
Stat210B: Theoretical Statistics Lecture Date: February 21, 2008

Weak Convergence in General Metric Spaces

Lecturer: Michael I. Jordan Scribe: Yueqing Wang

1 General Metric (Norm) Space

The objects of interest are functions from a sample space to a general metric space, where each point is a
function. Then we can try to use statistical properties, e.g. goodness of fit, to test certain assumptions.

Example 1 (Cramér-von Mises). Let Pn be the empirical probability measures of a random sample
X1, . . . , Xn of real-valued random variables. The Cramér-von Mises statistic for testing the (null) hypoth-
esis that the underlying probability measure is a given P is given by

∫
(Pnf − Pf)2dP,

which can be considered as a measure for the distance between Pn and P . If the distribution of this statistic
is known, we can test the hypothesis. P can be very complex. But if the class F of measurable functions is
P -Donsker, the Cramér-von Mises statistic converges to a Brownian Bridge.

Definition 2 (Uniform Norm). The uniform norm on function spaces is defined as

‖Z‖ = sup
t∈T

|Z(t)|. (1)

Example 3. Some commonly used general metric spaces:

• C[a, b]. All the continuous functions on [a, b] ∈ R.

• D[a, b]. (Cadlag functions). All the functions that have limit from the left and are continuous from
the right.

• �∞[a, b]. All bounded functions.

And we have,
C[a, b] ⊆ D[a, b] ⊆ �∞[a, b]

Note. C[a, b] is separable, i.e. it has a countable dense subset. D[a, b] isn’t separable. Hence, �∞[a, b] is
not separable, neither. Most of the empirical processes are in D[a.b] because of the jumps; most limiting
processes are in C[a, b].

2 Weak Convergence

Definition 4 (Random Element). The Borel σ-field on a metric space D is the smallest σ-field that
contains the open sets (and then also the closed sets). A function defined relative to (one or two) metric
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spaces is called Borel-measurable if it is measurable relative to the Borel σ-field(s). A Borel-measurable
map X : Ω → D defined on a probability space (Ω,U , P ) is referred to as a random element with values in
D.

Definition 5. Random Elements (R.E.) Xn converging weakly to the random element X means Ef(Xn) →
Ef(X), for all bounded and continuous function f .

Note. For random elements, Continuous Mapping Theorem still holds. If random elements Xn
d−→ X and

functions gn → g are continuous, it follows that

gn(Xn) d−→ g(X)

Definition 6. A random element is tight if ∀ε > 0, ∃ a compact set K such that

P(X /∈ K) ≤ ε.

Definition 7. X = {Xt : t ∈ T} is a collection of random variables, where Xt : Ω → R is defined on
(Ω,U , P ). A sample path is defined as t → Xt(ω).

Theorem 8 (Converge Weakly to a Tight Random Element). A sequence of maps Xn : Ωn → l∞(T )
converge weakly to a tight R.E. iff

(i) (Fidi Convergence) (Xn,t1 , . . . , Xn,tk
) converges weakly in Rk for each finite set (t1, . . . , tk).

(ii) (Asymptotic Partition) ∀ε, η > 0, exists a partition of T into finitely many sets T1, . . . , Tk such that

lim sup
n→∞

P(sup
i

sup
s,t∈Ti

|Xn,s − Xn,t| � ε) � η.

3 The Donsker Theorems

Theorem 9 (Classical Donsker Theorem). If X1, . . . are i.i.d. random variables with distribution
function F, where F is uniform distribution function on the real line and {Fn} are the empirical processes:
Fn(t) = 1

n

∑
i=1 1{Xi≤t}. Then for fixed (t1, . . . , tk), it follows that,

√
n(Fn(t1) − F (t1), . . . , Fn(tk) − F (tk)) d−→ (GF (t1), . . . , GF (tk)),

where {GF (ti)} are zero-mean Gaussian with covariance ti ∧ tj − titj.

Theorem 10 (Donsker). If X1, . . . are i.i.d. random variables with distribution function F, then the
sequence of empirical processes

√
n(Fn − F ) converges in distribution in the space D[−∞,∞] to a tight

random element GF (i.e. a Brownian Bridge), whose marginal distributions are zero-mean normal with
covariance function: EGF (ti)GF (tj) = F (ti ∧ tj − F (ti)F (tj)).

Denote empirical processes as follows: Gn =
√

n(Pn − P ) and thus Gnf =
√

n(Pfn − Pf).

Definition 11 (P-Donsker). F is P − Donsker if Gn converges weakly to a tight limit process in l∞(F)
which is a P-Brownian Bridge GP with zero mean and covariance function EGP fGP g = Pfg − PfPg.

Definition 12. Define the Bracketing Integral as,

J[](δ,F , L2(P )) =
∫ δ

0

√
log N[](ε,F , L2(P ))dε
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Theorem 13. If J[](1,F , L2(P )) < ∞, F is P-Donsker.

Example 14. F = {1(−∞,t] : t ∈ R}. By calculating the bracketing number, it follows that log N[] → 1
ε2 .

Hence there exists limits for J[](1,F , L2(P )). By the above theorem we know that this function space is
P -Donsker and the empirical processes will converge to a Brownian Bridge.

Example 15 (Lipschitz Classes are P-Donsker). Let F = {fθ : θ ∈ Θ ⊂ Rd} be a Lipschitz function class.
i.e. given x (fixed), if

|fθ1(x) − fθ2(x)| � m(x)‖θ1 − θ2‖,∀θ1, θ2,

then,

N[](ε‖m‖p,r,F , Lr(P )) � k(
diameter Θ

ε
)d,

where k is a certain constant.

Proof. The brackets (fθ − εm, fθ + εm) for θ have size smaller than 2ε‖m‖p,r. And they cover F because,

fθ1 − εm ≤ fθ2 ≤ fθ1 + εm, if ‖θ1 − θ2‖ ≤ t.

Hence, we need at most (diam Θ
ε )d cubes of size ε to cover Θ, and then use balls to cover the cubes.
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