Slow Moving Debt Crises
 Guido Lorenzoni Iván Werning
 Online Appendix

Proof of Proposition 1

The argument is by backward induction. The functions X_{T}, Q_{T-1} and m_{T-1} are uniquely defined. The first step at which multiple equilibria can arise is in the selection of b_{T} when constructing the bond issuance function $B_{T}\left(b_{T-1}, s^{T}\right)$. However, when $\delta=1$, the bond issuance function B_{T} does not affect the construction of the repayment function X_{T-1} and of the pricing function Q_{T-2}, as repayment only depends on the maximum of the function $Q_{T-1}\left(b_{T}, s^{T-1}\right) b_{T}$ and the term $(1-\delta) Q_{T-1}\left(B_{T}\left(b_{T-1}, s^{T-1}\right), s^{T-1}\right)$ in (3) disappears when $\delta=1$. The same argument applies in all previous periods.

Proof of Proposition 4

In the case considered, the Laffer curve takes the form $[1-F((1+r) b-m)] b$ (omitting time subscripts and dependence on s^{t} to simplify notation). The slope of the Laffer curve is

$$
1-F((1+r) b-m)-(1+r) f((1+r) b-m) b
$$

which has the same sign of

$$
1-(1+r) \frac{f((1+r) b-m)}{1-F((1+r) b-m)} b .
$$

So if $f /(1-F)$ is monotone non-decreasing, the derivative can only change sign once.

Proof of Lemma 1

Since $Q_{T-1}\left(b_{T}\right)$ is non-increasing in b_{T}, we need to show that

$$
\begin{equation*}
\left(1-\delta^{\prime}\right) b_{T-1}^{\prime}>(1-\delta) b_{T-1} \tag{22}
\end{equation*}
$$

Using (10) we have

$$
\left(1-\delta^{\prime}\right) b_{T-1}^{\prime}=\frac{1-\delta^{\prime}}{r+\delta^{\prime}+\left(1-\delta^{\prime}\right) Q_{T-1}\left(b_{T}^{*}\right)}\left(r+\delta+(1-\delta) Q_{T-1}\left(b_{T}^{*}\right)\right) b_{T-1}
$$

and inequality (22) follows from the fact that the right-hand side is decreasing in δ^{\prime}.

More on boundary conditions in Section 5.1

Let $v=q b$ denote the value of debt. Multiplying both sides of (12) by b, substituting

$$
\kappa b=z+q(\dot{b}+\delta b),
$$

and rearranging, yields

$$
(r+\lambda) q b=z+\lambda \Psi(b) b+\dot{q} b+q \dot{b}=z+\lambda \Psi(b) b+\dot{v} .
$$

Suppose b is large enough that $z=\bar{z}$ and $\Psi(b) b=\phi E[Z]$. Then we can characterize the dynamics of (q, b) for b large enough by studying the following ODEs in (q, v)

$$
\begin{aligned}
(r+\delta+\lambda) q & =\kappa+\lambda \phi E[Z]+\dot{q} \\
(r+\lambda) v & =\bar{z}+\frac{q}{v} \lambda \phi E[Z]+\dot{v}
\end{aligned}
$$

with terminal conditions

$$
\begin{aligned}
& q(T)=0 \\
& v(T)=\phi \frac{\bar{z}+\lambda E[Z]}{r+\lambda}
\end{aligned}
$$

Proof of Lemma 2

Using steady-state conditions, the Jacobian can be written as

$$
J=\left[\begin{array}{cc}
\frac{\kappa-h^{\prime}(b)}{q}-\delta & -\frac{\delta b}{q} \\
-\lambda \Psi^{\prime}(b) & r+\delta+\lambda
\end{array}\right] .
$$

A necessary and sufficient condition for a saddle is a negative determinant of J, i.e., $J_{11} J_{22}<J_{12} J_{21}$. Since $J_{12}<0$ and $J_{22}>0$, this is equivalent to $-J_{11} / J_{12}<-J_{21} / J_{22}$, which means that the $\dot{b}=0$ locus is downward sloping and steeper than the $\dot{q}=0$ locus. Condition (16) then follows.

Proof of Proposition 5

Consider the functions on the right-hand sides of (13) and (14), which are both continuous for $b>0$. If there is a saddle-path stable steady state at b^{\prime}, the second function is steeper, from Lemma 2, and so is below the first function at $b^{\prime}+\epsilon$ for some $\epsilon>0$. Taking limits for $b \rightarrow \infty$ the the second function yields $q \rightarrow \kappa / \delta$ and the first yields

$$
q \rightarrow \frac{\kappa+\lambda \Psi(\bar{S})}{r+\delta+\lambda}<\frac{\kappa}{\delta},
$$

where the inequality can be proved using $\Psi(\bar{S})<1$ and $\kappa=r+\delta$. Therefore, the second function is above the first for some $b^{\prime \prime}$ large enough. The intermediate value theorem implies that a second steady state exists in $\left(b^{\prime}+\epsilon, b^{\prime \prime}\right)$.

Proof of Proposition 6

Consider the path that solves our ODE system going backwards in time, starting on the saddle path converging to the low-debt steady state, at some value of $b=b^{\prime}+\epsilon$. Given a small enough $\epsilon>0$ the saddle path must lie above the $\dot{q}=0$ locus. Moreover, between b^{\prime} and $b^{\prime \prime}$ the $\dot{q}=0$ locus lies strictly above the $\dot{b}=0$ locus. Therefore, the path can never cross the $\dot{q}=0$ locus because along the path $\dot{b}<0$ and $\dot{q}>0$. Therefore, it is possible to solve the ODE backwards until b approaches $b^{\prime \prime}$ from below. This implies that for all $b(0)<b^{\prime \prime}$ we can select a path with $\dot{b}<0$ and $b \rightarrow b^{\prime}$. Consider next the path that solves the ODE going backwards starting at (\hat{b}, \hat{q}). By construction the point (\hat{b}, \hat{q}) must lie in the region of the phase diagram below both the $\dot{b}=0$ locus and the $\dot{q}=0$ locus (to see this notice that at the definition of \hat{b} implies that $\dot{b}>0$ at (\hat{b}, \hat{q}) and the constancy of $q b$ implies $\dot{q}<0$). If $\hat{b}<b^{\prime \prime}$ the path with $q b=\hat{v}$ is an equilibrium for all initial conditions in $[\hat{b}, \infty)$, so the interesting case is $\hat{b}>b^{\prime \prime}$. In this case, we can solve backward the ODE. As long as $b>b^{\prime \prime}$ the $\dot{b}=0$ locus lies strictly above the $\dot{q}=0$ locus. Therefore, the path can never cross the $\dot{q}=0$ locus, because along the path $\dot{b}>0$ and $\dot{q}<0$. Therefore, it is possible to solve the ODE backwards until b approaches $b^{\prime \prime}$ from above. This implies that for all $b(0)>b^{\prime \prime}$ we can select a path with $\dot{b}>0$ and $b \rightarrow \infty$.

Turning to multiplicity, consider the first path constructed above. As we approach $b^{\prime \prime}$ two possibilities arise. Either q remains bounded away from its steady state value $q^{\prime \prime}$ or q converges to $q^{\prime \prime}$. In the first case, \dot{b} is bounded above by a negative value, so we must cross $b^{\prime \prime}$ and can extend the solution in some interval $\left[b^{\prime \prime}, b^{\prime \prime}+\epsilon\right)$. In this case, we have multiple equilibria because for some $b>b^{\prime \prime}$ we can select both an equilibrium path with $\dot{b}<0$ and an equilibrium path with $\dot{b}>0$. In the second case, the path converges to the steady state $\left(b^{\prime \prime}, q^{\prime \prime}\right)$ along a monotone path with $\dot{b}<0$. However, if the local dynamics near $\left(b^{\prime \prime}, q^{\prime \prime}\right)$ are characterized by a spiral, we reach a contradiction (since the path must cross the arms of the spiral and then convergence can no longer be monotone).

Proof of Proposition 9

To prove the proposition, we construct an equilibrium which implements the desired outcome. The equilibrium pricing function satisfies $\mathcal{Q}\left(d^{i}, q^{i-1}\right)=q^{*}$ for any history $\left(d^{i}, q^{i-1}\right)$ with $q^{i-1}=\left\{q^{*}, \ldots, q^{*}\right\}$. The strategy of the government is to issue $b^{*}-(1-\delta) b_{-}-\sum_{j=0}^{i} d_{j}$ and consume after any history with $q^{i-1}=$ $\left\{q^{*}, \ldots, q^{*}\right\}$. The government strategy is optimal following any history with $q^{i-1}=\left\{q^{*}, \ldots, q^{*}\right\}$ because the maximum utility the government can reach following any future deviation is

$$
\max _{b} u\left(\bar{y}+q^{*}\left(b-(1-\delta) b_{-}\right)-\kappa b_{-}\right)+\beta W(b)
$$

and issuing b^{*} reaches the maximum by construction. The pricing function satisfy rational expectations because the government will reach a total stock of debt b^{*} independently of the past history. It is not difficult to complete the description of the equilibrium constructing continuation strategies after histories with $q^{i-1} \neq\left\{q^{*}, \ldots, q^{*}\right\}$. However, given the atomistic nature of investors, these off-equilibrium paths are irrelevant for the borrower's maximization problem. The resulting equilibrium play is that the government issues b^{*} in the first auction and no further auction takes place.

Example for Section 7

Consider the economy in Section 7. The optimality condition for the maximization problem in Proposition 9 can be written as follows
$q u^{\prime}\left(\bar{y}+q\left(b-(1-\delta) b_{-}\right)-\kappa b_{-}\right)=\frac{\beta}{1-\beta} r \int_{\frac{r b}{1-\eta}}^{\infty} U^{\prime}(\max \{Y-r b, \eta Y\}) d H(Y)$.
To construct an example with multiple equilibria, we consider a simple case in which the utility function $u(c)=A c-\frac{1}{2} B c^{2}$ and $U(c)=\log c$. We use the following parameters

$$
\beta=0.95, \quad \phi=0.7, \quad \eta=0.8
$$

Figure 15: An example for the microfounded model of Section 7

$$
A=3, \quad B=-27, \quad \log Y \sim N(0.1+\log (r /(1-\eta)), 0.2)
$$

setting $r=\frac{1}{\beta}-1$.
Define the functions

$$
J(b)=\frac{\beta}{1-\beta} r \int_{\frac{r b}{1-\eta}}^{\infty} U^{\prime}(\max \{Y-r b, \eta Y\}) d H(Y),
$$

and

$$
C(b)=\bar{y}+Q(b)\left(b-(1-\delta) b_{-}\right)-\kappa b_{-} .
$$

Equilibria can be found solving the equation $u^{\prime}(C(b))=J(b) / Q(b)$. The solid blue line in Figure 15 represents the pairs $(C(b), J(b) / Q(b))$ for $b \in[1,1.5]$. The red dashed line represents the marginal utility of consumption in the first subperiod $u^{\prime}(c)$ choosing the parameters of $u^{\prime}(c)$ so that it crosses the blue line more than once. It can be shown that the middle point at which the two lines cross does not satisfy second order conditions for a maximum. It can also be shown that the other two points identify global optima, so they represent two equilibria.

The interpretation of the two equilibria is as follows. There is a low debt equilibrium in which the country defaults with low probability, the future marginal cost of debt $J(b)$ is high and so is the price $Q(b)$. There is a high debt equilibrium in which the country defaults with high probability and the
future marginal cost of debt $J(b)$ and the price of debt $Q(b)$ are both low. The ratio $J(b) / Q(b)$ is higher in the first equilibrium. This reflects the presence of recovery which limits the reduction in $Q(b)$ in the low b equilibrium. Therefore, the marginal incentive to reduce debt is higher in the low debt equilibrium, which is reflected in a lower value of c.

Here, we have chosen an example in which c is fairly sensitive to the different equilibria to emphasize the novel forces that arise in a fully optimizing setup. However, it is also easy to construct examples that are closer to the two-period model of Section 4.2, by making the function $u^{\prime}(c)$ be very steep near some \bar{c} that delivers a given primary surplus $\bar{y}-\bar{c}$.

