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1 Online Appendix A

Proof of Proposition 1. In the proof below I denote the maximal equilibrium revenue

that the seller can achieve, given friction ∆ , in the seller-offer protocol by VSo(∆) and in

an alternating-offer protocol by VA(∆). Finally, to simplify notation I still let α denote α1.

The seller’s expected revenue given a TIOLI offer in t = 1 is VM = αVF +(1−α) max{qh, l}.
Consider the four possible sequential bargaining protocols. If the buyer makes all offers,

the seller’s equilibrium payoff is zero. If they alternate with the seller making the first

offer, the informed seller type’s payoff is bounded by (1− e−∆)VF , the uninformed type’s by

(1− e−∆) max{qh, l}, because any higher offer will be rejected by the respective buyer type.
Alternating Offers. Consider the protocol where the buyer makes the first offer.

Three types of equilibria can arise: fully-revealing, semi-revealing and pooling. Consider full

revelation. Type θ buyer at t = 1 names pθ. Note ph = e−∆h must hold because the seller

must accept any price higher and, given revelation, reject any lower price. Furthermore,

pl ∈ [e−∆l,min{l, ph}], since any lower price will be rejected, and any higher price will
violate individual rationality or separation. A tighter upper bound on pl may hold, and

will be considered in Proposition 2, but ignoring it here just strengthens the argument. For

buyer separation to be incentive compatible:

(1− e−∆)h ≥ (1− α)(h− pl) (1.1)

must hold. Re-writing this one obtains that ∆ > ∆min = lnh− ln(αh+ (1−α)pl). Consider

now the seller’s ex-ante expected revenue. Suppose l ≥ qh. Simple algebra shows that given
a binding Eq.(1.1) for VA(∆) > VM , it must be that:

∆ < ∆max = ln(qh)− ln(l − pl(1− q) + qα(h− l)).
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Since pl ≤ l it follows, however, that ∆max ≤ ∆min. Suppose now that qh > l. Simple

algebra shows that given a binding Eq.(1.1) for VA(∆) ≥ VM , it must be that:

∆ ≤ ∆max = ln(qh)− ln (lα(1− q) + qh− pl(1− q)) .

Since (qh− l)(1− α) ≥ (1− qα)(pl − l), it again follows that ∆max ≤ ∆min.
1

Consider semi-revelation with serious offers. The relevant case is where the high type

mixes at t = 1 between revelation, ph , and pooling, pl, doing the latter with probability y.

Again ph = e−∆h must hold. If the uninformed seller type does not mix, the result follows

directly from the above discussion. Suppose he accepts pl with probability z. If p2 = l, then

pl = e−∆l must hold. Now for the high type buyer to mix the following indifference must

hold:

(1− e−∆)h = (1− α)(z(h− e−∆l) + (1− z)e−∆(h− l)).

The seller’s maximal revenue here is affected by z only through its impact on ∆ ensuring

that the above equality holds. Specifically, the seller’s expected revenue is:

αe−∆(qh+ (1− q)l) + (1− α)((q − qy)e−∆h+ (1− q + qy)e−∆l).

The minimal necessary separating friction ∆(z) is given when z = 0. Straightforward algebra

shows that e−∆(0)VF ≤ VM , hence the same is true for all z > 0. If p2 = h, it needs to be

that initially qh > l. For the high type to mix, the indifference condition here is:

(1− e−∆)h = (1− α)z(h− pl),

where pl = qy
qy+(1−q)e

−∆h must hold for the uninformed seller type to mix. It is easy to

see that V 0
A(∆) ≤ hqe−∆ + α(1− q)e−∆l ≤ VM . Finally, in a pooling equilibrium, VA(∆) ≤

max{l, α(1− q)l+e−∆qh} ≤ VM . Note also if there is an equilibrium where the buyer makes
a non-serious offer, the revenue result holds a fortiori.

Seller-Offers. For VSo(∆) > VM , two facts must hold.2 First, the uninformed seller

needs to sell to both types at different prices with positive probability. Second, there has

to be some pooling between the uninformed and the informed seller conditional on θ = h

since otherwise the high type buyer always learns the seller’s type. Absent such pooling,

the seller’s revenue becomes separable in α, and hence the result follows immediately from

Lemma 1. Let such a pooling price at t = 1 be p1,h.

Consider the case where the seller follows a pure pricing strategy. Let the price named

by the informed seller conditional on θ = l in t = 1 be p1,l. In t = 2, the uninformed seller’s

1Note that if in a fully-revealing equilibrium the seller did not accept the buyer’s initial offer, then, by
revelation, the upper-bound on the seller’s revenue would remain unchanged.

2 In the case where α, ρ = 0, there is a unique PBE.
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price, given price discrimination, must be p2 = l, and the informed seller has a dominant

strategy. For the informed seller to pool on p1,h in t = 1, p1,h ≥ max{e−∆h, p1,l} must hold.
For the high type buyer to accept p1,h the following IC constraint must hold:

h− p1,h ≥ e−∆(1− α)(h− l). (1.2)

Given a binding Eq.(1.2), and setting p1,l = l, we obtain an upper-bound on revenue given

pure strategies. Let this be V̂So(∆).Simple algebra shows that:

if l ≥ qh, then V̂So(∆)− VM =
(
e−∆ − 1

)
(1− α) (l − qh) ≤ 0,

if qh > l, then V̂So(∆)− VM = e−∆ (1− α) (l − qh) ≤ 0.

Consider the case where the seller’s pricing strategy involves mixing. If the uninformed

seller mixes between h and l in t = 2, the IC constraint on p1,h, Eq.(1.2), can be relaxed. For

this to be possible, qh > l must hold. The high type buyer is indifferent between accepting

or rejecting p1,h if:

h− p1,h = (1− α)ke−∆(h− l),

where k is the probability that the uninformed seller names l in t = 2. For the uninformed

seller to mix in t = 2, it has to be true that q(1−j)
q(1−j)+(1−q) = l/h where j is the probability that

the high type buyer accepts p1,h. This is independent of α. If k = 0, then p1,h = h. Here it

is straightforward that the seller’s revenue is below VM . Since p1,h is maximal for k = 0, and

all other prices and j are independent of k, the same holds for all k provided p1,h ≥ e−∆h so

that the informed seller is still willing to pool. Hence again revenue is bounded from above

by VM for all α. Considering mixing in t = 1 alone will not relax the IC constraint on the

maximal price at which the high type is willing to buy in t = 1. Hence it cannot boost the

revenue above VSo(∆)

Proof Proposition 2. Consider a fully revealing equilibrium with serious offers. Let

αρ = (1 − ρ̂)α + ρ̂ replace α in Eq.(1.1). Hence, the separating friction here must satisfy:

∆ ≥ lnh− ln(αρh+ (1− αρ)pl). This constraint implies a positive lower bound on ∆ for all

ρ̂ < 1. In this equilibrium, ρ̂ imposes an upper bound on pl of the following form:

pl ≤ αρe−∆l + (1− αρ)l

because an informed seller type cannot reject any initial offer greater than e−∆l from the

low type in a perfect equilibrium. As before, pl = e−∆l is always feasible for any ρ̂. Simple

substitution shows, however, that, given binding incentive constraints, the lower bound on

∆ in this equilibrium class, ∆ρ
min, is decreasing in ρ̂ with ∆1

min = 0. The revenue condition

is the same as before, except the constraint on pl, now implies that ∆ρ
max is decreasing in ρ̂
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. Nevertheless, ∆ρ
max ≥ lnVF − lnVM is true for all ρ. This implies that there exists ρA such

that if ρ̂ > ρA, then ∆ρ
min < ∆ρ

max. The corollary then follows form that fact that under

∆ = 0 or ∆ =∞ no equilibrium can generate a revenue higher than VM for any ρ̂ < 1

Proof of Proposition 3. Let again αρ = (1− ρ̂)α+ ρ̂ . Consider equilibria without mixing

and with price discrimination and pooling in t = 1 conditional on θ = h. Pooling again

requires that:

p1,h ≥ e−∆h. (1.3)

For the high type buyer to accept p1,h the IC constraint is now:

h− p1,h ≥ e−∆(1− αρ) (h− l) . (1.4)

Combining Eq.(1.3) and Eq.(1.4) one gets the following constraint:

∆ ≥ ∆ρ
min = ln(h+ (1− αρ) (h− l))− lnh,

where ∆ρ
min is decreasing in ρ̂ and becomes 0 as ρ̂ goes to 1.3 Let’s denote the equilibrium

revenue, given a binding Eq.(1.4) and setting p1,l = l, by V̂ ρ
So(∆). Suppose that qh ≥ l.

Simple algebra shows that V̂ ρ
So(∆) > VM for all ρ > (qh − l)/(qh − ql) as long as ∆ ∈

(∆ρ
min,∞). Suppose that l > qh. Here, V̂ ρ

So(∆) > VM requires that ∆ < ∆ρ
max = ln(l −

qh + qρ(h − l)) − ln(l − qh). The condition that ∆ρ
max > ∆ρ

min is equivalent to ρ > (l −
qh)/(l + qhα(1 − α)−1). Hence, there exists ρS0 < 1 such that if ρ̂ > ρS0 , then there exists

∆̂ρ
min < ∆̂ρ

max such that V
ρ
So(∆) > VM for all ∆ ∈ ( ∆̂ρ

min, ∆̂ρ
max).4 Finally, note that if

∆ = ∞, the uninformed seller’s maximal revenue is bounded by max{qh, l}. If ∆ = 0,

pooling requires p1,h = h which violates Eq.(1.3) for any ρ̂ < 1

Proof of Proposition 6. Let ρ = 1− (1− l)ln 1
δ . Given α = 0, with a change of variables,

one can write:

γ(l, δ) =
(

1− δ(1− l)ln 1
δ

) 1− δ(1− l)ln 1
δ −
√

1− δ
δ2((1− l)ln 1

δ )2 + δ(1− 2(1− l)ln 1
δ )
.

3Note that p1,h ≥ l + (h− l) (α+ ρ− αρ) ≥ p1,l hence separation aways holds.
4Note that V̂ ρSo(∆) is maximal at ∆ρ

min. This is true because ∂V̂
ρ
So(∆)/∂∆ < 0 whenever l ≥ hq and

provided that ρ > ρSo also when qh > l.
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Consider γδ(l, δ) given by:

γδ(l, δ) =

V I︷ ︸︸ ︷
δ (1− l)ln 1

δ (2− δ (1− l)ln 1
δ − 2

√
1− δ)−

(
2− δ − 2

√
1− δ

)
−2δ2

√
1− δ

(
δ (1− l)2 ln 1

δ − 2 (1− l)ln 1
δ + 1

)2 ∗

∗

V II︷ ︸︸ ︷(
(δ − 2) (1− l)ln 1

δ + 2(1− δ) (ln (1− l)) (1− l)ln 1
δ + 1

)
.

I first show that Term V I is positive. Simple re-arrangements show that this is equivalent

to:
1

2− 2
√

1− δ
<

1− δ (1− l)ln 1
δ

δ − δ2 (1− l)2 ln 1
δ

. (1.5)

The LHS of Eq.(1.5) is independent of l. For any fixed δ, consider now the value of l which

minimizes the RHS of Eq.(1.5). The derivative of the RHS of Eq.(1.5) with respect to l is:

δ
ln 1

δ(
δ (1− l)2 ln 1

δ − 1
)2

(1− l)
(1− l)ln 1

δ

(
δ (1− l)2 ln 1

δ − 2 (1− l)ln 1
δ + 1

)
.

The first-order condition is solved implicitly by l∗:

(1− l∗)ln 1
δ =

1

δ

(
1−
√

1− δ
)
.

To see that l∗ actually minimizes the RHS of Eq.(1.5), note that δ (1− l)2 ln 1
δ−2 (1− l)ln 1

δ +1

is increasing in l, it is negative if l→ 0, and positive if l→ 1. Substituting then (1− l∗)ln 1
δ =

1
δ

(
1−
√

1− δ
)
into the RHS of Eq.(1.5), one obtains that it is bounded from below by:

1−
(
1−
√

1− δ
)

δ −
(
1−
√

1− δ
)2 =

1

2− 2
√

1− δ
.

Consider Term V II. If δ = 0, it equals 1. If δ → 1, it converges to 0. Consider now the

derivative of Term V II with respect to δ. This is given by:

−1

δ
(ln (1− l)− 1) (1− l)ln 1

δ [δ + 2 ln (1− l)− 2δ ln (1− l)]. (1.6)

The sign of Eq.(1.6) is the same as that of δ + 2 ln (1− l)− 2δ ln (1− l) which is negative iff
δ < 2 ln(1−l)

2 ln(1−l)−1 ∈ (0, 1). Hence, Term V II is positive at δ = 0, remains positive for a while

as δ increases, then becomes negative and converges from below to 0 as δ → 1. Given the

continuity of γδ(l, δ) in l, it then follows that there exists δ∗l > 0 such that for all δ < δ∗l ,
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γδ(l, δ) > 0, and for all δ > δ∗l , γδ(l, δ)

Proof Proposition 7. Fix T . Given verifiable leakage, the skimming property must still
hold on the path till leakage. Let pt be the price in round t in the absence of leakage.

Part I. Let α ≥ ρ > 0. Note that pT = θT /2. I proceed by induction. Let t < T

and suppose for all s,∈ {t + 1, ...T − 1}, θs+1 = θs. At t, conditional on no leakage until

(including) t, pt must maximize:

max
pt

(θt − θt+1)pt + θ2
t+1(0.5

∑T−t
s=1e

−∆sα(1− α)s−1 + 0.25e−∆(T−t)(1− α)T−t),

subject to: θt+1 − pt = e−∆(T−t)(1 − ρ)T−t(θt+1/2). Let g = e−∆(T−t), f = (1 − ρ)T−t,

n = (1−α)T−t, and b = αe−∆

1−e−∆(1−α)
∈ [0, 1]. Expressing this in θt+1, the FOC is (θt− 2θt+1)

(1− 0.5gf) + θt+1(b(1− gn) + 0.5gn) = 0 with the unique solution of

θt+1 = θt min{ 1− 0.5gf

2− gf − b(1− gn)− 0.5gn
, 1}.

This is internal iff:

A(α, ρ, T − t,∆) ≡ 1− 0.5gf − b+ gn(b− 0.5) > 0. (1.7)

Note that lim∆→0A(α, ρ, T − t,∆) = 0.5(n−f) independent of T and t.5 Hence, A(α, ρ, T −
t, 0) ≤ 0 iff α ≥ ρ. Let me describe three further properties of the function A(α, ρ, T − t,∆).

1. A(α, ρ, T − t,∆) is strictly increasing in ∆ since ∂A(α, ρ, T − t,∆)/∂∆ is given by:

− ∂b

∂∆
(1− gn)− ∂g

∂∆
n(0.5(1 +

f

n
)− b) > 0,

where the inequality follows because (i), 1 − gn > 0; (ii), 0.5(1 + f
n) > b, since f ≥ n

⇔ α ≥ ρ; and (iii), ∂b
∂∆ ,

∂g
∂∆ < 0. 2 . A(α, ρ, T − t,∆) is strictly increasing in ρ since f is

strictly decreasing in ρ. 3. A(α, ρ, T − t,∆) is strictly decreasing in α since b(1− gn) + gn

is strictly increasing in α and n is strictly decreasing in α. There then exists L∗(α, ρ, T ) ≥ 0

such that the seller never bargains iff∆ ≤ L∗(α, ρ, T ). Furthermore, L∗(α, ρ, T ) is increasing

in α, decreasing in ρ. Since the seller never bargains in equilibrium iff A(α, ρ, T − t,∆) ≤ 0

for all t < T , it follows that if the seller never bargains given a horizon T then the same

holds given any horizon T ′ < T .

Part II. Let ρ ≥ α and ∆ > 0. Consider any t < T . Let Vt(θt) be the seller’s value

function in round t conditional on no leakage until then. Given the buyer’s strategy, this is

5The second-order condition is always satisfied since −2 + gf + b(1− gn) + 0.5gn < 0.
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given by:

Vt(θt) = (θt − θt+1)(θt+1 − e−∆(1− ρ)(θt+1 − pt+1(θt+1)))+

+ e−∆(αθ2
t+1/2 + (1− α)Vt+1(θt+1)),

where pt+1(θt+1) is the equilibrium price, in the absence of leakage, in t+1. Wlog let pt ≤ θt
for any t. Consider now a perturbation of θt+1. Its impact on Vt(θt) is given by:

(θt − 2θt+1)(1− e−∆(1− ρ))− e−∆(1− ρ)pt+1(θt+1)+

+ (θt − θt+1)e−∆(1− ρ)p′t+1(θt+1) + αe−∆θt+1 + e−∆(1− α)V ′t+1(θt+1).

I proceed by contradiction. Suppose that θt+1 = θt. An upper-bound on V ′t+1(θt+1) is given

by pt+1. Hence, the above impact is bounded from above by:

−θt+1(1− e−∆) + e−∆(ρ− α)(pt+1(θt+1)− θt+1) < 0,

where the inequality follows from the fact that ∆ > 0 and ρ ≥ α. Hence lowering θt+1 would

raise the seller’s payoff, a contradiction

Proof of Corollary 3. Note that R(ρ, α,∆) = α
∑∞

t=0(1 − α)t(λγ)t = α
1−(1−α)λγ . Since

λγ is increasing in α and decreasing in ρ the first part follows and lim∆→0
α

1−(1−α)λγ = 1 for

any ρ, α > 0

Proof of Propostion 10. Lemma 1 in Online Appendix B characterizes lim∆→0 γ(∆). The

proof of Proposition 5 shows that lim∆→0 V
α,ρ
S (∆) = lim∆→0[α(∆)VF + (1−α(∆))γ(∆)/2]

Proof of Corollary 4. Under the single-offer scheme, since at any point the seller is either
informed or not, by dynamic consistency, the seller either immediately quotes the static

monopoly price or simply waits. The seller’s optimal expected revenue is then the maximum

of the static monopoly profit and the present value of leakage. The total probability that

leakage occurs over ω amount of real time is 1− lim∆→0(1− ξ∆φ)ω/∆. Hence, if φ > 1, the

revenue under the single-offer scheme is VM ; if φ = 1, it is max{VM ,
∫∞

0 VF ξe
−t(ξ+1)dt}; if

φ < 1, it is VF

1.1 Online Appendix B

Lemma 1 (Lemma for Proposition 10) Consider any β, ξ ∈ (0,∞). Let κ < 0.5, then

lim∆→0 γ(∆) = 1. Let κ > 0.5, then lim∆→0 γ(∆) = 1 when φ < 1, lim∆→0 γ(∆) = ξ
ξ+1

when φ = 1, and lim∆→0 γ(∆) = 0 when φ > 1. Let κ = 0.5, then lim∆→0 γ(∆) = β
β+1 if

φ > 1 and lim∆→0 γ(∆) = 1 when φ < 1.
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Proof. In the proof below, I use the facts that lim∆→0(1 − e−∆)∆z = 0 if z > −1 and

lim∆→0(1− e−∆)∆z = 1 if z = −1. After substituting in α = ξ∆φ and ρ = β∆κ, the seller’s

initial price can be separated into two terms with the appropriate signs:

Term I︷ ︸︸ ︷
(1− (1− β∆κ)e−∆)2 − 0.5ξ∆φe−∆

e−2∆(1− β∆κ)2 − e−∆(1− 2β∆κ)− ξ∆φe−∆

(

Term II︷ ︸︸ ︷
(1− e−∆)

(
1− e−∆(1− β∆κ)

)2
+ 0.25ξ2∆2φe−2∆

(e−2∆(1− β∆κ)2 − e−∆(1− 2β∆κ)− ξ∆φe−∆)2
)1/2.

Step I. Re-arranging terms, the limit of Term I becomes:

lim
∆→0

(1 +
−1 + 0.5ξ∆φ + e∆

e−∆(1− β∆κ)2 − (1− 2β∆κ)− ξ∆φ
). (1.8)

Applying L’Hôpital’s rule, the limit of the second term in Eq.(1.8) equals:

lim
∆→0

−(0.5ξφ∆φ−1 + e∆)

1− 2β∆κ + β2∆2κ − 2κβ(1− e−∆)∆κ−1 + ξφ∆φ−1 − 2κβ2∆2κ−1
. (1.9)

A. Consider φ > 1. If κ > 0.5, Eq.(1.9) converges to −1; if κ < 0.5, to 0. Hence, Term

I converges to 0 and 1 respectively. B. Consider φ = 1. If κ > 0.5, Term I converges to

1− 0.5ξ+1
1+ξ = 0.5ξ

1+ξ ; if κ < 0.5, to 1. C. Consider φ < 1. Multiply both the numerator and the

denominator of Eq.(1.9) by ∆1−φ to obtain:

lim
∆→0

−0.5ξφ

−2κβ(1− e∆)∆κ−φ + ξφ− 2κβ2∆2κ−φ .

If 2κ > φ, the above goes to −0.5, so Term I to 0.5. If 2κ < φ, the above goes to 0, so Term I

to 1. Finally, if 2κ = φ, the above goes to −0.5ξ
ξ−β2 , and Eq.(1.8) to

0.5ξ−β2

ξ−β2 . D. Finally, consider

the case of κ = 0.5. It follows that if φ > 1, Term I converges to β2

−1+β2 , and if φ < 1, it

converges to 0.5.

Step II. Let’s separate Term II into the two additive parts. Consider the first additive

part. Applying L’Hôpital’s rule to the first part of Term II inside the bracket one gets that

limit is the limit of the fraction where the numerator is:

(
∆κβe−∆ − e−∆ + 1

) (
3(1− e−∆)− 2∆κβ + 2∆κ−1κβ(1− e−∆) + 3∆κβe−∆

)
,
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and the denominator is:

2((2∆κβ − 1)(1− e−∆)−∆φξ + ∆2κβ2e−∆)∗

(−1 + 2β(∆κ−1κ−∆κ)(1− e−∆) + ∆φξ −∆φ−1φξ − 2∆2κβ2e−∆ + 2∆2κ−1κβ2e−∆ + 2∆κβe−∆).

A. Consider κ ≥ 1. Multiplying both the numerator and the denominator by ∆−1, one

obtains that the former converges to zero and the latter to a non-zero amount. Hence, the

ratio goes to 0. B. Consider κ ∈ (0.5, 1). Multiply both the numerator and the denominator

by ∆−2κ and simplifying terms. The numerator converges to (β) (2κβ + β). Let φ > 2κ.

It follows that −∆φ−1φξ + ∆2κ−12κβ2 = ∆2κ−1(−∆zφξ + 2κβ2) for some z > 0. Hence,

since the denominator goes to infinity, the ratio goes to zero. Let φ < 2κ. It follows that

−∆φ−1φξ + ∆2κ−12κβ2 = ∆φ−1(−φξ + ∆z2κβ2) for some z > 0. Hence, the ratio again

goes to 0. Consider φ = 2κ, the ratio again converges to 0. C. If κ = 0.5, then again by

multiplying both sides by ∆−2κ, the ratio goes to β2/
(
−1 + β2

)2 if φ > 1 and to 0 if φ < 1.

D. Finally, if κ < 0.5, multiplying both sides by ∆−2κ, we get again that the numerator goes

to a positive finite amount for any β > 0 and, given the above, that the ratio goes to zero.

Step III. Consider now the second additive part from Term II. Applying L’Hôpital’s

rule, and simplifying terms, the limit equals:

lim
∆→0

−∆2φ−1ξ2 (∆− φ)

4 (e−∆ −∆φξ + ∆2κβ2e−∆ − 1)
∗ (1.10)

∗ 1

(−1 + ∆φξ −∆φ−1φξ − 2∆2κβ2 + 2∆2κ−1κβ2 + 2∆κβ)
.

By multiplying both the numerator and the denominator by ∆−φ and eliminating vanishing

terms, Eq. (1.10) becomes:

lim
∆→0

−∆φξ2 + ∆φ−1ξ2φ

4 (−(1− e−∆)∆−φ − ξ + ∆2κ−φβ2) (−1 + ∆φξ −∆φ−1φξ + 2∆2κ−1κβ2)
. (1.11)

A. Consider φ > 1. The above goes to zero both if 2κ ≥ φ and if 2κ < φ. B. Consider φ = 1.

If κ < 0.5, the above converges to 0. If κ > 0.5, the above converges to ξ2

4(−1−ξ)(−1−ξ) = (0.5ξ
1+ξ )2

where I again used the fact that lim∆→0(1 − e−∆)∆−1 = 1. C. Consider φ < 1. If 2κ > φ,

the above converges to (1
2)2; if 2κ < φ, to 0; if 2κ = φ, to ( 0.5ξ

−ξ+β2 )2. Step IV. Collecting
the terms and accounting for the sign of the denominator of Term II inside the bracket,

depending on κ and φ, the result follows

Claim 1 Fix any ∆ > 0 and ρ ≥ α ≥ 0. The perfect equilibrium characterized by Propo-

sitions 5 and 8 is the unique limit in terms of prices and payoffs of the sequence of perfect
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equilibria of the finite T-horizon games as T →∞.

Proof. Consider a finite T−horizon game. The informed seller’s stationary strategy is just
as before. The proof of Proposition 7 shows that the skimming property holds and if the first-

order condition for the seller’s best response requirement in round t is satisfied, then in that

round the corresponding second-order condition is also satisfied. Furthermore, the seller’s

equilibrium price and revenue at the beginning of the final round T is unique and linear.

Suppose then that pt = γtθt and Vt(θt) = φtθ
2
t , where Vt(θt) is the uninformed seller type’s ex

ante expected equilibrium value function at round t when the highest remaining buyer type

is θt. Let’s proceed by induction. By the skimming property, given the marginal buying-

type’s indifference condition , θt+1 − pt = e−∆(1 − ρ)(θt+1 − pt+1) and the above induction

hypothesis, the seller’s round t dynamic optimization condition, given state variable θt is

max
θt+1≤θt

(θt − θt+1)θt+1(1− e−∆(1− ρ) + e−∆(1− ρ)γt+1)+ (1.12)

e−∆(α0.5θ2
t+1 + (1− α)Vt+1(θt+1)).

Solving this, after some re-arrangements, one obtains that the unique solution is given by:

θt+1 = θt max{ 1− e−∆(1− γt+1 − ρ+ γt+1ρ)

2(1− e−∆(1 + 0.5α− γt+1 − ρ+ φt+1(1− α) + γt+1ρ))
, 1}. (1.13)

Given the proof of Proposition 7, Part II. if ∆ > 0 and ρ ≥ α, then this solution must be

internal.

Substituting the above iteration back into the seller’s round t best response condition,

given the induction hypothesis, the uninformed seller’s type round t+ 1 value function can

be written as Vt+1(θt+1) =

θ2
t+1

4

γ2
t+2e

−2∆(1− ρ)2 + 2γt+2e
−∆(1− ρ)(1− e−∆(1− ρ)) + (1− (1− ρ)e−∆)2

1− e−∆(1 + 0.5α− γt+2 − ρ+ φt+2 + γt+2ρ− αφt+2)
. (1.14)

Hence, both aspects of the induction hypothesis are verified and there is a unique solution

in prices and payoffs given any finite T.

Note that, given the marginal buying type’s indifference condition and Eq. (1.13), after

some algebra, one obtains the following expression determining γt:

γt+1 =
1

2

(1− e−∆(1− γt+1 − ρ+ γt+1ρ))(1− e−∆(1− ρ)(1− γt+2))

1− e−∆(1 + 0.5α− γt+2 − ρ+ φt+2 + γt+2ρ− αφt+2)
. (1.15)

Diving Eq.(1.14) by Eq.(1.15), it follows that Vt+1(θt+1)
γt+1

=
θ2
t+1

2 . In turn, the above condition
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then implies the following difference equation:

γt = Φ(γt+1) ≡ 0.5(1− e−∆(1− ρ)(1− γt+1))2

1− e−∆(1 + 0.5α− γt+1 − ρ+ 0.5γt+1 + γt+1ρ− 0.5αγt+1)
. (1.16)

Let me first show that Φ(γ) is increasing. Consider its first derivative. This is given by:

Term 0︷ ︸︸ ︷
−1

2
e−∆ 1− e−∆(1− ρ)(1− γ)

(1− e−∆(1− ρ)(1− γ)− 0.5e−∆(α+ γ − αγ))2
∗ (1.17)

∗

Term 1︷ ︸︸ ︷
(0.5α(1 + e−∆(1− γ)(1− ρ)) + e−∆(1− ρ)2+

+ 0.5e−∆(1− γ)(1− ρ) + ρ+ γ(1− ρ)ρe−∆ − 1.5

Note that Term 0 is always negative. I now show that Term I is also negative. Note that

Term I is increasing in α. To then obtain an upper bound, given any ρ, set α = ρ. After

some rearrangements, one obtains that Term 1 can be bounded from above by:

−1.5(1− ρ)(1− e−∆)− 0.5e−∆(γ(1− ρ) + ρ(1− γ)− ρ2(1− γ)) < 0.

Let me show that Φ(γ) is also convex. Consider now the second derivative of Eq.(1.16).

After some algebra, one obtains that this is given by:

e−2∆

2

0.5α2 − α(1− e−∆(1− ρ)) + 0.5e−2∆(1− ρ)2 − e−∆(1− ρ) + 0.5

(0.5γe−∆(1 + α)− 0.5αe−∆ − e−∆(1− ρ)− γe−∆ρ+ 1)3
. (1.18)

The above denominator is always positive. This is true because 0.5γe−∆ + e−∆(1 −
γ)(ρ − 0.5α) + 1 − e−∆ > 0 as long as ρ − 0.5α ≥ 0. Consider now the numerator. Note

that α(0.5α − e−∆ρ + e−∆ − 1) is decreasing in α given the assumption that ρ ≥ α. It

follows that α − e−∆ρ + e−∆ − 1 < (1 − e−∆)(ρ − 1) < 0. To obtain a lower bound on

the numerator, set α = ρ. After some re-arrangements, one obtains that the numerator is

bounded from below by −e−∆(1 − ρ)2 + 0.5e−2∆(1 − ρ)2 > 0, where the inequality follows

since 0.5− e−∆(1− 0.5e−∆) > 0. Finally, note that 0 < Φ(0) and Φ(1) = (2− e−∆)−1 ≤ 1.

Since Φ is increasing and convex on [0, 1], it then has a unique fixed point on [0, 1].

Consider now a fixed t, as T →∞, the value of γt,T converges to the unique fixed point
of Φ. Solving for this unique fixed point, one obtains that this point γ(∆, ρ, α) is given by:

(1− (1− ρ)e−∆)2 − 0.5αe−∆ −
√

(1− e−∆)(1− e−∆(1− ρ))2 + 0.25α2e−2∆

e−2∆(1− ρ)2 − e−∆(1− 2ρ)− αe−∆
. (1.19)

Note that the above equals the expression for γ(∆, ρ, α) in the proof of Proposition 5.
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In turn, since Vt+1(θt+1)
γt+1

=
θ2
t+1

2 , the uninformed seller’s equilibrium continuation value also

converges to that under Proposition 5. Hence, for any given ∆, the seller’s price sequence

and the payoffs also converge to those identified by Proposition 5
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