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A Recursive Formulation of (1a)
In our numerical simulations, we use a recursive representation of the Judd (1985) econ-
omy. The two constraints in the planning problem feature the variables Ct�1, kt, Ct, kt+1
and ct. This suggests a recursive formulation with (kt, Ct�1) as the state and ct as a control.
The associated Bellman equation is then

V(k, C�) = max
c�0,(k0,C)2A

{u(c) + gU(C) + bV(k0, C)} (15)

c + C + k0 + g = f (k) + (1 � d)k
bU0(C)(C + k0) = U0(C�)k
c, C, k0 � 0.

Here, A is the feasible set, that is, states (k0, C�1) such that there exists a sequence {kt+1, Ct}
satisfying all the constraints in (1) including the transversality condition. At t = 0, cap-
ital k0 is given, so there is no need to impose bU0(C0)(C0 + k1) = U0(C�1)k0. Thus, the
planner maximizes V(k0, C�1) with respect to C�1. If V is differentiable, the first order
condition is

VC(k0, C�1) = 0.

Since one can show that µt = VC(kt, Ct�1)U00(Ct�1)kt, this is akin to the condition µ0 = 0
in equation (2a).41

41Alternatively, we may impose that R0 is taken as given, with R0 = R⇤
0 for example, to exclude an initial

capital tax. In that case the planner solves

max
k1,c0,C0

{u(c0) + gU(C0) + bV(k1, C0)}

subject to

C0 + k1 = R0k0

c0 + C0 + k1 = f (k0) + (1 � d)k0

c0, C0, k1 � 0.

This alternative gives rise to similar results.
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B Proof of Proposition 3
The proof of Proposition 3 consists of three parts. In the first part, we provide a few
definitions that are necessary for the proof. In particular, we define the feasible set of
states. In the second part, we characterize the feasible set of states geometrically. The
proofs for the results in that part are somewhat cumbersome and lengthy, so they are
relegated to the end of this section to ensure greater readability. Finally, in the third part,
we use our geometric results to prove Proposition 3. Readers interested only in the main
steps of the proof are advised to jump straight to the third part.

B.1 Definitions
For the proof of Proposition 3 we make a number of definitions, designed to simplify
the exposition. A state (k, C�) as in the recursive statement (15) of problem (1a) will
sometimes be abbreviated by z, and a set of states by Z. The total state space is denoted
by Zall ⇢ R2

+ and is defined below. It will prove useful at times to express the set of
constraints in (15) as

k0 = x � C�

✓
bx
k

◆1/s

(16a)

C = C�

✓
bx
k

◆1/s

(16b)

Cs/(s�1)
�

✓
b

k

◆1/(s�1)
 x  f (k) + (1 � d)k � g, (16c)

where x = k0 + C replaces c = f (k) + (1 � d)k � g � x as control. In the last equation,
the first inequality ensures non-negativity of k0 while the second inequality is merely the
resource constraint. Substituting out x, we can also write the law of motion for capital as
k0 = 1

b
k

Cs
�

Cs � C, which we will be using below.
The whole set of future states z0 which can follow a given state z = (k, C�) is denoted

by G(z), which can be the empty set. We will call a path {zt} feasible if (a) zt+1 2 G(zt) for
all t � 0, which precludes G(zt) from being empty; and (b) if the transversality condition
holds along the path, btC�s

t kt+1 ! 0. Similarly, a state z will be called feasible, if there
exists a feasible (infinite) path {zt} starting at z0 = z. In this case, z is generated by {zt}.
Because z1 2 G(z), we also say z is generated by z1. A steady state z = (k, C�) 2 R2

+ is
defined to be a state with C� = (1� b)/bk. For very low and high capital levels k, steady
states turn out to be infeasible, but all others are self-generating, z 2 G(z), as we argue
below. Similarly, a set Z is called self-generating if every z 2 Z is generated by a sequence
in Z. Denote by Z⇤ (= A in the notation above) the set of all feasible states. An integral
part of the proof will be to characterize Z⇤.

It will be important to specify between which capital stocks the economy is moving.
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For this purpose, define kg and kg > kg to be the two roots to the equation

k = f (k) + (1 � d)k � g| {z }
⌘F(k)

�1 � b

b
k. (17)

Demanding that kg > kg is tantamount to specifying F0(kg) < 1/b < F0(kg). Equation
(17) was derived from the resource constraint, demanding that capitalists’ consumption is
at the steady state level of C = 1�b

b k and workers’ consumption is equal to zero. Equation
(17) need not have two solutions, not even a single one, in which case government con-
sumption is unsustainably high for any capital stock. Such values for g are uninteresting
and therefore ruled out. Corresponding to kg and kg, we define Cg ⌘ (1 � b)/b kg and
Cg ⌘ (1 � b)/b kg as the respective steady state consumption of capitalists. The steady
states (kg, Cg) and (kg, Cg) represent the lowest and highest feasible steady states, respec-
tively. The reason for this is that the steady state resource constraint (17) is violated for
any k 62 [kg, kg].

As in the Neoclassical Growth Model, the set of feasible states of this model is easily
seen to allow for arbitrarily large capital stocks. This is why we cap the state space for
high values of capital, and we take the total state space to be Zall = [0, k̄]⇥ R+ for states
(k, C�), where k̄ ⌘ max{kmax, k0} and k = kmax solves k = f (k) + (1 � d)k � g. This way,
the set of capital stocks that are resource feasible given an initial capital stock of k0 must
necessarily lie in the interval [0, k̄], so the restriction for k̄ is without loss of generality for
any given initial capital stock k0. Note that with this state space, the set of feasible states
Z⇤ is also capped at k̄ in its k-component.

We now characterize the geometry of the set of feasible states Z⇤. The results derived
there are essential for the actual proof of Proposition 3 in Section B.3.

B.2 Geometry of Z⇤

For better guidance through this section, we refer the reader to figure 5, which shows the
typical shape of Z⇤. The main results in this section are characterizations of the bottom
and top boundaries of Z⇤. We proceed by splitting up the state space, Zall = [0, k̄]⇥ R+,
into four pieces and characterizing the feasible states in each of the four pieces.

Define

wg(k) ⌘

8
<

:

1�b
b k for 0  k  kg

Cg

⇣
k
kg

⌘1/s
for kg  k  k̄

wg(k) ⌘

8
<

:

1�b
b k for 0  k  kg

Cg
⇣

k
kg

⌘1/s
for kg  k  k̄,
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Figure 5: The state space of the Judd (1985) planning problem.

wg

wg
(k⇤, C⇤)

(kg, Cg)

(kg, Cg)

Z2

Z1
Z3

Z4

k̄
k

C�

Note. This figure shows the two-dimensional state space of the Judd (1985) model. The entire state space is
denoted by Zall, which includes the feasible set Z⇤ (between the two red curves), and all sets Zi (separated
by the blue curves). The point (k⇤, C⇤) is the zero-tax steady state. Showing that this is the qualitative shape
of the feasible set Z⇤ is an integral part of the proof of Proposition 3

and split up the state space as follows (see figure 5)

Zall =

⇢
k < kg, C� � 1 � b

b
k
�

| {z }
Z1

[
�

C� < wg(k)
 

| {z }
Z2

[
�

k � kg, wg(k)  C�  wg(k)
 

| {z }
Z3

[
�

k � kg, C� � wg(k)
 

| {z }
Z4

.

Lemma 1 characterizes the feasible states in sets Z1 and Z2.

Lemma 1. Z⇤ \ Z1 = Z⇤ \ Z2 = ∆. All states with k < kg or C� < wg(k) are infeasible.

Proof. See Subsection B.4.1.

In particular, Lemma 1 shows that all states with C� < wg(k) are infeasible. Lemma
2 below complements this result stating that all states with wg(k)  C�  wg(k) (and
k � kg) in fact are feasible, that is, lie in Z⇤. This means, {C� = wg(k), k � kg} constitutes
the lower boundary of the feasible set Z⇤.

Lemma 2. Z3 ✓ Z⇤, or equivalently, all states with wg(k)  C�  wg(k) and k � kg are feasi-
ble and generated by a feasible steady state. Moreover, states on the boundary {C� = wg(k), k >
kg} can only be generated by a single feasible state, (kg, Cg). Thus, there is only a single “feasible”
control for those states, c > 0.

Proof. See Subsection B.4.2.

Lemma 2 finishes the characterization of all feasible states with C�  wg(k). What
remains is a characterization of feasible states with C� > wg(k), or in terms of the k �
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C� diagram of Figure 5, the characterization of the red top boundary. This boundary is
inherently more difficult than the bottom boundary because it involves states that are not
merely one step away from a steady state. Rather, paths might not reach a steady state at
all in finite time. The goal of the next set of lemmas is an iterative construction to show
that the boundary takes the form of an increasing function w̄(k) such that states with
C� > wg(k) are feasible if and only if C�  w̄(k).

For this purpose, we need to make a number of new definitions: Let y(k, C�) ⌘ (k +
C�)/Cs

�. Applying the y function to the successor (k0, C) of a state (k, C�) and using the
IC constraint (1c) gives y(k0, C) = b�1k/Cs

�, a number that is independent of the control
x. Hence, for every state (k, C�) there exists an iso-y curve containing all its potential
successor states.

In some situations it will be convenient to abbreviate the laws of motion for capitalists’
consumption and capital, equations (16a) and (16b), as k0(x, k, C�) and C(x, k, C�).

Finally, define an operator T on the space of continuous, increasing functions v :
[kg, k̄] ! R+, as,

Tv(k) = sup{C� | 9x 2 (0, F(k)] : v(k0(x, k, C�)) � C(x, k, C�)}, (18)

where recall that F(k) = f (k) + (1 � d)k � g, as in (17). The operator is designed to
extend a candidate top boundary of the set of feasible states by one iteration. To make
this formal, let Z(i) be the set of states with C� � wg(k) which are i steps away from
reaching C� = wg(k). For example, Z(0) = {C� = wg(k)}. Lemma 3 proves some basic
properties of the operator T.

Lemma 3. T maps the space of continuous, strictly increasing functions v : [kg, k̄] ! R+ with
y(k, v(k)) strictly decreasing in k and v(kg) = Cg, v(kg) = Cg, into itself.

Proof. See Subsection B.4.3.

Lemma 4 uses the operator T to describe the sets Z(i).

Lemma 4. Z(i) = {wg(k)  C�  Tiwg(k)}. In particular Tiwg(k) � Tjwg(k) � wg(k) for
i � j.

Proof. See Subsection B.4.4.

The next two lemmas characterize the limit function w̄(k), whose graph will describe
the top boundary of the set of feasible states.

Lemma 5. There exists a continuous limit function w̄(k) ⌘ limi!• Tiwg(k) = Tw̄(k), with
w̄(kg) = Cg and w̄(kg) = Cg. All states with C� = w̄(k) are feasible, but only with policy
c = 0.

Proof. See Subsection B.4.5.

Lemma 6. No state with C� > w̄(k) (and kg  k  k̄) is feasible.

Proof. See Subsection B.4.6.
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Finally, Lemma 7 shows an auxiliary result which is both used in the proof of Lemma
6 and in Lemma 9 below.

Lemma 7. Let {kt+1, Ct} be a path starting at (k0, C�1) with controls ct = 0. Let kg < k0  k̄.
Then:

(a) If C�1 = w̄(k0), (kt+1, Ct) ! (kg, Cg).

(b) If C�1 > w̄(k0), (kt+1, Ct) 6! (kg, Cg).

Proof. See Subsection B.4.7.

B.3 Proof of Proposition 3
Armed with the results from Section B.2 we now prove Proposition 3 in a series of inter-
mediate results. For all statements in this section, we consider an economy with an initial
capital stock of k0 2 [kg, k̄]. We call a path {kt+1, Ct} optimal path, if the initial C�1 was
optimized over given the initial capital stock k0. Analogously, we call a path {kt+1, Ct}
locally optimal path, if the initial C�1 was not optimized over but rather taken as given at
a certain level, respecting the constraint that (k0, C�1) be feasible. If {kt+1, Ct} is a locally
optimal path, with control ct+1 at some point {kt+1, Ct} we say this control is optimal at
{kt+1, Ct}. Notice that along both optimal and locally optimal paths, first order condi-
tions are necessary, as long as paths are interior; they need not be sufficient, in the sense
that there could be multiple optima that satisfy our characterization below.

The first lemma proves that the multiplier on the capitalists’ IC constraint explodes
along an optimal path, and at the same time, workers’ consumption drops to zero.

Lemma 8. Along any optimal path, ct ! 0.

Proof. Let {kt+1, Ct} be the optimal path. Suppose first the optimal path hits the boundary
of the feasible set Z⇤ at some finite time. Given that no path can hit the k = k̄ boundary
after t = 0, and given Lemma 2 this means the path hits the top boundary—the graph of
w̄—after finite time. Lemma 5 showed that along that boundary, the control is necessarily
zero, c = 0.

Now suppose the optimal path is interior at all times. In that case, the first order
conditions are necessary. Using the notation from problem (1a) the necessary first order
conditions are equations (2a)–(2d). In particular, the one for µt states

µt+1 = µt

✓
s � 1
skt+1

+ 1
◆
+

1
bskt+1ut

.

From Lemma 1 we know that kt+1 = kt+1/Ct is bounded away from •. Since µ0 = 0 by
(2a) and s > 1, it follows that µt � 0 and µt ! •. To show that ct ! 0, suppose to the
contrary that ct 6! 0. In this case, there exists c > 0 and an infinite sequence of indices
(ts) such that cts � c for all s. Along these indices, the FOC for capital (2d) implies

u0(cts)| {z }
u0(c)

( f 0(kts) + (1 � d)) =
1
b

u0(cts�1)| {z }
�0

+ U0(cts�1)| {z }
bounded away from 0

· (µts � µts�1)| {z }
�const·µts�1!•

,
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and so kts ! 0 for s ! •, which is impossible within the feasible set Z⇤ because it violates
k � kg (see Lemma 1). This proves that also for interior optimal paths, ct ! 0.

Lemma 8 is important because it shows that workers’ consumption drops to zero.
Together with the following lemma, this gives us a crucial geometric restriction of where
an optimal path goes in the long run.

Lemma 9. The set of states where c = 0 is an optimal control is the top boundary, the graph of w̄.
It follows that an optimal path approaches either (kg, Cg) or (kg, Cg).

Proof. First, we show that any state in the interior of Z⇤ can be generated by a path with
positive controls c > 0. Any state in the interior of Z⇤ is element of some Z(i), i < •, and
can thus reach the set {C�  wg(k)} \ {(kg, Cg), (kg, Cg)} in finite time. From there, at
most two steps are necessary to reach a interior steady state (kss, Css) with kg < kss < kg

and hence positive consumption css > 0. Note that such an interior steady state can
be reached without leaving the interior of the feasible set, since by Lemmas 2 and 7,
hitting the upper or lower boundary once means convergence to a non-interior steady
state.42 This proves that any state in the interior is generated by such an interior path,
with positive controls c > 0.

Now take an interior state (k0, C�1). We prove that any optimal control at that state is
positive. Suppose to the contrary, c0 = 0 is an optimal control at (k0, C�1). This means,
(k0, C�1) is generated by a locally optimal path {kt+1, Ct}, where (k1, C0) is precisely
linked to (k0, C�1) using control c0 = 0, or equivalently, x0 = F(k0). Since (k0, C�1) is
interior, any state (k0(x̃0, k0, C�1), C(x̃0, k0, C�1)) with slightly positive controls, that is,
x̃0 < F(k0), has to be feasible too. Therefore, we find the following first order necessary
condition for local optimality of c0,43

u0(c1)
u0(c0)

( f 0(k1) + 1 � d) � 1
b
+ u0(µ1 � µ0),

where the inequality is there due to the (implicit) boundary condition c0 � 0. This condi-
tion can only be satisfied if c1 = 0 as well. We can iterate this logic: If (k1, C0) is interior, it
must be that c2 = 0 is optimal at (k2, C1). If (k1, C0) is not interior, then it must be on the
top boundary of Z⇤, that is, on the graph of w̄,44 where it has policy c = 0 forever after.
This proves, by induction, that if any interior state (k, C�) has c = 0 as an optimal policy,
any locally optimal path starting at (k, C�) with c = 0 as initial optimal policy must have
c = 0 forever, yielding utility u(0)/(1 � b). This, however, contradicts local optimality
of such a path: We showed above that any interior state (k0, C�1) is generated by a path
with strictly positive controls. Therefore, any optimal control at an interior state (k0, C�1)
is positive.

Finally, notice that states (k, C�), k > kg, along the bottom boundary of Z⇤ only admit
a single feasible control, which is positive (see Lemma 2). Thus, by Lemma 5, the set

42Note that hitting the right boundary at k = k̄ (other than with k0) is of course not feasible due to
depreciation.

43A locally optimal path still satisfies the first order conditions (2b)–(2d), just not (2a) which comes from
the optimal choice of C�1.

44On the lower boundary of Z⇤ (excluding (kg, Cg)), a policy of c = 0 would not be feasible, see Lemma 2.
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where c = 0 is an optimal control is precisely the top boundary {(k, C�) | k 2 [kg, k̄], C� =
w̄(k)}. It follows that an optimal path either hits the boundary of Z⇤ at some point, in
which case it converges either to (kg, Cg) or (kg, Cg) (by Lemma 7), or it remains interior
forever and thus (by Lemma 8) approaches the set {c = 0} of all states where c = 0 is an
optimal control, that is, the graph of w̄.45 Then it must share the same limiting behavior
as states in the set {c = 0}.46 By virtue of Lemma 7, it can then either converge to (kg, Cg)
or (kg, Cg).

Lemma 10. If an optimal path {kt+1, Ct} converges to (kg, Cg), then the value function V is
locally decreasing in C at each point (kt+1, Ct), for all t > T, with T large enough.

Proof. Let xt ⌘ F(kt)� ct and consider the following variation: Suppose that at a point
T, (kT+1, CT) is not at the lower boundary (in which case it cannot converge to (kg, Cg)
anyway) and that ct < F(kt)� F0(kt)kt for all t � T.47 For simplicity, call this T = �1. Do
the perturbation Ĉ�1 ⌘ C�1 � e, k̂0 = k0, but keep the controls ct at their optimal level for
(k0, C�1), that is ĉt = ct. Denote the perturbed capital stock and capitalists’ consumption
by k̂t+1 = kt+1 + dkt+1 and Ĉt = Ct + dCt. Then the control x changes by dxt = F0

t dkt
to first order. We want to show that dkt+1 > 0 and dCt < 0 for all t � 0, knowing that
dC�1 = �e and dk0 = 0.

From the constraints we find,

dkt+1 = F0(kt)dkt| {z }
�0

� Ct
Ct�1

dCt�1
| {z }

>0

+
1
s

Ct
xt

F(kt)� F0(kt)kt � ct
kt

dkt
| {z }

�0

> 0

dCt =
Ct

Ct�1
dCt�1

| {z }
0

� 1
s

Ct
xt

F(kt)� F0(kt)kt � ct
kt

dkt
| {z }

0

< 0.

Using matrix notation, this local law of motion can be written as
✓

dkt+1
dCt

◆
=

✓
at + bt �dt
�bt dt

◆✓
dkt

dCt�1

◆
,

with at = F0(kt), dt = Ct/Ct�1, bt = 1
s

Ct
xt

F(kt)�F0(kt)kt�ct
kt

. Close to (kg, Cg), this matrix has

45By the Maximum Theorem, the control c is upper hemicontinuous in the state, so its graph is closed.
Hence, if along a path {kt+1, Ct} it holds that ct ! 0, then {kt+1, Ct} necessarily approximates the set
{c = 0}, in the sense that the distance between {kt+1, Ct} and the set shrinks to zero (or else you could take
a subsequence {knt+1, Cnt , cnt} in the graph of c whose limit is not in the graph, contradicting the graph
being closed).

46The formal reason for this is as follows: Suppose the optimal path {kt+1, Ct} did not share the limit-
ing behavior of the set {c = 0}, that is, suppose the path had a convergent subsequence {knt+1, Cnt} !
{k⇤, C⇤} 2 {c = 0} \ {(kg, Cg), (kg, Cg)}. Suppose k⇤ 2 (kg, kg), the case k⇤ > kg is analogous. Because
w̄(k⇤) > 1�b

b k⇤, h(knt+1, Cnt) is eventually strictly decreasing in t (see logic around equation (30)) and con-

verges to h(k⇤, C⇤). But convergence of h(knt+1, Cnt) implies C⇤ = 1�b
b k⇤—a contradiction.

47Such a finite T > 0 exists for two reasons: (a) because ct ! 0; and (b) because F(k)� F0(k)k which is
positive in a neighborhood around k = kg since kg was defined by F(kg) = kg/b and F0(kg) < 1/b.
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d ⇡ 1. Suppose for one moment that a was zero; the fact that a > 0 only works in favor
of the following argument. With a = 0, the matrix has a single nontrivial eigenvalue of
b + d, which exceeds 1 strictly in the limit, and the associated eigenspace is spanned by
(1,�1). The trivial eigenvalue’s eigenspace is spanned by (d, b). Notice that the latter
eigenvector is not collinear with the initial perturbation (0,�1), implying that dk• > 0
and dC• < 0. Hence, k̂• > k• = kg and Ĉ• < C• = Cg.

But notice that to the bottom right of (kg, Cg), the new point is interior, which im-
plies a continuation value strictly larger than u(0)/(1 � b) (see proof of Lemma 9). More
formally, this means there must exist a time T0 > 0 for which the continuation value
of (kT0+1, CT0) is strictly dominated by the one for (k̂T0+1, ĈT0), that is, V(kT0+1, CT0) <
V(k̂T0+1, ĈT0). Because all controls were equal up until time T0, this implies that V(kT+1, CT) <
V(kT+1, CT � e) for e small (Recall that we had set T = �1 during the proof). Thus, the
value function must increase if CT is lowered, for a path starting at (kT+1, CT), for large
enough T. This proves that the value function is locally decreasing in C at that point.

And finally, Lemma 11 proves Proposition 3.

Lemma 11. An optimal path converges to (kg, Cg).

Proof. By Lemma 9 it is sufficient to prove that an optimal path does not converge to
(kg, Cg). Suppose the contrary held and there was an optimal path converging to (kg, Cg).
By Lemma 10, this means that the value function is locally decreasing around the optimal
path (kt+1, Ct) for t � T, with T > 0 sufficiently large. Consider the following feasible
variation for t = �1, 0, . . . , T, Ĉt = Ct(1 � det), k̂t+1 = kt+1, x̂t = xt � Ctdet where48

det =

✓
1 � 1

s

Ct
xt

◆�1
det�1. (19)

Observe that (19) is precisely the relation which ensures that the variation satisfies all
the constraints of the system (in particular (16b) of which (19) is the linearized version).
Workers’ consumption increases with this variation by dct = Ctdet > 0. Therefore, the
value of this path changes by

dV =
T

Â
t=0

btu0(ct)dct

| {z }
>0

+bT+1 (V(kT+1, CT � CTdeT)� V(kT+1, CT))| {z }
>0, by Lemma 10

> 0,

which is contradicting the optimality of {kt+1, Ct}. An optimal path converges to (kg, Cg).

48Notice that xt = Ct + kt+1 � Ct by definition of xt, and s > 1. Hence this expression is well defined.
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B.4 Proofs of Auxiliary Lemmas
B.4.1 Proof of Lemma 1

Proof. Focus on Z1 first and consider a state (k1, C0) 2 Z1, that is, k1 < kg and C0 � 1�b
b k1.

Suppose (k1, C0) was feasible, and as such generated by a path of states {(kt+1, Ct)}t�0,
each of which compatible with (16a)–(16c). We now show by induction the claim that
(kt+1, Ct) 2 Z1 and kt+1  bF(kt) for any t � 0. This will lead to a contradiction
since bF(k) is a concave and increasing function with bF(0) < 0 and smallest fixed point
bF(kg) = kg. Thus, any sequence of capital stocks {kt+1} satisfying kt+1  bF(kt), start-
ing at any k1 < kg, necessarily drops below zero in finite time, contradicting feasibility.

Pick a point (kt, Ct�1) of the sequence and assume (kt, Ct�1) 2 Z1. Then, xt+1 ⌘
kt+1 + Ct  F(kt) by (16c), and so

kt+1 = xt+1 � Ct

✓
bxt+1

kt

◆1/s

| {z }
�bxt+1/kt

 bxt+1

✓
1
b
� Ct

kt

◆
 bxt+1  bF(kt), (20)

where in the first inequality we used the fact that bxt+1/kt  bF(kt)/kt < 1 which holds
since kt < kg; and in the second inequality we used that Ct�1 � 1�b

b kt. Building on (20),
the fact that kt+1  bxt+1 proves that

Ct = xt+1 � kt+1 � 1 � b

b
kt+1. (21)

To sum up, this implies that kt+1  bF(kt) < kg and that Ct � 1�b
b kt+1, so (kt+1, Ct) 2 Z1.

Moreover, kt+1  bF(kt). This proves the aforementioned claim and hence the desired
contradiction. No state in Z1 is feasible.

Now consider a state (k1, C0) 2 Z2. Again, suppose it was generated by a path of
feasible states {(kt+1, Ct)}. Define h(k, C�) ⌘ k/Cs

� for any state (k, C�). The proof idea
is to show the claim that (kt+1, Ct) 2 Z2 for all t and that h(kt+1, Ct) is strictly increasing
and diverges to +•. Since kt+1 is bounded from above by k, this will mean that Ct !
0. Moreover, kt+1 is bounded away from zero since feasibility requires bF(k) � 0 and
bF(k) turns negative for k sufficiently close to zero. Lemma 12 below proves that this
combination of convergence of Ct to zero and kt+1 bounded away from zero violates the
transversality condition.

We now prove the aforementioned claim by induction. Take a state (kt, Ct�1) 2 Z2
from the sequence. By construction of Z2, it holds that Ct�1 < wg(kt), or in particular,
(Ct�1/Cg)s < kt/kg.49 Notice that if the next state in the sequence, (kt+1, Ct), satisfied
Ct � 1�b

b kt+1, we must have (kt+1, Ct) 2 Z1 which is infeasible according to the above.50

49This inequality even holds if kt < kg because there, Cg(kt/kg)1/s > (1 � b)/bkt. To see this recall that
Cg = (1 � b)/bkg and so Cg(kt/kg)1/s/((1 � b)/bkt) = (kt/kg)1/s�1 > 1, where we used s > 1.

50Note that if Ct � (1 � b)/b kt+1, then kt+1 < kg. The reason is as follows: The constraints (16a) and
(16b) can be rewritten as kt+1 = (Ct/Ct�1)

s kt/b � Ct. Because (Ct�1/Cg)s < kt/kg, this implies that
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Therefore, Ct <
1�b

b kt+1. Then,

h(kt+1, Ct) =
kt+1
Cs

t
=

kt+1
Cs

t�1bxt+1/kt
=

kt
Cs

t�1

kt+1
b(kt+1 + Ct)| {z }

>1

> h(kt, Ct�1), (22)

which, together with Ct < 1�b
b kt+1 implies that both (kt+1, Ct) 2 Z2 and h(kt+1, Ct) is

strictly increasing in t. To show that h(kt+1, Ct) diverges to +•, suppose it were the case
that h(kt+1, Ct) converged to some H > 0. Using (22), convergence of h(kt+1, Ct) would
imply that kt+1/ (b(kt+1 + Ct)) ! 1, or equivalently that kt+1/Ct ! b/(1 � b). Since
kt+1 is bounded away from zero (see argument in previous paragraph), this can only be
the case if (kt+1, Ct) converges to a feasible steady state,51 that is some

⇣
k, 1�b

b k
⌘

with
kg  k  kg. However, as (kt+1, Ct) 2 Z2 for any t, it is the case that (Ct/Cg)s < kt+1/kg,
or,

h(kt+1, Ct) > h(kg, Cg) = sup
kgkkg

h(k, (1 � b)/bk),

where the equality follows because k/((1 � b)/bk)s is decreasing in k. This shows that
h(kt+1, Ct) ! • and hence completes the proof by contradiction. No state in Z2 is feasible.

Lemma 12. Suppose that Ct ! 0 and kt+1 bounded away from zero for a given path of states
(kt+1, Ct). Then, this path is not feasible.
Proof. Suppose the path (kt+1, Ct) is feasible. In particular, this necessitates that the IC
condition bU0(Ct)(Ct + kt+1) = U0(Ct�1)kt and the transversality condition btU0(Ct)kt+1 !
0 hold. We back out (after tax) interest rates from the allocation as Rt ⌘ U0(Ct�1)/(bU0(Ct)).
Thus we can recover the capitalists’ per period budget constraint Ct + kt+1 = Rtkt, and,
using the transversality condition, also present value budget constraints starting at any
given time t0 � 0,

•

Â
t=t0

1
Rt0,t

Ct = Rt0kt0 , (23)

where we denote Rt0,t ⌘ Rt0+1 · · · Rt. Also, by construction of Rt, consumption can be
expressed as

Ct = b(t�t0)/s �Rt0,t
�1/s Ct0 . (24)

Define K ⌘ inft kt+1 > 0 and K ⌘ supt kt+1 > 0. Using the per period budget constraints,
we then have

Rt =
Ct + kt+1

kt
� kt+1

kt

kt+1 >
�
Ct/Cg

�s kg/b � Ct. Note that the right hand side of this inequality is increasing in Ct as long
as it is positive (which is the only interesting case here). Substituting in Ct � (1 � b)/b kt+1, this gives
kt+1 >

�
kt+1/kg

�s kg/b � (1 � b)/bkt+1. Rearranging, kt+1/kg >
�
kt+1/kg

�s, a condition which can only
be satisfied if kt+1/kg < 1 (recall that s > 1).

51Notice that, if kt+1/Cs
t ! H > 0 and kt+1/Ct ! b/(1 � b) then convergence of kt+1 and Ct+1 them-

selves immediately follows.
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and similarly,

Rt0,t �
kt+1
kt0+1

� K
K

. (25)

Combining (23), (24) and (25), we find

kt0 =
1

Rt0

•

Â
t=t0

b(t�t0)/s �Rt0,t
��(1�1/s)

| {z }
(K/K)

�(1�1/s)

Ct0  Ct0

�
K/K

��(2�1/s)

1 � b1/s
.

Since t0 was arbitrary, this implies that kt ! 0, leading to the desired contradiction. Thus,
the path (kt+1, Ct) cannot be feasible.

B.4.2 Proof of Lemma 2

Proof. Consider a state (k, C�) with wg(k)  C�  wg(k) and k � kg. In particular,
C�  (1 � b)/bk, (C�/Cg)s � k/kg and (C�/Cg)s  k/kg.52 The idea of the proof
is to show that in fact such a state can be generated by a steady state (kss, Css) (with
Css = (1 � b)/bkss and kg  kss  kg). By definition of kg and kg, such a steady state is
always self-generating.

Guess that the right steady state has kss = (bC�/(1 � b))s/(s�1) k�1/(s�1) and Css =
(1 � b)/bkss. It is straightforward to check that this steady state can be attained with
control x = (Css/C�)sk/b. This steady state is self-generating because kg  kss  kg,
which follows from (C�/Cg)s � k/kg and (C�/Cg)s  k/kg. Finally, the control x is
resource-feasible because C�  (1 � b)/bk and thus,

x =
1
b

2

64

⇣
b

1�b C�
⌘s

k

3

75

1/(s�1)

 k
b
 f (k) + (1 � d)k � g,

where the latter inequality follows from the fact that kg  k  kg and the definition of kg
and kg. This concludes the proof that all states with wg(k)  C�  wg(k) and k � kg are
feasible.

Now regard a state on the boundary {C� = wg(k), k > kg}, so we also have that
C� < (1 � b)/bk.53 Such a state is generated by (kss, Css) = (kg, Cg). Moreover, the
unique control which moves (k, C�) to (kg, Cg) is x < k/b  f (k) + (1 � d)k � g, or in
terms of c, c > 0.

To show that (kg, Cg) is in fact the only feasible state generating (k, C�), let (k0, C) be a
state generating (k, C�). If k0 < kg, then (k0, C) is not feasible by Lemma 1, and if k0 = kg
only (kg, Cg) generates (k, C�). Suppose k0 > kg. Then, C < (1 � b)/bk0,54 and so we can

52These inequalities hold for all k � kg. The proofs are analogous to the proofs in footnotes 49 and 53.
53This holds because C� = wg(k) = Cg(k/kg)1/s and thus C�/((1 � b)/bk) = (k/kg)1/s�1 < 1.
54This holds because by the IC constraint (1c), b(k0 + C)/Cs = kg/Cs

g or equivalently (k0 + C)/C =

1/(1 � b) (C/Cg)s. Thus, letting k = k0/C, (k + 1)ks = (1 � b)�1 · (b/(1 � b))s · (k0/kg)s. Since the right

12



recycle equation (22) to see h(k0, C) > h(k, C�). Because h(k, C�) = h(kg, Cg) however,
this implies that h(k0, C) > h(kg, Cg), or put differently, C < wg(k0). Again by Lemma
1 such a (k0, C) is not feasible. Therefore, the only state that can generate a state on the
boundary {C� = wg(k), k > kg} is (kg, Cg), and the associated unique control involves
positive c.

B.4.3 Proof of Lemma 3

Proof. Let V (Ṽ) be the space of all continuous, weakly (strictly) increasing functions v :
[kg, k̄] ! R+ with y(k, v(k)) weakly (strictly) decreasing in k, and v(kg) = Cg, v(kg) = Cg.
For these functions, T is well-defined since for small values of C�, k0(F(k), k, C�) tends
to F(k) 2 (kgk̄]. Moreover, the supremum in (18) is attained for all k 2 [kg, k̄] since the
set of C� in (18) is closed and bounded. We next show that (a) instead of considering
all possible controls x, it is sufficient to consider x = F(k); and (b) instead of looking for
C� that satisfy the inequality in (18), it suffices to look for solutions to the corresponding
relation with equality. This will allow us to write

Tv(k) = max{C� | v(k0(F(k), k, C�)) = C(F(k), k, C�)}, (26)

The formal arguments behind these two steps are:

(a) Fix k 2 [kg, k̄] and v 2 V . Suppose the supremum in (18) is attained by C�, with
control x0 < F(k). Define Fv,k,C� : [0, F(k)] ! R by

Fv,k,C�(x) = y
�
k0(x, k, C�), C(x, k, C�)

�
| {z }

constant in x

�y
�
k0(x, k, C�), v(k0(x, k, C�))

�
| {z }

decreasing in x

(27)

and notice that v(k0(x0, k, C�)) � C(x0, k, C�) is equivalent to Fv,k,C�(x0) � 0. Since
Fv,k,C�(x) is weakly increasing in x due to v 2 V , Fv,k,C�(F(k)) � Fv,k,C�(x0) and
so v(k0(F(k), k, C�)) � C(F(k), k, C�). Therefore, focusing on controls x = F(k) is
without loss in (18).

(b) Now argue that equality (rather than inequality) is without loss in (18). Suppose
the supremum were attained by C� with control x = F(k) and strict inequality,
v(k0(F(k), k, C�)) > C(F(k), k, C�). Since both sides of this inequality are contin-
uous in C�, it follows that slightly increasing C� still satisfies the inequality and
hence C� could not have attained the supremum in the first place.
Notice also that the equation v(k0(F(k), k, C�)) = C(F(k), k, C�) can never have
more than one solution since raising C� weakly decreases the left hand side and
strictly increases the right hand side.

hand side is increasing in k, the fact that k0 > kg tells us that k > b/(1 � b), which is what we set out to
show.
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Now we argue that T maps V into Ṽ . Take v 2 V . To show Tv is continuous and strictly
increasing, define first the auxiliary function Yv : [kg, k̄]⇥ R++ ! R by

Yv : (k, C�) = y
�
k0(F(k), k, C�), C(F(k), k, C�)

�
| {z }

% in k and& in C�

� y
�
k0(F(k), k, C�), v(k0(F(k), k, C�))

�
| {z }

& in k and% in C�

.

The function Yv is continuous and consists of two terms: The first term is equal to b�1k/Cs
�,

using the definition of y, and hence strictly increasing in k and strictly decreasing in C�.
For the second term, recall that

k0(F(k), k, C�) = F(k)

 
1 � C�

✓
b

kF(k)s�1

◆1/s
!

is strictly increasing in k and strictly decreasing in C�, and v is such that y(k, v(k)) is
weakly decreasing in k. Thus, the second term is weakly decreasing in k and weakly in-
creasing in C�. Putting both terms together gives us that Yv(k, C�) is continuous, strictly
increasing in k, and strictly decreasing in C�. We can rewrite Tv as

Tv(k) = C� where C� is the unique number with Yv(k, C�) = 0.

Since Yv is continuous, strictly increasing in k, strictly decreasing in C� and admits a
unique solution C� = Tv(k) to the equation Yv(k, C�) = 0, it follows that Tv(k) is con-
tinuous and strictly increasing.55

To prove that k 7! y(k, Tv(k)) is strictly decreasing, pick k1 < k2 in [kg, k̄]. Suppose
y(k1, Tv(k1))  y(k2, Tv(k2)). Since Tv(k) is strictly increasing, it follows that

k1
Tv(k1)s � k2

Tv(k2)s <
k1

Tv(k1)s + Tv(k1)
1�s

| {z }
y(k1,Tv(k1))

� k2
Tv(k2)s � Tv(k2)

1�s

| {z }
�y(k2,Tv(k2))

 0.

Defining k0
i ⌘ k0(F(ki), ki, Tv(ki)) and Ci ⌘ C(F(ki), ki, Tv(ki)), we find

y(k01, C1) = b�1 k1
Tv(k1)s < b�1 k2

Tv(k2)s = y(k02, C2). (28)

This, however, implies that Tv(k2) cannot have been optimal: Pick an alternative con-
sumption level C2,� as C2,� = Tv(k1)(k2/k1)1/s, which exceeds Tv(k2) by (28). Moreover,
pick the policy x2 ⌘ F(k1), which is feasible, x2  F(k2). Since k1/Tv(k1)s = k2/Cs

2,� by
construction, it follows that (k0(x2, k2, C2,�), C(x2, k2, C2,�)) = (k01, C1), which lies on the

55This is a fact that holds more generally: If I1, I2 ⇢ R are intervals and f : I1 ⇥ I2 ! R is continuous,
strictly increasing in x, and strictly decreasing in y with the property that for each x there exists a unique
y⇤(x) s.t. f (x, y⇤(x)) = 0, then y⇤(x) must be continuous and strictly increasing in x.
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graph of v. Hence Tv(k2) cannot have been optimal and so y(k, Tv(k)) is decreasing in k.
Finally, we prove that Tv(kg) = Cg. Note that k0(F(kg), kg, Cg) = kg and C(F(kg), kg, Cg) =

Cg. Because k0(F(kg), kg, C�) is strictly decreasing in C� and so k0(F(kg), kg, C�) < kg for
C� > Cg (for k < kg, v(k) is not even defined), this implies that Tv(kg) = Cg, concluding
the proof that T(V) ⇢ Ṽ .

B.4.4 Proof of Lemma 4

Proof. Note that any state (k, C�) reaches the space {C�  v(k)} in one step if and only
if C�  Tv(k) (provided that v satisfies the regularity properties in Lemma 3). Thus, by
iteration, Z(i) = {wg(k)  C�  Tiwg(k)}. Because Z(i) ◆ Z(j) for i � j, it holds that
Tiwg(k) � Tjwg(k).56

B.4.5 Proof of Lemma 5

Proof. The existence of the limit limi!• Tiwg(k) is straightforward for every k (monotone
sequence, bounded above because for large values of C�, k0(F(k), k, C�) < kg for any k).
It can easily be verified that wg 2 V . Thus, using Lemma 3, w̄ must be weakly increasing,
w̄(kg) = Cg, w̄(kg) = Cg, and y(k, w̄(k)) must be weakly decreasing. To show w̄ 2 V ,
suppose now that w̄ were not continuous. Then, there would have to be two arbitrarily
close values of k, k1 < k2 with a significant gap between TNwg(k1) and TNwg(k2) >
TNwg(k1) for some large N. Since k0(...) and C(...) are both continuous, k1 and k2 can be
chosen sufficiently close so that

k01 ⌘ k0(F(k1), k1, TNwg(k1)) > k0(F(k2), k2, TNwg(k2)) ⌘ k02,

yet the inequality is reversed for C(...), C1 ⌘ C(F(k1), k1, TNwg(k1)) < C(F(k2), k2, TNwg(k2)) ⌘
C2. However, this contradicts the definition of TNwg since both pairs (k01, C1) and (k02, C2)
have to lie on the graph of the same increasing function TN�1wg but the latter is to the
top left of the former. Therefore, w̄ is continuous and w̄ 2 V .

Applying Dini’s Theorem, the convergence of Tnwg to w̄ is also uniform, and by inter-
changing limits we find that

w̄(k0(F(k), k, w̄(k)) = lim
n!•

Tnwg(k0(F(k), k, Tn+1wg(k)))

= lim
n!•

C(F(k), k, Tn+1wg(k)) = C(F(k), k, w̄(k)), (29)

and thus, by the representation of T in (26), w̄ = Tw̄. This also means that w̄ 2 Ṽ , so w̄
is strictly increasing and y(k, w̄(k)) strictly decreasing. Hence, for any given k, the only
feasible policy at point (k, w̄(k)) is x = F(k) (or equivalently c = 0) since for any feasible
policy x, Fw̄,k,w̄(k)(x) from (27) needs to be non-negative; but by w̄ 2 Ṽ and (29), Fw̄,k,w̄(k)
is strictly increasing with Fw̄,k,w̄(k)(F(k)) = 0, so x = F(k) is the only feasible policy.

56A subtlety here is that Z(i) ◆ Z(j) only holds because states in the set {C� = wg(k)} is “self-generating”,
that is, if a path hits the set {C� = wg(k)} after j steps, it can stay in that set forever. In particular, it can hit
the set after i � j steps as well. This explains why Z(i) ◆ Z(j).
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B.4.6 Proof of Lemma 6

Proof. Define h as before, h(k0, C) ⌘ k0/Cs. Fix a state (k1, C0) with C0 > w̄(k1). First,
consider the case C0 � (1 � b)/bk1 and suppose it were generated by a feasible path
{(kt+1, Ct)}. As an intermediate result we now establish that Ct > (1 � b)/bkt+1 along
such a path. We do this by distinguishing the following two cases:

(a) If kt+1  kg, this follows directly from Ct > w̄(kt+1) � (1 � b)/bkt+1. The former
inequality holds by construction of w̄,57 the latter by Lemma 4.

(b) If instead kt+1 > kg, it must be the case that ks+1 > kg for all s < t as well.58 But
then, using that xt  F(kt) < kt/b for kt > kg,

kt+1
Ct

=
xt
Ct

� 1 <
kt/b

Ct�1
� 1 =

b

1 � b
.

We use our intermediate result as follows (still for the case C0 � (1 � b)/bk1). Consider

h(kt+1, Ct) =
kt+1
Cs

t
=

kt
Cs

t�1

kt+1
b(kt+1 + Ct)| {z }

<1

< h(kt, Ct�1). (30)

If h(kt+1, Ct) converges to zero, then either kt+1 ! 0 or Ct ! • (in which case kt+1 ! 0
by the law of motion for capital and the fact that kt  k̄). Such a path is not feasible
because then F(kt+1) drops below zero in finite time (see the proof of Lemma 1 for a
similar argument). Hence, suppose h(kt+1, Ct) ! h > 0. Then, kt+1/(b(kt+1 + Ct)) ! 1,
so the path must approximate the steady state line described by {(k, C�) |C� = (1 �
b)/bk}. Because Ct > w̄(kt+1) along the path, (kt+1, Ct) must be converging to (kg, Cg).

Next we show that this convergence is still true if we take ct to be zero. Suppose there
were times with ct > 0. Then, define a new path {(k̂t+1, Ĉt)}, starting at the same initial
state (k1, C0) but with controls ct = 0. Observe that

h(k̂t+1, Ĉt) = y(k̂t+1, Ĉt)� Ĉ1�s
t = b�1h(k̂t, Ĉt�1)� h(k̂t, Ĉt�1)

(s�1)/s(bF(k̂t))
�(s�1)/s

k̂t+1 = F(k̂t)�
 

bF(k̂t)

h(k̂t, Ĉt�1)

!1/s

,

57If it were violated, C0  Ttw̄(k1) = w̄(k1) by construction of w̄. This would contradict our assumption
that C0 > w̄(k1).

58The reason for this is that for any state (k, C�) with k  kg and C� > w̄(k) we have that
k0 ⌘ k0(x, k, C�)  kg for any control x  F(k). First, if y(k0, C) � y(kg, Cg), then the curve
{(k0(x, k, C�), C(x, k, C�)), x > 0} and the graph of w̄ necessarily intersect at a state k̃ with capital less
than kg. The intersection is unique since y(k, w̄(k)) is strictly increasing. Since C� > w̄(k) it cannot
be that k̃ = k0(x, k, C�) for a feasible x  F(k) and therefore, any k0(x, k, C�) with a feasible x  F(k)
is necessarily less than k̃  kg. Second, if y(k0, C) < y(kg, Cg), that is, k/Cs

� < kg/(Cg)s, then

k0  F(k)� C�
⇣

bF(k)
k

⌘1/s
< F(kg)� Cg

⇣
bF(kg)

kg

⌘1/s
= kg.
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where the first equation is increasing in h(k̂t, Ĉt�1) for the relevant parameters for which
h(k̂t+1, Ĉt) � 0, and similarly the second equation is increasing in F(k̂t) if k̂t+1 � 0. By
induction over t, if h(k̂t, Ĉt�1) � h(kt, Ct�1) and k̂t � kt (induction hypothesis), then,
because F(k̂t) � xt,

h(k̂t+1, Ĉt) � b�1h(kt, Ct�1)� h(kt, Ct�1)
(s�1)/s(bxt)

�(s�1)/s = h(kt+1, Ct)

k̂t+1 � F(kt)�
✓

bF(kt)
h(kt, Ct�1)

◆1/s

,

confirming that k̂t � kt and h(k̂t, Ĉt�1) � h(kt, Ct�1) for all t. Given that h(kt+1, Ct) !
h > 0, either

⇣
k̂t+1, Ĉt

⌘
! (kg, Cg) as well, or {(k̂t+1, Ĉt)} converges to some steady state

between kg and kg. The latter cannot be because of Ĉt > w̄(k̂t+1) along the path. But
the former is precluded by Lemma 7 below. This provides a contradiction, proving that a
state (k1, C0) with C0 > w̄(k1) and C0 > (1 � b)/bk1 cannot be feasible.

Now, consider the case C0 < (1� b)/bk1. Due to C0 > w̄(k1), this can only be the case
if k1 > kg. Again, suppose (k1, C0) were generated by a feasible path {(kt+1, Ct)}. Given
the first half of this proof, if at any point (kt+1, Ct) lies above the steady state line, we have
the desired contradiction. Therefore, suppose Ct < (1 � b)/bkt+1 for all t. In that case,

h(kt+1, Ct) =
kt+1
Cs

t
=

kt
Cs

t�1

kt+1
b(kt+1 + Ct)| {z }

>1

> h(kt, Ct�1).

Note that h(kt+1, Ct) is bounded from above, for example by h(kg, Cg) (because all states
below the steady state line with h equal to h(kg, Cg) are below the graph of wg and thus
below w̄ as well). So, h(kt+1, Ct) converges and kt+1/(b(kt+1 + Ct)) ! 1. The state ap-
proximates the steady state line. Because the only feasible steady state with below the
steady state line but above the graph of w̄ is (kg, Cg) it follows that (kt+1, Ct) ! (kg, Cg).
Following the same steps as before, it can be shown that without loss of generality, con-
trols ct can be taken to be zero along the path. By Lemma 7 below this is a contradiction,
concluding our proof that no state (k1, C0) with C0 > w̄(k1) is feasible.

B.4.7 Proof of Lemma 7

Proof. We prove each of the results in turn.

(a) Notice that c = 0 takes any state on the graph of w̄ to another state on the graph of w̄
(because Tw̄ = w̄). Suppose k1 < kg (the case k1 > kg is analogous). Then, no future
capital stock kt+1 can exceed kg. Because if it did, there would have to be a capital
stock k 2 (kg, kg) with k0(F(k), k, w̄(k)) = kg, by continuity of k 7! k0(F(k), k, w̄(k)).
But this is impossible by definition of kg.59 Thus, along the path, Ct > (1� b)/bkt+1

59By definition of kg, F(kg) = kg + Cg, and so, F(k) < kg + Cg for k < kg.
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and so h(kt+1, Ct) is decreasing. As h(kg, Cg) > h(k, w̄(k)) for all k > kg,60 this means
(kt+1, Ct) ! (kg, Cg).

(b) For simplicity, focus on the case k0 < kg. Again, the case k0 > kg is completely
analogous. Suppose (kt+1, Ct) were converging to (kg, Cg). Note that at kg, F(k)/k
is decreasing.61 Thus, there exists a time T > 0 for which the capital stock kT is
sufficiently close to kg that F(k)/k is decreasing for all k in a neighborhood of kg

which includes {kt}t�T. Let {k̂t+1, Ĉt} denote the path with ct = 0, starting from
(kT, w̄(kT)). We already know that {k̂t+1, Ĉt} does indeed converge to (kg, Cg) from
the first part of this proof. Also, observe that both (kt+1, Ct) and (k̂t+1, Ĉt) have
controls ct = 0 here, unlike in the proof of Lemma 6.
In the remainder of this proof, we denote the “zero control c = 0” laws of motion for
capital and capitalists’ consumption by Lk(k, C�) ⌘ k0(F(k), k, C�) and LC(k, C�) ⌘
C(F(k), k, C�) (only for this proof). Since F(k)/k is locally decreasing, it follows
that dLk/dk > 0, dLk/dC� < 0 and dLC/dk < 0, dLC/dC� > 0. This implies that
because CT�1 > w̄(kT) (which must hold or else C0  w̄(k1) by construction of w̄),
Ct > Ĉt and kt+1 > k̂t+1 for all t � T. Moreover, borrowing from equation (22), we
know that

h(kt+1, Ct) = h(kt, Ct�1)

 
1
b
�
✓

1
h(kt, Ct�1)

◆1/s 1
(bF(kt))1�1/s

!
,

which implies that by induction h(kt+1, Ct)  h(k̂t+1, Ĉt), that is,

log h(kt+T, Ct+T�1)

= log h(kT, CT�1) +
t�1

Â
s=0

log

 
1
b
�
✓

1
h(kT+s, CT+s�1)

◆1/s 1
(bF(kT+s))1�1/s

!

 log h(kT, CT�1) +
t�1

Â
s=0

log

 
1
b
�
✓

1
h(k̂T+s, ĈT+s�1)

◆1/s 1
(bF(k̂T+s))1�1/s

!

= log h(k̂t+T, Ĉt+T�1) + log h(kT, CT�1)� log h(k̂T, ĈT�1).

As t ! •, this equation yields

log h(kg, Cg)  log h(kg, Cg) + log h(kT, CT�1)� log h(k̂T, ĈT�1)| {z }
=�kT(Ĉ�s

T�1�C�s
T�1)<0

,

which is a contradiction. Therefore, (kt+1, Ct) 6! (kg, Cg).
60Note that w̄(k) > wg(k) and h(k, wg(k)) = const, see Lemmas 1 and 2 above.
61This holds because F0(kg) < 1/b and F(kg) = 1/bkg, and so d

dk F(k)/k < 0.
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C Numerical Method
To solve the Bellman equation (15) we must first compute the feasible set Z⇤. We restrict
the range of capital to a closed interval [k, k̄] with k � kg. This leads us to seek a subset
Z⇤k ⇢ Z⇤ of the feasible set Z⇤. We compute this set numerically as follows.

Start with the set Z⇤
(0) defined by C� = 1�b

b k and k 2 [k, k̄]. This set is self generating
and thus Z⇤

(0) ⇢ Z⇤k. We define an operator that finds all points (k, C�) for which one
can find c, K0, C satisfying the constraints of the Bellman equation and (k0, C) 2 Z⇤

(0). This
gives a set Z⇤

(1) with Z⇤
(0) ⇢ Z⇤

(1). Iterating on this procedure we obtain Z⇤
(0), Z⇤

(1), Z⇤
(2), . . .

and we stop when the sets do not grow much. We then solve the Bellman equation by
value function iteration. We start with a guess for V0 that uses a feasible policy to evaluate
utility. This ensures that our guess is below the true value function. Iterating on the Bell-
man equation then leads to a monotone sequence V0, V1, . . . and we stop when iteration n
yields a Vn that is sufficiently close to Vn�1. Our procedure uses a grid that is defined on a
transformation of (k, C�) that maps Z⇤ into a rectangle. We linearly interpolate between
grid points.

The code was programmed in Matlab and executed with parallel ’parfor’ commands,
to improve speed and allow denser grids, on a cluster of 64-128 workers. Grid density
was adjusted until no noticeable difference in the optimal paths were observed.

D Proof of Proposition 4
As in Appendix B we use the notation that F(k) = f (k) + (1 � d)k. The derivatives of S
evaluated at some time t are denoted by SI,t ⌘ ∂St

∂It
and St,Rt ⌘

∂St
∂Rt

, for t > t.
Define the following object,

wt =
dWt

dkt+1
= Â

t0�t+1
bt0�tu0(ct0)(F0(kt0)� Rt0)

 
t0�1

’
s=t+1

SI,sRs

!
, (31)

which corresponds to the response in welfare Wt, measured in units of period t utility, of
a change in savings by an infinitesimal unit between periods t and t + 1. Now consider
the effect of a one-time change in the capital tax, effectively changing Rt to Rt + dR in
period t. This has three types of effects on total welfare: It changes savings behavior in
all periods t < t through the effect of Rt on St. It changes capitalists’ income in period
t through the effect of Rt on Rtkt. And finally it changes workers’ income in period t
directly through the effect of Rt on F(kt) � Rtkt. Summing up these three effects, one
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obtains a total effect of

dW =
t�1

Â
t=0

bt�twt St,Rt dR| {z }
change in savings in period t<t

+ wt SI,tktdR| {z }
change in savings in period t

�u0(ct) ktdR|{z}
change in workers0 income in period t

.

The total effect needs to net out to zero along the optimal path, that is,

wtSI,t � u0(ct) = � 1
kt

t�1

Â
t=0

bt�twtSt,Rt . (32)

By optimization over the initial interest rate R0, we find the condition

w0SI,0k0 � u0(c0)k0 = 0. (33)

This shows that SI,0 > 0 and so w0 2 (0, •). By their definition (31), the wt satisfy the
recursion

wt = u0(ct+1)(F0(kt+1)� Rt+1) + bSI,t+1Rt+1wt+1.

Since it is easy to see that Rt+1 > 0 for all t,62 it follows that wt is finite for all t. Then,
due to the recursive nature of (32), if wt > 0 for t < t,

wtSI,t � u0(ct) = � 1
kt

t�1

Â
t=0

bt�t wt|{z}
>0

St,Rt|{z}
0

� 0.

In particular, using the initial condition (33), this proves by induction that

wtSI,t � u0(ct) � 0 for all t > 0. (34)

Now suppose the economy were converging to an interior steady state with non-positive
limit tax (either zero or negative), that is, Dt ⌘ F0(kt) � Rt converges to a non-positive
number, ct ! c > 0 and SI,tRt ! SI R > 0. It is immediate by (31) that if Dt converges to
a negative number, then wt must eventually become negative—contradicting (34). Hence
suppose Dt ! 0. Distinguish two cases.

Case I: Suppose first that bSI R > 1. Thus, ’t
s=1(bSI,sRs) is unbounded and diverges

to •. Then, because w0 is finite, we have that the partial sums in the expression for w0

62Otherwise capital would be zero forever after due to S(0, . . .) = 0, a contradiction to the allocation
converging to an interior steady state.
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coming from (31) have to converge to zero,

w̄t ⌘ Â
t0�t+1

bu0(ct0)(F0(kt0)� Rt0)
t0�1

’
s=1

(bSI,sRs) ! 0, as t ! •.

Hence,

wt =

 
t

’
s=1

(bSI,sRs)

!�1

w̄t ! 0,

contradicting the fact that wt is bounded away from zero by u0(c)/SI . Therefore, bSI R >
1 is not compatible with any interior steady state. (This argument does not use the fact
that we focus on Dt ! 0.)

Case II: Suppose bSI R < 1. In this case, we show convergence of wt to zero directly. Fix
e > 0. Let t be large enough such that bSI,sRs < b for some b < 1 and that |u0(ct0)Dt0 | <
e(1 � b). Then,

|wt|  Â
t0=t+1

e(1 � b)bt0�1�t = e.

Again, this contradicts the fact that wt is bounded away from zero by u0(c)/SI .
This concludes our proof, establishing that the capital tax Tt = Dt/F0(kt) must con-

verge to a positive number at the interior steady state.

E Derivation of the Inverse Elasticity Rule (4) and Proof of
the Corollary

Derivation of the Inverse Elasticity Rule. In this section, we continue using the nota-
tion and results of Section D. Consider equation (32). Because bSI R < 1, wt converges
to

w =
b

1 � bSI R
(F0(k)� R)u0(c).

We make the additional convergence assumption

t

Â
t=1

b�t wt�tkt�t

wtkt
eSt�t ,Rt !

•

Â
t=1

b�teS,t 2 [�•, •], as t ! •, (35)

which amounts to first taking the limit of the summands as t ! •, and then taking the
limit of the series, instead of considering both limits simultaneously. Under this order of
limits assumption, we can characterize the limit of equation (32) as t ! •,

SI,t �
u0(ct)

wt| {z }
!SI� u0(c)

w

= �
t

Â
t=1

b�t wt�tkt�t

wtkt
eSt�t ,Rt

| {z }
!Â•

t=1 b�teS,t

. (36)
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Distinguish two cases according to whether w = 0 or w 6= 0. First, if w = 0, or equiv-
alently the limit tax T is zero, then (36) reveals that Â•

t=1 b�teS,t is either plus or minus
infinity. Therefore, the inverse elasticity formula holds in this case as both sides of (4)
converge to zero.

Second, if w 6= 0, then by taking the limit of (32) as t ! • and using the condition
(35), we find

SI �
u0(c)

w
= �

•

Â
t=1

b�teS,t,

which can be rewritten as

bSI R
1 � bSI R

(F0(k)� R)� R = � 1
1 � bSI R

(F0(k)� R)
•

Â
t=1

b�t+1eS,t.

Note that F0(k)� R = T
1�T R. Therefore, we can rearrange the condition to

bSI R
1 � bSI R

� 1 � T
T = � 1

1 � bSI R

•

Â
t=1

b�t+1eS,t

) T =
1 � bRSI

1 + Â•
t=1 b�t+1eS,t

.

This is precisely the inverse elasticity formula (4).

Proof of the Corollary. Notice that by Proposition 4 the limit tax rate is positive, T >
0, conditional on convergence to an interior steady state. If now the inverse elasticity
formula implies a negative tax rate, then either the regularity condition for the inverse
elasticity rule is not satisfied or the allocation does not converge to an interior steady
state.

F Infinite Sum of Elasticities with Recursive Utility
In this section, we prove the result that the infinite sum Â•

t=1 b�teS,t does not converge
for any recursive utility function that is locally non-additive.

More specifically, we consider the capitalist’s optimization problem as in Section 2.3,
just with recursive preferences as in Section 3.1, with U = c. In particular, the capitalist’s
utility is characterized by the recursion Vt = W(Ct, Vt+1), assuming W is twice continu-
ously differentiable and strictly increasing in both arguments. Analogous to our analysis
in Section 3.1, we define b(c) ⌘ WV(c, V(c)) as the steady state discount factor along a
constant consumption stream yielding steady state utility V(c) = W(c, V(c)).

Any such recursive utility function naturally yields an optimal savings function at+1 =
S(Rtat, Rt+1, . . .). Fix now constant interest rates R and a steady state of the capitalist’s
optimization problem (a, c, V). Let b = WV(c, V(c)) = b(c) the discount factor in that
specific steady state. Define eS,t = 1

a R ∂ log S
∂ log Rt

. The following proposition characterizes the
behavior of the infinite sum Â•

t=1 b�teS,t.
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Proposition 12. Suppose capitalists have recursive preferences represented by (5a) (see Section
3.1, with U = c). Then, if the discount factor is locally non-constant, b

0
(c) 6= 0, the series

ÂT
t=1 b�teS,t does not have a finite limit as T ! •.

Proof. We first compute the elasticities eS,t and then prove that the infinite sum does not
have a finite limit. To compute eS,t, we consider an agent with the recursive preferences
introduced above, who is at a steady state (a, c, V) given a constant interest rates R. Note
that because utility is strictly increasing in a permanent increase in consumption at the
steady state, we have b = WV 2 (0, 1).

The conditions for optimality are then,

Vt = W (Rtat � at+1, Vt+1)

WC (Rtat � at+1, Vt+1) = Rt+1WV (Rtat � at+1, Vt+1)WC (Rt+1at+1 � at+2, Vt+2) .

The first equation is the recursion for utility Vt and the second equation is the Euler equa-
tion. In particular, note that the latter implies that bR = 1 at the steady state. Linearizing
these equations around the steady state (denoted without time subscripts) yields,

WV dVt+1 = �WCR dat + WC dat+1 + dVt � WCa dRt (37)

and

(RWCWVC � RWCC � WCC) dat+1 + WCC dat+2 � (WVWC + WCCa) dRt+1

+ (WCV � RWCWVV) dVt+1 � WCV dVt+2

= (R2WCWVC � WCCR) dat + (RWCWVCa � WCCa) dRt, (38)

where all derivatives are evaluated at the steady state ((R � 1) a, V). To save on notation,
we define w ⌘ WVC � bWCC/WC 2 R, which is a term that will appear multiple times
below. We solve (37) and (38) by the method of undetermined coefficients, guessing

dat+1 = wl dat + a
•

Â
t=0

btqt dRt+t (39a)

dVt = WCR dat + (WCa)
•

Â
t=0

bt dRt+t. (39b)

The form of equation (39b) is what is required by the Envelope condition. We are left to
find l and the sequence {qt}, where qt = b�teS,t, for t � 1, is exactly the sequence
of elasticities were are looking for. Substituting the guesses (39a) and (39b) into (38), we
obtain an expression featuring dat, dat+1, dat+2 and dRt+t for t = 0, 1, . . . . Setting the
coefficient on dat to zero gives a quadratic for l,

w2l2 +
⇣
�(1 + R)w + (R � 1)b

0
(c)
⌘

l + R = 0. (40)

Note that the solution of this equation can never be zero, i.e. l 6= 0. Also, if b
0
(c) = 0,

23



the term in parentheses simplifies to �(1 + R)w and the solutions are just l = w�1 and
l = w�1R.

Setting the coefficient on dRt to zero gives

q0 = bwl.

Similarly for dRt+1 we find after various simplifications,

q1 = wl (q0 � 1) + l
⇣

b2a�1 + (1 � b)b
0
(c)
⌘

and for dRt+t after some more simplifications

qt = wlqt�1 + l (1 � b) b
0
(c), (41)

for t = 2, 3, . . . . The result then follows from this expression: If b
0
(c) 6= 0, the sum

ÂT
t=1 b�teS,t = ÂT

t=1 qt cannot converge. To see this, consider

T

Â
t=1

qt = q1 +
T

Â
t=2

qt = q1 +
T�1

Â
t=1

wlqt +
T

Â
t=2

l(1 � b)b
0
(c).

If the left hand side of this equation converged to some limit Q 2 R, the right hand side
of this equation would diverge since the last sum diverges (while all other terms would
remain finite). Therefore, ÂT

t=1 b�teS,t cannot converge to a finite limit.

G Linearized Dynamics and Proof of Proposition 5
A natural way to prove Proposition 5 would be to linearize our first order conditions in
(2), and to solve forward for the multipliers µt and lt using transversality conditions,
arriving at an approximate law of motion of the form

✓
kt+1
Ct

◆
�
✓

kt
Ct�1

◆
= Ĵ

✓
kt � k⇤

Ct�1 � C⇤

◆
.

To maximize similarity with Kemp et al. (1993), however, we do not take that route; rather
we start with the continuous time problem, derive its first order conditions and linearize
them around the zero tax steady state. The problem in continuous time is

max
Z •

0
e�rt (u(ct) + gU(Ct)) dt

s.t. ct + Ct + g + k̇t = f (kt)� dkt

Ċt =
Ct
s

✓
f (kt)

kt
� d � ct

kt
� r

◆
.
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Let pt and qt denote the costates corresponding respectively to the states kt and Ct. The
FOCs are,

u0
t(ct) = ptct + qt

1
s

Ct
kt

ṗt = rpt � pt( f 0(kt)� d) + qt
Ċt
kt

� qt
Ct
kt
( f 0(kt)� d)

q̇t = rqt � gU0(Ct)� qt
1
s

✓
f (kt)

kt
� d � ct

kt
� r

◆
.

Just like Kemp et al. (1993), we require the two transversality conditions to hold,

lim
t!•

e�rtqtCt = 0 and lim
t!•

e�rt ptkt = 0. (42)

Denote the 4-dimensional state of this dynamic system by xt = (kt, Ct, pt, qt) and its
unique positive steady state (the zero-tax steady state) by x⇤ = (k⇤, C⇤, p⇤, q⇤). The lin-
earized system is,

ẋt = J(xt � x⇤), (43)

where J is a 4 ⇥ 4 matrix with determinant

det J = (1 � s)
f 00(k⇤)u0(c⇤)

u00(c⇤)| {z }
>0

r2

s2 . (44)

Its eigenvalues can be written as,

l1�4 =
r

2
±
⇣r

2

⌘2
� c

2
± 1

2

⇣
c2 � 4 det J

⌘1/2
�1/2

, (45)

with
c =

r

s

u0(c⇤)� gU0(C⇤)
u00(c⇤)k⇤

� f 00(k⇤)u0(c⇤)
u00(c⇤)

. (46)

There are two “±” signs in (45). In the remainder, we number eigenvalues according
to those two signs in (45): l1 has ++, l2 has +�, l3 has �+, and l4 has ��. For
convenience, define g⇤ by g⇤ = u0(c⇤)/U0(C⇤).

In general, a solution xt to the linearized FOCs (43) can load on all four eigenvalues.
However, taking the two transversality conditions into account restricts the system to
only load on eigenvalues with Re(li)  r/2. In Lemma 13 below, we show that this
means the solution loads on eigenvalues l3 and l4.

Lemma 13. The eigenvalues in (45) can be shown to satisfy the following properties.

(a) It is always the case that

Rel1 � Rel2 � r/2 � Rel4 � Rel3.
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(b) If s > 1, then det J < 0, implying that

Rel1 = l1 > r > Rel2 � r/2 � Rel4 > 0 > l3 = Rel3. (47)

In particular, there is a exactly one negative eigenvalue. The system is saddle-path stable.

(c) If s < 1 and g  g⇤, then det J > 0 and d < 0, implying that

Rel1, Rel2 > r > 0 > Rel4, Rel3. (48)

In particular, there exist exactly two eigenvalues with negative real part. The system is
locally stable.

(d) If s < 1 and g > g⇤, the system may either be locally stable, or locally unstable (all
eigenvalues having positive real parts).

Proof. We follow the convention that the square root of a complex number a is defined as
the unique number b that satisfies b2 = a and has nonnegative real part (if Re(b) = 0 we also
require Im(b) � 0). Hence, the set of all square roots of a is given by {±b}. We prove the
results in turn.

(a) First, observe the following fact: Given a real number x and a complex number
b with nonnegative real part, it holds that Re

⇣p
x + b

⌘
� Re

⇣p
x � b

⌘
.63 From

there, it is straightforward to see that Rel1 � Rel2 and Rel4 � Rel3. Finally
Rel2 � r/2 � Rel4 holds according to our convention of square roots having
nonnegative real parts.

(b) The negativity of det J follows immediately from (44). This implies

�d

2
+

1
2

⇣
d2 � 4 det J

⌘1/2
> 0 > �d

2
� 1

2

⇣
d2 � 4 det J

⌘1/2
,

and so (47) holds, using monotonicity of Re
p

x for real numbers x.

(c) The signs of det J and d follow immediately from (44) and (46). In this case, �d/2 ±
1/2Re

�
d2 � 4 det J

�1/2
> 0 proving (48).

(d) This is a simple consequence of the fact that if det J > 0, then either
�d/2 ± 1/2Re

�
d2 � 4 det J

�1/2
> 0, or �d/2 ± 1/2Re

�
d2 � 4 det J

�1/2
< 0, where

under the latter condition the system is locally unstable.
63To prove this, let b̄ denote the complex conjugate of b and note that Re

⇣p
x + b

⌘
is monotonic in the

real number x. Then, Re
⇣p

x + b
⌘

= Re
⇣p

x + b̄
⌘

= Re
✓q

x � b + (b̄ + b)
◆

� Re
⇣p

x � b
⌘

where

b̄ + b = 2Re(b) � 0 and monotonicity are used.
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H Proof of Proposition 6
In this proof, we first exploit the recursiveness of the utility V to recast the IC constraint
(7) entirely in terms of Vt and W(U, V0). Then, using the first order conditions, we are
able to characterize the long-run steady state. Throughout this section, we denote by Xzt
the derivative of quantity X with respect to z, evaluated at time t. To save on notation, we
define f (k, n) ⌘ F(k, n) + (1 � d)k.

Let bt ⌘ ’t�1
s=0 WVs. Using the definition of the aggregator in (3) this implies that

Vct = btWUtUct and Vnt = btWUtUnt. Thus the IC constraint (7) can be rewritten as

•

Â
t=0

btWUt(Uctct + Untnt) = WU0Uc0

⇣
R0k0 + Rb

0b0

⌘
, (49)

and the planning problem becomes

max
{Vt,ct,nt,R0}

V0

s.t. Vt = W(U(ct, nt), Vt+1) (50)
RC (6), IC (49), Rt � 1.

To state the first order conditions, define for each t � 0, At+1 ⌘ 1
bt+1

∂
∂Vt+1

Â•
s=0 bsWUs(Ucscs +

Unsns) and Bt ⌘ 1
bt

Â•
s=0

∂(bsWUs)
∂Ut

(Ucscs + Unsns). Let btnt be the present value multiplier
on the Koopmans constraint (50), btlt the present value multiplier on the resource con-
straint (6), and µ the multiplier on the IC constraint (49). As stated in the proposition,
we assume that the capital tax bound Rt � 1 is not binding eventually, say from period
T onwards. The first order conditions for Vt+1, ct, nt, and kt+1 (in that order) are for each
t � T given by

�nt + nt+1 + µAt+1 = 0
�ntWUtUct + µWUt (Uct + Ucc,tct + Unc,tnt) + µBtUct = lt

ntWUtUnt � µWUt (Unt + Ucn,tct + Unn,tnt)� µBtUnt = lt fnt

�lt + lt+1WVt fkt+1 = 0.

Suppose the allocation converges to an interior steady state in c, k, and n. Then Ut and
Vt converge, as well as their first and second derivatives (when evaluated at ct, kt, and
nt). Similarly, the representative agent’s assets at converge to a value a, which can be
characterized using a time t + 1 version of the IC constraint,

a = lim
t!•

at+1 = lim
t!•

(WUt+1Uct+1bt+1Rt+1)
�1

•

Â
s=t+1

bsWUs(Ucscs + Unsns)

= ((1 � b)UcR)�1 (Ucc + Unn) ,

where b ⌘ b̄(V) = WV 2 (0, 1) (see footnote 30). Using this expression, we see that At+1,
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which can be written as,

At+1 =
WUV,t
WVt

(Uctct + Untnt) +
WVV,t
WVt

b�1
t+1

•

Â
s=t+1

bsWUs(Ucscs + Unsns)

| {z }
WUt+1Uct+1Rt+1at+1!WUUcRa

,

converges as well, to some limit A,

At+1 ! bU
b
(Ucc + Unn) +

bV
b

WUUcRa

=

✓
1 � b

WU
bU + bV

◆
1
b

WUUcRa =
b̄0(V)

b
WUUcRa ⌘ A. (51)

where we defined bX ⌘ WVX and X = U, V. Similarly, we can show that Bt converges to
some finite value B. Taking the limits of quantities in the first order conditions above, we
thus find a system of equations for multipliers nt, µ, lt,

�nt + nt+1 + µA = 0 (52a)

�nt + µ

✓
1 +

Uccc
Uc

+
Uncn

Uc

◆
+ µ

B
WU

= lt
1

WUUc
(52b)

�nt + µ

✓
1 +

Ucnc
Un

+
Unnn

Un

◆
+ µ

B
WU

= �lt
fn

WUUn
(52c)

�lt + lt+1b fk = 0. (52d)

Substituting out lt from (52d) using (52a) and (52b), we find

b fk � 1 =
lt

lt+1
� 1 = �WUUc

lt+1
µA. (53)

We now move to the two main results of this section. First, we show that steady state
capital taxes are zero. Second, we show that steady state labor taxes are also zero, unless
b̄0(V) = 0, when preferences are locally additive separable.

Lemma 14. At an interior steady state, capital taxes are zero, i.e. b fk = 1.

Proof. If A = 0 or µ = 0 the result is immediate from (53). Suppose instead that A 6= 0
and µ 6= 0. Then, (52a) implies that nt and hence lt diverges to +• or �•. Then again,
b fk = 1 follows from (53).64

We move to our second result.

Lemma 15. At an interior steady state, labor taxes are zero, i.e. tn ⌘ 1 + Un
Uc fn

= 0 if b̄0(V) 6= 0
and a > 0.

64Notice that lt ! 0 requires µ = 0 by (54), so the optimal allocation is first best to begin with, implying
b fk = 1.
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Proof. By combining equations (52b) and (52c) we find an expression for tn,

ltt
n = µ

WUUn
fn

✓
Uccc
Uc

+
Uncn

Uc
� Ucnc

Un
� Unnn

Un

◆
, (54)

Note that by normality of consumption and labor the term in brackets is negative, Uccc
Uc

+
Uncn

Uc
� Ucnc

Un
� Unnn

Un
< 0. It is immediate from (54) that tn = 0 if lt diverges to either +•

or �•.65 Suppose lt ! l 2 R. We distinguish whether µ = 0 or µ 6= 0. If µ = 0,
the economy was first best to start with, and the labor tax must be zero at any date,
including at the steady state. If µ 6= 0, convergence of lt (equivalent to convergence of
nt) necessitates that A = 0, using (52a). But then (51) contradicts our assumptions that
preferences are not locally additively separable, b̄0(V) 6= 0, and steady state assets are
positive a > 0.

I Proof of Proposition 7
In this section, we prove Proposition 7. The proof is organized as follows. In Section I.1
we introduce the planning problem, derive and discuss the first order conditions, and
define the largest feasible level of initial government debt b. Section I.2 then focuses on
parts A and B (i) of Proposition 7. Finally, Section I.3 proves the bang-bang property and
parts B (ii) and C of Proposition 7.

I.1 Planning problem and first order conditions
As in the statement of the proposition, we fix some positive initial level of capital k0 > 0.
The problem under scrutiny is

V(b0) ⌘ max
{ct,nt,kt,rt}

Z •

0
e�rt (u(ct)� v(nt)) dt (55a)

ċt = ct
1
s
(rt � r) (55b)

ct + g + k̇t = f (kt, nt)� dkt (55c)
Z •

0
e�rt �u0(ct)ct � v0(nt)nt

�
dt � u0(c0)(k0 + b0) (55d)

ct > 0, nt � 0, kt � 0, rt � 0

where recall that u(c) = c1�s/(1 � s) and v(n) = n1+z/(1 + z), z > 0. In the entire anal-
ysis in this section, we write value functions such as V(b0) without explicit reference to k0
since we treat k0 as fixed. The current-value Hamiltonian of this optimal control problem

65Since At ! A 6= 0 and µ is constant over time, nt and thus also lt have a well-defined limit in [�•, •].
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with subsidiary condition (55d) (see, e.g., Gelfand and Fomin, 2000) can be written as

H(c, k; n, r; l, h, µ) = Fuu(c)� Fvv(n) + hc
1
s
(r � r) + l ( f (k, n)� dk � c � g) , (56)

where we defined Fv ⌘ 1 + µ(1 + z) and Fu ⌘ 1 + µ(1 � s) with µ being the multiplier
on the IC constraint; and where we denoted the costates of consumption and capital by
ht and lt, respectively. Notice that ht  0 or else rt = • were optimal, violating the
resource constraint. Problem (55a) implies the following first order conditions for the
controls {nt, rt},

Fvv0(nt) = lt fn(kt, nt) (57a)

rt

(
= 0 if ht < 0
2 [0, •) if ht = 0,

(57b)

the following laws of motion for the costates,

ḣt � rht = ht
r

s
+ lt � Fuu0(ct) (57c)

l̇t = (r � r⇤t )lt (57d)

and the following optimality condition for the initial state of consumption c0,

h0 = �µsc�s�1
0 (k0 + b0). (57e)

In equation (57d) we defined the before-tax return on capital as r⇤t = fk(kt, nt)� d. The
conditions (57a)–(57e), together with the constraints (55b)–(55d) and the two transversal-
ity conditions

lim
t!0

e�rtltkt = 0 (57f)

lim
t!0

e�rthtct = 0 (57g)

are sufficient for an optimum if we are able to establish that the planning problem (55a)
is a concave maximization problem, or can be transformed into one using variable trans-
formations.

The first order conditions (57a)–(57e) (though not the transversality conditions (57f)
and (57g)) are necessary at an optimum since interiority is ensured by the imposition
of Inada conditions; that is, with the exception when that optimum is also maximizing
the subsidiary constraint, which is the IC constraint in our case (see Gelfand and Fomin,
2000). More specifically, the above first order conditions are not necessary when the opti-
mum to (55a) achieves the supremum in

b ⌘ sup
{ct,nt,kt}

1
u0(c0)

Z •

0
e�rt �u0(ct)ct � v0(nt)nt

�
dt � k0 (58)
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subject to the two other constraints (55b) and (55c). We deliberately formulated (58) in
a way to define b as the highest level of b0 for which there can possibly exist a feasible
allocation. Notice that b 2 [�•, •], allowing for b = �• if no feasible allocation exists at
all (which might happen if g is very large), and b = • if there exists a feasible allocation
for any value of b0.

Since in the case that b0 = b the supremum in (58) is attained, there are still necessary
first order conditions the allocation satisfies, namely the ones corresponding to (58). These
are exactly the same as (57a)–(57e) after substituting µht for ht and µlt for lt, and then
dividing by µ and setting µ = •. This replaces Fu by (1 � s) and Fv by (1 + z) in
(57a)–(57c), leaves (57d) unchanged and alters (57e) to h0 = �sc�s�1

0 (k0 + b0).
One additional remark about the setup in (55a) is in place. We stated an inequality

IC constraint (55d), corresponding to a non-negative multiplier µ. This is without loss of
generality in our setup, since at any optimum, µ will indeed be non-negative: From the
first order condition (57e), we see that our assumption of positive initial private wealth,
k0 + b0 > 0, together with the non-positivity of h0 means that µ � 0.

I.2 Proof of parts A and B (i)
Our proof in this subsection proceeds in three steps. First, we characterize the space
of solutions to a restricted planning problem, in which the length T of capital taxation
is restricted to be infinity. Then we use these insights to prove that T = • is in fact
optimal in the unrestricted planning problem for levels of initial debt b0 2 [b, b] (with non-
empty interior if s > 1). Finally, we show that for all b0 < b there are feasible policies
with T < •. Throughout, we assume that s � 1, as is assumed in parts A and B (i) of
Proposition 7.

1st step: The restricted problem. We start by studying a restricted planning problem,
where we restrict ourselves to the case of indefinite capital taxation (at its upper bound).
Effectively, this implies that rt = 0 for all t and the path of ct is entirely characterized
by c0 and (55b). To characterize this restricted problem, it will prove useful to define
the minimum discounted sum of labor disutilities, henceforth effective disutility from labor,
needed to sustain this path {ct} as

ṽ(c0) ⌘ min
{nt,kt}

Z •

0
e�rtv(nt)dt (59a)

s.t. c0e�r/st + g + k̇t = f (kt, nt)� dkt. (59b)

We prove important properties of the effective disutility ṽ and the optimal control prob-
lem (59a) in Lemma 16.

Lemma 16. The function ṽ : R+ ! R+ is strictly convex, strictly increasing and continuously
differentiable at any c0 2 R++. It satisfies ṽ(0) > 0. Moreover, for any c0 � 0, there exists a
unique solution {n•

t , k•
t } and a costate of capital {l•

t }. Upon defining c•
t = c0e�r/st it holds
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that, {c•
t , n•

t , k•
t , l•

t } ! (c•, n•, k•, l•), where

c• = 0
f (k•, n•) = dk• + g (60a)

fk(k•, n•) = r + d (60b)
v0(n•) = l• fn(k•, n•). (60c)

In particular, the transversality condition limt!• e�rtl•
t k•

t = 0 holds and

ṽ0(c0) =
Z •

0
e�(r+r/s)tltdt. (60d)

Proof. The proof has 4 steps: First, we prove existence and uniqueness of the solution
to a “bounded” version of the optimal control problem (59a) with bounds on nt and kt.
Second, we characterize the optimal paths (k•

t , n•
t ) of this problem. Third, we show

that increasing the bounds on kt and nt makes the bounded problem equivalent to (59a).
Finally, we establish that the claimed properties of ṽ.

First step. For this step, relax the constraint (59b) to be an inequality “” and intro-
duce upper bounds k > 0 and n > 0 on k and n. Using the definition of k• and n• in
(60a)–(60b), pick k > max{k0, k•} and pick n large enough so that n > n• and so that
k̇0 > 0 is feasible at time t = 0.66 This means the problem is given by

ṽ(c0) ⌘ min
{nt,kt}

Z •

0
e�rtv(nt)dt (61a)

s.t. c0e�r/st + g + k̇t  f (kt, nt)� dkt

kt 2 [0, k], nt 2 [0, n].

This problem is clearly a strictly convex minimization problem (strictly convex objective
and a convex constraint), even without bounds on k and n, and therefore at most admits
a single solution. A straightforward application of Seierstad and Sydsaeter (1987, Section
3.7, Theorem 15) to the optimal control problem (61a) reveals that there always exist paths
{n•

t , k•
t } that attain the minimum in (61a).67

Second step. We now study the long-run properties of the solution to the problem (61a).
Before we dive into the details, we note that k• > 0 and n• > 0 are uniquely determined
by (60a) and (60b) due to the Inada properties of fk(·, n) and the fact that f /k � fk. l•

follows from (60c). At each point where kt < k and nt < n, the necessary first order
conditions corresponding to (61a) are given by

v0(nt) = lt fn(kt, nt) (62a)
l̇t = lt(r � r⇤t ), (62b)

66k̇0 > 0 iff f (k0, n)� dk0 � g � c0 > 0.
67This relies on our choice of n which ensures that k̇0 > 0, so even for low values of k0 there exist

admissible paths {nt, kt}.
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Figure 6: Phase diagram characterizing the solution to the restricted problem (59a).
ṅ = 0

k̇ = 0

kt

nt

where lt denotes the costate of kt. Notice that nt is continuous, as an immediate conse-
quence of (62a) and of the fact that both kt and lt are continuous. Also note that (62a)
implies lt � 0, meaning our relaxation of the resource constraint (59b) to an inequality
was without loss of generality. Using the resource constraint (59b) and (62a)–(62b), we can
derive an ODE system entirely in terms of nt and kt, consisting of the resource constraint
(59b) itself and of

(z + at)
ṅt
nt

= r + (1 � at)d � at
g + ct

kt
,

where at = a(kt/nt) ⌘ ∂ log fn
∂ log(kt/nt)

. We can also abbreviate the ODEs as k̇ = k̇(k, n, ct) and
ṅ = ṅ(k, n, ct). Define the two sets

At ⌘ {(k, n) | ṅ(k, n, ct) > 0, k̇(k, n, ct) > 0}
Bt ⌘ {(k, n) | ṅ(k, n, ct) < 0, k̇(k, n, ct) < 0}.

To illustrate these sets, note that for large t, ct ⇡ 0, we can draw the phase diagram that
corresponds to the ODE system. This is done in Figure 6 for the Cobb-Douglas case where
at = const. In that figure, At is the top right area, while Bt is the bottom left area. We now
argue that the state (kt, nt) can never be in At for any t, and never be in Bt for large t. If
for any t, (kt, nt) 2 At, nt can be lowered to achieve k̇t = 0 at all times, clearly improving
the objective. If there does not exist a time s such that (kt, nt) 62 Bt for t > s, then it must
be that asymptotically (kt, nt) 2 Bt for all sufficiently large t. But in that case, kt ! 0,
contradicting feasibility (since government spending is positive, g > 0). Therefore, it
must be that (k•

t , n•
t ) ! (k•, n•).

Note that the optimal costate l•
t can be computed using the first order condition for

labor, (62a). Due to the steady state convergence of the system, the transversality condi-
tion limt!• e�rtl•

t k•
t = 0 naturally holds.

Third step. We now show that there exists a sufficiently large bound n such that the
solutions of the problem without bounds, (59a) and the problem with bounds (61a) coin-
cide. This is the case if there exists a n such that n•

t < n at the optimum at all times t.
Assume the contrary held, that is, no matter how large n is, at the corresponding optimal
path, which we denote by (k•

t (n), n•
t (n)) to emphasize the dependence on n, there exist
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times t where n•
t (n) = n. Since n•

t (n) can never approach n from below (this would
require (kt, nt) 2 At), it must be that there exists a time s > 0 such that n•

t (n) = n for any
t 2 [0, s] and any arbitrarily large n. It is straightforward to see that this lets k•

s (n) grow
unboundedly large, in particular leading to (k•

s (n), n•
s (n)) 2 As—a contradiction. This

completes our proof that problem (59a) admits a unique solution, which approaches the
steady state (k•, n•) asymptotically.

Fourth step. In our final step, we derive the claimed properties of ṽ. First, since the
objective is strictly convex, ṽ is strictly convex. It is also strictly increasing since the con-
straint tightens with larger c0. ṽ(0) > 0 follows directly from g > 0. For differentiability,
pick any ĉ0 2 R++ and denote the associated optimal path for capital by {k̂•

t }. Follow-
ing the logic in Benveniste and Scheinkman (1979) we can define a strictly convex and

differentiable function w(c0) =
R •

0 e�rt 1
1+z N

⇣
k̂•

t , c0e�r/st + g + ˙̂k•
t + dk̂•

t

⌘1+z
dt where

N(k, y) ⌘ f (k, ·)�1(y) is the level of labor needed to fund output y � 0 given capital
k > 0. By contsruction, w(ĉ0) = v(ĉ0) and w(c0) � v(c0) locally around ĉ0.68 This implies
that ṽ is differentiable at any c0 2 R++ with derivative69

ṽ0(c0) =
Z •

0
e�(r+r/s)t v0(n•

t )
fn(k•

t , n•
t )

dt. (63)

This formula for the derivative of ṽ is equivalent to (60d) after expressing the former in
terms of lt using the first order condition for labor (62a). This concludes our proof of
Lemma 16.

The effective disutility ṽ(c0) is convenient since in the original planning problem (55a),
labor disutility appears in present value terms both in the objective as well as in the IC
constraint (55d). Moreover, due to the assumption of power disutility, both present values
are essentially ṽ(c0) up to a constant factor. The restricted version of the original planning
problem (55a) can now be simply written as restricted problem

V•(b0) ⌘ max
c0>0

u(c0)
s

r
� ṽ(c0) (64a)

c1�s
0

s

r
� (1 + z)ṽ(c0) � c�s

0 (k0 + b0). (64b)

We obtained (64a) from the original problem (55a) by requiring that T = • and using the
definition of ṽ. We characterize the restricted problem (64a) in the following lemma.

Lemma 17. There exists a level of initial debt br 2 R such that a solution to the restricted
planner’s problem (64a) exists if and only if b0  br. For each b0  br, there is a unique optimum
c•

0 (b0) 2 R++ and for each b0 < br there is a unique multiplier µ•(b0) 2 [0, •) on the IC
constraint (64b) such that

Fuu0(c0)
s

r
� Fvṽ0(c0) = �sµc�s�1

0 (k0 + b0), (65)

68The expression for w is obtained by substituting the resource constraint (59b) into the objective (59a).
69Notice that the derivative must be finite since ṽ is strictly convex and finite-valued for any c0 2 R+.
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for c0 = c•
0 (b0), µ = µ•(b0). Finally, there exists some b⇤ < br such that µ• : [b⇤, br

) !
[0, •) is a continuous and strictly increasing bijection.

Proof. First, notice that the IC constraint of the restricted planning problem, (64b), can be
rewritten as

c0
s

r
� (1 + z)cs

0 ṽ(c0) � k0 + b0. (66)

Observe that this is a convex constraint, as its left hand side is strictly concave. It is also
strictly increasing at c0 = 0 and diverges to �• for large c0.70 Therefore, there exists an
interior maximum at some c > 0. By definition, c0 = c is the only value that is compatible
with the IC constraint if b0 = br, where we defined

br ⌘ max
c0>0

c0
s

r
� (1 + z)cs

0 ṽ(c0)� k0. (67)

The maximizer c is then characterized by the first order conditions

s

r
c̄�s = (1 + z)sc̄�1ṽ(c̄) + (1 + z)ṽ0(c̄). (68)

For any b0 > br the set of feasible c0 compatible with the IC constraint (64b) is empty, so
the restricted planning problem (64a) has a solution precisely when b0  br.

An advantage of writing the IC constraint as in (66) is that it allows us to see that
the restricted problem (64a) has a strictly concave objective with a convex and bounded
constraint set. The objective attains its unconstrained maximum at some c⇤ 2 (0, •)
satisfying u0(c⇤)s

r = ṽ0(c⇤). We can show that c⇤ > c since the objective is increasing at c,

u0(c̄)
s

r
� ṽ0(c̄) = (1 + z)sc̄�1ṽ(c̄) + zṽ0(c̄) > 0,

where we used the first order condition for c, (68). Define b⇤ ⌘ c⇤ s
r � (1 + z)c⇤ṽ(c⇤)� k0,

so that c⇤ lies in the constraint set (64b) if and only if b0  b⇤—or in other words, the
constraint holds with equality for any b0 � b⇤. We next show that there exists (a) a
strictly decreasing (and hence continuous) bijection c• : [b⇤, br

) ! (c, c⇤] and (b) a strictly
increasing (and hence continuous) bijection µ• : [b⇤, br

) ! [0, •) such that c•(b0) is the
unique solution to the strictly concave problem (64a), and constraint (64b) has Lagrange
multiplier µ•(b0), for any b0 2 [b⇤, br

).
Take any c0 2 (c, c⇤]. Clearly, c0 is optimal with Lagrange multiplier µ when ini-

tial debt is b0 if the three objects c0, µ, b0 satisfy the first order condition of the prob-
lem—which can easily be seen to be given by (65)—and the constraint (64b). By sub-
stituting out b0 from (65) using the constraint, the first order condition can be expressed

70Note that for s = 1, (66) reads c0(
s
r � (1 + z)ṽ(c0)) � k0 + b0 and by positivity of k0 + b0 and mono-

tonicity of ṽ, this means that s
r � (1 + z)ṽ(0) > 0 (which is exactly equal to the derivative of the left hand

side of (66) at c0 = 0).
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as function of µ,

µ =
s
r � cs

0 ṽ0(c0)

(1 + z)scs�1
0 ṽ + (1 + z)cs

0 ṽ0(c0)� s/r
⌘ M(c0).

For c0 2 (c, c⇤], the denominator is positive and strictly increasing in c0, approaching
0 for c0 & c; while the numerator is strictly decreasing and non-negative, with a zero
at c0 = c⇤. This defines a strictly decreasing bijection M : (c, c⇤] ! [0, •). From the
constraint (64b), we see that

b0 = c0
s

r
� (1 + z)cs

0 ṽ(c0)� k0 ⌘ B(c0)

which, by definition of br and c, defines a strictly decreasing bijection B : (c, c⇤] ! [b̃, br
).

It follows that for any b0 2 [b̃, br
), the unique solution to (64a) is given by c•(b0) =

B�1(b0), with associated multiplier µ•(b0) = M(B�1(b0)). This concludes the proof.

We finished our characterization of the restricted planning problem and are now ready
for the second and main part of the proof of Proposition 7.

2nd step: Optimality of T = • in the unrestricted problem. Before we proceed to
prove the optimality of T = • in the unrestricted problem, we establish that br is not just
the upper bound of possible initial debt in the restricted planning problem, but equal to
b, the one in the unrestricted planning problem (55a).

Lemma 18. Let b0 2 R and s � 1. The constraints (55b), (55c), (55d) define a non-empty set
for {ct, nt, kt, rt} if and only if b0  br. In particular, b = br. Moreover, if b0 = br then capital is
necessarily taxed at the maximum, T = •.

Proof. It suffices to show that the constraint set in the original problem is empty for b0 >
br, and that T = • is necessary for b0 = br. We show both by proving that any b0 � br is
infeasible with if capital is not taxed at its upper bound in all periods.

Hence fix some b0 � br and assume it was achievable without T = • by {ct, nt, kt, rt}.
Then, it must be that rt > 0 on some non-trivial interval, and the path of consumption
is described by the Euler equation (55b), as always. Let the initial consumption value be
c0 and denote by ĉt the path which starts at the same initial consumption ĉ0 = c0 but
keeps falling at the fastest possible rate �r/s forever, corresponding to T = •. Similarly,
define by n̂t the path for labor which keeps kt fixed but satisfies the resource constraint
with consumption equal to ĉt. Clearly, n̂t  nt for all t and n̂t < nt on a positive-measure
set of times t. Because the left hand side of (55d) is weakly decreasing in ct and strictly
decreasing in nt, this strictly relaxes the IC constraint. Hence,

Z •

0
e�rtĉ1�s

t dt �
Z •

0
e�rtv(n̂t)dt > ĉ�s

0 (k0 + b0).
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Notice, however, that for T = •, we can do even better by optimizing over labor (not
necessarily keeping capital constant, see (59a)), leading to

ĉ1�s
0

s

r
� (1 + z)ṽ(ĉ0) > ĉ�s

0 (k0 + b0).

By definition of br in (67) this is a contradiction to b0 � br. Therefore, br is equal to the
highest sustainable debt level in the original problem, b, and can only be achieved with
T = •.

Our next lemma establishes that the unrestricted problem (55a) is a strictly concave
maximization problem with convex constraints. This will be helpful when proving unique-
ness in Lemma 20 below.

Lemma 19. Suppose s � 1. The unrestricted problem (55a) can be transformed into a strictly
concave maximization problem with convex constraints, using variable substitution. Therefore,
any optimum of (55a) is unique when s � 1.

Proof. We rewrite (55a) in terms of the two variables ut ⌘ u(ct) 2 (�•, 0) and vt ⌘
v(nt) 2 [0, •) instead of ct and nt. We only consider the case s > 1; the case s = 1 is
analogous. For s > 1, the substitution yields

V(b0) ⌘ max
{ut,vt,kt}

Z •

0
e�rt (ut � vt) dt (69)

u̇t � (s � 1)
r

s
ut

((1 � s)ut)
�1/(s�1) + g + k̇t  f

⇣
kt, ((1 + z)vt)

1/(1+z)
⌘
� dkt

Z •

0
e�rt ((1 � s)ut � (1 + z)vt) dt � ((1 � s)u0)

s/(s�1) (k0 + b0)

ut < 0, vt � 0, kt > 0.

We made two additional simplifications in (69): We incorporated the inequality for the
control rt � 0 in the Euler equation constraint (55b); and the (strictly convex) resource
constraint was relaxed to be an inequality, which is without loss of generality since by
(57a) we know that its Lagrange multiplier, the costate of capital lt, is necessarily posi-
tive at any optimum. Since the resource constraint binds and is strictly convex, all other
constraints in (69) are also convex and the objective is linear, this planning problem can
at most have a single solution. And, (57a)–(57e), (57f), (57g), (55b)–(55d) are sufficient
conditions to find this solution.

Our next lemma finally establishes the optimality of T = • in the unrestricted prob-
lem (55a).

Lemma 20. Suppose s > 1 and define b ⌘ (µ•)�1
⇣

1
s�1

⌘
with µ• as in Lemma 17. Indefinite

capital taxation is optimal in the Chamley problem (55a) if and only if b0 2 [b, b].
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Proof. As a consequence of Lemma 19, the unrestricted planning problem (55a) can be
transformed into a strictly concave maximization problem with convex constraints. This
implies that the first order conditions (57a)–(57e), together with transversality conditions
(57f), (57g), and constraints (55b)–(55d) are in fact sufficient to characterize the unique
optimum of the unrestricted planning problem (55a). In this proof we guess a solution
and verify the sufficient conditions in a first step. In a second step, we prove that any
b0 < b does not imply positive long run capital taxation, where T < •. Throughout the
proof, we focus on b0 < b since we know from Lemma 18 that initial debt of b requires
indefinite capital taxation.

First step: Let b0 2 [b, b). We now construct an allocation {ct, nt, kt, rt} and multipliers
{lt, ht}, µ that satisfy all the sufficient conditions. We define c0 ⌘ c•(b0) as in Lemma 17;
given c0, {ct, nt, kt} ⌘ {c•

t , n•
t , k•

t } and lt ⌘ Fv · l•
t with notation as in Lemma 16;

µ ⌘ µ•(b0) as in Lemma 17; h0 ⌘ Fuu0(c0)
s
r � Fvṽ0(c0) (which is negative since Fu  0

by construction of µ) and ht as solution to the ODE (57c) with initial condition h0. The
first order conditions (57a)–(57d) are satisfied by construction and by the fact that the
allocation {n•

t , k•
t , l•

t } satisfies (62a) and (62b). The first order condition for initial con-
sumption (57e) is equivalent to (65) in Lemma 17. The Euler equation constraint (55b) is
trivially satisfied by construction of {ct}. The resource constraint holds for {c•

t , n•
t , k•

t }
(see (59b) and Lemma 16) and therefore also for {ct, nt, kt}. Due to the fact that {n•

t , k•
t }

solves (59a) and ct = c0e�r/st, the IC constraint (55d) can be seen to be equivalent to (64b)
and hence is satisfied since c0 was chosen to be c•(b0). Finally, Lemma 16 implies that
the transversality condition for capital, (57f), holds. And, concluding the second step, the
transversality condition for consumption, (57g), holds since

e�rthtct = c0e�(r+r/s)tht = �c0

Z •

t
e�(r+ r

s )sltdt + c0Fuu0(c0)
s

r
e�

r
s t ! 0. (70)

and by this expression it also follows that ht < 0 at all times t. The second equality in (70)
builds on an integral version of the law of motion of ht, which we obtained by combining
(57c) with our definition of h0 as Fuu0(c0)

s
r � Fvṽ0(c0) and the expression for ṽ0(c0) in

(60d) from Lemma 16. It will become important in the second step below that (70) also
reveals the limiting behavior of ht itself: limt!• ht = �• but limt!• e�rtht = Fuu0(c0)

s
r .

Second step: We proceed by contradiction. Suppose b0 < b gave rise to indefinite cap-
ital taxation (at the maximum rate). Then, reversing the logic of the first step, it must be
the case that the allocation {ct, nt, kt} is also optimal in the labor disutility minimiza-
tion problem (59a) with multipliers l•

t = 1
Fv

lt, given c0; and c0 and µ must be op-
timal given b0 in the restricted planning problem (64a), that is, c0 = c•(b0) and µ =
µ•(b0) <

1
s�1 . Since the first order condition (57e) is necessary, it must then be the case

that h0 = Fuu0(c0)
s
r � Fvṽ0(c0) by comparing it to (65). Equation (70) thus holds as in the

second step, implying limt!• e�rtht = Fuu0(c0)
s
r which now is positive since Fu > 0, a

contradiction to the optimality of capital taxes.

3rd step: Feasibility of finite capital taxation for all b0 < b. We now move to the third
and last part of this section. Here, we establish:
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Lemma 21. For any initial government debt level b0 < b, there are implementable allocations
with nonzero capital taxation for only a finite time, T < •.

Proof. Fix b0  b and fix the allocation {c•
t , n•

t , k•
t } that is optimal among all allocations

with indefinite capital tax. By construction, this allocation satisfies the restricted problem
(64a). We now explicitly construct an allocation {c̃t, ñt, k̃t} for which there is no capital tax,
˙̃c = 1

s (r
⇤
t � r)c̃t, after time some time T < • but that is feasible—satisfying constraints

(55b)–(55d)—with initial debt b0 � e, for e > 0 arbitrarily small. First, we describe the
allocation for all times t � T. Consider

Vzero tax(k̂) ⌘ max
{ct,nt,kt}t�T

Z •

T
e�r(t�T) (u(ct)� v(nt)) dt

s.t. ct + g + k̇t = f (kt, nt)� dkt

kT = k̂
ct > 0, nt � 0, kt � 0

which is the social planning problem of a standard neoclassical growth model with power
utilities in consumption and labor, and a Cobb-Douglas technology (i.e. zero labor and
zero capital taxes). It is known that such a model has optimal paths {c⇤t , n⇤

t , k⇤t } that mono-
tonically converge to a unique positive steady state (c⇤, n⇤, k⇤). This implies that {n⇤

t } is
bounded from above by n(k̂) = max{n⇤, n(k̂)} where n(·) denotes the (continuous) pol-
icy function for labor supply. Moreover, the undistorted Euler condition holds along the
path for consumption {c⇤t }. Also, it is well known that the consumption policy function
c(k) of this problem is continuous and strictly increasing, with c(k) > 0 for any k > 0. Fix
k̂ ⌘ k•

T . Since k•
t converges to a positive limit k• > 0 but c•

t ! 0 (see Lemma 16), it is the
case for sufficiently large T that c(k̂) > c•

T . Focus on such T. Also let n ⌘ supt n(k•
t ) < •

be an upper bound for labor (which by construction is uniform in T). Notice that n < •
since k•

t converges to some k• > 0.
Now construct the paths {c̃t, ñt, k̃t} by piecing together {c•

t , n•
t , k•

t } for t < T and a
zero-tax path {c⇤t , n⇤

t , k⇤t }, starting with k⇤T = k•
T , for t � T. By design, the capital stock is

continuous at t = T and consumption jumps upwards at t = T.71 Using this construction,
the allocation satisfies the resource constraint at all periods, and the Euler equation with
equality for t > T. Also,

Z •

0
e�rt �u0(c•

t )c•
t � v0(n•

t )n•
t
�

dt �
Z •

0
e�rt �u0(c̃t)c̃t � v0(ñt)ñt

�
dt =

Z •

T
e�rt �u0(c•

t )c•
t � u0(c⇤t )c

⇤
t
�

dt
| {z }

e�rTu0(c•
T )c•

T
s
r

+
Z •

T
e�rt �v0(n⇤

t )n
⇤
t � v0(n•

t )n•
t
�

dt
| {z }

e�rT 1
r n1+z

. (71)

71We think of this as a very high capital subsidy for a very short amount of time (which would definitely
not be violating any capital tax constraints). If one prefers to avoid this simple limit case, one could easily
smooth out this jump over some very small interval. This makes no difference whatsoever for the argument
that follows.
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As e�rTu0(c•
T )c

•
T ! 0 both terms in (71) approach zero. This is why for T sufficiently

large,
R •

0 e�rt (u0(c̃t)c̃t � v0(ñt)ñt) dt approaches u0(c̃0)(k0 + b0). Thus, for any e > 0,
there exists a T such that the allocation {c̃t, ñt, k̃t} is implementable without capital taxes
after time T, for initial debt b0 � e,

Z •

0
e�rt �u0(c̃t)c̃t � v0(ñt)ñt

�
dt � u0(c̃0)(k0 + b0 � e)

which is what we set out to show. This proves that for any b0 < b, there exists a feasible
(but not necessarily optimal) path with only a finite period of positive capital taxation.

Summary This concludes the proof of parts A and B (i) of Proposition 7. For part A, we
proved (i) in Lemma 18 , (ii) in Lemma 20 and (iii) in Lemma 21. Part B (i) was shown in
Lemma 18.

I.3 Proof of the bang-bang property and parts B (ii) and C
We proceed in three steps. We first establish a transversality condition that is necessary
at any optimum (in general, transversality conditions are not necessary). Then, using this
transversality condition, we derive the “bang-bang” property of capital taxes. Notice that
previous proofs of this property relied on the assumption that indefinite capital taxation is
not optimal, which we showed is not the case. The bang-bang property lets us summarize
an optimal capital tax plan by the date T 2 [0, •] at which capital taxes jump from the
upper bound t̄ to zero. In the final step, we prove parts B (ii) and C, that is, T < • if
either s < 1 or s = 1 and b0 = b.

1st step: A necessary transversality condition.

Lemma 22. Let {ct, nt, kt, rt} be a solution to problem (55a), with multipliers {lt, ht, µ}. If 9 s �
0 such that ct = cse�r(t�s)/s for all t � s, then the transversality condition for consumption (57g)
holds.

Proof. We first establish that under the conditions of the lemma, {kt, nt} converges to a
positive steady state. If ct = cse�r(t�s)/s, then {kt, nt}t�s must be minimizing the stream
of labor disutilities (61a) given initial capital ks and initial consumption cs. Therefore,
{kt, nt} ! {k•, n•}, using the notation from Lemma 16.

Thus, there exists some large enough n > 0 such that

f (kt, n)� dkt � ct � g > 0 (72)

for all t. Since the time t controls maximize the time t Hamiltonian Ht (see (56)), we then
have for any n

e�rt(Fuu(ĉt)� Fvv(n)) + e�rthtĉt
1
s
(�r) + e�rtl( f (k̂t, n)� dk̂t � ĉt � g)  e�rtHt ! 0

(73)
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where the left hand side is the present value Hamiltonian with controls rt = 0 and nt = n,
and the right hand side is the present value Hamiltonian with optimal controls rt, nt (both
along the optimal path for ct, kt). The right hand side converges to zero following Michel
(1982). Notice that in (73), e�rt(Fuu(ct)�Fvv(n)) ! 0. Suppose lim inft!• e�rthtct were
negative. Then, according to (73) it would have to be that

lim sup
t!•

e�rtl( f (kt, n)� dkt � ct � g)  lim inf
t!•

e�rthtct
1
s

r < 0

contradicting (72). This means the transversality condition for consumption (57g) holds.

2nd step: The bang bang property. We move to the first main result of this subsection.

Lemma 23. A solution to problem (55a) is of the form that the capital tax tt binds at the upper
bound for some time T 2 [0, •] and is equal to zero thereafter.

Proof. Let {ct, nt, kt, rt} be an optimal allocation solving (55a), for some initial debt b0 2
R. Let {lt, ht, µ} be a set of multipliers such that allocation and multipliers satisfy the
necessary first order conditions for the case b < b, (57a)–(57e) and constraints (55b)–(55d).
Our proof is analogous if b = b. We first show that if tt < t̄ on some non-trivial interval,
then tt = 0 on that interval. Second, we prove that tt = 0 at all times after that interval
as well. The proof utilizes the fact that once tt = 0, it must not only be that r⇤t � 0 at that
time (or else the rt � 0 constraint would be binding); but also that r⇤t > 0 for all future
times. We formally prove this fact in Lemma 24 below.

First, suppose tt < t̄ for some non-trivial interval t 2 [s0, s1]. Then, by (57b), rt > 0
and ht = 0 on that interval. Hence, by (57c), lt = Fuu0(ct). Taking logs and dif-
ferentiating implies an undistorted Euler equation of the agent. Therefore, tt = 0 for
t 2 [s0, s1]. Second, suppose there is a later time where capital taxes are positive, that is
s0 ⌘ inf{t > s1 | ht < 0} < •. Observe that, between t = s1 and t = s0, both u0(ct) and
lt grow at the common rate r � r⇤t , so ls0 = Fuu0(cs0). For any t > s0, u0(ct) still grows
at least as fast as lt, and, by definition of s0, for a positive-measure set of times t after s0,
u0(ct) grows at the faster rate r > r � r⇤t since ht < 0 and tt = t̄ for those t. Therefore,
for any t > s0, Fuu0(ct) > lt. By (57c), this means ḣt < ht

�
r + r

s

�
, or in other words,

ht < 0 and ct = cs0e�r(t�s0)/s for t > s0. Moreover, lim supt!• e�rthtct < e�rs0hs0cs0 < 0,
contradicting Lemma 22. This concludes our proof of Lemma 23.

Lemma 24. If ts = 0 for s � 0, then r⇤s � 0 and r⇤s0 > 0 for all s0 > s.

Proof. For convenience we introduce Rt ⌘ fk(kt, nt). Rt has the following law of motion,

(z + at)b�1
t

Ṙt
Rt

= r + (1 + z)d + z
g + ct

kt
� z f (1, h(Rt))� Rt,

which was obtained by log-differentiating the first order condition of labor (57a) and com-
bining it with the resource constraint (55c). Here, at ⌘ ∂ log fn

∂(kt/nt)
as before, bt ⌘ ∂ log fk

∂(nt/kt)
, and
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h(x) ⌘ fk(1, ·)�1(x). Observe that h : R+ ! R+ is strictly increasing and bijective. Since
Ṙ depends implicitly (through a and b) and explicitly on kt, Rt, and ct, we also write
Ṙt = Ṙ(k, R, c).

Our proof of this lemma proceeds in two steps. First, we show an auxiliary result,
namely that whenever

(kt, Rt, ct) 2 A ⌘ {(k, R, c) | R  d, Ṙ(k, R, c)  0},

for some time t = t0, then (kt, Rt, ct) 2 A for all later times t > t0 too. Second, we
establish the result stated in the lemma.

First step. To prove the auxiliary result, it suffices to consider points (kt, Rt, ct) at the
boundary of A and study whether the flows induced by the differential equation point to
the inside of A. There are two kinds of boundary points. If Rt = d, it trivially holds that
d
dt Rt  d

dt d = 0. Suppose now that Ṙ(kt, Rt, ct) = 0 and ask whether d
dt Ṙ(kt, Rt, ct)  0.

Generally, whenever (kt, Rt, ct) 2 A, it is straightforward to see that

k̇
k
=

f (k, n)
k

� d � g + ct
kt

� r

z
> 0. (74)

Moreover, ċt = � r
s ct since r⇤t = Rt � d  0. The fact that kt is increasing and ct is

decreasing mean that

(z + at)b�1
t

d
dt Ṙt

Rt
=

d
dt
(z + at)b�1

t
Ṙ
R

=
d
dt

g + ct
kt| {z }

<0

� d
dt

(z f (1, h(R)) + R)
| {z }

=0

< 0

establishing the auxiliary result.
Second step. Suppose ts = 0 for some s � 0. The fact that r⇤s � 0 follows directly

from the constraint (1 � ts)r⇤s = rs � 0. Let s0 ⌘ inf{t > s|r⇤t  0} and suppose s0 < •.
Since r⇤t is continuous and differentiable, this means that r⇤s0 = 0 and d

dt r⇤t |t=s0  0, or in
terms of Rt, Rs0 = d and Ṙs0  0. Applying the auxiliary result, (kt, Rt, ct) 2 A for any
t > s0. Moreover, kt ! • due to (74) at all times t > s0. This is in sharp contradiction
to Lemma 16 (which applies here using ks0 as initial capital stock since ċt = � r

s ct for all
t � s0. Therefore r⇤t > 0 for all t > s.

3rd step: Finite capital taxation T < • in parts B (ii) and C.

Lemma 25. If either s < 1 or s = 1 and b0 < b, then T < •.

Proof. If either s < 1 or s = 1 and b0 < b, then Fu > 0 for any µ � 0.72 In the following,
we prove that this is incompatible with T = •. By contradiction, suppose it were the
case that there exists an optimal allocation {ct, nt, kt, rt} with T = •, i.e. ct = c0e�rt/s.
Applying Lemma 22, (kt, nt) ! (k•, n•). In particular, r⇤t ! r > 0 following the def-
inition of (k•, n•) in Lemma 16. Now, Fuu0(ct) grows at rate r while lt only grows at

72If b0 = b and s < 1, then as we explain in Section I, Fu can be taken to be (1 � s), and thus is positive
here.
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rate r � r⇤t < r. Therefore, there exists some finite time s such that lt < Fuu0(ct) for all
t > s. Using law of motion of ht, (57c), this means ḣt < ht

�
r + r

s

�
for all t > s and so

lim supt!• e�rthtct < e�rshscs < 0, contradicting Lemma 22.

Summary. This concludes our proofs of the bang bang property (Lemma 23) and parts
B (ii) and C (Lemma 25).

J Proof of Proposition 8
We proceed by providing an explicit solution to the first order and transversality condi-
tions to problem (55a) with zero government spending and certain combinations of k0, b0.
We do so in two steps. First, taking k0 as given, we find paths {ct, nt, kt, rt}, {lt, ht}, µ and
a level of initial debt b0 which together satisfy all first order conditions, transversality con-
ditions and constraints, with the one exception that ht need not necessarily be negative.
In a second step, we choose k0 such that µ � 1/(s � 1) which will ensure that ht < 0 at
all times t.

The reason this construction is analytically tractable is that along the optimum, ct, nt, kt
will all fall to zero at the exact same growth rate, which needs to equal r

s by the Euler
equation (55b). At the same time, rt = 0 (since T = •). Taken together, to find the solution
for a given k0, it is necessary to find c0, n0, {lt, ht}, µ, b0. Again, we use the previous
notation Fu = 1 + µ(1 � s) and Fv = 1 + µ(1 + z).

First step. We conjecture that ct = c0e�r/st, nt = n0e�r/st, kt = k0e�r/st, rt = 0, lt =
l0e�zr/st. The Euler equation (55b) obviously holds. The resource constraint (55c) is
satisfied iff

c0 = f (k0, n0)� dk0 +
r

s
k0. (75)

The IC constraint (55d) is satisfied iff

b0 = c0
s

r
� 1

r + (1 + z)r/s
cs

0 n1+z
0 � k0. (76)

The first order condition for labor (57a) and the costate lt (57d) hold iff

fk(k0, n0) = z
r

s
+ r + d (77)

and
Fvnz

0 = l0 fn(k0, n0). (78)

Given k0, (77) pins down n0, (75) c0, and (76) b0. The law of motion of ht (57c) and the
associated transversality condition (57g) are satisfied iff

ht = � l0
r + (1 + z)r/s

e�zr/st +
s

r
Fuc�s

0 ert. (79)
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Notice that (57b) holds, i.e.ht < 0, as long as Fu  0, requiring µ � 1
s�1 . The transversal-

ity condition for capital (57f) obviously holds.
It remains to determine l0, h0, and µ subject to (79) (at t = 0), µ � 1

s�1 , (78), and the
first order condition for c0 (57e). For expositional reasons, define the initial labor tax as
t`

0 ⌘ 1 � nz
0cs

0 /w⇤. Then, we can solve for µ as

µ =
t`

0 + s + z

s
⇣
(1 � t`

0 )
n0
c0

w⇤ � 1
⌘
� t`

0 (1 + z)
. (80)

Notice that whenever µ 2 [ 1
s�1 , •), l0 > 0 is given by (78) and h0 < 0 is given by (79) (at

t = 0). So the last step in our construction is to determine whether there are levels for k0
for which µ 2 [ 1

s�1 , •).

Second step. The only object on the right hand side of (80) that depends on k0 is t`
0 ,

and t`
0 is a strictly decreasing function of k0 2 [0, •), with t`

0 ! 1 as k0 ! 0 and t`
0 !

�• as k0 ! •. Moreover, µ is increasing in t`
0 2 (�•, 1] and has a pole at t`

0,pole =
sw⇤n0/c0�s

sw⇤n0/c0+1+z < 1, where it rises to +• from the left. For t`
0 = 1, µ = �1 < 0. We define

k to be the value of k0 corresponding to t`
0,pole. Putting the mapping from k0 to t`

0 and the
one from t`

0 to µ together, we find a function µ(k0) with the properties that

µ(k0) < 0 for k0 < k
µ(k0) � 1/(s � 1) for k0 2 (k, k̄]
µ(k0) < 1/(s � 1) for k0 > k̄,

where k ⌘ infk0�k

n
k0 � k | µ(k0) <

1
s�1

o
2 (k, •]. This proves that for k0 2 (k, k̄], there

exists a debt level b0(k0) for which the quantities ct, nt, kt all fall to zero at equal rate �r/s
and the sufficient optimality conditions of the problem are satisfied.

K Proof of Proposition 9
First, we show that the planner’s problem is equivalent to (13). Then we show that the
functions y(T) and t(T) are increasing, have y(0) = t(0) = 0 and bounded derivatives.

The planner’s problem in this linear economy can be written using a present value
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resource constraint, that is,

max
Z •

0
e�rt (u(ct)� v(nt)) dt (81)

s.t. ċ � c
1
s
((1 � t̄)r⇤ � r)

Z •

0
e�r⇤t(ct � w⇤nt)dt + G = k0

Z •

0
e�rt [(1 � s)u(ct)� (1 + z)v(nt)] dt � u0(c0)a0,

where G =
R •

0 e�r⇤tgdt is the present value of government expenses, k0 is the initial
capital stock, a0 is the representative agent’s initial asset position, and per-period util-
ity from consumption and disutility from work are given by u(ct) = c1�s

t /(1 � s) and
v(nt) = n1+z

t /(1 + z). Note that we assumed s > 1. The FOCs for labor imply that given
n0,

nt = n0e�(r⇤�r)t/z . (82)

An analogous argument to the bang-bang result in Appendix ?? implies the existence of
T 2 [0, •] such that tt = t̄ for t  T and zero thereafter. In particular, the after-tax (net)
interest rate will be rt = (1 � t̄)r⇤ ⌘ r̄ for t  T and rt = r⇤ for t > T. Then, by the
representative agent’s Euler equation, the path for consumption is determined by

ct = c0e�
r�r̄

s t+ r⇤�r̄
s (t�T)+ . (83)

Substituting equations (82) and (83) into (81), the planner’s problem simplifies to,

max
T,c0,n̄

y1(T)u(c0)� y3v(n0) (84)

s.t. y2(T)(c⇤)�1c0 + G = k0 + y3w⇤n0

y1(T)u0(c0)c0 � y3v0(n0)n0 = c⇤u0(c0)a0,

where y1(T) =
c⇤

c

�
1 � e�cT�+ e�cT, y2(T) = c⇤

ĉ

�
1 � e�ĉT�+ e�ĉT, y3 = c⇤

⇣
r⇤ + r⇤�r

z

⌘�1

and c = s�1
s r̄ + r

s , c⇤ = s�1
s r⇤ + r

s , ĉ = r⇤ + r�r̄
s . Notice that ĉ > c⇤ > c.

Now normalize consumption and labor

c ⌘ y1(T)1/(1�s)c0/c⇤ n ⌘ y
1/(1+z)
3 n0/ (c⇤)(1�s)/(1+z)

and define an efficiency cost y(T) ⌘ y2(T)y1(T)1/(s�1) � 1, a capital levy t(T) ⌘ 1 �
y1(T)�s/(s�1), and the present value of wage income wn ⌘ w⇤y

z/(1+z)
3 n. Here, we note

that by definition, y is bounded away from infinity and t is bounded away from 1. Then,
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we can rewrite problem (84) as

max
T,c,n

u(c)� v(n)

s.t. (1 + y(T))c + G = k0 + wn
u0(c)c � v0(n)n = (1 � t(T))u0(c)a0,

which is what we set out to show. Notice that y1(0) = y2(0) = 1 and so y(0) = t(0) = 0.
Further, given our assumption that s > 1, y1(T) and t(T) are increasing in T. To show
that y0(T) � 0, notice that, after some algebra,

d
dT

⇣
y2y

1/(s�1)
1

⌘
� 0 , ĉ

⇣
ecT � 1

⌘
 c

⇣
eĉT � 1

⌘
,

which is true for any T � 0 because ĉ > c. Therefore, y0(T) � 0, with strict inequality
for T > 0, implying that y(T) is strictly increasing in T.

Now consider the ratio of derivatives,

y0(T)
t0(T)

=
1
s

y2y
(1+s)/(s�1)
1

✓
(s � 1)

y0
2

y2

y1
y0

1
+ 1
◆

.

Notice that y1(T) 2 [1, c⇤/c] and y2(T) 2 [c⇤/ĉ, 1], so both are bounded away from
infinity and zero. Further, the ratio y0

2/y0
1 is also bounded away from infinity, y0

2/y0
1 =

� 1
s�1 e�(ĉ�c)T 2 [�1/(s � 1), 0], implying that y0(T)/t0(T) is bounded away from •.

L Proof of Proposition 10
The planning problem is given by

sup
{ct,Ct,kt+1}

•

Â
t=0

btu(ct) (85)

ct + Ct + kt+1 = f (kt) + (1 � d)kt (86)
•

Â
t=0

btC1�s
t = C�s

0 a0. (87)

First, note that a0 must be positive or else the IC constraint (87) cannot be satisfied (recall
that s > 1). Second, note that there exists a unique solution C0(j) to the equation

Cs
0 j0j1�s + C0 = a0

for any j0, j > 0, and that C0(j) ! 0 as j ! 0. We now use this to construct a sequence
of feasible paths {C(n)

t }•
t=0, n = 0, 1, . . ., with C(n)

t uniformly converging to 0 as n ! •.
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Take any sequence {C(0)
t }•

t=0 that satisfies (87). Define

C(n)
t =

(
C0(jn) t = 0
jnC(0)

t t > 0

for some j 2 (0, 1), j0 ⌘ C�s
0 (a0 � C0). By construction, C(n)

t ! 0 uniformly and the
supremum in (85) approaches the maximum of the planning problem of a standard neo-
classical growth model,

max
{ct,Ct,kt+1}

•

Â
t=0

btu(ct)

ct + kt+1 = f (kt) + (1 � d)kt.

The way {C(n)
t } was constructed in this proof, it suggests an implementation via a wealth

tax T1 = R1/R⇤
1 ! 100%. Analogous to this construction, a wealth tax approaching 100%

in any period would implement the same allocation. This also shows that only a single
period of unconstrained taxation is necessary to implement the supremum.

M Proof of Proposition 11
As in Section 2, labor supply is inelastic at nt = 1. Denote the capitalist’s initial wealth by
a0 ⌘ R0k0 + Rb

0b0. The planning problem is then

max
{ct,Ct,kt+1}

•

Â
t=0

btu(ct) (88a)

Ct+1 � Ctb
1/s (88b)

ct + Ct + kt+1 = f (kt) + (1 � d)kt (88c)
•

Â
t=0

btU0(Ct)Ct = U0(C0)a0. (88d)

The necessary first order conditions for Ct and ct in problem (88a) are

b1/sht � b�1ht�1 = lt � FuU0(Ct) (89)
u0(ct) = lt (90)

b1/sh0 = l0 � FuU0(C0)� µsC�s�1
0 a0 (91)

where we defined Fu ⌘ µ(1� s). Here, µ is the multiplier on the IC constraint (88d), lt is
the multiplier of the resource constraint (88c)—which is positive by (90)—and ht denotes
the costate of capitalists’ consumption Ct. If ht < 0, constraint (88b) is binding. Also, it
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follows from (88d) that

sC�s�1
0 a0 = sC�1

0 · U0(C0)a0 = sC�1
0 ·

•

Â
t=0

btU0(Ct)Ct > (s � 1)U0(C0),

where the inequality is obtained by dropping all terms with t > 0 from the infinite sum
and observing that s > s � 1. Using this inequality, (91) implies that µ must be positive
and Fu < 0.

Suppose now there existed a period T � 0 where constraint (88b) is slack. In that case,
hT = 0 and (89) becomes for t = T + 1

FuU0(CT+1) = lT+1 � b1/shT+1 > 0

contradicting Fu < 0. Therefore, (88b) binds in all periods, or equivalently, Rt = 1 for all
t.
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