
Firm Sorting and Agglomeration, Cecile Gaubert

Online appendix

A. Housing market

Since there is a fixed total supply of land equal to 1 in the city, the housing supply equation is

H(L) =
(pH(L)

w(L)

) 1−b
b , (A.24)

where H(L) is the total quantity of housing supplied in a city of size L.
The aggregate local demand for housing is

H(L) =
(1− η)w(L)L

pH(L)
. (A.25)

Equations (A.24) and (A.25) pin down prices and quantities of housing produced. Housing supply (equation
(A.24)) and demand (equation (A.25)) equate so that pH(L) = (1 − η)b w(L)Lb. This yields the following labor
use and profits in the housing sector:

`H(L) = (1− b)(1− η)L, and (A.26)

πH(L) = b(1− η)Lw(L). (A.27)

The housing supply elasticity is given by d logH(L)
d log pH(L) = η 1−b

b . Anticipating on the policy discussion, note that a

decrease in b increases the housing supply elasticity and also leads to a flatter wage schedule across city sizes, as
d logw(L)
d logL = b 1−η

η .

B. Proofs of section 3.3

B.1. Lemma 1

Proof Fix the sector s. Since π(z, L, s) is strictly LSM in (z, L), if follows that for all z1 > z2 and L1 > L2,
π(z1,L1,s)
π(z1,L2,s)

> π(z2,L1,s)
π(z2,L2,s)

. So if z2 has higher profits in L1 than in L2, so does z1. Necessarily, L∗j (z1) ≥ L∗j (z2), and

L∗j (z) is a non-decreasing function.

Moreover, in the case where the support of city sizes L is convex, then L∗j (z) is a strictly increasing func-
tion. Since the set of z is convex by assumption, and ψ(z, L, s) is such that the profit maximization problem
is concave for all firms, the optimal set of city sizes is itself convex. It follow that L∗j (z) is invertible. It is lo-
cally differentiable (using in addition that ψ(z, L, s) is differentiable), as the implicit function theorem applies and

dL∗j (z)

dz = −
∂(
ψ2L
ψ

)

∂z (z,L∗j (z),s)

∂(
ψ2L
ψ

)

∂L (z,L∗j (z),s)

.

B.2. Equilibrium when L is not convex

I describe here for completeness an equilibrium when the set L is not convex. Consider a non convex set of city
sizes L that I write it as a union of intervals on R+. : L̃ =

⋃
i∼odd[ai, ai+1]. This nests in particular the case

of a discrete number of city sizes. I focus on the case where these intervals closed, but the proof is similar if
some intervals are open. Consider [a1, a2] and [a3, a4] with a3 < a4 two such intervals, without any city available
in-between. Consider firms whose unconstrained city choice would fall between a1 and a4, which correspond to
a closed interval: [z1, z4] = L∗−1

j ([a1, a4]) (it is well defined, given that L̃j is continuous and invertible). Write

zi = L∗j
−1(ai). By construction, for all z ∈ [z1, z2]

⋃
[z3, z4], we get that L∗j (z) = L̃j(z), hence L∗j (z) is increasing on
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[z1, z2] and [z3, z4] respectively. Then, pick z ∈ (z2, z3). We know that L∗j (z2) ≤ L∗j (z) ≤ L∗j (z3) since L∗j (z) is non
decreasing, hence a2 ≤ L∗j (z) ≤ a3. Since L∗(z) ∈ L, this means that L∗j (z) = a2, or L∗j (z) = a3. By monotonicity
of L∗j (z), there exists a threshold z̃ ∈ (z2, z3) such that if z ∈ (z2, z̃) , L

∗
j (z) = a2 and if z ∈ (z̃, z3) L∗j (z) = a3.

Firms “bunch” at the city size closest to their optimal unconstrained choice (either the one to the left or to the
right), with a higher-z firm choosing a city size at least as large as a lower-z firm. This bunching preserves the
monotonicity of the matching function L∗j (.).

B.3. Proposition 2

Proof Fix j. For productivity, the results comes from the facts that (1) L∗j (z) is non decreasing in z and (2) that

ψ(z, L, sj) is increasing in L. Revenues are proportional to profits (rj ∗ (z) =
σj

1+T∗j
π∗j (z)). The proof for profits is

as follows. ψ(zH , LL, sj) > ψ(zL, LL, sj) as ψ is increasing in z, which leads to π(zH , LL) > π(zL, LL), as firms
face the same wage in the same city. Finally, π(zH , LH , sj) ≥ π(zH , LL, sj) as LH is the profit maximizing choice
for zH . Therefore, π(zH , LH , sj) > π(zL, LL, sj).

In addition, εl = εr − (1− α) 1−η
η .

Proof For a given city size L and a given sector j, r̄∗j (L) =
∑
z in L r

∗
j (z) ∝

∑
z in L w(L)`∗j (z) ∝ w(L) ¯̀∗

j (L),

where their proportion is constant across city sizes. Therefore
d log ¯̀∗

j (L)

d log L =
d log r̄∗j (L)

d log L − εw, where the elasticity of

wages with respect to city sizes is εw = b η
1−η

B.4. Proposition 3

Proof Let Z : L x A x E → Z be the correspondence that assigns to any L ∈ L and α ∈ A a set of z that chooses L
at equilibrium. (It is a function when L is convex (see proof of Lemma 1).) Define z̄(L,α, s) = maxz{z ∈ Z(L,α, s)}
as the maximum efficiency level of a firm that chooses city size L in a sector characterized by the parameters (α, s).
I will use the following lemmas:

Lemma 11 log π is supermodular with respect to the triple (z, L, α)

It is readily seen that: ∂2log π(z,L,α,s)
∂z∂L > 0, ∂2log π(z,L,α,s)

∂z∂α = 0 and ∂2log π(z,L,α,s)
∂L∂α = (σ−1)b(1−η)

ηL > 0. This result
does not rely on an assumption on the convexity of L. Checking the cross partials are sufficient to prove the
supermodularity even if L is taken from a discrete set, as π can be extended straightforwardly to a convex domain,
the convex hull of L.

Lemma 12 z̄(L,α, s) is non decreasing in α, s.

The lemma is a direct consequence of the supermodularity of log π with respect to the quadruple (z, L, α, s).
Using a classical theorem in monotone comparative statics, if log π(z, L, α, s) is supermodular in (z, L, α, s), and
L∗(z, α, s) = maxL log π(z, L, α, s) then (zH , αH , sH) ≥ (zL, αL, sL)⇒ L∗(zH , αH , sH) ≥ L∗(zL, αL, sL). Note that
everywhere, the ≥ sign denotes the lattice order on R3 (all elements are greater or equal than).

Coming back to the proof of the main proposition, we can now write:

F̃ (L;α, s) = P (firm from sector(α, s) is in a city of size smaller that L)

= F (z̄(L,α, s))

where F (.) the the raw efficiency distribution of the firms in the industry. Let αH > αL.
For any z ∈ Z, the previous lemma ensures that L∗(z, αH , s) ≥ L∗(z, αL, s). In particular, fix a given L

and s and write using shorter notation: z̄αL = z̄(L,αL, s). Then L∗(z̄αL , αH , s) ≥ L∗(z̄αL , αL, s) = L. Because
L∗(z, αH , s) is increasing in z, it follows that:

z ∈ Z(L,αH , s)⇒ z ≤ z̄αL
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and therefore z̄αH ≤ z̄αL or using the long notation: z̄(L,αH , s) ≤ z̄(L,αL, s)
It follows that F (z̄(L,αH)) ≤ F (z̄(L,αL)) and that F (L;α, s) is decreasing in α. This completes the proof of

the first order stochastic dominance of the geographic distribution of a high α sector vs that of a lower α.

The proof is exactly the same for the comparative statics in s, we just have to verify that π(z, L, s) is log

supermodular in (z, L, s). Since π(z, L, sj) = κ

(
ψ(z,L,sj)
w(L)1−α

)σ−1
Rj

P 1−σ
j

and w(L) doesn’t depend on s, π(z, L, s)

directly inherits the log supermodularity of ψ(z, L, s) in its parameters.

B.5. Proposition 4

Proof Within sectors, the revenue function r∗j (z) at the sorting equilibrium is an increasing function for any j. Let
p1 < p2 ∈ (0, 1). Under the assumption, maintained throughout the comparative statics exercise, that sectors draw
z from the same distribution, there ∃ z1 < z2 such that Qj1(p1) = r∗j1(z1) and Qj2(p1) = r∗j2(z1) (same thing for
z2 and p2), ie. the quantiles of the r∗j1 and r∗j2 distributions correspond to the same quantile of the z distribution.

This yields
Qj1 (p2)

Qj1 (p1) =
r∗j1(z2)

r∗j1(z1) , and
Qj2 (p2)

Qj2 (p1) =
r∗j2(z2)

r∗j2(z1) .

Finally, it is a classic result in monotone comparative statics (Topkis (1998)) that if π(z, L, α) is log-supermodular

in (z, L, α), then π∗(z, α) = maxL π(z, L, α) is log supermodular in (z, α), or
π∗j2(z2)

π∗j2(z1) ≥
π∗j1(z2)

π∗j1(z1) . Revenues are pro-

portional to profits within sectors, which completes the proof. The same proof applies for s.

B.6. Corollary 5

Proof Let pj ∈ (0, 1) be a threshold above which the distribution is well approximated by a Pareto distribution
in sector j, and rj the corresponding quantile of the distribution. The distribution of r conditional on being larger
than rj is:

∀r > rj , Hj(r | r ≥ rj) ≈ 1− (
r

rj
)−ζj ,

where ζj is the shape parameter of the Pareto distribution for sector j. Thus, if Fj(r) = p, one can write:

∀p > pj , p ≈ Fj(rj) +Hj(r) ≈ pj + 1− (
r

rj
)−ζj

r

rj
≈ (1 + pj − p)

− 1
ζj

Letting p0 = max(p1, p2) and writing rj = Qj(p0) for j = 1, 2, and using proposition (4) gives:

Qj1(p)

Qj1(p0)
≤ Qj2(p)

Qj2(p0)

(1 + p0 − p)−
1
ζ1 ≤ (1 + p0 − p)−

1
ζ2 for all p > p0 and p < 1

ζ1 ≥ ζ2,

where the last inequality comes from 1 + p0 − p ∈ (0, 1).

C. Extensions of the model

C.1. Extension with costly trade

In this extension of the model, I consider an economy with a more realistic geography. Call C the set of sites where
firms and workers can locate. To ship goods from site i to site j ∈ C2, firms incur an iceberg trade cost τij . To
simplify the exposition, I consider an economy with only one sector and where firms only use labor as an input.
Extension to the cases with several sectors and the use of capital is straightforward. In the presence of trade costs,
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local price indexes Pi for the traded good produced by firms are not equalized between cities and depend on the
whole distribution of firms across space:

Pi =

[∫
j∈C

∫
z∈Z(j)

(
τjiwj
ψ(z, Lj)

)1−σ

dFj(z)dj

] 1
1−σ

.

In this expression, the set Z(j) is the (endogenous) set of firms that are located on site j, and Fj(z) the
corresponding distribution of firm types. It is convenient to define the average city-level productivity ψ̄j for any
city j:

ψ̄j =

[∫
z∈Z(j)

ψ(z, Lj)
σ−1dFj(z)

] 1
σ−1

We can then rewrite the price index simply as:

Pi =

[∫
j∈C

(
τjiwj
ψ̄j

)1−σ

dj

] 1
1−σ

. (C.28)

A firm of type z located in site i has marginal costs
τijwi
ψ(z,Li)

when serving city j. This firm’s demand from city

j (where total demand is wjLj and demand across goods is CES) is therefore:

rij(z) =

(
τijwi
ψ(z, Li)

)1−σ

wjLjPj
σ−1

Firms’ profits, if located in i, are therefore π(z, i) = 1
σ

∫
j∈C

(
τijwi
ψ(z,Li)

)1−σ
wjLjPj

σ−1dj. Define the city i’s market
access as:

MAi =

∫
j∈C

τ1−σ
ij wjLjPj

σ−1dj. (C.29)

Then firm’s profits are simply:

π(z, i) =
1

σ
ψ(z, Li)

σ−1w1−σ
i MAi.

From this expression, we see already that π(z, i) is log-supermodular in z and city size Li. Therefore, for a
given equilibrium distribution of wages, market access and city sizes, more productive firms necessarily choose
larger cities Li: there is positive assortative matching between firm type and city size.1

Furthermore, city size L is still a sufficient statistic for the economic condition of a city, like in the version
without trade costs. To show this, we first use the free mobility condition. The utility of a worker in city i , defined
in equation (2) of the main text combined with the housing production equation (3), is:

U = Ui = κ0

(
wi
Pi

)η
L
−b(1−η)
i , (C.30)

where κ0 = η−η (1− η)
−b(1−η)

is an economy-wide constant. Using the free mobility condition and plugging in the

1Proof:Assume that it was not the case, that is that there are two firms z1 < z2 that choose city i1 and i2 with
L(i1) > L(i2). This means, by revealed preferences, that:π(z1,L(i1))

π(z1,L(i2))
> 1. Now, by log-supermodularity of ψ :

ψ(z2, L(i1))

ψ(z2, L(i2))
>
ψ(z1, L(i1))

ψ(z1, L(i2))

Taking this to the power σ − 1 and multiplying both sides by the positive number w1−σ
i1 MAi1/w

1−σ
i2 MAi2 leads to:

π(z2, L(i1))

π(z2, L(i2))
>
π(z1, L(i1))

π(z1, L(i2))
> 1

Therefore i2 cannot be the optimal choice of firm z2. This proves that firms choose cities whose size is increasing with z.
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expression for the price index lead to:

w1−σ
i L

−b(1−σ)( 1−η
η )

i = Ũ−1

∫
j∈C

(τjiwj)
1−σ

ψ̄σ−1
j dj, (C.31)

where the economy-wide constant Ũ is defined by Ũ−1 = (κ0/U)
(σ−1)/η

. Second, the goods market clearing
condition writes:

wiLi =

∫
j

(
τijwi
ψ̄i

)1−σ

wjLjPj
σ−1dj,

hence, using the expression for the price index implicitly given by (C.30) and simplifying, it follows that:

wσi Liψ̄
1−σ
i = Ũ−1

∫
j

τij
1−σwj

σL
1−b(σ−1) 1−η

η

j dj (C.32)

This system of 2N equations (C.31)-(C.32) corresponds to the one in Allen and Arkolakis (2014), where the

congestion force is Li
−b 1−η

η , and the local productivities are for now taken to be fixed at ψ̄i. Therefore, for a given
vector ψ̄i, and assuming that trade costs are symmetric (τij = τji), we can invoke theorem 2 in Allen and Arkolakis
(2014) to show that there exists a unique vector of Li and wi such that this system of equation holds and that, the

following holds for some endogenous constant Γ: wσi Liψ̄
1−σ
i = Γw1−σ

i L
−b(1−σ)( 1−η

η )
i . This can be rewritten as:

wi
2σ−1Li

1+b 1−η
η (1−σ)ψ̄i

1−σ = Γ (C.33)

Recombining equations lead to the following expression for market access:

MAi = wσi Liψ̄
1−σ
i = Γw1−σ

i L
−b(1−σ)( 1−η

η )
i .

Firm profits are therefore:

π(z, i) =
Γ

σ

ψ(z, Li)L
b( 1−η

η )
i

w2
i

σ−1

.

It follows from this expression that in equilibrium, two cities with the same size L cannot have different wages
w - otherwise, firms that choose a city of that size L would only go to the city with the lowest wage. Furthermore,
equilibrium wages must be increasing function of city size w(L), since firm profits are increasing in L but decreasing
in w (no firm would choose a city with a lower L if it came with a higher wage). In turn, the local price index Pi can
be simply expressed, in equilibrium, a function of city size by (C.30), using the fact that wages are (in equilibrium)
a function of local population, w(L).

Despite the introduction of costly trade in the model, it is still the case that, in equilibrium, price and wages
are a function of city size only, that is : city size is again a sufficient statistic to describe the equilibrium in terms
of firms and consumer choices.

Furthermore, firms profits can therefore be written:

π(z, L, s) =
Γ

σ

(
ψ(z, L, s)Lb(

1−η
η )

w(L)2

)σ−1

.

from which it is readily seen that the profit function is log-supermodular in (z, L, s) and (z, L, α).The proofs of
lemma 1 and propositions 2, 3 and 4 - which are based on this property - carry through to that case.

C.2. Extension with imperfect sorting

I examine the properties of the model in the presence of imperfect sorting as hypothesized in the empirical speci-
fication of section 4. The properties of equilibrium described in section 2.3. of the main text either hold true on
average, rather than systematically, in that case, or are unchanged.
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Set up with imperfect sorting Productivity in city size L is given by equation (20) in the main text. The
idiosyncratic productivity shocks εi,L for each city size are i.i.d. across city sizes and firms and distributed as
a type-I extreme value, with mean zero and variance νR. Therefore, writing ψ the non-stochastic part of firm’s

productivity ψ(zi, L, sj) = exp
(
aj logL+ log(zi)(1 + log L

Lo
)sj
)

leads to the following expression for firm i’s profit:

πj(zi, L) = κ1j

(
ψ(zi, L, sj)e

εi,L

Lb
1−η
η (1−αj)

)σj−1

Rj P
σj−1
j .

It will prove useful to write Vj(z, L) the non-stochastic part of firm profits:

Vj(z, L) = κ1j

(
ψ(z, L, sj)

Lb
1−η
η (1−αj)

)σj−1

Rj P
σj−1
j , (C.34)

and to note that the multiplicative random term e(σj−1)εi,L is distributed Frechet, with shape parameter
νRj
σj−1 . The

firm’s discrete choice problem is then:

L∗j (zi) = arg max
L∈L

Vj(zi, L)e(σj−1)εi,L

Given this setup, the following characterizations of the equilibrium hold in the case of imperfect sorting.

Characterizations with imperfect sorting First, Lemma 1 in the main text states that, within each
sector, the matching function is increasing: high-z firms are systematically found in larger cities than lower-z firms.
With imperfect sorting, we can prove a related result:

Lemma 1’: Take z1 < z2. Within a given sector, the distribution of city sizes for z2-firms first order statistically
dominates the one for z1 firms. That is, defining F (.|z) the CDF of the distribution of city sizes chosen by firms of
type z :

z1 < z2 ⇒ F (L | z2) ≤ F (L | z1)

High-z firms are more likely to be found in large cities than lower-z firms.

Proof The firm seeks to maximize profits. Given the properties of the Frechet distribution, the probability that
a firm of type z in sector j chooses city size L is:

p(L|z) =
V (z, L)

νR
σ−1∑

L′ V (z, L′)
νR
σ−1

(C.35)

Since ψ(z, L, sj) is LSM in (z, L), V (z, L)
νR
σ−1 is LSM in (z, L). In turn, p(L2|z2)

p(L1|z2) =
(
V (z2,L2)
V (z2,L1)

) ν
σ−1

>
(
V (z1,L2)
V (z1,L1)

) ν
σ−1

=

p(L2|z1)
p(L1|z1) . This means that p(L|z) has the monotone likelihood ratio property ( Milgrom (1981); Costinot (2009)).

Hence, in particular, the distribution of L for a high z first-order stochastically dominates the distribution of L for
a low z. Furthermore, it follows that p(z|L2) first order stochastically dominates p(z|L1) when L2 > L1, because:

p(z2, L2)

p(z2, L1)
=
p(L2|z2)f(z2)

p(L1|z2)f(z2)
=
p(L2|z2)

p(L1|z2)
>
p(L2|z1)

p(L1|z1)
=
p(z1, L2)

p(z1, L1)
.

Within a sector, firms’ raw efficiencies z are higher in larger cities in the sense of first order stochastic dominance.

Second, proposition p:obs of the main text states that, within each sector, firm profits, revenues and produc-
tivities increase in equilibrium with city size. With imperfect sorting, the results hold true on average over firms
located in a given city:
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Proposition p:obs’: Within each sector, average firm profits, revenue and productivity increase in equilibrium
with city size.

Proof A firm chooses city size to maximize profits following (21) in the main text. Given the properties of the
Frechet distribution, the distribution of realized profits π∗of a firm of type z, once it has optimally chosen its
location, is independent on its endogenous choice of city size L∗. That is, F (π∗|z) = F (π∗|z, L∗). Therefore, the
distribution of profits of firms located in a given city of size L∗ is given by:

p(π∗|L∗) =

∫
z

p(π∗ | L∗, z)pj(z|L∗) dz

=

∫
z

p(π∗ | z)pj(z|L∗) dz

Therefore, firm profits in city L are on average:

E [π∗|L∗] =

∫
π∗

∫
z

π∗p(π∗ | z)p(z|L∗) dπ∗ dz

=

∫
z

[∫
π∗
π∗p(π∗ | z)dπ∗

]
p(z|L∗) dz

=

∫
z

E [π∗ | z] p(z|L∗) dz

We know that π(z, L) increases in z for all L, therefore E(π∗ | z) is also increasing in z. Given that p(z|L2)
first order stochastically dominates p(z|L1) if L2 > L1, it follows that:

E [π∗|L∗2] > E [π∗|L∗1]

Firms are monopolistically competitive and demand is CES, so that profits are a constant proportion of revenues
within a sector. It follows that:

E [r∗|L∗2] > E [r∗|L∗1]

Finally, the productivity of firm i in its chosen city size L∗ is φi = ψ(zi, L
∗, sj)e

εi,L∗ , where:

π(zi, L
∗) = κ1j

(
φi

L∗(1−αj)
1−η
η b

)σj−1

Rj P
σj−1
j

therefore

φi =
π(zi, L

∗)
1

σj−1 L∗(1−αj)
1−η
η b

(κ1jRj)
1

σj−1 Pj

Then, within sector j :

E [φ|L∗] = E
[
π∗(z, L∗)

1
σj−1 |L∗

] L∗(1−αj)
1−η
η b

(κ1jRj)
1

σj−1 Pj

The term E
[
π∗(z, L∗)

1
σj−1 |L∗

]
increases with L∗, by argument similar to the one made above for E [π∗(z, L∗)|L∗].

Furthermore, L∗(1−αj)
1−η
η b also increases with L∗. Therefore, E [φ|L∗] increases with L∗ .

Third, proposition p:sorting of the main text states that the geographic distribution of a high α (resp. s) sector
first-order stochastically dominates that of a lower α (resp. s) sector. This statement is unchanged in the case of
imperfect sorting.

Proposition p:sorting’: The geographic distribution of a high α (resp. s) sector first-order stochastically
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dominates that of a lower α (resp. s) sector.

Proof I make here explicit the dependency of V on sectoral parameters s and α, and write expression (C.34) as
V (z, L, s, α). We know that V (z, L, s, α) is log-supermodular (LSM) in (z, L, s, α), as the properties of the non

stochastic part of productivity ψ(z, L, s) are the same than in the main text. Therefore, V (z, L, s, α)
νR
σ−1 is also

LSM in (z, L, s, α). For any t ≥ 0, define the auxiliary function 1[0,t](L) equal to 1 if L ∈ [0, t] and 0 otherwise.
This function is LSM in (z, L, s, α, t), by lemma 3 in Athey (2002). Define

G(z, s, α, t) =

∫ ∞
0

V (z, L, s, α)
νR
σ−11[0,t](L) dFL(L) =

∫ t

0

V (z, L, s, α)
νR
σ−1 dFL(L).

where FL(L) is the economy-wide city size distribution. By lemma 4 in Athey (2002), we get that G(z, s, α, t) is
LSM in (z, s, α, t). The probability that a firm of a given type z chooses a city size smaller than t is:

p (firm z chooses city size L ≤ t|α, s) =

∫ t
0
V (z, L, α, s)

νR
σ−1 dFL(L)∫∞

0
V (z, L, α, s)

νR
σ−1 dFL(L)

By log-supermodularity of
∫ t

0
V (z, L, s, α)

νR
σ−1 dFL(L) the following comparative statics follow if s ≤ s′:∫ t

0
V (z, L, α, s)

νR
σ−1 dFL(L)∫∞

0
V (z, L′, α, s)

νR
σ−1 dFL(L)

≤
∫ t

0
V (z, L, α, s′)

νR
σ−1 dFL(L)∫∞

0
V (z, L′, α, s′)

νR
σ−1 dFL(L)

and similarly if α ≤ α′: ∫ t
0
V (z, L, α, s)

νR
σ−1 dFL(L)∫∞

0
V (z, L′, α, s)

νR
σ−1 dFL(L)

≤
∫ t

0
V (z, L, α′, s)

νR
σ−1 dFL(L)∫∞

0
V (z, L′, α′, s′) dFL(L)

Therefore, the conditional probability p (firm z chooses city size L ≤ t|α, s) increases with s (resp. with α),that
is: the geographic distribution of a high α (resp. high s) sector - all else equal - first order stochastically dominates
that of a lower α (resp. lower s) sector.

Fourth, proposition 4 in the main text states that the firm size distribution in revenues of a high α (resp. s) sector
is more spread out than that of a lower α (resp. s) sector. With imperfect sorting, the following characterization
holds:

Proposition 4 ’: Normalize the distribution of firm revenues across sectors by their mean. Then, the distri-
bution of log-revenues of firms in a high α (resp. s) sector is a mean-preserving spread of that of a lower α (resp.
s) sector.

Proof Given the discrete choice problem (21) in the main text, a firm of type z has a distribution of optimized prof-

its π (resp. revenues r) that is distributed Frechet, with location parameter T (z, s, α) =
(∑

L′ V (z, L′, s, α)
νR
σ−1

)σ−1
νR and

shape parameter νR
σ−1 (common to all firm types z). The distribution of log-revenues in a given sector depends

therefore on the distribution of raw efficiency z and of a shock ε according to:

log(r(z, ε; s, α)) = κ+ log T (z, s, α) + ε,

where κ is a sectoral constant, ε is distributed type-1 EV, with location parameter 0 and shape parameter
κ = νR

σ−1 , and is independent of z. Let s1 < s2. Define the constant Ks = Ez [log T (z, s1, α)] − Ez [log T (z, s2)] .
The distributions of log(r(z, ε; s1, α)) and log(r(z, ε; s2, α)) +Ks have the same mean.

The location parameter T (z, s, α) is LSM in (z, s) and (z, α). To see this, note that T (z, s, α) = E
[
V (z, L′, s, α)

ν
σ−1
]σ−1
νR ,

where the expectation is taken over the economy-wide distribution of city sizes. Since V (z, L, s, α) is log-supermodular
in (z, s), V (z, L, s, α)

ν
σ−1 is also LSM in in (z, s), then EL

[
V (z, L′, s, α)

ν
σ−1
]

is LSM (Athey (2002) shows that the
expectation of a LSM function is LSM) and finally T (z, s, α) is LSM in (z, s). By a similar reasoning, it is also
LSM in (z, α).
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Fix α. The function log T (z, α, s) is supermodular in z and s and increasing in z, so log T (z, α, s1) and
log T (z, α, s2) + Ks cross (at most) once as functions of z. For z above that point we have log T (z, α, s2) + Ks >
log T (z, α, s1). The opposite is true below this point. Writing h(z) = log T (z, α, s1) − log T (z, α, s2) −Ks,we get
that Ez [h(z)] = 0 by definition of Ks. Given that h(z) is first positive then negative, it follows that:∫ Z

0

h(z)dF (z) ≥ 0

for all Z. This proves that the distribution log T (z, α, s2)+Ks second-order stochastically dominates the distribution
log T (z, α, s1). Since log T (z, α, s1) and ε are independent, we get in turn that, log(r(z, ε; s2, α)) +Ks second-order
stochastically dominates log(r(z, ε; s1, α)). Therefore, log(r(z, ε; s2, α)) is, once de-meaned, a mean-preserving
spread of log(r(z, ε; s1, α)). The same proof is readily adaptable to the case of α, now holding s fixed.

D. Proofs of section 3.3

D.1. Lemma 7

Proof Consider a given city of size L developed by city developer i. Equation (6) shows that, for a given city size
and a given sector, labor hired by local firms is proportionate to the ratio of firms profit to the (common) local
wage. Using this relationship, the city developers problem (14) then simplifies to

max
L,{Tj(L)}j∈1,...,S

ΠL = b (1− η)w(L)L−
S∑
j=1

Mjw(L)

(1− αj)(σj − 1)

∫
z

Tj(L)`j(z, L)1j(z, L, i)dFj(z) (D.36)

Let Nj(L, i) =
∫
z
`j(z, L)1(z, L, i)MjdFj(z) denote the number of workers working in sector j in this specific city

i. It follows that
∑S
j=1Nk(L, i) = L − `H(L) = L

(
1 − (1 − η)(1 − b)

)
where `H(L) is the labor force hired in the

construction sector and the second equality uses (13).
The problem is akin to a Bertrand game. Consider a given city size L. Free entry pushes the profit of city

developers to zero in equilibrium. I prove now that this drives Tj(L, z) to the common level T ∗j =
b(1−η)(1−αj)(σj−1)

1−(1−η)(1−b)
. First, assume that for a given (z, j), the maximum subsidy offered is strictly less than T ∗j . New city developers
could offer T ∗j for (z, j) and 0 for all other sectors, attract all (z, j) firms for whom this subsidy is more attractive,

and make exactly zero profit, as Mj

∫
z
`j(z, L)1(z, L, i)dFj(z) = L

(
1 − (1 − η)(1 − b)

)
. Second, assume a city

developer offers a subsidy Tj(L, z) > T ∗j for a couple (z, j). This leads to negative profits. To see this, consider all
cities of size L, and take the one that offers the highest subsidy city to (z, j) firms. Call this city i. From the first
step of the proof, we know that in any given city, for all sectors k, either Tk(L, z) ≥ T ∗k and Nk ≥ 0 or Tk < T ∗k
and Nk = 0. Therefore,

S∑
k=1

Mkw(L)T ∗k
(1− αk)(σk − 1)

∫
z

`k(z, L)1(z, L, i)dFk(z) =

S∑
k=1

w(L)T ∗k
(1− αk)(σk − 1)

Nk

> b (1− η)w(L)L

so that Πi < 0.

D.2. Extension with Specific Subsidies

I examine here the case where land developers can observe firm types z and offer specific subsidies that are z-
industry-city specific, rather than ad-valorem and constant within industry in the baseline model. Specifically, land
developers offer a specific subsidy Sj(z;L) to each firm of type z in industry j coming to their city of size L. I show
here that the same outcome as in the baseline model is still an equilibrium. That is, the following is an equilibrium:

- A city developer targets a city size L0 and announces a fixed subsidy Sj(L0)δ(z − z∗j (L0))δ(L − L0) where
δ(0) = 1, and δ(x) = 0 for x 6= 0. This subsidy is targeted to firms for which L0 is the best choice of
city absent any subsidy, ie. the ones for which z = z∗j (L), where z∗j (L) is the inverse of L∗j (z) defined in
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equation (8) in the main text. The subsidy is 0 for other firms. The subsidy does not vary with the profit
of the firm, but instead is fixed to the same level as what is effectively paid in the baseline equilibrium:

Sj(L0) = T ∗j π̃j(z
∗
j (L0), L0), where I write π̃j(z

∗
j (L), L) = κ1j

(
ψ(z,L,sj)

w(L)1−αj

)σj−1

Rj P
σj−1
j the profit of the firm

absent any subsidy.

- All cities in the optimal set L are announced by developers

- Firms of type z∗(L) choose cities of size L.

The proof that this is an equilibrium is as follows. Given these subsidies offered by developers, a firm of type z
chooses its optimal location as follows:

max
L

π̃j(z, L) + 1L=L∗j (z)Sj(z;L
∗
j (z)).

Given that maxL π̃j(z, L) = L∗j (z), the optimal choice of the firm with subsidy is also L∗j (z). A developer makes
the following profit in his city, where I write Nj the number of firms in sector j that end up in this city :

ΠL = b(1− η)w(L)L−
∑
j

SjNj

= b(1− η)w(L)L−
∑
j

NjT
∗
j π̃j(z

∗
j (L), L)

= b(1− η)w(L)L−
∑
j

NjT
∗
j

w(L)`j(z
∗
j (L), L)

(1− αj)(σj − 1)

= b(1− η)w(L)L−
∑
j

Nj
b(1− η)

1− (1− η)(1− b)
w(L)`j(z

∗
j (L), L)

= b(1− η)w(L)L− b(1− η)

1− (1− η)(1− b)
L(1− (1− b)(1− η))

= 0

where the second equality comes from the definition of the subsidy, the third equality comes from equation
(6) in the main text, the fourth equality uses the definition of T ∗j from the main text, and the last one uses the
local labor market clearing condition: L(1 − (1 − b)(1 − η)) =

∑
j Nj`j(z

∗
j (L), L). I finally show that there is no

profitable deviation for a developer. First, it is clear that no developer wants to offer a higher subsidy for firms
for the same city size (that is, for z = z∗j (L) in city size L), since it would lead to negative profits given that the
current subsidies yield 0 profit. Also, lower subsidies for the same city size would not attract any firms. We need
to check whether a developer want and can attract a firm of type z in a city that is not the unconstrained optimal
choice L∗(z)ofthefirm. The proof is by contradiction. Assume that a developer targets firms z in cities of size
L2 6= L∗(z) and offers them a specific subsidy S2. For the subsidy to be attractive for firms, it has to be that:

S2 ≥ π̃(z, L∗) + T ∗π̃(z, L∗)− π̃(z, L2), (D.37)

since the alternative for firm z is to choose city L∗(z) – simply written L∗ here – and get a profit of π̃(z, L∗)
plus a subsidy T ∗π̃(z, L∗). For the subsidy to generate positive profits for the developer, it has to be that:

S2N2 ≤ b(1− η)w(L2)L2,

where N2 is the number of firms of type z that populate a city L2 such that the local labor market clears,

that is: N2 = L2(1−(1−η)(1−b))
`2(z,L2) = L2w(L2)(1−(1−η)(1−b))

(1−α)(σ−1)π̃(z,L2) . Therefore the condition for positive profits becomes:

S2 ≤ b(1−η)
1−(1−η)(1−b) (1− α)(σ − 1)π̃(z, L2), which is precisely T ∗π̃(z, L2). Finally, note that by optimality of L∗,

π̃(z, L∗) + T ∗π̃(z, L∗) ≥ π̃(z, L2) + T ∗π̃(z, L2).

Therefore, T ∗π̃(z, L2) ≤ π̃(z, L∗) + T ∗π̃(z, L∗)− π̃(z, L2) and S2 cannot at the same time satisfy S2 ≤ T ∗π̃(z, L2)
and condition (D.37) . This contradiction means that there is no profitable deviation for a land developer. This
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conclude the proof that the distribution of firms and cities of the baseline model is still an equilibrium of the model
with specific subsidy for type-z firms.

D.3. Lemma 8

Proof Let Lo denote the suboptimal city size where firms of type (z, j) are located. They get profit π∗j (z, Lo).

Denote ∆ =
π∗j (zj ,L

∗(z))

π∗j (z,Lo) − 1 > 0. A city developer can open a city of size L∗(z) by offering a subsidy T̃j =

1+ ∆
2

1+∆ (1 + T ∗j ) − 1, which will attract firms as they make a higher profit than at Lo, and allows the city developer
to make positive profits. City size distribution adjusts in equilibrium to determine the number of such cities.

D.4. Lemma 9

The proof is in the main text.

E. General Equilibrium

I use the following notation:

Ej =

∫
ψ(z, L∗j (z), sj)

σj−1[
(1− η)L∗j (z)

] b(1−η)(1+(1−αj)(σj−1))

η

dFj(z) , and Sj =

∫ (
ψ(z, L∗j (z), sj)[

(1− η)L∗j (z)
] b(1−η)(1−αj)

η

)σj−1

dFj(z),

where Ej and Sj are sectoral quantities that are fully determined by the matching functions L∗j (z) for each sector j.

They are normalized measures of employment and sales in each sector.2 To find general equilibrium quantities Pj ,
Mj for all j ∈ {1, ..., S} and R, the aggregate revenues in the traded goods sector, I write the free entry conditions
for firms (equation (E.38)), the goods market clearing conditions (equation (E.39)), and the national labor market
clearing condition (workers works either in one of the traded goods sectors or in the construction sector, equation
(E.40)). This leads to the following system of equations:

fEj P = (1 + T ∗j )κ1j Sj ξjRP
σj−1
j , for all j ∈ {1, ..., S}, (E.38)

1 = σjκ1jMj Sj P
σj−1
j , for all j ∈ {1, ..., S}, (E.39)

Nv =

S∑
j=1

κ2jEjMj ξjRP
σj−1
j +N(1− b)(1− η), (E.40)

where fEj is the units of final goods used up in the sunk cost of entry, P is the aggregate price index, and
the last term derives from equation (13). First, the national labor market clearing condition (E.40) together with
equation (E.39) leads to the aggregate revenues in manufacturing,

R = N
1− (1− b)(1− η)∑S
j=1

(1−αj)(σj−1)
σj

ξj
Ej
Sj

(E.41)

This pins down uniquely the general equilibrium quantity R. Second, I combine equations (E.43) and (E.38) and
write κ̃1j = κ1jP

αj(σj−1). This is a constant parameter, whereas κ1j depended on the GE quantity P .3 This leads

2Given the wage equation (4) and the expression for operating profits (5), aggregate operating profits in sector j are

κ1jMj Sj Rj P
σj−1

j (1 + T ∗j ). Similarly, aggregate revenues in sector j are σj κ1jMjSjRjP
σj−1

j and aggregate employment

in sector j is κ2jMj Ej Rj P
σj−1

j , where the sectoral constant κ2j is κ2j = κ1j(1− αj)(σj − 1).
3This is because κ1j depends on the price of capital which is constant, fixed in international markets in units of the

internationally traded good. Since the price of the traded good is not taken as the numeraire here, the cost of capital if ρP
in terms of the numeraire, with ρ a constant.
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to :

P
1
αj

j

S∏
k=1

(
Pk
ξk

)−ξk =

(
1

κ̃1j(1 + T ∗j )Sj ξjR

) 1
αj(σj−1)

, (E.42)

where I have used that P =
S∏
j=1

(
Pj
ξj

)ξj . Note that the matrix


− 1
α1

+ ξ1 ξ2 ... ξn
ξ1 − 1

α2
+ ξ2 ... ξn

...
...

...
ξ1 ξ2 ... − 1

αn
+ ξn

 has full

rank and is invertible. Therefore, equation (E.42) has a unique solution in {Pj}j=1..N . This pins down P in turn.
Finally, equations (E.39) leads to the sectoral mass of firms:

Mj =
Pαj(σj−1)

σj κ̃1j Sj P
σj−1
j

. (E.43)

Therefore, equations E.38-E.40 have a unique solution (R,Mj , Pj)j=1...S .

F. Stability

I verify here that the equilibrium described in section 3 is stable. First, I study the reaction of the economy to a
perturbation of the equilibrium where only workers’s location or firms’ location are perturbed. Second, I examine
a perturbation of both firms’ and workers’ location.

It is straightfoward to see that the equilibrium is stable to a small perturbation of the location of firms, holding
workers location constant. No firm has an incentive to deviate from the initial equilibrium, as they all choose their
profit maximizing city size in the first place. The equilibrium is also stable to a small perturbation of the location
of workers, holding firms location constant. To see this, fix the set of equilibrium cities as well as the set of firms
located in each cities. Consider city i. In equilibrium its population is L, and it has nj firms of raw productivity

zj from sector j. Labor demand for each firm is `j = Kj
ψ(zj ,L,sj)

σj−1

w(L)(1−αj)(σj−1)+1 with Kj a set of general equilibrium.

The local labor market clearing condition is
∑
j

njKj
ψ(zj ,L,sj)

σj−1

w(L)(1−αj)(σj−1)+1 = L. This implicitly pins down the wage

w(L) as a function of L if workers move to the city. Workers’ utility in this city is is U(L) = w(L)L
b(1−η)
η . I now

show by contradiction that this level of utility decreases with L. Since ∂logu(L)
∂logL = w′(L)L

w(L) −
b(1−η)
η , assume that

w′(L)L
w(L) > b(1−η)

η . Differentiating the local labor market clearing condition leads to

∑
j

njKj
ψ(zj , L, sj)

σj−1

w(L)(1−αj)(σj−1)+1

[
(σj − 1)

ψ2

ψ
− ((1− αj)(σj − 1) + 1)

w′(L)

w(L)

]
= .1 (F.44)

Using in equation (7) leads to L
[
(σj − 1)ψ2

ψ − ((1− αj)(σj − 1) + 1)w
′(L)
w(L)

]
< − b(1−η)

η < 0,, so that (F.44) is

contradicted. Hence ∂ logu(L)
∂logL < 0.

Second, I study the reaction of the economy to a perturbation of the equilibrium where both workers and
firms’ location are perturbed. I show here that the economy converges back to the initial equilibrium. In the
initial equilibrium, land developers on these sites had posted a subsidy schedule T ∗j δ(L − Li), which was the one
compatible with the initial equilibrium with city size distribution f∗L(L) (see main text, section 2.2.2.). Sites were
initially populated with the posted number of workers (Li for developer i), and firms which chose these sites got
subsidy T ∗j , but this is not necessarily the case anymore. If their population has changed following the perturbation,
then firms earn 0 subsidy in these cities, and land developer make strictly positive profits in these cities.

To study the stability of the initial equilibrium to this perturbation, I assume that the game is played se-
quentially. Land developers play first, in decreasing order of their current profit (for example). They announce a
new subsidy scheme. Once all of the current land developers have spoken, potential entrants can also announce a
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subsidy scheme. Then, firms and workers can choose to relocate if they want to, taking these subsidy as given. If
necessary, the game repeats until an equilibrium is reached. But I show here that the equilibrium is reached after
one iteration, because the optimal subsidy schedule T ∗j δ(L − Li) will be posted by land developers. The proof is
by contradiction. Let us first take the subsidy distribution as given, and study how firms and workers sort across
space. Necessarily, workers choose cities such that U(L) = Ũ for some value Ũ . Otherwise, the workers would move
away from cities with lower utility and into cities with higher utility. This location choice of workers leads to a set

of city sizes L̃, and pins down the wage schedule up to a constant (see equation (4)): w(L) = w̃ L b
1−η
η . Necessarily,

firms choose the city that maximizes their profit, that is:π̃j(z, L) = κ̃j
(
1 + T̃j(L)

)( ψ(z,L,sj)

L
b

1−η
η (1−αj)

)σj−1

Rj P
σj−1
j

L∗j (z) = arg maxL∈L̃ π̃j(z, L).

Finally, land developers make the following profit:
[
b(1− η)− T (1−(1−b)(1−η))

(σ−1)(1−α)

]
w(L)L.

First, assume first that for some city size L0 , a city developer makes positive profits (ie the effective subsidy

there is T < b(1−η)(σ−1)(1−α)
1−(1−b)(1−η) ). This is not compatible with all city developers maximizing profit. Indeed, a city

developer with unused land, anticipating this, would have offered a subsidy (T + ε) δ(L − L0), with T + ε < T ∗,
that would have attracted the same firms and generated profits for the developer. Therefore, it must be that no
city developer makes positive profits after that round. In other words, effective subsidies collected by firms are
necessarily T = T ∗. Therefore, firms chose:π̃j(z, L) = κ̃j

(
1 + T ∗j

)( ψ(z,L,sj)

L
b

1−η
η (1−αj)

)σj−1

Rj P
σj−1
j

L∗j (z) = arg maxL∈L̃ π̃j(z, L).

Second, assume that some firms are not back to their optimal city size L∗(z). That is, not all city size in L∗
are offered in L̃. There exists a city size L0 for which fL(L0) > 0 in the baseline equilibrium, but no developer
has offered the subsidy scheme T ∗j δ(L−L0). Absent this option, the corresponding firms z0 = L∗−1(L0) must have
chosen a suboptimal city L1 with subsidy T ∗. These firms make a profit π∗j (z0, L1) < π∗j (z0, L0). A city developer
with no city, anticipating this, would have offered a subsidy T ∗j δ(L − L0) − ε (with ε > 0 arbitrarily small), that
would have attracted the same firms, as it strictly improves their profits.

We have thereby shown by contradiction that it must be that all optimal city sizes are announced by developers
with a subsidy T ∗. Therefore, the economy converges back to the intial equilibrium, which is stable to a small
perturbation of both firms’ and workers’ locations.

G. Welfare analysis

G.1. Social planner’s problem

The utility function is as follows4:

U(L) = c(L)L−
b(1−η)
η . (G.45)

I report here the results for a single-sector economy, for simplicity. The intuitions are unchanged in a multi-
sector setup. The problem of the planner is to choose allocations optimally, namely
(1) for each firm z, its level of input `(z) and k(z) and its city size L(z)
(2) the mass of firms M and the distribution of city sizes G(L)

4As in the competitive equilibrium, a constant fraction of the local labor force is used to build housing. In this reduced-
form utility function, congestion increases log-linearly with city size. The following results therefore hold irrespective of the
source of congestion in the economy, as long as it increases log-linearly with city size. Utility has been renormalized by a
constant and by taking utility in (G.45) to the power 1

η
.
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(3) the share γ(L) of total consumption C consumed by a worker living in a city of size L, in order to maximize:

U(L) =
γ(L)C

Lb
1−η
η

,

such that:

1. U(L) = Ū if g(L) > 0 (free mobility of workers)

2. C = Q−MfE −Mρ
∫
k(z)dF (z) ; Q =

(∫
Mq(z, L(z))

σ−1
σ dF (z)

) σ
σ−1

and q(z, L) = ψ(z, L, s) k(z)α `(z)1−α (production technology)

3.
∫
γ(L)L dG(L) ≤ 1 (workers consume at most C)

4. [1− (1− η)(1− b)]
∫ L

0
u dG(u) = M

∫ z∗(L)

z∗(0)
`(z) dF (z) (local labor markets clear)

5.
∫
L dG(L) = N (aggregate labor market clears)

Combining the constraints lead to the following:∫
γ(L)L dG(L) =

Ū

C

∫
Lb

1−η
η +1 dG(L)

Ū =
C∫

Lb
1−η
η +1 dG(L)

.

The local labor market clearing condition for cities of size Li yields5:

dG(L) =
M1(L(z)) `(z)

L(z)
dF (z) (G.46)

Define Γ = M
∫
z
L(z)b

1−η
η `(z) dF (z) =

∫
Lb

1−η
η +1 dG(L) the aggregate congestion in the economy. The problem

of the social planner reduces to:

max
L(z),`(z),k(z),M

C

Γ
(G.47)

such thatM
∫
z
`(z) dF (z) = N , with C =

(∫
M
[
ψ(z, L, s) k(z)α `(z)1−α]σ−1

σ dF (z)
) σ
σ−1

−MfE−Mρ
∫
k(z)dF (z).

The city size distribution G(L) does not directly enter the objective function. It adjusts such that the local
labor markets clearing condition holds in equilibrium.

Taking the first order conditions with respect to k(z) and solving out for k(z) leads to

C = κ∗M1+ 1
(1−α)(σ−1)

[∫
(ψ(z, L, s) `(z)1−α)φ dF (z)

] 1
φ(1−α)

−MfE ,

where κ∗ =
(
α
ρ

) α
1−α

(1− α) and φ = σ−1
σ+α−ασ .

Taking the first order condition with respect to L(z) leads to:

ψ2(z, L, s)L

ψ(z, L, s)
= b

1− η
η

(1− α)χ(z), (G.48)

where6

χ(z) =

(
Q̃− fE
Q̃

)
`(z)L(z)b

1−η
η∫

`(z)L(z)b
1−η
η

∫
q̃(z)φ dF (z)

q̃φj
. (G.49)

5In particular, this yields the distribution of city sizes G(L) once M,k(z), `(z) and L(z) are known for all firms.
6I use the notations q̃(z) = ψ(z, L, s)`(z)1−α, Q̃ = κ∗M

1
(1−α)(σ−1)

[∫
(q̃(z))φ dF (z)

] 1
φ(1−α) .
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The first order condition with respect to M yields

1

(σ − 1)(1− α)

(
Q̃

Q̃− fE

)
= λN (G.50)

Taking the first order condition with respect to `(z) leads to:(
Q̃

Q̃− fE

)
q̃φj∫

q̃(z)φ dF (z)
− `(z)L(z)b

1−η
η∫

`(z)L(z)b
1−η
η dF (z)

= λM`(z) (G.51)

In particular, summing this over all types of firms and using (G.50) and the labor market clearing condition
lead to:

fE

Q̃
=

1

(σ − 1)(1− α)
, (G.52)

and λ = 1
N

1
(σ−1)(1−α)−1 .

Plugging in q̃j = ψ(zj , L(zj))`(z)
1−α into equation (G.51) and using (G.50) gives the following expression for

`(z):

`(z) =

 ψ(z, L, s)(∫
q̃(z)φ

) 1
φ

σ−1(
Q̃− fE
Q̃

L(z)b
1−η
η∫

`(z)L(z)b
1−η
η dF (z)

+
M

N

1

(σ − 1)(1− α)

)ασ−α−σ
. (G.53)

G.2. Comparison with the competitive equilbrium

Rearranging equation (G.49), using (G.53) and (G.52), leads to

χ(z) =
L(z)b

1−η
η

L(z)b
1−η
η + Γ

N
1

(σ−1)(1−α)−1

, (G.54)

where Γ = M
∫
z
L(z)b

1−η
η `(z) dF (z) is a measure of “aggregate congestion” in the economy. Therefore, in

particular, χ(z) < 1 for all j. There is a wedge in the incentives of location choice between the competitive

equilibrium (equation (7)) and the social planner problem (equation (G.48)). Since ψ2(z,L,s)L
ψ(z,L,s) is decreasing in L by

assumption (which ensures the concavity of firm’s profit function), this means that firms choose cities that are too
small in the decentralized equilibrium.

G.3. Implementing first best

To align firms’ incentives in the competitive to the solution to the social planner’s problem, firms have to see a
wage of the form

w(L) ∝ (Lb
1−η
η +A) (G.55)

where A = Γ
N

1
(σ−1)(1−α)−1 . This is in contrast to w(L) ∝ Lb

1−η
η in the decentralized equilibrium, set by the free

mobility assumption. This allows both the size of the workforce and the choice of city size to be aligned in the two
equilibria. Finally, the mass of entrants is suboptimal in the competitive equilibrium (after correcting for these
effects). This effect is classic in monopolistic competition framework, and is not of direct interest here as it does
not interact with the choice of city sizes.7

7In the competitive equilibrium, the mass of firm is given by M = (1+T∗)
σ

Q
fE

, whereas in the social planner’s problem it

is given by M = 1
(σ−1)(1−α)

Q
fE
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H. Estimation

H.1. Identification

To guide intuition on identification, I derive the distribution of firm value-added across cities of different sizes. The
setup is the one developed to study imperfect sorting in section B.1.

Note that firm value added is proportional to profits: rj(zi, L) = σjπj(zi, L) I focus from now on on one sector
and omit the sectoral subscript for simplicity. The distribution of value added across cities of different sizes is:

E(r|L) = Ez|L [E(r|L, z)]

=

∫
z

E(r|L, z) p(z|L)dz

=

∫
z

p(L|z) f(z)

fL(L)
E(r|L, z) dz

=

∫
z

p(L|z) f(z)

fL(L)
E(r|z) dz

The first equality uses the law of iterated expectation. The last equality uses a property of the Frechet dis-
tribution: the expectation of the profits are the same for a firm of a given type z irrespective of which city size
the firm has chosen. That is, E(π|z) = E(π|z, L∗) so that in turn, since profits are proportional to value added,
E(r|z) = E(r|z, L∗). Furthermore, using again the properties of the Frechet distribution, this expectation is:

E(π|z) = Γ(ν)

[∑
L

V (z, L)ν

] 1
ν

, (H.56)

where we write ν = νR
σ−1 the shape parameter of the Frechet distribution relevant for profits. We also know that

the probability that a firm of type zchooses a city of size L is:

p(L|z) =
V (z, L)ν∑
L′ V (z, L′)ν

(H.57)

We can therefore write that:

E(r|L) =
1

fL(L)

∫
z

p(L|z)E(r|z)f(z) dz

=
C

fL(L)

∫
z

V (z, L)νE(π|z)1−νf(z) dz.

where C is a sectoral constant. One case that helps understand the intuition behind the identification is when
νR = σ − 1. In that case, we can readily see that the distribution of value added across cities of different sizes
simplifies to:

E(r|L) =
C

fL(L)

∫
z

V (z, L)f(z) dz

=
C

fL(L)
L(σ−1)[a−b 1−η

η (1−α)]
∫
z

exp
(

(σ − 1)
{

log z
(

1 + log L̃
)
s
})

f(z) dz,

where we have used the value of V (z, L) from equation (C.34) and the definition of productivity in equation (20)
of the main text. Given that zis (truncated-) log normally distributed, that is, log z is distributed like a mean-0

normal truncated at its mean, this integral can be computed as follows. Note S(L) =
(

1 + log L̃
)
s.Then, we get

that:
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E(r|L) =
C

fL(L)
L(σ−1)[a−b 1−η

η (1−α)]
∫
z

z(σ−1)S(L)f(z) dz

=
C

fL(L)
L(σ−1)[a−b 1−η

η (1−α)]Ez

[
z(σ−1)S(L)

]
If z was log normally distributed without truncation, we would simply get that ElogN

[
z(σj−1)S(L)

]
= exp(

S(L)2(σ−1)2ν2
z

2 ),
so that:

E(r|L) =
C

fL(L)
L(σ−1)[a−b 1−η

η (1−α)] exp


(

1 + log L̃
)

2s (σ − 1)
2
ν2
z

2


Taking into account that z is truncated (at the mean of the normal) we get an additional term8so that

Ez
[
z(σ−1)S(L)

]
=

exp(
S(L)2(σ−1)2ν2

z
2 )Φ((σ−1)S(L)νz)

1/2 and:

E(r|L) =
C ′

fL(L)
L(σ−1)[a−b 1−η

η (1−α)] exp


(

1 + log L̃
)

2s (σj − 1)
2
ν2
z

2

Φ((σj − 1)S(L)νz),

where C ′ is a sectoral constant. Finally, taking logs, this equation gives us the relationship between average
value added and city size (within a sector) in a (non linear) regression format, and thus helps us understand what
variation in the data help identify the parameter:

log(E[ri|Li]) = C ′′ − log (fL(Li)) + β1 logLi + β2 (1 + log Li)
2s + log [Φ((σj − 1)S(Li)νz)], (H.58)

where

β1 = (σ − 1)

[
a− b1− η

η
(1− α)

]
β2 =

(σ − 1)
2
ν2
z

2

The parameters σ, b 1−η
η and α are calibrated in the first stage, the parameters (a, νz, s) are the ones we aim to

estimate. We can see from this expression that we can identify β1,β2 and s (hence a, s and νz ) from a non linear
least square regression of r on functions of L. The parameters a and s both impact firm productivity and profits,
but a impacts them log-linearly with city size, and s impacts them more than log-linearly because it entails the
sorting of more productive (high z) firms into larger cities. The shape of the distribution of firm value added with
respect to city size pins down the agglomeration parameters. The log-linear term identifies the classic agglomeration
economies forces a, and the convex term identifies the sorting forces, that is the interaction of νz and s. To identify
in addition the parameter νR, I bring in additional moments that characterize the firm-size distribution and the
sectoral distribution of activity.

H.2. Moments

Distribution of average value-aded by city size. The distribution of average firm value-added as a

function of city size is computed as follows in sector j. Define r̄j(L) =

∫
r∗j (z)1L∗

j
(z)=LdFj(z)∫

1L∗
j

(z)=LdFj(z)
the average value-added

of sector j firms that locate in city L. Normalize firms value-added within a given sector by their median value.
Group cities by quartile of city sizes, call them q = 1...4. For each quartile, compute the data counterpart of
E(log(r̄j |Li))) in (H.58) as the sample mean Mq of log(r̄j(Li)). The targeted moments are {Mq}q=1,2,3,4.

8If Z is distributed log normal, where the normal has mean µ and variance ν2z , then:

E(Z|Z > e0) =

∫∞
e0
zg(z)dz

1− Φ(0)
=
eµ+ν

2
z/2Φ

(
µ+ν2

z−ln(e
0)

νz

)
1− Φ(0)

,

where Φ is the CDF of the standard normal distribution,
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Distribution of total value-added by city size I order cities in the data by size and create bins using
as thresholds cities with less than 25%, 50% and 75% of the overall workforce I normalize city sizes by the size of
the smallest city, and call tLi the city size these thresholds. I compute the fraction of value-added for each sector in
each of the city bins, both in the data and in the simulated sample. The corresponding moment for sector j and bin

i is sL,ji =

∑
tL
i
≤L<tL

i+1

∫
r∗j (z)1L∗

j
(z)=L dFj(z)∫

r∗j (z)dFj(z)
, where r∗j (z) is the value-added of firm z and 1L∗j (z)=L is a characteristic

function which equals 1 if and only if firm z in sector j chooses to locate in city size L.

Firm-size distribution. I retrieve from the data the 25, 50, 75 and 90th percentiles of the distribution of
firms’ normalized value added and denote them tr,ji . These percentiles define 5 bins of normalized value-added. I

then count the fraction of firms that fall into each bin sr,ji =

∫
1
t
r,j
i
≤r̃j(z)<t

r,j
i+1

dFj(z)∫
dFj(z)

, where r̃j(z) is the normalized

value added of firm z in sector j.

H.3. Simulation and estimation procedure

I simulate an economy with 100,000 firms and 200 city sizes. I follow the literature in using a number of draws
that is much larger than the actual number of firms in each sector, to minimize the simulation error. I use a grid of
200 normalized city sizes L̃, ranging from 1 to M where M is the ratio of the size of the largest city to the size of
the smallest city among the 314 cities observed in the French data. This set of city-sizes L is taken as exogenously
given.9 In contrast, the corresponding city-size distribution is not given a priori: the number of cities of each size
will adjust to firm choices in general equilibrium to satisfy the labor-market clearing conditions.

The algorithm I use to simulate the economy and estimate the parameters for each sector is as follows:

Step 1: I draw, once and for all, a set of 100,000 random seeds and a set of 100,000 × 200 random seeds from a
uniform distribution on (0, 1).

Step 2: For given parameter values of νR and νz, I transform these seeds into the relevant distribution for firm
efficiency and firm-city size shocks.

Step 3: For given parameter values of a and s, I compute the optimal city size choice of firms according to equation
(21).

Step 4: I compute the 13 targeted moments described below.

Step 5: I find the parameters that minimize the distance between the simulated moments and the targeted moments
from the data (equation (22)) using the simulated annealing algorithm.

The estimation is made in partial equilibrium, given the choice set of normalized city-sizes L. It relies on measures
that are independent of general equilibrium quantities, namely the sectoral matching function between firm efficiency
and city size, and relative measures of firm size within a sector.10

H.4. Standard errors

Following Gourieroux et al. (1993), the matrix of variance-covariance Vj of the parameter estimates in sector j is
computed as follows:

Vj = (1 +
1

Ns
)(G′jWjGj)

−1(G′jWjΩjWjG
′
j)(G

′
jWjGj)

−1, where

Gj = E

[
∂mj(θj0)

∂θ

]
, Ωj = E [mj(θj0)mj(θj0)′] ,

9As pointed out in the theory section and developed above in B.4., the characterizations of the economy provided in
Section 3 hold if the set of possible city sizes is exogenously given.

10Specifically, as detailed in the theoretical model, the optimal choice of city size by a firm depends only on its productivity
function and on the elasticity of wages with respect to city size. It does not depend on general equilibrium quantities. The
sizes of all firms in a given sector depend proportionally on a sector-level constant determined in general equilibrium (see
equations (9) and (10)). Normalized by its median value, the distribution of firm sizes within a sector is fully determined
by the matching function.
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Ns is the number of simulation draws and Wj is the variance-covariance matrix of the data moments used in
estimation. The reported standard errors are the square-root of the diagonal of Vj .

I. Policy analysis

I.1. Computing new equilibria in response to policy change

To compute the counterfactual equilibrium, I proceed as follows.

Step 1: I start from the equilibrium estimated in the data. I hold fixed the number of workers in the economy, the
real price of capital, the set of idiosyncratic productivity shocks for each firm and city-size bin, and the
distribution of firms’ initial raw efficiencies.

Step 2: I recompute the optimal choice of city-size by firms, taking into account the altered incentives they face in
the presence of the subsidy.

Step 3: Because the composition of firms within a given city-size bin changes, total labor demand in a city-size bin
is modified. I hold constant the number of cities in each bin and allow the city size to grow (or shrink)
so that the labor market clears within each city-size bin. This methodology captures the idea that these
policies are intended to“push” or jump-start local areas, which in addition grow through agglomeration
effects.11

Step 4: As city sizes change, the agglomeration economies and wage schedules are modified, which feeds back into
firms’ location choice.

Step 5: I iterate this procedure from step 2, using the interim city-size distribution.

The fixed point of this procedure constitutes the new counterfactual equilibrium.

I.2. Decomposition

Welfare is measured by worker’s real income, constant across space. It is given by Ū = w

Pηp1−η
H

, where pH is

the local housing cost. Plugging in the values of w and pH as functions of L, this can be simply reexpressed as
Ū =

(
w̄
P

)η
=
(

1
P

)η
, given the choice of numeraire w̄. From (E.43) and (E.42), one gets the expression for the

aggregate price index, which leads to

Ū ∝
( S∏
j=1

TFP
ξj
j

) η
1−ᾱ
( S∏
j=1

(Sj
Ej

)ξj(1−αj))− η
1−ᾱ

,

where ᾱ =
S∑
j=1

αjξj is an aggregate measure of the capital intensity of the economy.

The term
S∏
j=1

TFP
ξj
j is a model-based measure of aggregate productivity. Take the example of a policy that

increases TFP by pushing firms to larger cities. It has a direct positive impact on welfare, magnified by the term
1

1−ᾱ that captures the fact that capital flows in response to the increased TFP in the economy, making workers
more productive. This effect is dampened by the second term, which captures the congestion effects that are at
play in the economy. Wages increase to compensate workers for increased congestion costs in larger cities. Here,

Sj
Ej

measures the ratio of the average sales of firms to their average employment in a given sector. It is a model-based

measure of the representative wage in the economy, since
r∗j (z)

`∗j (z) ∝ w(L∗(z)) for each firm. A policy that tends to

push firms into larger cities will also tend to increase aggregate congestion in the economy by pushing workers
more into larger cities. Individual workers are compensated for this congestion by increased wages, in relative
terms across cities, so that all workers are indifferent across city sizes. But the level of congestion borne by the
representative worker depends on how workers are distributed across city sizes. It increases as the economy is
pushed toward larger cities. This negative effect is captured by the second term in the welfare expression that
decreases with the representative wage.

11I maintain the subsidy to the cities initially targeted as they grow.
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J. Additional figures

J.1. Model fit

Figure J.1: Average value added by quartile of city size, model (blue) and data (red).
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Figure J.2: Sectoral distribution of firms revenues, model (blue) and data (red).
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Figure J.3: Employment share by decile of city size, model (blue) and data (red).
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J.2. Impact of policies

Figure J.4: Aggregate impact of local subsidies, as a function of the cost of the policy (% of GDP).
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relative to the reference equilibrium
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B. Change in the Gini coefficients for real wage
inequality and city production inequality

Note: The x axis represent the cost of the policy in percentage of GDP. Firms profits are subsidized when they locate in
the smallest cities of the reference equilibrium. The targeted area represents 2.3% of the population. The policy is financed
by a lump-sum tax on firms.

Figure J.5: TFP and indirect welfare effects of increasing housing-supply elasticity.
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. Saiz (2010) reports that median elasticity of
housing supply is 1.75, the 25th percentile is at 2.45 and the 75th percentile at 1.25.
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