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Online Appendix

Near-Feasible Stable Matching with Couples

Thành Nguyen and Rakesh Vohra

Preferences and Stability

A1. Preferences

Doctor’s preferences over hospitals are based on a model fitted from Israeli
hospital preference data (see Kelner (2015)). We first generate a number ph
representing the ‘popularity’ of a hospital h, where ph = 0.99K(0.8)Xh +0.01×18,
Xh is an integer chosen i.i.d. uniformly from 1 to 18, and K is the total number
of slots, which is equal to the number of doctors.

Preferences of each single doctor are generated by selecting hospitals iteratively
at random without replacement. At each iteration, the probability of selecting
hospital h from among those that remain is proportional to ph.

To generate the preferences of the couples, we assume that couples would like
to be allocated to hospitals in the same region rather than different regions. So,
we choose lotteries over ordered pairs of hospitals with the property that pairs in
the same region are favored over pairs in different regions.

Choose λ ∈ (0, 1) and set

(A1) νh,h′ =

{
λphph′ if hospital h, h′ are in the same region,

(1− λ)phph′ otherwise.

Preferences of each couple are generated by selecting ordered pairs of hospitals
iteratively at random without replacement. At each iteration, the probability of
selecting the ordered pair (h, h′) from among the ordered pairs that remain is
proportional to νh,h′ .

When λ is close to 1, hospitals in the same region are more likely to be at the
top of a couple’s preference ordering. If λ < 0.5, then couples prefer not to be in
the same region. For the results reported we set λ = 0.7.

To generate the preferences of a couple over all hospital pairs including the
outside option, we order all pairs of form (h1, ∅) or (∅, h2) uniformly at random.
Finally we construct the full preference ordering so that it is ‘unemployment-
averse’, i.e.

(h1, h2) � (h3, ∅) � (∅, ∅)
(h1, h2) � (∅, h3) � (∅, ∅)(A2)

for any h1, h2, h3 ∈ H.
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A2. Stability

Let H be the set of hospitals, D1 the set of single doctors, and D2 the set of
couples. Each couple c ∈ D2 is denoted c = (f,m) where fc and mc are the
first and second member of c, respectively. The set of all doctors, D, is given by
D1 ∪ {mc|c ∈ D2} ∪ {fc|c ∈ D2}.

Each single doctor d ∈ D1 has a strict preference ordering �d over H∪{∅} where
∅ denotes the outside option for each doctor. If h �d ∅, we say that hospital h
is acceptable for d. Each couple c ∈ D2 has a strict preference ordering �c over
H ∪ {∅} ×H ∪ {∅}–i.e., over pairs of hospitals, including the outside option.

Each hospital h ∈ H has a fixed capacity kh > 0. The preference of a hospital h
over subsets of D is summarized by h’s choice function chh(.) : 2D → 2D. While a
choice function can be associated with every strict preference ordering over subsets
of D, the converse is not true. The information contained in a choice function is
only sufficient to recover a partial order over the subsets of D. Therefore, it isn’t
always possible to say whether a hospital prefers a couple over some pair of single
doctors.

We assume, as is standard in the literature, that chh(.) is responsive. This
means that h has a strict priority ordering �h over elements of D∪{∅}. If ∅ �h d,
we say d is not acceptable to h. For any set D∗ ⊂ D, hospital h’s choice from
that subset, chh(D∗), consists of the (up to) kh highest priority doctors among
the acceptable doctors in D∗. Formally, d ∈ chh(D∗) if and only if d ∈ D∗; d �h ∅
and there exists no set D′ ⊂ D∗ \ {d}, such that |D′| = kh and d′ �h d for all
d′ ∈ D′.

A matching µ is an assignment of each single doctor to a hospital or his/her
outside option, an assignment of couples to at most two positions (in the same or
different hospitals) or their outside option, such that the total number of doctors
assigned to any hospital h does not exceed its capacity kh. Given matching µ,
let µh denote the subset of doctors matched to h; µd and µfc , µmc denote the
position(s) that the single doctor d, and the female and male members of the
couple c obtain in the matching, respectively.

We say µ is individually rational if chh(µh) = µh for any hospital h; µd �d

∅ for any single doctor d and (µfc , µmc) �c (∅, µmc); (µfc , µmc) �c (µfc , ∅);
(µfc , µmc) �c (∅, ∅) for any couple c.

Roth and Sotomayor (1992), we list the ways in which different small coalitions
can block a matching µ.

DEFINITION 2: The following are called blocking coalitions for a matching µ.

1) A pair d ∈ D1 and h ∈ H can block µ if h �d µ(d) and d ∈ chh(µ(h) ∪ d).

2) A triple (c, h, h′) ∈ D2 × (H ∪ {∅}) × (H ∪ {∅}) with h 6= h′ can block µ if
(h, h′) �c µ(c), fc ∈ chh(µ(h) ∪ fc) when h 6= ∅ and mc ∈ chh′(µ(h′) ∪mc)
when h′ 6= ∅.
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3) A pair (c, h) ∈ D2×H can block µ if (h, h) �c µ(c) and (fc,mc) ⊆ chh(µ(h)∪
c).

A3. Construction of �∗
h

DEFINITION 3: Hospital h’s priority ordering over the individual doctors, �h,
and the preferences of the couples {�c: c ∈ D2} is used to construct a strict
ordering, �∗h, over the the coalitions representing the assignment of a doctor or a
couple to at least one position at h–namely, coalitions of the form (d, h), (c, hh′),
(c, h′h), and (c, hh).

Denote a generic instance of one of these coalitions by (·, h) . For each coalition
(·, h), let d(·, h) be the doctor assigned to h. If (·, h) represents the assignment
of both members of a couple to h, let d(·, h) denote the least preferred member
of the couple according to �h. Then, �∗h is defined as follows. For two different
coalitions (a, h) 6= (b, h), if d(a, h) �h d(b, h), then (a, h) �∗h (b, h). If d(a, h) =
d(b, h), then (a, h) and (b, h) represent two different assignments of a couple c, in
which case, (a, h) �∗h (b, h) if and only if (a, h) �c (b, h).

A4. Discussion of Stability

Under responsive choice functions, Definition 2 can have an undesirable impli-
cation. The following example suggested by a referee illustrates this.

Suppose two single doctors d, d′, a couple c = (f,m) and a hospital h with
capacity 2. Recall, that for the couple c and hospital h to block a matching we
require {f,m} ⊂ chh(µ(h) ∪ {f,m}), thus it is a stable matching for h to hire
(d, d′), who are in 2nd and 4th positions, while the hospital may actually prefer
the couple, whose members are ranked 1st and 3rd.

Because �∗ is defined based on the least preferred member of a couple, the
stable matching we construct actually satisfies a stronger notion of stability. In
particular, replace item 3 in Definition 2, with the following:

3′. A pair (c, h) ∈ D2 ×H can block µ if (h, h) �c µ(c)

and both fc ⊆ chh(µ(h) ∪ fc) and mc ⊆ chh(µ(h) ∪mc).

Under this definition, the matching in which µ(h) = {d, d′} is not stable because
it is blocked by (c, h).

The ordering �∗ in Definition 3 is not a primitive of the model but a technical
device introduced to invoke Scarf’s lemma. We prove domination with respect
to �∗ and show in Lemma 3.2 that this corresponds to stability with respect to
Definition 2.

The same referee points out that domination with respect to �∗ can be restric-
tive. Specifically, change the hospital’s priority ordering in the previous example
to f �h d �h d

′ �h m. The hospital’s modified ranking is d �∗h d′ �∗h c. The
only dominating extreme point will assign {d, d′} to h. This might be considered
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restrictive because it is possible that the hospital will prefer the couple c to the
pair (d, d′). However, to evaluate such choices, one needs to extend the standard
model because hospitals are not endowed with orderings over pairs of doctors.
This is beyond the scope of this paper.

A5. Proof of Lemma 2

The proof is by contradiction. Let x̄ be an integral dominating solution of (1-
2-3), and assume that the corresponding assignment µ in the residency matching
with couples is not stable. This means that at least one of the three items below
is true.

1) A pair d ∈ D1 and h ∈ H blocks µ because h �d µ(s) and d ∈ chh(µ(h)∪d).

2) A triple (c, h, h′) ∈ D2×H×H with h 6= h′ blocks µ because (h, h′) �c µ(c),
fc ∈ chh(µ(h) ∪ fc) and mc ∈ chh′(µ(h′) ∪mc).

3) A pair (c, h) ∈ D2 × H blocks µ because (h, h) �c µ(c) and (fc,mc) ⊆
chh(µ(h) ∪ {fc,mc}).

The first type of blocking coalition corresponds to the column associated with
variable (d, h). Now, because chh(.) is a responsive choice function over individual
doctors, d ∈ chh(µ(h)∪ d) implies that d is among the best kh candidates among
µ(h) ∪ d. Therefore, x̄ does not dominate column (d, h): this is a contradiction
because x̄ is a dominating solution.

The second type of blocking coalition corresponds to column (c, h, h′). Following
the same argument, the blocking coalition implies that fc is among the best kh
candidates among µ(h)∪fc (similar for mc and h′.) Together with the tie-breaking
rule of �∗h, this implies that x̄ does not dominate the column (c, h, h′).

In the third type of blocking coalition, the pair (fc,mc) and a hospital h cor-
respond to a column (c, h, h). Because (fc,mc) ⊆ chh(µ(h) ∪ c), both fc and mc

are among the kh best candidates, even when we consider the order �∗ for the
columns, because both members are still ranked highly among µh ∪ {fc,mc}. In
the matching µ, the couple c is not assigned to h, thus, either h’s capacity is not
fully allocated, or a doctor worse than both fc and mc is assigned to h. Both
cases imply that x̄ does not dominate column (c, h, h).

Maintaining Stability in Rounding

B1. Proof of Lemma 3

First of all, x∗ is a feasible matching with respect to capacities k∗. Because
x̄ only contains assignments of mutually acceptable hospital-doctors, so does x∗.
Thus, x∗ is individually rational. Given that x̄ dominates all columns of Q, and x∗
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is obtained from x̄, we show that under the new capacity vector k∗, x∗ dominates
all columns of Q.

Consider the column associated with the assignment of couple c0 to hospital
h1 and h2, (c0, h1, h2). (A similar argument will apply to the other columns). x̄
dominates (c0, h1, h2) either at the constraint corresponding to c0 or at h1 ∈ H
or at h2 ∈ H.

Suppose first x̄ dominates (c0, h1, h2) at c0. Then
∑

h,h′ x̄(c0,h,h′) = 1, and couple
c0 does not like the allocation h1, h2 strictly more than any of the assignments
that they obtained under x̄. Now because x∗ is a 0 − 1 vector rounded from x̄
that satisfies Lemma 3:

(i.) x∗(c0,h,h′) > 0 ⇒ x̄(c0,h,h′) > 0

(ii.)
∑

h,h′ x̄(c0,h,h′) = 1 ⇒ ∑
h,h′ x

∗
(c0,h,h′)

= 1.

These imply that c0 (weakly) prefers the assignments that they gets in x∗ more
than (h1, h2) (we use ‘weakly prefers’ because it is possible that x∗(c0,h1,h2) = 1).

Next, suppose x̄ dominates (c0, h1, h2) at h1 (a similar argument will apply to
h2). This implies that the capacity of hospital h1 binds: Hh1 x̄ = kh1 . Further-
more, h1 weakly prefers all columns in which the corresponding component of x̄ is
positive to (c0, h1, h2). Now because of property (i) in Lemma 3, a component of
x∗ can be positive only when the corresponding component of x̄ is positive. Thus,
x̄ dominates (c0, h1, h2) when we change the capacity at h1 to be k∗h1

:= Hh1x
∗.

B2. When a Hospital’s Capacity Constraint Does not Bind

Given a fractional dominating solution x̄, let H0 be the set of hospitals for
which (1) does not bind. Denote the total slack in these non-binding constraints
by K (not necessarily integral).

Introduce dKe dummy single doctors d1, . . . , ddKe. Choose a strict ordering over

the hospitals in H0, and assign it to each of the dummy doctors. The remaining
hospitals will be ranked below ∅ by all the dummy doctors. Augment the priority
ordering of hospitals in H0 by appending d1 � . . . � ddKe to the bottom of these

hospitals’ orderings but above ∅. The priority ordering of hospitals not in H0

is augmented by appending d1 � . . . � ddKe to the bottom of these hospitals’
preference above ∅.

Extend x̄ to include the dummy doctors so that all slots in H0 are filled. We
can do this by going through the list of dummy doctors from d1 to ddKe and
assigning each doctor to the best position available. Because we are working with
a fractional assignment, a doctor can be split between different positions. Let ¯̄x
be the resulting assignment. It is straightforward to see that ¯̄x is a dominating
solution of the instance with dummy doctors, and this solution fully allocates all
positions. Let x∗∗ be an integral solution obtained by rounding ¯̄x according to the
IR algorithm. Let k∗∗ be the new capacity of the hospitals–that is, k∗∗ := H·x∗∗.



24 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

According to Lemma 3, x∗∗ is a stable solution with respect to k∗∗, and our
algorithm bounds the difference between k∗∗ and k.

We show that after eliminating the variables corresponding to dummy doctors
from x∗∗, the resulting assignment, x∗, is stable with respect to k∗∗. This is
true because under x̄, the constraints (1) corresponding to hospitals in H0 do
not bind. Hence, x̄ dominates all columns of the constraint matrix Q either
at a couple/doctor constraint or at a hospital h constraint where h /∈ H0. As
dummy doctors are never assigned to hospitals outside of H0, it follows that for
all h /∈ H0, Hh · x∗∗ = Hh · x∗. Hence,

k∗∗h = Hh · x∗∗ = Hh · x∗ = k∗ for h /∈ H0.

With these observations, and following the same argument as in Section B.B1,
we obtain that x∗ is stable with respect to k∗∗.

B3. Termination of the IR algorithm

To show that the IR algorithm terminates with an integral solution, we prove
that if it has not yet terminated, we can always eliminate a constraint. It relies
on the following lemma (Lemma 2.1.4, page 14, Lau, Ravi and Singh (2011)).

LEMMA 4 (Rank Lemma): Let P = {x : Ax ≥ b, x ≥ 0} and let x be an
extreme point of P such that xj > 0 for every i. Then, the maximal number of
linearly independent binding constraints of the form Aix = bi for some row i of
A equals the number of variables.

We reformulate Lemma 4 below, to apply in our setting.

LEMMA 5: Let x be an extreme point of Q = {x : Qx = q, 0 ≤ x ≤ 1}. Let
J be the index set of non-integral components of x. Let Q|J be the submatrix
of Q consisting of the columns indexed by J . Then, the number of non-integral
components of x, |J |, is equal to the maximum number of linearly independent
rows of Q|J .

To prove Lemma 5, let I be the index set of integral components of x, that is
xj is either 0 or 1 for all j ∈ I. We can rewrite Qx = Q|J ·x|J +Q|I ·x|I = q. Let

q′ := Q|J · x|J = q −Q|I · x|I , and consider Q|J = {y ∈ R|J | : Q|J · y = q′, y ≥ 0}.
The solution x|J is an extreme point of Q|J and all of its components are strictly
positive. Applying Lemma 4 to Q|J and x|J we obtain Lemma 5.

To see how to use this lemma in our proof, let D∗,A∗ be the submatrices of D
and A, respectively, corresponding to the binding constraints of the linear pro-

gram in Step 1. Thus, x is an extreme solution of

{[
D∗
A∗
]
x =

[
1
b∗

]
; 0 ≤ x ≤ 1

}
.

Let J be the index of a non-integral component of x. Assume, for a contradiction,
that we cannot eliminate any binding constraints. Credit every component of x|J
with one token. Subsequently, we redistribute these tokens to the constraints



VOL. VOL NO. ISSUE NEAR-FEASIBLE STABLE MATCHINGS WITH COUPLES 25

(rows) of

[
D∗|J
A∗|J

]
in such a way that each constraint will get at least 1 token. We

show this to be possible because each column of the matrix has a relatively small
number of non-zero entries. This redistribution shows that the number of binding
constraints is at most the number of non-integral components. Furthermore, we
show that equality arises only when the binding constraints are linearly depen-
dent. This implies that the maximum number of linearly independent constraints
is less than the number of non-integral components, which contradicts Lemma 5.

Token Distribution

To complete the proof we show that if the algorithm has not yet terminated, we
can always find a constraint to eliminate. Suppose, for a contradiction, we are at
an iteration where no constraint can be eliminated and each component of x|J is
fractional. Endow each fractional component of x|J with 1 token and redistribute
that token among the constraints in (4) and (5) as follows:

• The 1 token associated with the variable x(c,h,h′) is apportioned as follows:

a 1
4 tokens to each of the constraints Hh ·x = kh and Hh′ ·x = kh′ (if h = h′,

then Hh · x = kh gets 1
2 tokens) and the remaining 1

2 token assigned to the
couple c constraint–that is,

∑
h,h′ x(c,h,h′) ≤ 1.

• The one token associated with the variable x(d,h) is apportioned as follows:

a 1
4 tokens to the constraintsHh ·x = kh; the remaining 3

4 tokens are allotted
to the doctor d constraint–that is,

∑
h x(d,h) ≤ 1.

We now argue that each binding constraint in (4) and (5) receives at least one
token. Consider a binding constraint Hh · x = kh associated with hospital h. By
the assumption that no constraint can be eliminated, we know that Hh · (dxe −
bxc) ≥ 4. Keep in mind that dxie−bxic = 1 if xi is non-integral, and 0 otherwise.
According to the token distribution scheme, a non-integral component of x gives
the hospital h constraint 1

4 or 1
2 tokens if the corresponding assignment requires 1

or 2 slots from h, respectively. Thus, the number of tokens constraint Hh ·x = kh
gets is at least

1

4
Hh · (dxe − bxc) ≥ 1.

Next, consider a binding constraint corresponding to couple c. As this con-
straint binds–that is,

∑
h,h′ x(c,h,h′) = 1–and it contains at least 1 non-integral

variable, it must contain at least 2. Each of the fractional variables contributes
1
2 a token, thus this constraint also obtains at least 1 token.

Similarly, for the constraint corresponding to a single doctor d. If this constraint
binds and contains at least one non-integral variable, it must contains at least 2.
Therefore, it also gets at least 2× 3

4 ≥ 1 token.
The total number of tokens distributed cannot exceed the number of fractional

components of x|J which is |J |. By Lemma 5, total number of tokens received
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by binding constraints in (4) and (5) is at least the number of such binding con-
straints, |J | − 1. This is because the aggregate capacity constraint may bind. We
have two cases.

Case 1: The aggregate capacity constraint has not yet been eliminated.
We know that the total number of tokens allocated to binding constraints in (4)
and (5) is at least |J | − 1. Because the aggregate constraint has not yet been
eliminated, there are at least three non binding doctor/ couple constraints that
contain fractional variables. According to the token distribution scheme, we gave
to these constraints at least 3 × 1

2 tokens. Hence, the total number of tokens

assigned to constraints in (4) and (5), binding or not, is at least |J | + 1
2 . This

exceeds the the total number of tokens to be distributed, a contradiction.
Case 2: The aggregate constraint was eliminated at some earlier iteration.

By the extreme point property of x|J , the |J | binding constraints belong to (4)
and (5). Each one of the binding constraint receives at least one token. Hence,
none can receive strictly more than one token. This means no constraint in (2) can
bind. Similarly, no non-binding constraint can receive any tokens. Hence, in x|J ,
all variables associated with single doctors take the value zero. Furthermore, if
x(c, h, h′) > 0, the capacity constraints associated with h and h′ must bind. If we
apply these observations to the system (1, 2, 3), the relevant binding constraints
have the form:

(B1)
∑
c∈D2

∑
h′ 6=h

x(c,h,h′) +
∑
c∈D2

∑
h′ 6=h

x(c,h′,h) +
∑

c∈D2∪{∅}

2x(c,h,h) = kh

(B2)
∑

h,h′∈H∪{∅}

x(c,h,h′) = 1

If we add up the binding constraints of the form (B2) we get the sum of the
binding constraints of the form (B1). This violates the assumption that the
binding constraints must be linearly independent. Hence, if we add up the binding
constraints in (3) we get the sum of the binding constraints in (1). This violates
the assumption of linear independence.

B4. Tightness

We outline why the token argument we used cannot be modified to give an
improved bound. We will allow the quantity of tokens allocated to hospital h to
depend on h.14 For each hospital h let rh = Hh · (dxe − bxc). As before, suppose
we are at an iteration where no constraint can be eliminated and each component
of x|J is fractional. Endow each fractional component of x|J with 1 token and

14The same conclusion will be reached even if we allow the quantity of tokens to depend on both the
hospital and the identity of the doctors.
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redistribute the tokens among the constraints in (1-2-3) as follows:

• The 1 token associated with the variable x(c,h,h′) is apportioned as follows:
1
rh

tokens to each of the constraints Hh ·x = kh and Hh′ ·x = kh′ (if h = h′,

then Hh · x = kh gets 2
rh

tokens) and the remaining 1 − 2
rh

token assigned

to the couple c constraint–that is,
∑

h,h′ x(c,h,h′) ≤ 1.

• The 1 token associated with the variable x(d,h) is apportioned as follows:
1
rh

tokens to the constraints Hh · x = kh; the remaining 1 − 1
rh

tokens are

allotted to the doctor d constraint–that is,
∑

h x(d,h) ≤ 1.

It is straightforward to see that the number of tokens allocated to each hospital
h is at least

Hh · (dxe − bxc)
rh

= 1.

Now, consider the number of tokens allocated to a single doctor d constraint.
There must be at least two hospitals h and h′ such that x(d, h), x(d, h′) > 0.
Hence, the number of tokens allocated to this constraint is at least 1− 1

rh
+1− 1

rh′
.

We need this sum to be at least 1. Hence, rh, rh′ ≥ 2. A similar argument for a
couples, c, constraint requires that

1− 2

rh
+ 1− 2

rh′
≥ 1 ⇒ rh, rh′ ≥ 4.

Hence, for our token argument to work we need rh ≥ 4 for all hospitals h which
is precisely what we have assumed.

Additional Results

C1. Proof of Theorem 2

Let HR be the set of rural hospitals, to which we assume no couple applies. Let
HU be the remaining (urban) hospitals. The main change in the IR algorithm
is that we never drop any constraint corresponding to h ∈ HR. Thus, at each
iteration

Hhx = kh for all h ∈ HR.

The modified version of the IR algorithm, called IR1, is described in Figure C1.

To show that the IR1 algorithm returns a near-feasible stable matching that
does not violate the capacity of h ∈ HR, we follow the proof of Theorem 1. It is
enough to show that if IR1 algorithm has not terminated, we can always find an
active constraint to delete.

First, because the IR1 algorithm always maintains a solution satisfying the
capacity constraints of rural hospitals, the aggregate constraint can be rewritten
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Step 0. Start from x := x̄ a dominating solution satisfying (4) and (5).
Initialize the active constraints to be the constraints:
Hh · x = kh for h ∈ HU and the aggregate constraint a · x ≤∑ kh

Step 1. If x is integral, stop; otherwise, among the active constraints that bind
at the solution x, we eliminate one of them. The rule for selecting the
constraint to eliminate is described:

– Choose any binding urban hospital constraint, Hh · x = kh, such that
Hh · (dxe − bxc) ≤ 3 and eliminate it.

– If no urban hospital constraint can be eliminated, eliminate the aggre-
gate capacity constraint.

If no constraint can be found to eliminate, stop, x must be integral. If a
constraint is eliminated, denote by Ax ≤ b the system of remaining (active)
constraints in (5).

Step 2. Find an extreme point z to maximize the number of jobs allocated:

max a · z : zi = xi if xi is either 0 or 1(fix the integral components)

D0 · z = 1

D1 · z ≤ 1 (doctor/couple constraints as in (4))

z ≥ 0

Hhx = kh for all h ∈ HR(rural hospital constraints)

Az ≤ b (active hospital constraints.)

Step 3. Update x to be the extreme point solution z∗ found in Step 2.
Update D0 to include the new constraints from (4) that become binding at
z∗ from Step 2.
Update D1 to remove the new constraints from (4) that become binding at
z∗ from Step 2.
Return to Step 1.

Figure C1. IR1 algorithm
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in terms of urban hospitals only. Namely,∑
d,h:h∈HU

x(d,h) +
∑

c,h,h′:h,h′∈HU

2x(c,h,h′) ≤
∑

h∈HU

kh.

Absent from this constraint is any variable x(c,h,h′) where among the pair (h, h′),
one is urban and the other is rural because of our assumption that only single
doctors apply to rural hospitals.

Second, we modify the token distribution scheme by changing how the token
associated with x(d,h) for h ∈ HR is allocated. Namely, assign 1

2 a token to
the constraint Hh · x = kh; the remaining 1/2 token is given to the doctor d
constraint–that is,

∑
h x(d,h) ≤ 1. For the other variables, the token distribution

remains the same as in Section B.B3.
Each urban hospital constraint receives at least 1 token. To see why, observe

that if a hospital constraint contains a non-integral variable, it must contain at
least two of them. Each non-integral variable contributes 1/2 a token to the
relevant constraint. Thus, the relevant constraint obtains at least 1 token.

Each couple constraint has at least two non-integral variables or none. When
none, we can ignore this constraint because it does not affect any non-integral
variables. As before, the number of tokens allocated to a couple constraint is at
least 1.

Each fractional variable in in a single doctor constraint contributes either 1/2
or 3/4 of a token depending on whether the corresponding hospital is rural or
urban. Thus, such a constraint also receives at least 1 token and strictly more
than that if one of the variables is associated with an urban hospital.

Hence, as in case 1 in Section B.B3, we can always eliminate one active con-
straint if the IR1 algorithm has not terminated. When there are no active con-
straints left (as in case 2 of Section B.B3), the remaining constraints and variables
are associated with the single doctors and rural hospitals only. This corresponds
to the standard linear program of a many-to-one matching without couples. An
extreme point of this linear program is integral.

C2. Using Different Objective Functions to Prioritize Hospitals

The IR algorithm described in Figure 1 uses an objective function, a · x, to
maximize the number of jobs allocated. Termination of the IR algorithm does
not depend on this specific choice of objective function. The IR algorithm works
for any linear objective function, c · x. This can be used to reflect the fact that
assigning extra slots to one hospital may be cheaper than allocating them to
another.

In particular, replacing max a · x with any linear objective function c · x, the
IR algorithm in Figure 1, starting from the fractional stable matching x̄, will
terminate in a 2-feasible stable matching in which the aggregate capacity does
not increase by more than 4. Furthermore, c · x∗ ≥ c · x̄.
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Because the choice of the linear objective function, c is arbitrary, we can round
x̄ in any “direction”. This implies the following result. (See Figure C2 for an
illustration.)

CLAIM 1: The fractional stable matching x̄ can be expressed as a lottery over
2-feasible stable matchings that do not violate the aggregate constraint by more
than 4.

c

x̄

x∗

Figure C2. Fractional stable matching can be expressed as a lottery over near-feasible

stable matchings

Claim 1 is true because otherwise, x̄ lies outside the convex hull of the near-
feasible stable matchings, and therefore we can separate x̄ from these near-feasible
stable matchings with a linear function.

Claim 1 provides a randomized algorithm to round x̄ so that it is ex-ante feasible
(but ex-post is 2-feasible).


