
1	of	4

Readme	for	AEJ	Compartamos	source	code

This readme provides information for replicating the results of the Compartamos paper.

Many readers may be interested solely in replicating the main OLS regression results of Tables
2-8. For this, simply run the do-file Main/Compartamos	AEJ	tables	2-8.do in Stata 11.2 or
higher. The dataset Main/data/analysis_data_AEJ_pub.dta is used.

There are two other sets of primary results: the descriptive tables Table 1 and Appendix Table 1
and the quantile regression results. These require more code, as well as steps to set up the
Stata environment; Stata 13 is also required. These source code files are stored in Source.
Thus, there are two subdirectories: Source, for the source code for the descriptive and quantile
results, and Main, which contains the simple do-file for the main regression results, as well as
do-file inputs and outputs.

The variable labels of analysis_data_AEJ_pub.dta are designed to match the tables and
figures. For more information about a variable's definition, see the Data Appendix.

Dataset	variable	names

Variables whose names begin with BE_ are the baseline equivalent of an endline variable:
BE_varname is the baseline version of varname. BE_ variables have had their missing values
replaced with 0 in preparation of the regressions. Many BE_ variables are defined only for the
panel sample and are missing (0) outside the panel.

A variable whose name matches the pattern BE_*_mdum is a dummy variable that indicates
whether the corresponding baseline equivalent (BE_*) variable is missing. In preparation of
the regressions, the missing values of baseline equivalents are replaced with 0. When these
variables are included in regressions, their corresponding missingness dummies are
included, as well.

The remainder of this readme describes the steps required to run the files in Source.

User-written	programs

Type the following in Stata to install SSC commands used in the Compartamos do-files:

ssc	install	fastcd

ssc	install	estout

ssc	install	winsor

ssc	install	eclplot

ssc	install	charlist

ssc	install	outreg2

2	of	4

Now set up fastcd to work on your computer as follows:

After this, the command c	comprado will change the working directory to Source; likewise for c
compra and Main.

fastcd is the name of the SSC package, not the command itself; the command is named c. To
change the working directory, type c in Stata, not fastcd. To view the help file, type help
fastcd, not help	c. cd is a rare command in Compartamos do-files; c is used wherever
possible.

These user-written programs are also saved in Source/ado/External. If a user-written
program has changed since the time of this readme, the version we used can be found there.

Working	directory

Set the working directory to Source by typing c	comprado after setting up fastcd. Use relative
paths to refer to files in Source.

The names of directories and datasets outside Source (i.e., in Main) are stored in globals
defined by header.do. header.do is a do-file that completes initialization common across do-
files: defining shared macros, compiling Mata functions, and so on. To use files outside
Source, use the globals; do not change the working directory. header.do assumes that the
working directory has already been set to Source. If you can run c	comprado followed by
include	header without receiving an error message, you should be set up and ready to run the
remaining do-files in Source.

Which	do-file	do	I	run?

Many do-files call other do-files, which are not meant to be run on their own. It is important
that you run the correct do-files. For Table 1, run Source/Analysis/tables_descriptive/Table
1.do. For Appendix Table 1, run Source/Analysis/tables_descriptive/Appendix	Table	1.do.
For the quantile results, first run Source/Analysis/Quantile/graphs_quantile_regs.do, then
run Source/Analysis/Quantile/graphs_quantile.do. The former creates datasets of quantile
results; the latter uses those datasets to produce the graphs found in the paper. Separating
these tasks means that you can modify the graphing do-file without having to rerun the
quantile regressions.

All other do-files in Source, including header.do, are subroutines that are run by the four do-
files listed above; there is no need to run them yourself. There is also no need to move the
ado-files from Source/ado to a system directory such as PERSONAL or PLUS; header.do ensures
that the do-files will find these files. Further, there is no need to compile the .mata files in

**	Change	the	working	directory	to	the	location	of	Source	on	your	computer.

cd	...

c	cur	comprado

**	Change	the	working	directory	to	the	location	of	Main	on	your	computer.

cd	..

c	cur	compra

3	of	4

Source/ado; again, header.do does this.

Visual	Basic

Table formatting is implemented in Excel using VBA: see Source/bas. Do-files create .csv files
that are formatted using VBA for the paper. For instance, Table	1.do creates a specially
formatted .csv file that the .bas files convert to easily readable tables.

To run the .bas files, copy Source/bas/FormatTables/FormatTables	parameters	sheet
example.csv to a new Excel workbook, naming the worksheet Parameters. Replace the absolute
file and directory paths listed in the cells of the sheet so that they match your computer. Next,
add Source/bas/ExternalModules.bas to a new VBA module; do not add the other .bas files.
Replace this line:

so that it equals the absolute path of the Source directory. The path must end in a directory
separator (\ for Windows, / for Mac).

For convenience, we have added an .xlsm file for which the Parameters sheet and
ExternalModules.bas have been added: see Main/results/Tables/Format	Compartamos
tables.xlsm. You must still modify the file and directory paths as described above.

Enumerated	types

See this	(http://www.stata-journal.com/sjpdf.html?articlenum=pr0040)	Stata Journal article for a
description of macro use in Mata. This article also motivated us to try to implement
enumerated types in Stata. For the purposes of Compartamos, an enumerated type is a one-
to-one map of names to positive integers, where each association constitutes a value of the
type. The values of the integers do not really matter, because the values of enumerated types
are referred to solely by their names.

The values of enumerated types are stored in locals. The name of the local is the
concatenation of the name of the enumerated type and the name of the value. The value of the
local is the integer associated with the value. For example:

`CatCredit' represents a single value of the enumerated type Cat (representing outcome
categories). The value is associated with the name Credit and the integer 1.

Locals whose names begin with the name of an enumerated type are reserved for that type:
they store the values of the type and nothing more. Further, the names of locals used for
enumerated types are strictly CamelCase. Other than locals used for Mata, no other multi-
word local names are CamelCase, in order to minimize the probability of name conflicts.

All source code for enumerated types is housed in Source/ado/Enumerated	types. Adding
enumerated types to a do-file requires include	header followed by enumtypes.

Const	DIR_COMPRADO	==	"...\Source\"

local	CatCredit	1

4	of	4

General	programs	for	enumerated	types

Use enumtypes and evalname for general use and management of enumerated types. Also see
the Mata functions evalname() and enumtype().

Type-specific	conversion	programs

Most use of enumerated types is restricted to the corresponding locals, for example,
`SampleEndline'. However, sometimes it is necessary to convert a specific enumerated type to
another object. For instance, for the Sample type, you may wish to get an if qualifier
expression that returns 1 if an observation belongs to the sample and 0 otherwise; for
`SampleEndline', this would be survey	==	"Endline".

Conversion programs in Source/ado/Enumerated	types serve this purpose. In the case of the
Sample type, the program sampexp takes a Sample enumerated value as an input, and returns the
associated if qualifier expression: sampexp	`SampleEndline' returns the relevant expression
in r(exp).

While not a program, Set	category	properties.do also converts a Cat enumerated value to
other objects. Set	specification	properties.do takes a string analysis specification name
and returns related values.

