss on [0, b] is equal to θ. Since

right-hand loss on [0, xSC ] and right-hand loss on [0, b] are each equal to θ, while left-hand loss on [0, xSC ] is less

than θ and left-hand loss on [0, b] is greater than θ, there must be some type d between a and b such that left-hand

loss equals right-hand loss equals θ on [0, d]. This would indicate a second school choice equilibrium with enrollment

of partisan types on [0, d], but this contradicts the assumption of a unique school choice equilibrium.
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[0, xH ] must be greater than θ. If xH < xSC , then there is a value xSC2 < xH < xSC such that

the right-hand loss on the interval [0, xSC2 ] = θ and there is a second boundary equilibrium under

school choice where types from 0 to xSC2 enroll in the town. This is a contradiction.

Next suppose that there is an interior equilibrium under school choice where partisan types on

the interval [xSCL , xSCH ] enroll in the town with 0 < xSCL < xSCH < 1 and that this is the unique

equilibrium under school choice. Then since there is no boundary equilibrium under school choice,

the right-side loss for interval [0, xθ(0)] (where xθ(0) is defined to make the left-side loss on this

interval equal to θ) must be less than θ. Then since the school choice equilibrium is assumed to

be unique, the right-side loss on the interval (x, xθ(x)) must be less than θ for each x < xSCL and

greater than or equal to θ for x ≥ xSCL .

If L2R(0, θ) ≥ θ, then there is a value θ0 ≤ θ such that L2R(x, θ0) = θ, which produces a

candidate neighborhood equilibrium with intervals [xL = 0, xM = xθ(0)] of types enrolling in

district 1 and [xM , xH ] enrolling in district 2. If instead, L2R(0, θ) < θ, then either there is a

value xL > 0 such that L2R(xL, θ) = θ, or L2R(x, θ) < θ for each x. In the first case, where

L2R(xL, θ) = θ, there is a candidate equilibrium with intervals [xL, xM ] and [xM , xH ] enrolling in

the two districts where the left-hand loss in district 1 and the right-hand loss in district 2 are equal

to θ while the left-hand loss in district 2 equals the right-hand loss in district 1 by construction. In

the second case, there is a candidate equilibrium with intervals [xL, xM ] and [xM , 1] enrolling in the

two districts where the left-hand loss in district 1 equals θ, the right-hand loss in district 2 is less

than θ and the left-hand loss in district 2 equals the right-hand loss in district 1 by construction.

Each of these candidate neighborhood equilibria (one for the case where L2R(0, θ) ≥ θ, one for

the case where L2R(x, θ) ≤ θ for each x and a third one for the case where L2R(0, θ) ≤ θ and

there exists xL such that L2R(xL, θ) = θ) is an actual neighborhood equilibrium (with competitive

pricing) if the right-hand loss in district 1, which equals the left-hand loss in district 2, is less than

θ. If instead, the right-hand loss in district 1 is greater than θ in any of these candidate equilibria,

then there must be some value of ∆ such that the left-hand loss equals θ and the right-hand loss

is less than θ on the interval [xM + ∆, xH ]. By the Intermediate Value Theorem, there must be an

interval [a2, b2] with xL < a < xM + ∆ such that left-hand loss and right-hand loss each equal θ, so

that there is a school choice equilibrium with types from a2 to b2 enrolling in the town. But since

the right-hand loss on the interval [x, xθ(0)] is less than θ there must be another interval [a1, b1]

where 0 < a1 < xL where left-hand loss and right-hand loss are each equal to θ, producing another
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school choice equilibrium.9 This is a contradiction, so given the assumption of a unique school

choice equilibrium, the candidate equilibria in each of these three cases is an actual neighborhood

equilibrium.

In the case of a unique interior school choice equilibrium, we have identified a neighborhood

equilibrium where partisan types on [xL, xM ] enroll in district 1, partisan types on the interval

[xM , xH ] enroll in district 2, the left-hand loss in district 1 and the right-hand loss in district 2

equal θ and right-hand loss in district 1 and left-hand loss in district 2 are less than θ. We now

want to show that all types who enroll in the unique interior school choice equilibrium also enroll

in the associated neighborhood equilibrium that we have identified.

Since the left-hand loss on the interval [xL, xM ] is equal to θ, the left-hand loss on [xL, xH ] must

be greater than θ. Since the left-hand loss on the interval [xL, xH ] is greater than θ and the left-

hand loss on the interval [xM , xH ] is less than θ, there must be a type xLM with xL < xLM < xM

such that the left-hand loss on the interval [xLM , xH ] is equal to θ. Since the right-hand loss on

the interval [xM , xH ] equals θ and the right-hand loss and xLM < xM , the right-hand loss on

the interval [xLM , xH ] must be greater than θ. In sum, we have identified intervals [xL, xM ] and

[xLM , xH ] with left-hand loss equal to θ in each interval, right-hand loss less than θ for the first

interval and right-hand loss greater than θ in the second interval. Since xL < xLM , there must be

an interval with starting point between xL and xLM where left-hand loss and right-hand loss are

each equal to θ – this interval must be exactly the range of types enrolling in the school choice

equilibrium, so xL < xSC < xLM < xM , so every type enrolling in the (interior) school choice

equilibrium also enrolls in the neighborhood equilibrium.

9In fact, there at least three school choice equilibria in this case because the left-hand loss is less than the right-hand

loss for any interval [x, 1].
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C Additional Analysis and Examples (Online Appendix)

Example 2 discusses a variant of Example 1 where both partisanship and type are continuously

distributed. Example 3 demonstrates that it is possible to have a unique boundary equilibrium

under school choice. Example 4 shows that it is possible to have a unique interior School Choice

equilibrium (neither of which is true for all values of θ in Example 1). Example 5 shows that

our assumption of increasing differences does not always imply that average utility is higher under

neighborhood assignment.

C.1 Example 2: Continuous Partisanship

Suppose that v(x, y) = xy and that both types and the partisan bonus are drawn from two inde-

pendent continuous distributions. Furthermore, suppose that type x is distributed U(0, 1) as in

Example 1.

School Choice Equilibrium: There is a school choice equilibrium where a partisan with bonus

θj enrolls in the town if 1
2 −

√
2θj ≤ xj ≤ 1

2 +
√

2θj . Each decision rule is symmetric about 1
2 , so

with x distributed uniformly on (0, 1), the school quality is 1/2 and the equilibrium price is 1/8,

just as in Example 1.

Neighborhood School Equilibrium: There is also a neighborhood equilibrium with two districts

and equilibrium school qualities y1 = 1
4 and y2 = 3

4 . Here a partisan with bonus θj enrolls in

the town if 1
2 −

√
2θj ≤ xj ≤ 1

2 +
√

2θj . Each decision rule is symmetric about 1
2 , so with x

distributed uniformly on (0, 1), the school quality is still 1/2 and the equilibrium price is 1/8, just

as in Example 1.

In this extended example, as in Example 1, for each partisan bonus, a wider range of type x’s

choose the town under neighborhood assignment than under school choice. One difference here,

however, is that for the smallest values of θj , the set of type x’s enrolling under neighborhood

assignment does not necessarily subsume the set of types x’s enrolling under school choice, as the

neighborhood ranges may be near 1
4 and 3

4 while the school choice range is near to 1
2 .

A special feature of this case is that partial derivatives of the value function are the same

everywhere. So it is also possible to construct equilibrium, which moves the center of the school

choice interval. For instance, if range is [0.4, 0.6] for SC, there will be any SC equilibrium with

length 0.5. However, given a SC interval, we can construct a Neighborhood equilibrium with middle

of SC interval and have that more people stay in the town under the Neighborhood equilibrium
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than under a School Choice equilibrium, consistent with Theorem 1.

C.2 Example 3: Unique Boundary Equilibrium under School Choice

Suppose that the distribution of types is U(0, 1) as in Example 1 and that v(x, y) = xy2. Now

∂2v
∂x∂y = 2y, which is constant in x and strictly increasing in y. With a Uniform distribution of

types, the school quality for any interval of types [a, b] is exactly in the middle of the range of types

at a+b
2 . Further, since ∂3v

∂x2∂y
= 0 and ∂3v

∂x∂y2
> 0, if types in a range [a, b] enroll in a school, the

right-hand loss function at type b is greater than the left-hand loss function at type a. Thus, any

school choice equilibrium is a boundary equilibrium where types from x = 0 to x = xSC enroll in

the town, with school quality ySC = xSC/2 and price pSC = p(ySC) = (2/3)y3
SC = x3

SC/16.

In equilibrium, type xSC must be exactly indifferent between enrolling in the town and taking

the outside option. That is xSC(xSC/2))2−p(ySC)+θ = π(xSC), or x3
SC/4−(2/3)(x3

SC)(1/8)+θ =

(1/3)(x3
SC) or θ = x3

SC(1/3+1/12−1/4) = x3
SC/6. Solving for xSC as a function of θ, xSC = (6θ)1/3

identifies a unique school choice equilibrium for this case where types on [0, xSC ] enroll in the town.

For example, with θ = 1
48 , xSC = 1

2 , so types [0, 1/2] enroll in the town with ySC = 1/4 and

pSC = p(ySC) = (2/3)(1/4)3 = 1/96.

For similar reasons, we anticipate a boundary equilibrium with neighborhood assignment where

types [xL = 0, xM ] enroll in district 1 and types [xM , xH ] enroll in district 2 in the town. Since

the left-hand loss is greater than the right-hand loss in each district (and the price in each district

should equal the competitive price), the equilibrium conditions are that (1) the right-hand loss in

district 2 equals θ; (2) the left-hand loss in district 2 equals the right-hand loss in district 1; (3) the

left endpoint in district 1 is equal to 0. These equilibrium conditions yield polynomial equations

that are not easily solvable in closed form, so instead we used numerical methods to approximate

the equilibrium with θ = 1/48: xM ≈ 0.471 and xH ≈ 0.8158. Thus with θ = 1/2, types from 0 to

1/2 enroll in the town under school choice, while types from 0 to about 0.8158 enroll in equilibrium

with a neighborhood assignment rule. Consistent with Proposition 3, any type enrolling under

school choice will also enroll in equilibrium under a neighborhood assignment rule.

C.3 Example 4: Unique Interior Equilibrium under School Choice

Suppose that v(x) = xy as in Example 1, but that the distribution of types is triangular on

(0, 1) : f(x) = 4x if x ≤ 1/2 and f(x) = 4(1 − x) if x ≥ 1/2. With this distribution function,
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the expected value of types on an interval [a, b] is greater than a+b
2 if b < 1 − a. This rules out

the possibility of a boundary equilibrium (which would require a lower loss at the boundary rather

than the other end of the interval of types enrolling in the town) under school choice. An interior

equilibrium requires the school quality to be exactly equal to a+b
2 , which is only possible if the

interval of types is symmetric about 1/2 : [1/2 −∆, 1/2 + ∆], with school quality ySC = 1/2 and

pSC = p(1/2) = 1/8. In equilibrium, type 1/2−∆ must be indifferent between enrolling in the town

and taking the outside option: (1/2−∆)(1/2)−1/8+θ = (1/2−∆)2/2, with solution ∆ = (2θ)1/2.

For example, with θ = 0.02, 2θ1/2 = 0.2, so partisan types in the range [0.3, 0.7] enroll in the unique

school choice equilibrium with ySC = 1/2 and pSC = p(1/2) = 1/8.

By the same logic, there is also an interior equilibrium with neighborhood assignment whenever

θ < θN in this example, again with x = 1/2 as the midpoint of enrollment in the town. With two

districts and neighborhood assignment, a symmetric equilibrium has types in the range [1/2−∆, 1/2]

enroll in district 1 and types in the range [1/2, 1/2 + ∆] enroll in district 2. With a triangular

distribution, the expected value of types on the range [a, b] with a < b ≤ 1/2 is 2(b3−a3)
3(b2−a2)

. Using this

formula with a = 1/2 −∆ and b = 1/2, we find y1 = 3−6∆+4∆2

6−6∆ . Type x = 1/2 −∆ is indifferent

between enrolling in district 1 in the town and taking the outside option if (1/2−∆)y1−2y2
1/2+θ =

(1/2 − ∆)2/2. Substituting y1 = 3−6∆+4∆2

6−6∆ and θ = 0.02, this indifference condition produces a

quartic equation in ∆ : 8∆4−24∆3 +15.12∆2 +5.76∆−2.88 = 0. Only one of the four roots of this

equation, partisan types from [0.158872, 1/2] enroll in district 1 while partisan types in the range

[0.5, 0.841128] enroll in district 2 in the town with y1 ≈ 0.358872 and y2 ≈ 0.641128. Once again,

any type enrolling in the school choice equilibrium also enrolls in this neighborhood assignment

equilibrium.

C.4 Example 5: Aggregate Welfare Can be Higher Under School Choice

Suppose that there are three types x = 0, 1
2 , and 1 with associated probabilities 1

4 , 1
2 , and 1

4 that

v(x, y) = xy, and that θ = 1/32.

In a Neighborhood School equilibrium with two equal sized districts, low types enroll in district

1, high types enroll in district 2 and middle types divide equally between the two districts. Then,

as in Example 1, y1 = 1
4 , y2 = 3

4 , p1 = 1/32 and p2 = 9/32. Further, the value of θ is exactly

high enough so that each type is indifferent between enrolling in the town and choosing the outside

option. (We assume that all types break ties by remaining in the town.)
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With a school choice rule, the value of θ is not high enough for all types to enroll in the town.

But there is an equilibrium where high and low types choose the outside option, while middle types

enroll in the town with ySC = 1
2 and pSC = 1/8. Thus, high and low types are indifferent between

the two assignment rules, as they get utility equal to the value of the outside option in each case.

However, middle types strictly prefer the School Choice equilibrium.

C.5 Unequal Size Districts

C.5.1 Computing θN when m < 1

Proposition 4 When m < 1, D = 2, Md1 = Md2 = 1
2 , then if θ is sufficiently large, there is

an equilibrium where partisan types [0, x∗] enroll in district 1 and partisan types [x∗, 1] enroll in

district 2 for some x∗ between 0 and 1.

Proof. Consider a possible assignment of partisan types from 0 to a to district 1 and of types from a

to 1 to district 2 with associated school qualities y1(a) = E(x|0 ≤ x ≤ a) and y2(a) = E(x|a ≤ x ≤

1), ignoring for the moment whether this assignment is feasible given the measure of houses in each

district. Define γ(a) = [v(a, y1(a)) − p(y1(a))] − [v(a, y2(a)) − p(y2(a))] to be the relative gain for

the boundary type to choose district 1 rather than district 2 at competitive prices in each district.

In terms of the cost function, γ(a) = C(a, y2(a))−C(a, y1(a)), so γ(0) = C(0, 1
2)−C(0, 0) > 0 and

γ(1) = C(1, 1)−C(1, 1
2) < 0. Since C is continuous in each argument, γ is continuous and so there

exists some value a∗ such that γ(a∗) = 0.

By construction, if m ≤ 1
2 and θ is sufficiently large, there is an equilibrium where partisan types

[0, a∗] enroll in district 1, partisan types [a∗, 1] enroll in district 2 and the prices are competitive:

p(y1(a∗)) and p(y2(a∗)) respectively. Since γ(a∗) = 0, the boundary type at a∗ is indifferent between

enrolling in districts 1 and 2 under these conditions. Further, since m ≤ 1
2 , the measure of partisan

types enrolling in each district is less than the assumed capacity (measure 1
2) of houses in each

district. Thus, the allocation is feasible and the remaining houses in each district will be occupied

by non-partisans since the equilibrium price is competitive in each district.

If m > 1
2 , define xB1 = F−1( 1

2m) and xB2 = F−1(1 − 1
2m). For 1

2 < m < 1, 1
2 < 1

2m < 1,

so 1
2m > 1 − 1

2m and thus xB1 > xB2. These values are chosen so that when Md1 = Md2 = 1
2 , a

division of partisan types {[0, xB1], [xB1, 1]} to the two districts fills district 1 with partisan types

while a division of partisan types {[0, xB2], [xB2, 1]} fill district 2 with partisan types. That is, the

measures of partisan types in [0, xB1] and in [xB2, 1] are each equal to 1
2 .
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Case 1: If γ(xB2) ≤ 0, then if θ is sufficiently large there is an equilibrium with partisan types

in [0, xB2] choosing district 1 and partisan types in [xB2, 1] choosing district 2. In this equilibrium,

district 2 includes only partisan types and the equilibrium price in that district may be greater than

the competitive price given school quality y2(xB2) while by contrast, district 1 enrolls both partisan

and non-partisan types at equilibrium price equal to competitive price given school quality y1(xB1).

(Note that since γ(xB2 ≤ 0), partisan boundary types prefer district 2 to district 1 at competitive

prices, so the equilibrium price is competitive in district 1 while the equilibrium price in district 2

may be higher than the competitive price to sustain the boundary indifference condition.)

Case 2: If γ(xB1) ≥ 0, then if θ is sufficiently large there is an equilibrium with partisan types

in [0, xB1] choosing district 1 and partisan types in [xB1, 1] choosing district 2. In this equilibrium,

district 1 includes only partisan types and the equilibrium price in that district may be greater

than the competitive price given school quality y1(xB1), while district 2 enrolls both partisan and

non-partisan types at equilibrium price equal to competitive price given school quality y2(xB2).

(Note that since γ(xB1 ≥ 0), partisan boundary types prefer district 1 to district 2 at competitive

prices, so the equilibrium price is competitive in district 2 while the equilibrium price in district 1

may be higher than the competitive price to sustain the boundary indifference condition.)

Case 3: If γ(xB2) > 0 and γ(xB1 < 0), there is a value a∗ between xB2 and xB1 where γ(a∗) = 0.

In this case, if θ is sufficiently large there is an equilibrium where partisan types [0, a∗] enroll in

district 1, partisan types [a∗, 1] enroll in district 2 and the prices are competitive: p(y1(a∗)) and

p(y2(a∗)) respectively, analogous to the case where m ≤ 1
2 as discussed above. By construction,

since a∗ is between xB2 and xB1, the measure of partisans enrolling in each district is less than 1
2

with non-partisans occupying houses in each district since the equilibrium prices are competitive

in each district.

Example 2 Suppose that the distribution of types is uniform f(x) = 1 for 0 ≤ x ≤ 1 and that

v(x, y) = x2y2.

With a uniform distribution of types, y1(a) = a
2 and y2(a) = a+1

2 . The equilibrium price function

is given by p(y) = y4/2. (The general form for the equilibrium price function if v(x, y) = xαyβ

is p(y) = β
α+β y

α+β). The boundary indifference condition for type a at competitive prices is

v(a, y1(a)) − p(y1(a)) = v(a, y2(a)) − p(y2(a)), or a2(a2 )2 − a4/2 = a2(1+a
2 )2 − (1+a

2 )4/2. The left-

hand side of this equation simplifies to 7a4

32 , while the right-hand side is 7a4+12a3+2a2−4a−1
32 . Setting

these equal gives the cubic equation 12a3+2a2−4a−1 = 0, which factors to (2a+1)(6a2−2a−1) = 0.
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Solving the quadratic equation 6a2−2a−1 = 0 gives the relevant solution a∗ = 1+
√

7
6 , approximately

equal to a∗ = 0.608. Since there is a single value of a in [0, 1] that satisfies the boundary indifference

condition, γ(a) > 0 for a < a∗ and γ(a) < 0 for a > a∗.

There is an equilibrium with partisan types [0, a∗] in district 1 and [a∗, 1] in district 2 and

competitive prices in each district so long as each district has a sufficient number of houses to

accommodate these partisans (and θ is sufficiently large, as discussed in more detail below). If

each district includes measure 1
2 of houses, then there are enough houses in each district for these

partisans if m1+
√

7
6 ≤ 12 or m ≤ 3

1+
√

7
, which is equivalent to m ≤

√
7−1
2 . So, if 0 ≤ m ≤

√
7−1
2

(approximately 0.823), there is an equilibrium with boundary indifference at competitive prices

with partisan types [0, a∗] choosing district 1, partisan types [a∗, 1] choosing district 2, and non-

partisan types occupying the remaining houses in each district. To sustain this equilibrium, θ must

be sufficiently large so that partisan types 0, a∗, 1 prefer to locate in the town than to take the

outside option, or θ ≥ max[C(0, y1(a∗)), C(a∗, y1(a∗)), C(1, y2(a∗))].

If
√

7−1
2 ≤ m ≤ 1, there are not enough houses in district 1 to accommodate all partisan types

in the range 0 ≤ x ≤ a∗. In this case (once again, assuming that θ is sufficiently large), there

is an equilibrium with no non-partisan types in district 1. In this equilibrium, partisan types

[0, 1
2m ] choose district 1 and remaining partisan types [ 1

2m , 1] choose district 2. By construction,

1
2m < a∗ for m ≥

√
7−1
2 , so γ( 1

2m) > 0. At competitive prices in the two districts, a boundary type

prefers district 1 to district 2, so the boundary indifference condition requires a competitive price

in district 2 and a larger than competitive price in district 1. Thus, in equilibrium, non-partisans

fill the remaining houses in district 2; non-partisans are not willing to locate in district 1 under

these conditions, which is consistent with equilibrium because partisan types occupy all the houses

in district 1. To sustain this equilibrium, θ must be sufficiently large so that partisan types 0, a∗, 1

prefer to locate in the town than to take the outside option.

Equilibrium with Different Measures of Houses in Each District

Our analysis of the example illustrates a generalized method for finding equilibria with any

distribution of houses across the two districts. First, find a∗.10 If there are enough houses for

district 1 to accommodate the partisan types in [0, a∗] and for district 2 to accommodate the

partisan types in [a∗, 1], then there is an equilibrium with precisely this assignment of houses and

10The discussion in the text assumes a unique solution a∗ to γ(a) = 0. If there are multiple solutions to γ(a) = 0,

the analysis may be slightly more complicated, but the general approach described in the text should still identify

an equilibrium.
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competitive prices in each district. Otherwise, if there are not enough houses in district 1 to

accommodate all partisan types in [0, a∗], then there should be an equilibrium where partisan types

in [0, xB1] enroll in district 1 and non-partisans only enroll in district 2. Similarly, if there are not

enough houses in district 2 to accommodate all partisan types in [a∗, 1], then there should be an

equilibrium where partisan types in [xB2, 1] enroll in district 2 and non-partisans only enroll in

district 1.

C.5.2 Extending the Main Result

We now compare θN and θSC in cases where there are not necessarily an equal measure of partisans

in the districts, once again focusing on the case of D = 2, which requires greatest difference on

average between actual and ideal school quality at competitive prices for partisans. We assume

Strong Assortative Matching with positive third-order mixed partials of v. We define θa as the

value of θ (as a function of a) required to sustain a neighborhood equilibrium where partisan types

[0, a] enroll in district 1 and partisan types [a, 1] enroll in district 2.

Proposition 5 With two districts, θa < θSC if a ≤ 1
3 or a ≥ 2

3

The proof relies on two lemmas.

Lemma 4 The school qualities satisfy y1 ≥ a
2 and y2 ≤ 1+a

2 .

We show the result for y2, as the mirror-image argument demonstrates the result for y1. If

a ≥ 1
2 , then since f is symmetric and single-peaked, f is declining on [a, 1] with the immediate

implication that E(x|a ≤ x ≤ 1) ≤ 1+a
2 .

If a < 1
2 , school quality y2 is a weighted average of E(x|a ≤ x ≤ 1− a) and E(x|1− a ≤ x ≤ 1),

where E(x|a ≤ x ≤ 1 − a) = 1
2 since f is symmetric about x = 1

2 and E(x|1 − a ≤ x ≤ 1) ≤

1 − a
2 since f is single-peaked. Specifically, y2 = [F (1−a)−F (a)]E(x|a≤x≤1−a)+[1−F (1−a)]E(x|1−a≤x≤1)

1−F (a) ,

or y2 = [F (1−a)−F (a)]/2+[1−F (1−a)]E(x|1−a≤x≤1)
1−F (a) since E(x|a ≤ x ≤ 1 − a) = 1

2 . Further, since f is

single-peaked and symmetric about x = 1
2 , F (1 − a) − F (a) ≥ 2a − 1 and F (1 − a) ≥ 1 − a for

a ≤ 1
2 , so 1− F (a) ≤ a. Thus y2 ≤ [(1− 2a)1

2 + a(1− a
2 )]/[1− 2a+ a] = 1−a2

2 /(1− a) = 1+a
2 .

Lemma 5 The incentive conditions for types x = 0 and x = 1 to enroll in the town in a two-district

neighborhood equilibrium are sufficient to ensure the incentive condition for type x = a.
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By Lemma 4, y2 ≤ 1+a
2 . Thus 1 − y2 ≥ y2 − m and so given Strong Assortative Matching,

C(1, y2) ≥ C(a, y2). That is, the incentive condition for type x = 1 to choose district 2 at a

competitive price rather than the outside option guarantees the incentive condition for type x = a

to do so. If the price in district 2 is above the competitive price with p2 = p(y2)+∆, then the costs

for types x = 1 and x = m to choose district 2 rather than the outside option are each increased

by ∆ to C(1, y2) + ∆ and C(a, y2) + ∆. In this case, once again, the incentive condition for type

x = 1 ensures the incentive condition for type x = a to choose district 2 rather than the outside

option. In addition, the boundary indifference condition requires type x = a to be indifferent

between choosing district 1 and district 2 in the town in equilibrium. By transitivity, the incentive

condition for type x = 1 to choose district 2 also ensures the incentive condition for type x = m to

choose district 1 rather than the outside option.

Corollary 4 θN > θSC is only possible if partisan type x = 1 pays a price above the competitive

price for school quality y2 in district 2 or if partisan type x = 0 pays a price above the competitive

price for school quality y1 in district 1.

Lemma 5 indicates that with D = 2, θN = max[C(0, y1) + p1 − p(y1), C(1, y2) + p2 − p(y2)],

whereas θSC = max{C(0, 1
2), C(1, 1

2)} = C(1, 1
2) given Strong Assortative Matching with positive

third-order mixed partials of v. With a positive measure of partisans in each district, y1 <
1
2 and

y2 <
1
2 , so θN > θSC is only possible if θN is determined by the incentive conditions in a district

with price strictly greater than the competitive price for its school quality.

Proof of Proposition 5:

As suggested by Corollary 4, we consider the two cases p2 > p(y2) and p1 > p(y1), where one

of the two prices is given by the competitive price for the school quality associated with the given

district and the other is above that competitive price because of the boundary indifference condition.

That is, p2 > p(y2) if v(a, y2)−p(y2) > v(a, y1)−p(y1), so p2 = max{p(y2), p(y1)+v(a, y2)−v(a, y1)}

and similarly p1 = max{p(y1), p(y2)− v(a, y2) + v(a, y1)}.

Case 1: p2 = p(y1) + v(a, y2)− v(a, y2)

We first consider the possibility that θN > θSC because partisan type 1 prefers the school

choice equilibrium to enrolling in district 2 with D = 2. Since this is only possible if p2 > p(y2),

we assume that p2 = p(y1) + v(a, y2) − v(a, y2). Our analysis below includes instances where

p(y1) + v(a, y2) − v(a, y2) < p(y2) and so our computations sometimes involve a sub-competitive

price in district 2, but in such cases p2 = p(y2) and so partisan types choosing district 2 prefer the
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proposed neighborhood equilibrium to the school choice equilibrium with ySC = 1
2 . Similarly, our

computations for this case assume that θN is determined by the incentives for partisan type x = 1

to enroll in district 2 when in fact it is determined by the incentives for partisan type x = 0 to

enroll in district 1 as covered in Case 2 below.

When p2 = p(y1) + v(a, y2) − v(a, y1), θN = v(1, 1) − p(1) + p2 − v(1, y2). So when pH =

p(y1) + v(a, y2)− v(a, y1), θ2 = v(1, 1)− v(1, y2)− p(1) + p(y1) + v(a, y2)− v(a, y1).

In integral form,

θN =

∫ 1

y2

∂v

∂y
(1, z), dz −

∫ 1

y1

∂v

∂y
(z, z)dz −

∫ y2

y1

∂v

∂y
(m, z)dz.

Combining these integrals gives

θN =

∫ 1

y2

[
∂v

∂y
(1, z)− ∂v

∂y
(z, z)]dz −

∫ y2

a
[
∂v

∂y
(z, z)− ∂v

∂y
(a, z)]dz +

∫ a

y1

[
∂v

∂y
(a, z)− ∂v

∂y
(z, z)]dz.

In double-integral form,

θN =

∫ 1

y2

∫ 1

z

∂2v

∂x∂y
(w, z)]dwdz −

∫ y2

a

∫ z

a

∂2v

∂x∂y
(w, z)dwdz +

∫ a

y1

∫ a

z

∂2v

∂x∂y
(w, z)dwdz.

By contrast,

θSC =

∫ 1

1/2

∫ 1

z

∂2v

∂x∂y
(w, z)]dwdz.

Comparing these double integrals for θSC and θN , the positive integrands that are unique to

θSC occur at lower values of (x, y) than those for θN . Therefore, θN can only be larger than θSC

if the double integral covers a larger proportion of the plane with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, so it

suffices to consider the case v(x, y) = xy and ∂2v
∂x∂y = 1.

With v(x, y) = xy, p(y) = y2

2 , as in Example 1. If the boundary indifference condition deter-

mines the price in district 2, p2 = p(y1) + v(a, y2)− v(a, y1) =
y21
2 + a(y2− y1). Then θN is given by

v(1, y2)− p2 + θN = v(1, 1)− p(1) or θN = v(1, 1)− v(1, y2)− [p(1)− p2]. With v(x, y) = xy, then

θN = (1− y2)− [1
2 −

y21
2 − a(y2− y1)] = 1

2 − y2 +
y21
2 + a(y2− y1), which is decreasing in both y1 and

y2 since y1 ≤ a.

Case 1a: a ≥ 2
3

When a ≥ 2
3 , the constraint y1 ≥ a

2 from Lemma 4 is sufficient to ensure θN ≤ θSC . In this

case, since the projected value for θN is decreasing in y1 and y2, we know that θN is greatest at the

extreme values y2 = 2
3 and y1 = a

2 = 1
3 . With these values, θN = 1

2 −
2
3 + 1

18 + 2
3

1
3 = 1

9 < θSC = 1
8 .

Case 1b: 0 ≤ a ≤ 1
3
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In this case, we begin with the initial restrictions y2 ≥ 1
2 and y1 ≥ a

2 . Substituting these values

into θN = (1 − y2) − [1
2 −

y21
2 − a(y2 − y1)] gives θN = a

2 −
3a2

8 , which is increasing for a ≤ 2
3 and

equal to 1
8 at a = 1

3 . This result is comparable to the result from Case 1a: if a ≤ 1
3 , then θN ≤ θSC .

Case 2: p1 = p(y2)− v(a, y2) + v(a, y1)

We can apply the same series of steps for the alternative possibility of a larger than competitive

price in district 1. In this case, p1 = p(y2) − v(a, y2) + v(a, y1) =
∫ y2

0
∂v
∂y (z, z)dz −

∫ y2
y1

∂v
∂y (a, z, )dz.

Then θN corresponds to v(0, y1)−p1+θN = v(0, 0)−p(0) or θN = p1−v(0, y1) given the normalizing

assumptions v(0, 0) = p(0) = 0.

Using the definition of p1, θN =
∫ y2

0
∂v
∂y (z, z)dz −

∫ y2
y1

∂v
∂y (a, z)dz −

∫ y1
0

∂v
∂y (0, z)dz, or

θN =

∫ y1

0
[
∂v

∂y
(z, z)− ∂v

∂y
(0, z)]dz −

∫ a

y1

[
∂v

∂y
(a, z)− ∂v

∂y
(z, z)]dz +

∫ y2

a
[
∂v

∂y
(z, z)− ∂v

∂y
(a, z)]dz.

In double-integral form,

θN =

∫ y1

0

∫ z

0

∂2v

∂x∂y
(w, z)dwdz −

∫ a

y1

∫ a

z

∂2v

∂x∂y
(w, z)dwdz +

∫ y2

a

∫ z

a

∂2v

∂x∂y
(w, z)dwdz.

Whereas θSC is given by the double integral of the mixed-partial derivative of v on the region with

y ≥ a, x ≥ y, the last term in this equation for θN includes the double integral of the mixed partial

derivative of v on the region with a ≤ y ≤ y2, x ≤ y. None of the terms in these two integrals

overlap. We can still carry out a comparison of the integrals because Lemma 4 indicates that

y2 ≤ a+1
2 since f is assumed to be single-peaked and symmetric about 1

2 . The upper-right portion

of the double integral for θSC on the region y2 ≤ y ≤ 1, x ≥ y covers a triangle with area (1−y2)2

2 .

The farther-right portion of the double integral for θN (given that p1 is above the competitive price

for the school quality y1) covers a triangle with area (y2−a)2/2
2 . Since y2 ≤ a+1

2 , the upper right

section of the double integral for θSC covers a greater area than the farthest-right section of the

double integral for θN and lies strictly to the right and above the farthest-right section of the double

integral for θN . So, as in Case 1, it suffices once again to consider v(x, y) = xy where the mixed

partial derivative is equal to 1.

Case 2a and 2b:

With v(x, y) = xy, Case 2 provides a mirror image to Case 1, whereby the result in Case 1a

that θSC > θN if a ≥ 2
3 (for computations based on p2) carries over to show that θSC > θN if

a ≤ 1
3 (for computations based on p1). Similarly the result in Case 1b that θSC > θN if a ≤ 1

3 (for

computations based on p2) carries over to show that θSC > θN if a ≥ 2
3 (for computations based

on p1).
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Proposition 5 limits the range of possibilities for which θN > θSC . We now show that it is

possible to identify conditions that yield θN > θSC for values of a closer to 1
2 but also that these

conditions are highly artificial.

Proposition 6 θN > θSC is possible with partisan types [0, a] enrolling in district 1 and partisan

types enrolling in district 2 and price p2 > p(y2) if 1
3 < a < 1

2 and F (m) < 3a−1
3−a .

We first consider the possibility that p2 > p(y2), following the methods from the proof of

Proposition 4. For consistency with the discussion above, we label the subcases with p2 > p(y2)

and 1
3 ≤ a ≤ 1

2 as Cases 1c (1
2 ≤ a ≤ 2

3) and Cases 1d (1
3 ≤ a ≤ 1

2). As in Cases 1a and 1b, our

analysis of Cases 1c and 1d includes instances where p(y1) + v(a, y2)− v(a, y1) < p(y2) and so our

computations sometimes involve a sub-competitive price in district 2 but in these cases p2 = p(y2)

and so partisan types choosing district 2 prefer the proposed neighborhood equilibrium to the school

choice equilibrium with ySC = 1
2 .

Case 1c: 1
2 ≤ a ≤

2
3

In this case, the expected value formula F (a)y1 + (1 − F (a))y2 = 1
2 is a stronger restriction

on y1 than y1 ≥ a
2 . Denoting y2 = 1

2 + ∆ and solving the expected value formula for y1 gives

y1 = 1
2 −∆1−F (a)

F (a) ≥
1
2(1−∆), i.e. y1 ≥ 1− y2 if a ≥ 1

2 (since a ≥ 1
2 implies F (a) ≥ 1

2 and in turn

1−F (a)
F (a) ≤ 1).

So with 1
2 ≤ a ≤ 2

3 , we can substitute y1 ≥ 1 − y2 in the expression for θN to conclude that

θN ≤ (1−y2)−[1
2−

1−y22
2 −a(2y2−1)]. The right-hand side of this inequality is (still) decreasing in y2

since y2 ≥ a, so it takes its maximum value in y2 at y2 = a for each a. At y2 = a, y1 = 1−y1 = 1−a,

we have θN = 1− 3a+ 5a
2

2 , which is a convex function in a so it takes a maximum value at either

extreme of the range 1
2 ≤ a ≤ 2

3 . At a = 1
2 , this formula yields θN = 1 − 3

2 + 5
8 = 1

8 ; at a = 2
3 , it

yields θN = 1− 2 + 5 4
18 = 1

9 (the same result as for a = 2
3) in Case 1a. These values are both less

than or equal to θSC = 1
8 .

Case 1d: 1
3 ≤ a ≤

1
2

Once again, we apply the expected value equation F (a)y1 + [1− F (a)]y2 = 1
2 or y2 = 1−aF (a)

2[1−F (a)] .

Thus,

θN =
1

2
− y2 +

y2
1

2
+ a(y2 − y1) =

1

2
− 1− 2F (a)y1

1− F (a)
+
y2

1

2
+ a(

1− 2y1

2[1− F (a)]
).

(Note that y2 − y1 = 1−2F (a)y1−2y1+2F (a)y1
2[1−F (a)] = 1−2y1

(2[1−F (a))] .)
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Since θN is a convex function of y1, it takes a maximum at an extreme value of y1. For fixed

a ≤ 1
2 , y1 is bounded below by a

2 and above by a. Therefore, as a function of a ≤ 1
2 , θN takes a

maximum value either at x1 = a
2 or at x1 = a.

Case 1d1: 1
3 ≤ a ≤

1
2 and y1 = a

In this case,

θN =
1

2
− y2 +

y2
1

2
+ a(y2 − y1) =

1

2
− 1− 2y1F (a)

2[1− F (a)]
+
a2

2
+

1− 2y1F (a)

2[1− F (a)]
− a.

Simplifying this expression gives

θN =
a+ a2F (a)− a2 − F (a) + 2a(1− a)F (a)

2[1− F (a)]
.

We are interested in θN ≥ θSC = 1
8 , or a + a2F (a) − a2 − F (a) + 2a(1 − a)F (a) ≥ 1−F (a)

4 .

Reorganizing the inequality to solve for F (a) gives F (m)(−3 + 8a − 4a2) ≥ 1 − 4a + 4a2. Since

−3 + 8a− 4a2 = (3− 2a)(2a− 1), the coefficient for F (a) on the left-hand side of the inequality is

negative for a < 1
2 and equal to 0 for a = 1

2 . Further, 1− 4a + 4a2 = (2a− 1)2, so the right-hand

side of the inequality is positive for a < 1
2 . Therefore, the inequality fails for a ≤ 1

2 and θN < θSC

when a < 1
2 and the boundary indifference condition yields competitive price in district 1 and a

larger than competitive price in district 2. The boundary case a = 1
2 , y1 = 1

2 corresponds to the

degenerate case where the distribution of types consists only of a point mass at x = 1
2 .

Case 1d2: 1
3 < a < 1

2 and y1 = a
2

At x1 = a
2 ,

θN =
1

2
− 1− aF (a

2[1− F (a)]
+
a2

8
+

a

2[1− F (a)]
− a2

2[1− F (a)]
.

Regrouping terms over a common denominator,

θN =
a− a2 + aF (a)− F (a)

2[1− F (a)]
+
a2

8
=

4a− 3a2 + 4aF (a)− 4F (a)− a2F (a)

8[1− F (a)]
.

We are interested in comparing θN to θSC = 1
8 , where θN > 1

8 is equivalent to

4a− 3a2 + 4aF (a)− 4F (a)− a2F (a) > 1− F (a).

Reorganizing and solving for F (a) gives F (a) < 3a2−4a+1
4a−3−a2 , which is equivalent to F (a) < 3a−1

3−a ,

where 3a−1
3−a is strictly increasing for 1

3 < a < 1
2 . The boundary cases are F (1

3) < 0 and F (1
2) < 0.2.

In sum, Case 1d2 with 1
3 < a < 1

2 and y1 = a
2 is the only one where θN > θSC is possible with

p2 > p(y2). In each case where F (a) < 3a−1
3−a and y1 = E(x|x ≤ a) = a

2 (i.e. where x is uniformly
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distributed on [0, a] with f(a) = F (a)
a on this range), there is an equilibrium with v(x, y) = xy

and measures of houses, Md2 = M(1 − F (m)),Md1 = 1 −Md2 where partisan types [0, a] enroll

in district 1, partisan types [a, 1] enrolling in district 2 and θN > θSC . Since p2 > p(y2), district

2 consists solely of partisan types while district 1 includes both partisan types and non-partisans.

This same constructive method also identifies additional equilibria with 1
3 < a < 1

2 , y1 >
m
2 and

θN > θSC , though with tighter restrictions on F (a) than F (a) < 3a−1
3−a .

Corollary 5 θN > θSC is possible with partisan types [0, a] enrolling in district 1 and partisan

types enrolling in district 2 and price p1 > p(y1) if 1
2 < a < 2

3 and F (a) < 2−3a
2+a .

The corollary follows applying the analysis of Proposition 6 with p1 > p(y1), which produces

the mirror image result, with θN > θSC under analogous conditions with 1
2 < a < 2

3 . The constraint

F (m) < 2−3a
2+a with 1

2 < a < 2
3 is the same constraint as in Proposition 6 after replacing a with 1−a

in the constraint for F (a).

�

Discussion:

The cases where θN > θSC result from divisions of partisan types in a neighborhood equilibrium

that resemble the school choice outcome, with almost all partisan types choosing to locate in a single

district with school quality close to ySC = 1
2 . The requirement F (a) ≤ 3a−1

3−a yields a continuous

and increasing constraint over the range a ∈ [1
3 ,

1
2 ] with boundary cases F (1

3) ≤ 0 and F (1
2) ≤ 1

2 .

Example: Consider the value a = 0.45 where 3a−1
3−a = 7

51 ≈ 0.137. With F (0.45) = 0.1 (an

arbitrary value chosen to satisfy F (0.45) < 7
51), y1 = m

2 corresponds to y1 = 0.225, y2 ≈ 0.531

and θN ≈ 0.132 > θSC = 0.125.11 This value of θN results from an allocation of houses that can

accommodate 90% of partisans in district 2 (i.e. Md2 ≥ 0.9m) and requires an imbalance of houses

between the two districts if m is greater than 5
9 .

In addition, distribution f must have two contrary features to support θN > θSC . First, the

distribution must be relatively tight around a = 1
2 to satisfy the restriction F (a) ≤ 2−3a

2+a . Second,

the distribution must be relatively flat from x = 0 to x = a so that y1 = E(x|x ≤ a) is close

to the minimum possible value a
2 identified by Lemma 4. These properties are broadly in conflict

with each other because most distributions that are concentrated around a central value tend to

fall off quite quickly with distance from that central point. For instance, a Normal distribution

11By symmetry, the mirror image case with 90% of partisan types (those with x ∈ [0, 0.55]) in district 2, y1 ≈ 0.469

and y2 = 0.775 also produces θN ≈ 0.132.
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with mean 1
2 has F (0.45) = 0.1 if its standard deviation is approximately 0.039, in which case the

proposed school quality y1 = 0.225 is a full seven standard deviations below the mean. In fact,

y1 = E(a|a ≤ 0.45) ≈ 0.432 for a Normal distribution with mean 0.5 and standard deviation 0.039,

but θN ≈ 0.121 < θSC for a = 0.45, F (0.45) = 0.1 and y1 = 0.432. (With a = 0.45, F (a) = 0.1,

y1 ≤ 0.278 is the approximate requirement for θN > θSC .) That is, even when the distribution of

types is quite tight around x = 1
2 , and most of the partisan types choose to locate in one of two

districts under neighborhood assignment, allowing for a distribution with reasonable shape on [0, a]

eliminates the possibility that θN > θSC .
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D Two-Town Model (Online Appendix)

D.1 Setup

We now alter the analysis to consider a general equilibrium version of the model with two towns,

A and B. We also assume that an equal number of partisans are attached to each town, there

are no non-partisans, and that each family must choose a house in either town A or town B. In

the two-town model, outside options are determined endogenously in equilibrium in contrast to

Assumption 2 in the main text.

As before, we assume that the utility function for each family is given by

u(xi, yj , pj) = θij + v(xi, yj)− pj ,

where θij = θ > 0 if family i is partisan to town t and school j is in town t, and θij = 0 if family i

is partisan to town t and school j is not in town t. We assume a continuum of partisan families of

measure 1 for each town and that partisans of both types have identical distributions for student

type f(x) on [0, 1], maintaining all other properties assumed for f and v from the one-town model.

Each town has D equal-size districts, which we label asA1, A2, ..., AD for town A andB1, B2, ..., BD

for town B. Districts are ordered in ascending school quality: yt1 ≤ yt2 ≤ . . . ≤ ytD for each

town t ∈ {A,B}. We denote the sets of town-A and town-B partisans choosing district d in

town t as αtd and βtd , respectively, and denote an assignment of town-A partisans to districts by

α = {αA1 , αA2 , ..., αAD
, αB1 , αB2 , ..., αBD

} and an assignment of town-B partisans to districts by

β = {βA1 , βA2 , ..., βAD
, βB1 , βB2 , ..., βBD

}.

Definition 1 A two-town equilibrium is an allocation of families to schools, α and β, associated

average types in each district {yA1 , yA2 , ..., yAD
, yB1 , yB2 , ..., yBD

} and

prices (pA1 , pA2 , ..., pAD
, pB1 , pB2 , ..., pBD

) where

(1) Each student maximizes utility u(xi, yd, pd) with the choice of school district d,

(2) Each district d enrolls 1
D students,

(3) If town t ∈ {A,B} uses a school choice rule, then yt1 = yt2 = ... = ytD = E[x| enroll in town

t].

A focal outcome in this model is one where all partisans of a given town reside in that town.

We define this as a non-integrated equilibrium. Our first result is on the existence of a symmetric

non-integrated equilibrium where partisans make the same housing decision in each town.
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Definition 2 In a non-integrated equilibrium, all town-A partisans live in town A and all

town-B partisans live in town B. In an integrated equilibrium, either some town-A partisans live

in town B or some town-B partisans live in town A.

Proposition 1 If both towns use the same assignment rule, then there is a symmetric non-integrated

equilibrium with cutoffs {x0 = 0, x1, x2, ..., xD−1, xD = 1}, where students of type x ∈ [xd−1, xd] en-

roll in district d of their partisan town.

This result is immediate whether both towns use neighborhood assignment or school choice.

In both cases, the options and prices for schooling in two towns are identical, so clearly town-A

partisans will choose to live in town A and town-B partisans will choose to live in town B. With

a neighborhood schooling rule in both towns, (1) the type cutoffs are determined by the capacities

in each district and the implicit equation F (xd) = d
D for each d, (2) the school qualities equal the

conditional expectation yAd
= yBd

= yd = E[x|xd−1 < x < xd] for each d, and (3) price increments

between districts in towns A and B are determined by the boundary indifference conditions

pd − pd−1 = v(xd, yd)− v(xd, yd−1)

for districts d = 2, ..., D. Then by construction, given the property of increasing differences of v

in x and y, any choice of price for district 1, pA1 = pB1 = p1 induces the precise sorting of students

to districts as stated in the proposition. The resulting symmetric non-integrated equilibrium is

stable for either assignment rule if θ is strictly greater than 0, in the sense that a small change in

locational choices will not induce any partisan to switch towns at the cost of θ.12

We use the non-integrated equilibrium with neighborhood school assignment in each town as

the baseline outcome for comparisons to the results when one town adopts school choice primarily

because it is the unique symmetric equilibrium when both towns use neighborhood assignment rules

and all districts are the same size. Furthermore, there is perfect sorting of partisans within each

town in this non-integrated neighborhood school equilibrium, so the adoption of a school choice

rule necessarily reduces inequalities in school assignment if families do not move.

12There may also be equilibria other than the non-integrated outcome when both towns use the same school

assignment rule. For example, if both towns use a school choice rule, there could be an equilibrium where one town

has higher school quality than the other and town-A partisans and town-B partisans of highest types both choose the

higher quality school. One complication is that if town A has the higher quality school in this case, then partisans of

town B must forego θ to attend that school, while partisans of town A gain θ by choosing it, so any equilibrium other

than the no mixing equilibrium involves asymmetric decision rules for partisans of town A and partisans of town B.
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D.2 School Choice in Town A and Neighborhood Schools in Town B

Suppose that town A uses the school choice rule and town B uses the neighborhood assignment

rule. At this point, we specialize in the analysis to the case with D = 2 districts in town B. To

simplify notation, we denote the equilibrium school quality and price (for each district) in town A

as yA and pA and the corresponding values in town B as yB1 and pB1 for district 1 and yB2 and

pB2 for district 2, using the convention that yB1 ≤ yB2 .

Much of the intuition from the one town model carries over to the two-town model. In particular,

Proposition 2 indicates that when town A adopts school choice, partisan enrollment takes the form

of intervals in each district. Furthermore, the range of types of town-A partisans enrolling in town

A subsumes the range of types of town-B partisans who enroll in town A.

Proposition 2 In any equilibrium where town A uses school choice and town B uses neighborhood

assignment, an interval [xLA, x
H
A ] for town-A partisans and an interval [xLB, x

H
B ] of town-B partisans

enroll in town A, where xLA ≤ xLB ≤ xHB ≤ xHA .13

We distinguish between three types of equilibria according to the ordering of school quality yA

in town A relative to school qualities in the two districts in town B, yB1 and yB2.

1. In a Type 1 equilibrium, yA > yB2 > yB1 ;

2. In a Type 2 equilibrium, yB2 > yA > yB1 ;

3. In a Type 3 equilibrium, yB2 > yB1 > yA.14

For relatively large values of θ, partisans of each town have a strong incentive to enroll in that

town. In the limiting case, partisans of town B with types above the median enroll in district B2,

partisans of town B with types below the median enroll in district B1 and all partisans of town A

enroll in town A, producing a unique equilibrium which happens to be of Type 2. For relatively

small values of θ, however, this logic need not hold and it is possible that there can be equilibria

(one or more) of each type for a given value of θ.

13In a non-integrated equilibrium, since all town-A partisans and no town-B partisans enroll in town A, xLA = 0

and xHA = 1. In this case, we set xLB = xHB = ySC and the result holds. It is natural to set xLB = xHB = ySC because

the first town-B partisans to enroll in town A will be those of types nearest to ySC .
14We make an explicit choice to use strict rather than weak inequalities in these definitions. As long as θ > 0,

yA = yB1 or yA = yB2 is only possible in an equilibrium where only town-A partisans enroll in town A, but this in

turn implies the trivial equilibrium with yA = yB1 = yB2 = 0.5. Similarly, if yB1 = yB2 , then we have identified an

equilibrium where the two districts in B are identical and so it is as if B has adopted school choice rather than a

neighborhood assignment rule.
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D.3 Example

Example 3 Suppose that the distribution of types is Uniform on (0, 1) for partisans of each town

and that the utility function is u(x, y) = xy.

We consider several possibilities in turn. We leave out detailed computations for equilibria

of Type 3. Given the symmetry of the example (and the fact that third-order cross partials of

u(x, y) = xy are equal to 0), Type 1 and Type 3 equilibria are essentially mirror images of each

other.

Case 1: Non-Integrated Equilibrium

In a non-integrated equilibrium, town-B partisans are partitioned into districts with types

[0, 1/2] in district 1 and types [1/2, 1] in district 2 so that y1 = 1/4 and y2 = 3/4, while all town-A

partisans choose town A so that yA = 1/2. We work backwards from the equilibrium conditions

to identify equilibrium prices and restrictions on θ to construct a non-integrated equilibrium. A

marginal town-B partisan at x = 1/2 must be indifferent between districts 1 and 2. Thus,

1

2
y1 − p1 =

1

2
y2 − p2,

or equivalently p2 − p1 = 1/4.

Given p2 − p1 = 1/4, partisans of either town with x < 1/2 prefer district 1 to 2 in town B.

The incentive condition for town-A partisans with x < 1/2 to choose A is x/2 + θ− pA ≥ x/4− p1,

or θ ≥ pA − p1 at x = 0 where the condition is most binding. Similarly, the incentive condition for

partisans of town B with x < 1/2 to choose B1 is x/4 + θ− p1 ≥ x/2− pA, or θ ≥ 1/8− pA + p1 at

x = 1/2 where the condition is most binding. Thus, the smallest value for which both conditions

hold jointly is θNI ≡ 1/16, and hence pA − p1 = 1/16. (A similar argument shows that the

incentive conditions for partisans with types x > 1/2 also hold simultaneously at θ = 1/16 when

p2 − pA = 3/16).

In sum, there is a Non-Integrated Equilibrium if θ ≥ 1/16.

Case 2: Integrated Equilibrium of Type 2

For values of θ < 1/16, we simplify computations by looking for an integrated equilibrium with

symmetric cutoffs xLA and xHA = 1− xLA. Given the constraints that 1/4 of all students must enroll

in each district in town B (and half of all students must enroll in town A),

xLB =
1

2
− xLA
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and

xHB = 3/2− xHA =
1

2
+ xLA.

Thus, under the assumption that xHA = 1 − xLA, equilibrium assignments can be described as a

function of xLA alone. Furthermore, by Proposition 2, xLB ≥ xLA, which implies that xLA must be less

than or equal to 1/4. We provide detailed computations in Appendix E.1 to show that there is a

unique equilibrium of this form for each value θ < θNI , and further that xLA is decreasing in θ, so

that fewer partisans of town A choose to live in town B as θ increases.

Case 3: Integrated Equilibrium of Type 1

The analysis for equilibria of Type 1 and Type 3 are much simpler than that of an equilibrium

of Type 2 because one of the boundary indifference conditions is between districts B1 and B2. A

town-B partisan with type x is indifferent between enrolling in these two districts if

v(x, yB1)− pB1 + θ = v(x, yB2)− pB2 + θ.

Similarly, a town-A partisan with type x is indifferent between enrolling in these two districts if

v(x, yB1)− pB1 = v(x, yB2)− pB2 .

That is, the equilibrium indifference conditions are the same and so the cutoff determining whether

types enroll in district B2 or in district B1 must be the same for partisans of each town. In a

Type 1 equilibrium, lowest types enroll in B1. Since enrollment in B1 must equal measure 1/2 in

equilibrium, the cutoff between districts B1 and B2 must be the 25th percentile, x0.25, for partisans

of each town.

Given this observation, there are only two degrees of freedom in the enrollment pattern, specifi-

cally the values xA and xB which are the cutoffs distinguishing between town A and district B2 for

partisans of the two towns, respectively. Then the two equilibrium conditions are that partisans of

town A with type xA and also partisans of town B with type xB are indifferent between living in

A and in B2. These conditions are the following:

v(xA, yA)− pA + θ = v(xA, yB2)− pB2

v(xB2 , yB2)− pB2 + θ = v(xB, yA)− pA.

Combining these equations, we have a single condition

2θ = v(xB2 , yB2)− v(xB2 , yA)− v(xA, yB2)− v(xA, yA).
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With a Uniform distribution of types, the market clearing condition in town A requires xB =

1 − xA, and with v(x, y) = xy, this condition can be simplified to (xB2 − xA)(yB2 − yA) = 2θ, or

(1−2xA)(yB2−yA) = 2θ. Town-B partisans with types between 0.25 and xB = 1−xA enroll in B2

. Similarly, partisans of town A with types between 0.25 and xA enroll in district B2. Therefore,

yB2 = 2x2
A − 2xA + 7/8 and yA = 0.5 + xA − x2

A. Substituting these values in the market clearing

condition gives θ = 3x3
A − 4.5x2

A + 15xA/8− 3/16. This cubic equation also has a unique solution

in the relevant range for θ < 3/64.15

Comparisons of Equilibria for a Single Value of θ

We compare the equilibria of each type for the particular value θ = 37/2000.16 Table C1 lists

the enrollment patterns for partisans of each town in the three equilibria corresponding to Types 1,

2, and 3. There is considerable overlap in the enrollment patterns for partisans of the two towns. In

each equilibrium, lowest types enroll in the district with lowest school quality, while highest types

enroll in the district with highest school quality, regardless of partisanship. Furthermore, many

“middle” types enroll in the district with middling school quality in each equilibrium, regardless of

partisanship, though the definition of a “middle” type varies endogenously across the three types

of equilibria. Of these three distinct equilibria with θ = 37/2000, the Type 2 equilibrium is closest

in nature to the equilibrium from Example 1 in the one town model; in the Type 2 equilibrium,

the choice by town A to adopt school choice induces a change in school quality towards the middle,

but induces flight of lowest and highest partisan types.

Town-A Partisan Town-B Partisan

Equilibrium District B1 District B2 Town A District B1 District B2 Town A

Type 1 0 ≤ x ≤ 1/4 1/4 ≤ x ≤ 0.55 x ≥ 0.55 0 ≤ x ≤ 1/4 1/4 ≤ x ≤ 0.45 x ≥ 0.45

Type 2 0 ≤ x ≤ 0.2 x ≥ 0.8 0.2 ≤ x ≤ 0.8 0 ≤ x ≤ 0.3 x ≥ 0.7 0.3 ≤ x ≤ 0.7

Type 3 0.55 ≤ x ≤ 3/4 x ≥ 3/4 x ≤ 0.55 0.45 ≤ x ≤ 3/4 x ≥ 3/4 x ≤ 0.45

15The value θ = 3/64 yields a knife-edge equilibrium of this sort where xA = 1/4, meaning that no partisans of

town A enroll in district B2. In this equilibrium, partisans of town A with type 1/4 are exactly indifferent between

all three options: enrolling in A, B2, or B1. For θ < 3/64, there is a unique Type 1 equilibrium in this example,

where xA is strictly decreasing in θ with xA = 0.5 at θ = 0 and xA = 1/4 at θ − 3/64.
16The interior cutoffs with values (0.2, 0.8) and (0.3, 0.7) are exact for the Type 2 equilibrium. The interior cutoffs

with values 0.45 and 0.55 for the Type 1 and the Type 3 equilibria are approximate to three decimal places.
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Equilibrium Quality yB1 Quality yB2 Quality yA

Type 1 1/8 1/2 11/16

Type 2 13/100 87/100 1/2

Type 3 1/2 7/8 5/16

Table C1. Comparison of Equilibria in Example 3

D.4 General Properties of the Two-Town Model

We next ask whether we can generalize the insights of this example. Proposition 3 shows that a

non-integrated equilibrium of Type 2 exists when partisanship is not too large.

Proposition 3 There exists a value θNI such that there is a non-integrated equilibrium of the two-

town model where town A adopts school choice and town B adopts a neighborhood assignment rule

iff θ ≥ θNI and there is an integrated equilibrium of Type 2 for each θ < θNI .

Our proof of Proposition 3 relies on a fixed point argument. Intuitively, if θ < θNI , then there

are incentives for highest and/or lowest type town-A partisans to trade places with marginal type

town-B partisans. But as trades of these sorts occur in equilibrium, then the identities of marginal

type families change and specifically the marginal low-type town-A partisans increases, when the

marginal low-type town-B partisans decreases. Thus, for each θ with 0 < θ < θNI , there must be

a critical point (with xLA < xLB and associated values for xHA and xHB ) where the pair of values of

marginal types (xLA, x
L
B) yields exactly equal utility gains (excluding prices) for each of these two

marginal types to choose town A rather than district 1 in town B, thereby producing an integrated

equilibrium.

Corollary 6 In an integrated equilibrium of Type 2 where town A uses school choice and town B

uses neighborhood assignment, the lowest-type partisans of each town enroll in schools with lower

qualities and highest-type partisans of each town enroll in schools with higher qualities than they

would in a non-integrated equilibrium with neighborhood assignment in both towns.

Corollary 6 follows from the observation that any type x student will choose the same district

within town B whether that student is partisan to town A or to town B. In a Type 2 equilibrium,

highest and lowest type students (regardless of partisanship) enroll in town B in an integrated

equilibrium. Since partisans of each town with x close to 0 enroll in district B1 while partisans of

each town with x close to 1 enroll in district B2, the quality of these districts must be spread farther
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than in the non-integrated equilibrium. Thus, if θ < θNI , town A’s adoption of school choice rule

only increases inequality of educational opportunities in a Type 2 equilibrium (as measured by the

spread between the highest and lowest quality schools chosen by partisans of town A.)

Proposition 4 extends Proposition 3 to confirm the existence of Type 1 and Type 3 equilibria

for relatively small values of θ. As suggested by our analysis of the example above, the proof of

Proposition 4 is much simpler than that of Proposition 3 because we know in advance that x0.25 is

the marginal type between B1 and B2 for partisans of either town in a Type 1 equilibrium and that

x0.75 is the marginal type between B1 and B2 for partisans of either town in a Type 3 equilibrium.

The proof follows by another fixed point argument.

Proposition 4 There exists values θ1 and θ3 such that there an integrated equilibrium of Type j

if θ < θj for j = 1, 3.

D.5 Welfare Analysis for the Two-Town Model

Welfare analysis in the two-town model shares features of the one-town model but is complicated

both by multiplicity of equilibria and by the fact that outside options are generated endogenously

rather than fixed exogenously. In the one-town model, when a student enrolls in town t in equi-

librium 1 but takes the outside option in equilibrium 2, by revealed preference, that student must

prefer equilibrium 1 since the same outside option is available in both cases. However, this is not

the case in the two-town model, for a change from neighborhood assignment to school choice in

town A, likely improves outside options in town B for some town-A partisans but degrades them

for others.

Given these complexities, we focus our welfare analysis on lowest types, in particular lowest type

town-A partisans, which adopts school choice, since proponents of school choice typically argue it is

beneficial for lower-type families. Suppose that town A has a neighborhood rule with two districts,

A1 and A2 in the base case. We will consider what happens when town A offers school choice.

Equilibrium District School Quality

Base Case A1 E[x|0 < x < 0.5]

Type 1 B1 E[x|0 < x < 0.25]

Type 2 B1 E[x|0 < x < 0.25] < yB1 < E[x|0 < x < 0.5]

Type 3 A E[x|0 < x < 0.25] < yA < E[x|0 < x < 0.5]

Table C2. Equilibrium School Qualities for Lowest-Type Town-A Partisans
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In any integrated equilibrium where town A offers school choice and town B uses a neighborhood

assignment rule, the district with the lowest school quality enrolls the lowest types of partisans of

each town. From a purely mechanical standpoint, in any integrated equilibrium where district B1

has lowest school quality, that school quality is lower than in the baseline case of a non-integrated

equilibrium where only partisans of town B enroll in district B1. For instance, in Example 3, school

quality is yB1 = 0.25 in the base case, but this school quality falls to 1/8 (the minimum possible)

in an integrated equilibrium of Type 1 and to 13/100 in an integrated equilibrium of Type 2. The

only exception is in a Type 3 equilibrium, where town A has the lowest quality schools and those

schools have higher quality than district B1 in the base case. In Example 3, lowest types enroll

in schools with quality 1/4 in the base case and with quality 5/16 in a Type 3 equilibrium where

town A offers school choice.

As a general observation, the value of the lowest quality school in town A increases when town

A adopts school choice, whether the equilibrium is Type 1, 2, or 3. Yet, in similar fashion to the

one town model, this increase in quality of schools in district A1 need not directly affect lowest

type partisans of town A because they move to town B in either a Type 1 or a Type 2 equilibrium.

Lowest-type partisans do attend higher quality schools in a Type 3 equilibrium when town A adopts

school choice than in the base case. However, this only occurs because property values throughout

town A are uniformly lower than in town B in a Type 3 equilibrium.

There is a degree of freedom in the description of any equilibrium in the two town model, namely

the price of houses in the district with lowest school quality. One seemingly natural rule would be

to set the price in this district to the competitive price for schools of this quality in the one town

model. Given this assumption, it is possible to have a clean comparison of realized utility values

for lowest-type town A partisans in the base (non-integrated) case and in a Type 3 equilibrium.

In the two equilibria, lowest type town A partisans pay the competitive price to live in town A.

Therefore, as in the one town model, they achieve higher utility when attending a lower quality

school in the base case than in an integrated equilibrium of Type 3. Also, as in the one town model,

it is possible to take the paternalistic point of view that the Type 3 equilibrium is preferable to the

base case for these lowest type partisans of town A.

By contrast, comparisons of the base case equilibrium to an integrated equilibrium of either

Type 1 or Type 2 are not as clear from the perspective of lowest-type partisans of town A because

they move to town B in an integrated equilibrium of Type 1 or 2. Since there is no consistent

outside option, we cannot use revealed preference to compare realized utility values across a pair of
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equilibria. What we can say is that lowest-type partisans of town A attend unambiguously lower

quality schools in a Type 1 or 2 equilibrium after the adoption of school choice by town A than

beforehand and also lose the benefit of the partisan bonus after moving to town B.
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E Additional Details and Proofs for Two-Town Model (Online

Appendix)

E.1 Calculations for Example 3

Suppose that town-A partisans enroll in district B1 if x ∈ [0, xLA], enroll in town A if x ∈ (xLA, 1−xLA),

and enroll in district B2 if x in [1−xLA, 1]. Then, given that each district enrolls an equal number of

students and the types of partisans of both towns are distributed according to U(0, 1), this means

that the cutoffs for town-B partisans are given by xLB = 1
2 − x

L
A and xHB = 1

2 + xLA. That is, town-B

partisans enroll in district B1 if x ∈ [0, 1
2 −x

L
A], enroll in town A if x ∈ (1

2 −x
L
A,

1
2 +xLA), and enroll

in district B2 if x ∈ [1
2 + xLA, 1].

Given these choices, the average type of town-A partisans is
xLA
2 in district B1, 1

2 in town A and

(1 − xLA/2) in district B2. Similarly, the average type of town-B partisans is 1
4 − x

L
A/2 in district

B1, 1
2 in town A and (3

4 +
xLA
2 ) in district B2. Taking weighted averages, we have

yB1 =

[
xLA

xLA
2

+ (
1

2
− xLA)(

1

4
−
xLA
2

)

]
/

[
1

2

]
= 2(xLA)2 − xLA +

1

4
,

yB2 =

[
xLA

(1− xLA)

2
+ (

1

2
− xLA)(

3

4
+ xLA)

]
/

[
1

2

]
=

3

4
+ xLA − 2(xLA)2.

In equilibrium,

(1) Town-A partisans with x = xLA obtain equal utility from A and B1.

(2) Town-B partisans with x = xLB obtain equal utility from A and B1.

(3) Town-A partisans with x = 1− xLA obtain equal utility from A and B2.

(4) Town-B partisans with x = 1− xLB obtain equal utility from A and B2.

Given v(x, y) = xy, these conditions can be represented as

xLAyA − pA + θ = xLAyB1 − pB1 , (6)

xLByA − pA = xLByB1 − pB1 + θ, (7)

xHA yA − pA + θ = xHA yB2 − pB2 , (8)

xHB yA − pA = xHB yB2 − pB2 + θ. (9)

Solving for pA − pB1 in (6) and (7) gives (xLA − xLB)(yA − yB1) + 2θ = 0, or equivalently

2θ = (1
2 − 2xLA)(yA − yB1) after substituting xLB = 1

2 − xLA. Then substituting yA = 1
2 and
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yB1 = 1
4 − x

L
A/2, we have yA − yB1 = 1

4 + xLA/2, and thus 2θ = 1
8 − 3(xLA)2 + 4(xLA)3). Solving (8)

and (9) for θ as a function of xLA yields the identical equation.

Based on these computations, there is an equilibrium of the given form whenever 2θ = 1/8 −

3(xLA)2 + 4(xLA)3 or equivalently θ = 1/16 − (3/2)(xLA)2 + 2(xLA)3, and xLA ≤ 1/4 so that xLA ≥ xLB.

This is a cubic equation for θ as a function of xLA, so is not naturally conducive to an analytic

solution with xLA as a function of θ. However, we can identify some of the properties of xLA(θ) by

studying comparative statics of this equation with θ as a function of xLA.

Differentiating θ(xLA) = 1/16− (3/2)(xLA)2 +2(xLA)3 with respect to xLA gives dθ/dxLA = 6(xLA)2−

3xLA < 0 for xLA <
1
2 . So θ is declining as a function of xLA over the relevant range of values of xLA

from 0 to 1/4 and further θ(xLA = 0) = 1/16, corresponding to the cutoff θNI = 1/16 for a non-

integrated equilibrium, and θ(xLA = 1/4) = 0, corresponding to an integrated equilibrium where

partisans of both towns follow identical decision rules. That is, there is a one-to-one relationship

between θ and xLA for xLA between 0 and 1/4, and therefore a unique equilibrium of this form for

each value θ < θNI . Substituting xLA = 0.2 into the equations above yields θ(xLA = 0.2) = 37/2000,

yB1 = 0.13 and yB2 = 0.87 – the values used in the example in the text.

E.2 Proof of Proposition 2

Proof. Suppose that a town-B partisan of type xh enrolls in district d in town B where yd > yA.

Then since this student prefers district d in town B to enrolling in town A,

v(xh, yd) + θ − pd ≥ v(xh, yA)− pA,

or equivalently,

θ ≥ pd − pA + v(xh, yd)− v(xh, yA).

By the property of increasing differences of v, the difference v(x, yd)− v(x, yA) is strictly increasing

in x given yd > yA, so any partisan of town B with x′ > xh strictly prefers district d in town B

to enrolling in town A and will not enroll in town A. By similar reasoning, if type xl enrolls in a

district in town B with school quality less than yA, then town-B partisans of type x′′ < xl also will

not enroll in town A. Thus, the set of town-B partisans who enroll in town A must be an interval

of types [xLB, x
H
B ]. An essentially identical argument extends this result to show that the set of

town-A partisans who enroll in town A is an interval of types [xLA, x
H
A ].

Since town-A partisans receive a bonus for enrolling in town A, while town-B partisans receive

a bonus for enrolling in town B, if a town-B partisan of type x enrolls in town A, then a town-A
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partisan of type x will also enroll in town A in equilibrium. This shows that xLA ≤ xLB ≤ yA,

xHA ≥ xHB . A town-B partisan of type x < xLA enrolls in a school in town B, so v(x, yd) + θ − pd
≥ v(x, yA)− pA for some district d in town B. We can rewrite this inequality as

v(x, yd)− v(x, yA) ≥ pd − pA − θ.

But if yd ≥ yA, then this inequality would hold for all types greater than x (by the property of

increasing differences for v), and so none of them would enroll in town B.17 Thus, town-B partisans

with types below xAL enroll in districts in town B with qualities less than yA. By a similar argument,

town-B partisans with types above xLA enroll in districts in town B with qualities greater than yA,

with analogous properties holding for town-A partisans.

E.3 Proof of Proposition 3

Proof. Suppose that there are two districts of equal size in each town, that there is measure 1 each

of town-A partisans and of town-B partisans (so that each district has capacity equal to measure

1/2), and that the distribution of types is identical for partisans of each town. By Proposition

2, when town A uses a school choice rule and town B uses a neighborhood school assignment

rule, in any equilibrium, an interval of partisans of type A [xLA, x
H
A ] and an interval of town-B

partisans [xLB, x
H
B ] enroll in town A, where xLA ≤ xLB ≤ xHB ≤ xHA and these cutoffs are determined

endogenously in equilibrium.

Given these enrollment constraints, the choice of xLA implicitly determines the choice of xLB

given the enrollment constraint F (xLA) + F (xLB) = 1/2. Then since xLA ≤ xLB, xLA takes possible

values on [0, x0.25], where x0.25 is defined by F (x0.25) = 1/4. Similarly, xHA takes possible values

on [x0.75, 1] where F (x0.75) = 3/4 and xHB is an implicit function of xHA according to the equation

(1− F (xHA )) + (1− F (xHB )) = 1/2 or equivalently F (xHA ) + F (xHB ) = 3/2.

Define

λL(xLA, x
H
A ) = [v(xLB, yA)− v(xLA, yA)]− [v(xLB, y1)− v(xLA, y1)]− 2θ

and

λH(xLA, x
H
A ) = [v(xHA , y2)− v(xHB , y2)]− [v(xHA , yA)− v(xHB , yA)]− 2θ,

The arguments to λL and λH exploit the fact that xLB (xHB ) can be written in terms of xLA (xHA ),

and the value of yA depends on xLA and xHA .

17We assume that town-B partisans enroll in town B in case of a tie in utility between the most preferred district

in town B and the most preferred district in town A.
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There is no integration at the bottom if xLA = 0 and no integration at the top if xHA = 1. Given

school qualities y1 < yA < y2 and prices pA, p1, and p2, there is no integration at the bottom if

v(xLA = 0, yA) + θ− pA ≥ v(xLA, y1)− p1 and v(xLB, yB1) + θ− p1 ≥ v(xLB, yA)− pA, so that marginal

(boundary) types of partisans of each town each prefer not to integrate. Combining these two

equations to eliminate the prices gives the condition λL(xLA = 0, xHA ) ≤ 0 as a necessary condition

for an equilibrium with non-integration at the bottom. If there is integration at the bottom,

then both incentive conditions must hold with equality so that λL(xLA = 0, xHA ) = 0 is a necessary

condition for an equilibrium with xLA > 0. Similarly, λH(xLA, x
H
A = 1) ≤ 0 is a necessary condition

for equilibrium with no integration at the top and λH(xLA, x
H
A ) = 0 is necessary for an equilibrium

with integration at the top.

Holding xLA fixed, increased integration at the top, as represented by a reduction in xHA , yields

an increase in y2 and a decline in yA. That is, yA is strictly increasing and y2 is strictly decreasing

in xHA , while xLA, xLB, and y1 are constant in xHA . By increasing differences of v in both arguments,

λL(xLA, x
H
A ) is strictly increasing in xHA , so it takes its maximum value at xHA = 1 for each value of

xLA. Thus, for each xLA, there is at most one value of xHA such that v(xLA, x
H
A ) = 0. Further, when

xLA = x0.25 (its maximum possible value), then xLA = xLB and λH(x0.25, x
H
A ) = −2θ for each value

of xHA . Since v is continuous and λL(x0.25, 1) < 0, then either (1) there exists some value x̄ < x0.25

such that λL(x̄, 1) = 0 and λL(xLA, 1) < 0 for xLA > x̄ or (2) λL(xLA, 1) < 0 for all xLA ≤ x0.25.

In case (1), by construction, there exists a uniquely defined function ϕ(xLA) for x≤ xLA ≤ x̄ such

that λL(xLA, ϕ(xLA)) = 0. From above, we know ϕ(x) = x0.75 and ϕ(x) = 1 Furthermore, since

λL(x̄, 1) = 0, then λL(x̄, x0.75) < 0 since λL is strictly increasing in its second argument. Then

since v is continuous, there either

(1A) exists a value x < x̄ such that λL(x, x0.75) = 0 and λL(xLA, x0.75) < 0 for each xLA such that

x < xLA < x̄, or

(1B) λL(xLA, x0.75) < 0 for each xLA < x̄.

When xHA = x0.75 (its minimum possible value), then xHA = xHB and so λH(xLA, x0.75) = −2θ for

each value of xLA. So, in particular, in Case (1A), λH(x, x0.75) = λH(x, ϕ(x)) = −2θ. Then, since

v (and therefore λH) is continuous in each argument, there either exists xLA between x and x̄ so

that λH(xLA, ϕ(xLA)) = 0, in which case there is an equilibrium with integration at top and bottom

at [xLA, x
H
A = ϕ(xLA)] or λH(x̄, ϕ(x̄) = 1) ≤ 0, in which case there is an equilibrium with integration

at the bottom and non-integration at the top at [xLA = x̄, xHA = 1].
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Similarly, in Case (1B), there exists a uniquely defined function ϕ(xLA) for each xLA ≤ x̄ such that

λL(xLA, ϕ(xLA)) = 0. The distinction between Case (1A) and Case (1B) is that since the range (0, x̄)

of relevant values of xLA includes 0, it is now possible to find an equilibrium with non-integration

at the bottom. Since λH(0, x0.75) = −2θ < 0, either there exists a value xHA between x0.75 and

ϕ(xLA = 0) such that λH(0, xHA ) = 0, in which case there is an equilibrium with integration at the

top and non integration at the bottom at (0, xHA ) or λH(0, ϕ(0)) < 0, in which case the logic from

(1A) implies that there exists an equilibrium.

In case (2), λL(xLA, 1) < 0 for all xLA ≤ x0.25, so in fact λL(xLA, x
H
A ) < 0 in all cases. This

rules out the possibility of an equilibrium with integration at the bottom, so assume that xLA = 0

and look for an equilibrium with non integration at the bottom. Since λH(0, x0.75) = −2θ < 0,

either λH(0, 1) ≤ 0, in which case there is an equilibrium with non-integration at top or bottom,

or there exists some value xHA between x0.75 and 1 such that λH(0, xHA ) = 0 in which case there is

an equilibrium at (0, xHA ) with integration at the top and no integration at the bottom.

E.4 Proof of Proposition 4

Proof. In a Type 1 integrated equilibrium, yA > yB1 > yB2 = E[x|0 < x < 0.25]. Since we know

that x0.25 is the type-cutoff between district B1 and B2 in this equilibrium, the only remaining

parameters to identify are the cutoffs for partisans of each town between district B2 and town A.

As described in the text, denote xA as the cutoff for town-A partisans and xB be the cutoff for

town-B partisans. The boundary indifference condition for partisans of type A is

v(xA, yA)− pA + θ = v(xA, yB2)− pB2 . (10)

Similarly, the boundary indifference condition for partisans of type B is

v(xB, yA)− pA = v(xB, yB2 − pB2) + θ. (11)

Subtracting equation (11) from (10) gives

2θ + v(xA, yA)− v(xA, yB2) = v(xB, yA)− v(xB, yB2).

Since we know yA > yB2 , we can convert this to integral form:

2θ +

∫ yA

yB2

∂v

∂y
(xA, z)dz =

∫ yA

yB2

∂v

∂y
(xB, z)dz.

40



This equation can only hold if xA < xB given that θ > 0, so we can rewrite it in double integral

form:

2θ =

∫ xB

xA

∫ yA

yB2

∂2v

∂x∂y
(a, z)dadz.18 (12)

The market clearing condition here requires

1− F (xB) + 1− F (xA) = 1,

or

F (xB) = 1− F (xA).

Consider two extreme possibilities: xA = x0.25 and xB = x0.75, where no town-A partisans enroll in

district B2 and xA = xB = 1/2, where the same number of partisans of each town enroll in district

B2. If xA = xB = 1/2, the right-hand side of the last equation is 0, so less than the left-hand side

which is equal to 2θ. Next define

θ∗1 = 0.5

∫ x0.75

x0.25

∫ yA

yB2

∂2v

∂x∂y
(a, z)dadz,

where yA and yB2 take the appropriate values corresponding to xA = x0.25 and xB = x0.75. By

construction, if xA = x0.25 and xB = x0.75, the right-hand side of the equation (12) is greater than

the left-hand side if θ < θ∗1. Then by the Intermediate Value Theorem, there is a value of xA

between x0.25 and 1/2 where the combined boundary indifference condition holds with equality.

This value will support an equilibrium of Type 1 where price pB1 is set to the competitive price for

yB1 from the one-town model and the price increments between districts B1 and B2 as well as B2

and A are determined by the boundary indifference conditions.

An essentially identical argument proves the existence of a Type 3 integrated equilibrium for θ

below a cutoff θ∗3.

18We note that yA and yB2 are in fact functions of xA and xB and allow for this in the analysis described below.
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