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Proof of Proposition 1

The argument is by backward induction. The functions XT , QT−1 and mT−1

are uniquely defined. The first step at which multiple equilibria can arise is in
the selection of bT when constructing the bond issuance function BT (bT−1, s

T ).
However, when δ = 1, the bond issuance function BT does not affect the
construction of the repayment function XT−1 and of the pricing function QT−2,
as repayment only depends on the maximum of the function QT−1

(
bT , s

T−1) bT
and the term (1− δ)QT−1

(
BT (bT−1, s

T−1), sT−1
)
in (3) disappears when δ = 1.

The same argument applies in all previous periods.

Proof of Proposition 4

In the case considered, the Laffer curve takes the form [1− F ((1 + r) b−m)] b

(omitting time subscripts and dependence on st to simplify notation). The
slope of the Laffer curve is

1− F ((1 + r) b−m)− (1 + r) f ((1 + r) b−m) b

which has the same sign of

1− (1 + r)
f ((1 + r) b−m)

1− F ((1 + r) b−m)
b.

So if f/ (1− F ) is monotone non-decreasing, the derivative can only change
sign once.
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Proof of Lemma 1

Since QT−1 (bT ) is non-increasing in bT , we need to show that

(1− δ′) b′T−1 > (1− δ) bT−1. (22)

Using (10) we have

(1− δ′) b′T−1 =
1− δ′

r + δ′ + (1− δ′)QT−1 (b∗T )
(r + δ + (1− δ)QT−1 (b∗T )) bT−1

and inequality (22) follows from the fact that the right-hand side is decreasing
in δ′.

More on boundary conditions in Section 5.1

Let v = qb denote the value of debt. Multiplying both sides of (12) by b,
substituting

κb = z + q
(
ḃ+ δb

)
,

and rearranging, yields

(r + λ) qb = z + λΨ (b) b+ q̇b+ qḃ = z + λΨ (b) b+ v̇.

Suppose b is large enough that z = z̄ and Ψ (b) b = φE[Z]. Then we can
characterize the dynamics of (q, b) for b large enough by studying the following
ODEs in (q, v)

(r + δ + λ) q = κ+ λφE[Z] + q̇,

(r + λ) v = z̄ +
q

v
λφE[Z] + v̇,
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with terminal conditions

q (T ) = 0,

v (T ) = φ
z̄ + λE[Z]

r + λ
.

Proof of Lemma 2

Using steady-state conditions, the Jacobian can be written as

J =

[
κ−h′(b)

q
− δ − δb

q

−λΨ′ (b) r + δ + λ

]
.

A necessary and sufficient condition for a saddle is a negative determinant
of J , i.e., J11J22 < J12J21. Since J12 < 0 and J22 > 0, this is equivalent to
−J11/J12 < −J21/J22, which means that the ḃ = 0 locus is downward sloping
and steeper than the q̇ = 0 locus. Condition (16) then follows.

Proof of Proposition 5

Consider the functions on the right-hand sides of (13) and (14), which are both
continuous for b > 0. If there is a saddle-path stable steady state at b′, the
second function is steeper, from Lemma 2, and so is below the first function at
b′ + ε for some ε > 0. Taking limits for b→∞ the the second function yields
q → κ/δ and the first yields

q →
κ+ λΨ

(
S
)

r + δ + λ
<
κ

δ
,

where the inequality can be proved using Ψ
(
S
)
< 1 and κ = r+ δ. Therefore,

the second function is above the first for some b′′ large enough. The interme-
diate value theorem implies that a second steady state exists in (b′ + ε, b′′).
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Proof of Proposition 6

Consider the path that solves our ODE system going backwards in time, start-
ing on the saddle path converging to the low-debt steady state, at some value
of b = b′ + ε. Given a small enough ε > 0 the saddle path must lie above
the q̇ = 0 locus. Moreover, between b′ and b′′ the q̇ = 0 locus lies strictly
above the ḃ = 0 locus. Therefore, the path can never cross the q̇ = 0 locus
because along the path ḃ < 0 and q̇ > 0. Therefore, it is possible to solve the
ODE backwards until b approaches b′′ from below. This implies that for all
b (0) < b′′ we can select a path with ḃ < 0 and b→ b′. Consider next the path
that solves the ODE going backwards starting at

(
b̂, q̂
)
. By construction the

point
(
b̂, q̂
)
must lie in the region of the phase diagram below both the ḃ = 0

locus and the q̇ = 0 locus (to see this notice that at the definition of b̂ implies
that ḃ > 0 at

(
b̂, q̂
)

and the constancy of qb implies q̇ < 0). If b̂ < b′′ the

path with qb = v̂ is an equilibrium for all initial conditions in [b̂,∞), so the
interesting case is b̂ > b′′. In this case, we can solve backward the ODE. As
long as b > b′′ the ḃ = 0 locus lies strictly above the q̇ = 0 locus. Therefore,
the path can never cross the q̇ = 0 locus, because along the path ḃ > 0 and
q̇ < 0. Therefore, it is possible to solve the ODE backwards until b approaches
b′′ from above. This implies that for all b (0) > b′′ we can select a path with
ḃ > 0 and b→∞.

Turning to multiplicity, consider the first path constructed above. As we
approach b′′ two possibilities arise. Either q remains bounded away from its
steady state value q′′ or q converges to q′′. In the first case, ḃ is bounded above
by a negative value, so we must cross b′′ and can extend the solution in some
interval [b′′, b′′ + ε). In this case, we have multiple equilibria because for some
b > b′′ we can select both an equilibrium path with ḃ < 0 and an equilibrium
path with ḃ > 0. In the second case, the path converges to the steady state
(b′′, q′′) along a monotone path with ḃ < 0. However, if the local dynamics
near (b′′, q′′) are characterized by a spiral, we reach a contradiction (since the
path must cross the arms of the spiral and then convergence can no longer be
monotone).

4



Proof of Proposition 9

To prove the proposition, we construct an equilibrium which implements the
desired outcome. The equilibrium pricing function satisfiesQ (di, qi−1) = q∗ for
any history (di, qi−1) with qi−1 = {q∗, ..., q∗}. The strategy of the government
is to issue b∗− (1− δ) b−−

∑i
j=0 dj and consume after any history with qi−1 =

{q∗, ..., q∗}. The government strategy is optimal following any history with
qi−1 = {q∗, ..., q∗} because the maximum utility the government can reach
following any future deviation is

max
b
u (ȳ + q∗ (b− (1− δ) b−)− κb−) + βW (b)

and issuing b∗ reaches the maximum by construction. The pricing function sat-
isfy rational expectations because the government will reach a total stock of
debt b∗ independently of the past history. It is not difficult to complete the de-
scription of the equilibrium constructing continuation strategies after histories
with qi−1 6= {q∗, ..., q∗}. However, given the atomistic nature of investors, these
off-equilibrium paths are irrelevant for the borrower’s maximization problem.
The resulting equilibrium play is that the government issues b∗ in the first
auction and no further auction takes place.

Example for Section 7

Consider the economy in Section 7. The optimality condition for the maxi-
mization problem in Proposition 9 can be written as follows

qu′ (ȳ + q (b− (1− δ) b−)− κb−) =
β

1− β
r

∫ ∞
rb

1−η

U ′ (max{Y − rb, ηY }) dH (Y ) .

To construct an example with multiple equilibria, we consider a simple case
in which the utility function u (c) = Ac− 1

2
Bc2 and U (c) = log c. We use the

following parameters

β = 0.95, φ = 0.7, η = 0.8,
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Figure 15: An example for the microfounded model of Section 7

A = 3, B = −27, log Y ∼ N(0.1 + log (r/ (1− η)) , 0.2),

setting r = 1
β
− 1.

Define the functions

J (b) =
β

1− β
r

∫ ∞
rb

1−η

U ′ (max{Y − rb, ηY }) dH (Y ) ,

and
C (b) = ȳ +Q (b) (b− (1− δ) b−)− κb−.

Equilibria can be found solving the equation u′ (C (b)) = J (b) /Q (b). The solid
blue line in Figure 15 represents the pairs (C (b) , J (b) /Q (b)) for b ∈ [1, 1.5].
The red dashed line represents the marginal utility of consumption in the first
subperiod u′ (c) choosing the parameters of u′ (c) so that it crosses the blue
line more than once. It can be shown that the middle point at which the two
lines cross does not satisfy second order conditions for a maximum. It can also
be shown that the other two points identify global optima, so they represent
two equilibria.

The interpretation of the two equilibria is as follows. There is a low debt
equilibrium in which the country defaults with low probability, the future
marginal cost of debt J (b) is high and so is the price Q (b). There is a high
debt equilibrium in which the country defaults with high probability and the
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future marginal cost of debt J (b) and the price of debt Q (b) are both low. The
ratio J (b) /Q (b) is higher in the first equilibrium. This reflects the presence of
recovery which limits the reduction inQ (b) in the low b equilibrium. Therefore,
the marginal incentive to reduce debt is higher in the low debt equilibrium,
which is reflected in a lower value of c.

Here, we have chosen an example in which c is fairly sensitive to the dif-
ferent equilibria to emphasize the novel forces that arise in a fully optimizing
setup. However, it is also easy to construct examples that are closer to the
two-period model of Section 4.2, by making the function u′ (c) be very steep
near some c̄ that delivers a given primary surplus ȳ − c̄.
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