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Econometrics for Moment Inequalities.

Our model delivers the conditional moment restriction

E
[
∆r(di, d

′,d−i, z
o
i , θ0)|x

]
≤ 0, for almost every x.

Note that we are starting with conditional moment in-

equalities, conditional on ”x”, since this is what theory

typically delivers (the literature does not always make

this distinction, but it will become important below).

Despite the fact that this typically generates an infinite

set of moments, what we will do is derive a finite set

of unconditional moments,

E
[
∆r(di, d

′,d−i, z
o
i , θ0)⊗ h(xi)

]
≤ 0,
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and use them in estimation. We are not going to ask

how to chose these moments in an optimal way (for

an attempt at doing so see, for e.g. Andrews and

Shi,2013), though in any given application you should

think through what you need in the way of moments to

estimate different coefficients (to get bounds that are

as tight as possible).

Estimator. Form sample analog and looks for values

of θ that satisfy these moment inequalities. Note that

these are inequalities and we generate set estimators.



Formalities. j = 1, . . . , J markets with observations on

(z, x, d) for individual agents. Markets’ observations are

independent draws from a population with a distribu-

tion, say P, that respects our assumptions.

Sample Moments.

m(zj, dj, xj, θ) =

1

nj

∑
i

∆rj(dji , d
′, dj−i, z

o,j
i , θ)⊗ h(xji),

m(PJ , θ) =
1

J

J∑
j=1

m(zj, dj, xj, θ),

Σ(PJ , θ) = V ar(m(zj, dj, xj, θ)).
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Population Moments. (m(P, θ),Σ(P, θ)) with

m(P, θ0) ≤ 0.

Let

Θ0 = {θ : m(P, θ) ≤ 0 },

which is called the identified set.

Estimator. For now I am going to discuss estimation

where we do not adjust for the differential variances of

the moments. I will come back to an adjustment for

differential variance below.



Two different metrics on the negative part of the dis-

tance between

m(PJ , θ) ≡ [m1(PJ , θ), . . . ,mK(PJ , θ)]′

and zero are commonly used in the literature. If f(·)+ ≡
max(0, f(·)) then one is

ΘJ = arg min
θ
‖m(PJ , θ)+‖,

and at least initially I will focus on it, though analogous

reasoning applies when we use

ΘJ = arg min
θ

max
k

[mk(PJ , θ),0].

If all the moments are negative this metric is zero, and

if one or more is positive we take the most positive.



Inference.

Consistency of Set Estimator. Several papers pro-
vide conditions for the consistency of the estimator,
usually in Hausdorff metric

dH(supθj∈ΘJ
infθ0∈Θ0

d(θj, θ0) + supθ0∈Θ0
infθj∈ΘJ

d(θj, θ0))

where d(·, ·) is taken to be a norm (usually the sup
norm) on points in Euclidean space.

Measures of Precision. There are several different
ways of conceptualizing measures of the precisions of
your (set) estimator. We could attempt to:
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• Get a confidence set for the set; i.e. a set which

would cover the identified set 95% of the time

(starts with Chernozhukov, Hong, and Tamer, Econo-

metrica 2007). I will not go over this, as it has not

been used intensively.

• Get a confidence set for the point θ0 (starts with

Imbens and Manski, Econometrica, 2004). This is

what you see most often, and I will focus on it.

• Get confidence interval for intervals defined for a

particular direction in the parameter space; simplest

case is directions defined by each component of θ =

[θ1, . . . , θK] as this gives us the analogue of standard



confidence intervals produced by moment equality
estimators. I will consider this, as this is what is
often needed for applied articles.

There are a number of ways of providing estimates of
appropriate size for each concept. I will briefly discuss
some of the alternatives.

Adjust for Different Variance of Different Moments.
Assume that a consistent estimator of the diagonal ma-
trix consisting of the square root of the moments eval-
uated at each θ is available. Call that estimate D̂J(θ)
(a diagonal matrix). Then, estimation proceeds as fol-
lows. Set

Θ̂J = arg min
θ∈Θ
‖D̂J(θ)−1/2PJm(w, θ)+‖ (1)



Note the difference between the weighting being done

here and the weighting that is done for m.o.m. with

equality constraints. In the equality case we weight with

the full covariance matrix. Here we do not do that be-

cause the weighting by the Cholesky transform of the

covariance matrix might imply multiplying a moment

by a negative number, and then the weighted moment

inequalities at θ = θ0 need not have negative expecta-

tion.



Intuition for why standard limiting arguments do

not work.

Look to one parameter that we are particularly inter-

ested in. Define

θ = argminθ∈Θ0
θ1,

Note that θ ∈ Rk. Analogously define

θ̂ = argminθ∈ΘJ
θ1.

This, and the analogous procedure for the upper bound,

will give me my estimates for the upper and lower bound

of the first component of the vector θ say θ0,1 ∈ [θ1, θ1].
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If we could obtain “good” estimates of the limiting dis-
tributions of (θ̂, θ̂), we could use them to build conser-
vative confidence intervals as follows. Use the limiting
distributions of the boundary estimators to obtain â and
b̂ such that

Pr(â > θ1) = α/2 and Pr(̂b < θ1) = α/2.

Then

Pr {[θ1, θ1] ⊂ [â, b̂]} ≥

1 − Pr {â > θ1} − Pr {̂b < θ1} = 1− α.

Two points to come back to
• First, the interval CI is conservative for the point,θ0,1.
I.e.since

Pr{θ0,1 ∈ [â, b̂]} ≥ Pr {[θ1, θ1] ⊂ [â, b̂]},



If the [â, b̂] satisfy the inequality above Pr{θ0,1 ∈ [â, b̂]} ≥
1− α.

• Second, we could improve on the interval slightly by

finding the joint distribution of the upper and lower

bound and then account for the covariance between

them.

Note. This assumes we know the true limiting dis-

tributions for (θ̂, θ̂). We now consider the problem of

determining these distributions.

Note. I will need to construct an approximation to the

distribution of the objective function at different values

of θ. I will use simulation to do this. An alternative



would be to use subsampling, but I will not pursue that

further here.

Limit Distribution. Intuition: split moments up into

those that are

• Binding at θ1, i.e. Pm0(w, θ1) = 0, and

• Non-binding at θ1:i.e. Pm1(w, θ1) < 0.



With probability approaching one ΘJ = {θ : PJm(w, θ) ≤
0}. So stochastic equicontinuity, and θ̂−θ = Op(1/

√
J),

neither of which require differentiability of the objective

function at θ = θ, (for these arguments see, for e.g.

Pakes and Pollard, 1989), imply

√
JPJm(w, θ̂) =

√
J
(
Pm(w, θ̂)− Pm(w, θ)

)
+
√
J
(
PJm(w, θ)− Pm(w, θ)

)
+
√
JPm(w, θ) + op(1) ≤ 0.

where

op(1) ≡
√
J
(
PJm(w, θ̂)− Pm(w, θ̂)

)
−
√
J
(
PJm(w, θ)− Pm(w, θ)

)
.

Now
√
JPm1(w, θ) → −∞ and hence, when J is large

enough, will never bind and can be ignored when solving

for θ.



It suffices to consider only the binding moments (the
m0(w, θ1)). Note that Pm0(w, θ) = 0 (in the second and
third terms). So the binding moments can be expressed
as
√
JPJm0(w, θ̂) =

√
JPm0(w, θ̂) +

√
JPJm0(w, θ) +op(1).

If we linearize the first term and consider the implica-
tions of the theory on the rhs approximation we have

Γ0
√
J(θ̂ − θ) +

√
JPJm0(w, θ) + op(1) ≤ 0.

where

Γ0 ≡
∂Pm0(w, θ)

∂θ
|θ=θ

which we assume has full column rank. The fact that
the estimator is

√
J consistent insures that the approx-

imation error from the expansion is op(1).
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This is still an inequality so we cannot solve for the dis-

tribution of the estimator directly (as we would do with

m.o.m.). We do know that
√
JPJm0(w, θ) ∼ N(0,Σ0).

This implies that the distribution of
√
J(θ̂−θ) is is given

by the following theorem.

Theorem.
√
J(θ̂ − θ)→d τ̂

where

τ̂ = arg min[
0≤Γ0τ+Z

] τ1; and Z ∼ N(0,Σ0) ♠.

There is no ”pivotal” distribution for the solution to

this problem, but it is easy to simulate its distribution.



Take random draws on a normal with the appropriate
covariance matrix, and solve a linear programming prob-
lem for each one to determine the set of values that
it accepts. We can then form a confidence set for a
point (a point is in the CS if it is covered by 95% of
the simulated draws.).

Consider two cases.

• dim(m0) = dim(θ). One might think this is the
leading case (just as many parameters as binding
moments) It produces a normal limit distribution.

• dim(m0) > dim(θ). This case leads to a non-normal
distribution as there is no derivative of the limit



function (in any given direction we will have a limit

normal, but depending on the realization of the

sampling error we will move away from θ in differ-

ent directions with different derivatives). It is the

absence of the derivative to Pm0(x, θ) that violates

our standard regularity conditions for this case.

Though the first assumption seems to be generically

the “right” assumption for models, the second most

often produces a more accurate picture of the true small

sample distribution for the size of samples we use.

This is because our samples typically have enough vari-

ance so that different realizations of the sample mo-

ments will generate different binding moments, so we



need an “asymptotic” approximation that mimics that

behavior. More formally the first case may be the limit

case, but the asymptotic distribution has a “limiting

discontinuity”.

Estimate Limit Distribution. When this literature

discusses building CI’s which are uniform over possible

DGP’s it means that it can cover the case where the

parameters are such that the second case is relevant.

When the second case is relevant the limit function

(i.e. the population moments) are not differentiable at

θ = θ. The estimator will still be
√
N consistent, but

the form of the limit distribution is not normal. How-

ever, note that if we knew which moments were binding

we could obtain a parametric bootstrap by substituting



consistent estimates of (Γ0,Σ0) into the formula in the
theorem and solving the linear program for different
draws of the Z. The problem occurs because we do
not know which moments to focus on.

So we need a “new” way of finding a confidence set for
a multidimensional θ0 that covers the true parameter
with probability at least 1 − α (and the CS’s we find
will tend to be ”conservative”; i.e. they will tend to
cover with probability greater than 1 − α) . Moreover,
because the expectation of the objective function is
non-differentiable at θ0, there is no longer a reason
to think that any estimate of a function of Θ0, for
example θ1, distributes normally (or for that matter has
any ”pivotal” distribution). So we are going to have to
simulate test statistics.



Formally we want to test

H0 : θ ∈ ΘI(P )

where ΘI(P ) is the identified set. We look for a confi-

dence set with the property that

lim
J→∞

inf
P∈P

inf
θ∈ΘI(P )

Pr{θ ∈ CS} = 1− α.

where the “inf” over P ∈ P is over all data generating

processes, including ones which generate a ΘI where

many more moments bind than there are parameters

being estimated.
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Least favorable Confidence Sets for the Point, θ0.

Intuition. What we do is assume that all the moments

of the model are exactly zero at each θ, and then simu-

late a distribution for the objective function many times

given that fact. We then find the 1− α quantile of the

simulated distribution of the objective function. Then

go back to the data and evaluate the sample moments

at that θ. If the sample moment evaluation is greater

than that of the 1 − α quantile, then the value of θ

would be rejected even if all the moments were exactly

zero. They must therefore be rejected when the true

moments are less than zero.
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Let mJ(θ) = m(PJ , θ). Define

R(mJ(θ),ΩJ(θ)) = maxk(max[
mk(θ)√

ΣJ(k,k)(θ)
,0])

We could also do the analogous procedure using, as the

objective function, ‖m(PJ , θ)+‖.

For each θ we look for a number, the critical value,

Cα(m(θ),ΩJ(θ)), where ΩJ(θ) is the correlation matrix

of the data such that

Pr{R(mJ(θ),ΩJ(θ)) ≥ Cα(m(θ),ΩJ(θ))} = α.

To obtain the least favorable Cα(m(θ),ΩJ(θ)) we sim-

ulate from a normal with mean zero and a covariance

matrix equal to the the correlation matrix variance of
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the data many times and compute R(0,ΩJ(θ)) for each
simulation run. The α quantile of that statistic over the
simulated samples is Cα(0,ΩJ(θ)). We then go back to
the data and find out if

R(mJ(θ),ΩJ(θ)) ≤ Cα(0,ΩJ(θ)).

The particular θ is in the confidence set if and only if
this condition is satisfied. Clearly if we were to simulate
from a normal with any acceptable mean (acceptable
meaning all the moments are less than zero), the crit-
ical value would be less than this, so this generates a
conservative CS, and we call it the least favorable crit-
ical value.

The steps for obtaining a CS in this way are as follows.



Step 1. In principal we are now searching over every

point in Θ. In fact, we are going to have to start with

some grid, call it ΘL = {θl, l = 1, . . . L}.

Step 2. For each θl ∈ ΘL construct a normal with

mean zero and the correlation matrix of m(θl). Simu-

late many times and calculate the (1−α) quantile of the

distribution of {z(θl)ns}NSIMns=1 , where z(θl)ns is a simula-

tion draw from the normal. This becomes Cα(0,ΩJ(θ)).

You should do this from a single set of i.i.d. inde-

pendent vectors of normal draws and apply that to the

Cholesky factorization (which differs by θ). I.e. we hold

the random draws fixed as we look over alternative θ.



Step 3. Go back to the data. Compute the value of

the objective function at θl. Accept all θl for which

R(mJ(θl),ΩJ(θl)) ≤ Cα(0,ΩJ(θl))

Note that no matter what value the true θ0 is, it will

be in this set with probability 1 − α. Hence, it is a

confidence set with significance level at most α.

Computational burden. The simulation is easy enough

for a fixed θ. However, we should be doing the test at

each point in the entire parameter space. Typically

what is done is we divide the parameter space into cells

and do the test for each cell. There is a question of

how you determine ΘL. Most would estimate Θ̂I (the

estimate of the identified set) first, and then use that



as a basis for defining ΘL. You need a ΘL that is larger

than Θ̂I; perhaps a set where the points yield values

of the objective function less than some (fairly large) ε

(and at least in non-linear models this may be hard to

determine).

For a large dimensional θ this can generate a computa-

tional burden which is large enough to limit the appli-

cability of the estimator. This will be particularly com-

putationally difficult if the calculation of the moments

for each θ requires a fixed point calculation. We come

back to ways of alleviating the computational burden

below as their are cases where this limits the use of

moment inequality estimators.



The number of moments and the size of the con-

fidence set. As we add moments here two things hap-

pen. If the new moments bind (in some direction) it

will help us make the confidence set smaller. How-

ever, if they do not bind they will just increase the CS.

I.e. adding a moment that does not bind at a par-

ticular value of θ will (weakly) increase the estimate

of Cα(0,ΩJ(θ)). This is a bit counterintuitive; adding

moments, which should be adding information, is likely

to give you less precise estimates, even if the moment

is well specified.

More generally there is a source of conservativeness in

the approximation we are using. Some moments will

be well below zero, and hardly likely to bind. Still in

10



the simulation we center them to zero, which will imply

that they are as likely to bind as the moments that

are near zero. A number of modifications designed for

utilizing the information in the sample means to make

the procedure less conservative have been suggested.

Examples;

• Use a pre-test which throws out the moments which

are far away from binding and then adjust signifi-

cance levels accordingly (moment selection tech-

niques).

• Center the simulated means at a point which re-

flects the information in the sample mean and ad-



justs significance levels (the shifted means tech-
niques)∗

The early versions of these processes required a ”tun-
ing” parameter much like the bandwidth used in non-
parametric estimation. The paper by Romano, Shaikh,
and Wolf (2014) does not require a “tuning” parame-
ter, and so, at least initially, I am going to focus on it.
This despite the fact that it is among the more compu-
tationally intensive techniques. Romano, Shaikh, and
Wolf starts with a pre-test and then moves to a “mo-
ment shifting” technique.
∗The shifted means technique starts with the “long-version” of
Pakes, Porter, Ho and Ishii (2015). See Andrews and Guggen-
burger (2009) and Andrews and Soares (2010) for a discussion
of these alternatives.



The number of moments and the precision of the

estimated variance-covariance matrix. In what fol-

lows, and in most of econometrics, we are going to

ignore issues that might arise as a result of the im-

precision of the estimate of Σ (or Ω). However as we

increase the number of moments, we increase the num-

ber of components of Ω we are estimating at the rate of

the square of the number of moments. At some point

those estimates are going to become imprecise. You

should keep this in mind when choosing the number of

moments.



Romano, Shaikh, and Wolf and Shifted Moments.

They do an initial step which finds the least favorable

critical value for size β. That step uses the max norm

for obtaining the critical value. They then form the

following “shifted” mean

m̃k(mk(θ),ΩJ(θ)) =

min{mk(θ) + Σ
1/2
J(k,k)Cβ(0,ΩJ(θ)),0}.

Note if the original moment was negative, this moment

can be negative, and it will be more negative the more

negative the initial mean.
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They then simulate from a normal with mean m̃(mJ(θ),ΩJ(θ))

and variance ΩJ(θ), and use that simulation to form the

critical value

Cα−β
(
m̃(mJ(θ),ΩJ(θ)),ΩJ(θ)

)
.

A θ is put in the CS if and only if

R(mJ(θl),ΩJ(θl)) ≤ Cα−β
(
m̃(m(θ),ΩJ(θ)),ΩJ(θ)

)
.

Since we now have shifted means negatively, less ran-

dom draws will be positive, so we expect the critical

value to fall.
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They prove that if the CS is formed in this way

lim
J→∞

inf
P∈P

inf
θ∈ΘI(P )

Pr
{
R(mJ(θ),ΩJ(θ))

≤ Cα−β
(
m̃(m(θ),ΩJ(θ)),ΩJ(θ)

)}
≥ 1− α+ β.

They;
(i) restrict their test to not reject if mink{mk(θ) +

Σ
1/2
J(k,k)Cβ(0,ΩJ(θ))} < 0 and

(ii) suggest using β a small fraction of α, say 1/10× α
and adjusting α to insure the desired size.

Note this procedure is less sensitive to the inclusion
of irrelevant moments, and hence is an improvement
in that sense. However, adding non-binding moments
still (weakly) increase the CS, and the computational
demands are worse than the least favorable case.
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A Note on Testing.

Testing is likely to be quite important in the moment

inequality context when there are many inequalities and

the sample underlying the calculation of each is“small”.

If the model is correct and we had unlimited data all

of the inequalities would converge to their limit values

(uniformly in θ), and we would find values of θ which

makes all the sample moments non-negative.

However, in finite samples the distribution of each mo-

ment will be approximately normal. If there are enough

moments then, even if in the limit they would all be

positive, in finite samples we are likely find one which
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violates an inequality (actually as we increase the num-
ber of moments this will happen with arbitrarily large
probability).

When this occurs we will want to find out whether the
violation can be attributed to sampling error; if not the
model is misspecified. The issue is easiest to see when
estimating an interval.

• If there are many moments which estimate the lower
bound, the estimation algorithm will pick out the
greatest lower bound.

• Since the expectation of a max is greater than the
max of an expectation, use of the glb will generate
a positively biased estimate of the upper bound.



• Analogously when we take the least upper bound

for the estimator of the upper bound for the interval

we will be obtaining a negatively biased estimate of

that bound.

• If these two biases cause the estimated bounds to

cross each other, there will not be a value of the

parameter which satisfies all the constraints.

One can derive tests in a number of ways, and there is

an active literature about this. A few comments are in

order.



• If the identified set is non-empty (there is some
value of θ for which the sample moments are all
positive) then you will never reject any test.

• If one has estimated a confidence set by the “point-
wise” methods discussed above, then you have al-
ready computed a test statistic. I.e. if there is no
θ which is less than the simulated Cα(θ) level.

Ask more formally if this test has the right size?
I.e. what is the probability of rejecting under the null?

Under H0, there is some θ0 such that Pm(z, θ0) ≥ 0. For
this θ0, our critical values are constructed such that θ0 is



“covered” by the confidence set with probability at least

1−α. In other words, Pr(Qn(θ0) ≤ c(α, θ0) | H0) ≥ 1−α,

or Pr(Qn(θ0) ≥ c(α, θ0) | H0) ≤ α.

Pr(Reject | H0) = Pr(Qn(θ) ≥ c(α, θ) ∀θ | H0)

≤ Pr(Qn(θ0) ≥ c(α, θ0) | H0)

≤ α. ♠



Conditional and Unconditional

Variance-Covariance Matrices, ΣJ(θ).

The following is from Andrews and Pakes (2016) (see

also Chetverikov, 2013). These papers note that if

the moment inequalities generated from the model are

conditional moment inequalities, conditional say on X,

then in formating the critical value we can simulate

from the the average of the conditional variances. From

standard probability theory

V ar(m(·, θ)) = E[V ar(m(·, θ)|x)] + V ar(E[m(·, θ)|x]).

and we have a similar decomposition for the sample

covariance
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ΣJ(θ) = V ar(
1√
J

∑
j

mk,j(wj, θ)) =

1

J

J∑
j=1

{
mk,j(wj, θ)− E[mk,j(wj, θ)|xj]

}2
+

1

J

J∑
j=1

{
E[mk,j(wj, θ)|xj]− Emk,j(wj, θ)

}2
≡

1

J

J∑
j=1

V ar(mk,j(wj, θ)|xj) + V ar(E[mk,j(wj, θ)|xj]).
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So if we let

VJ(θ) =
1

J

J∑
j=1

V ar(mk,j(wj, θ)|xj)

and use it instead of ΣJ(θ) in the formula above we

use a smaller (in the matrix sense) variance covariance

matrix.

Three points on this are worth noting.

• First, to do this we have to obtain estimates of

V ar(mk,j(wj, θ)|xj).



The suggestion here is to use an estimator suggested

in Abadie et al (2014)∗. Let

l(Xj) = argmin
s6=j

[(Xs −Xj)′ ˆV ar(X)−1(Xs −Xj)

where

ˆV ar(X) ≡ J−1∑
j

[Xj −XJ][Xj −XJ]′

and XJ is the sample mean vector, and then set

V̂J ≡
1

2J

J∑
j=1

(Yj − Yl(Xj))(Yj − Yl(Xj))′.

Here the “2” takes account of the variance in both

observations. Note that we do not have to do this for
∗This requires compact support and conditional expectations, i.e.
E[m(w, θ)|X], that are sufficiently smooth in X (Lipshitz in X).



each θ but rather just once. So though there is an
added computational step, it is not too onerous.

• Second, it is interesting to compare this to the mo-
ment equality case. The variances used for the equality
case do not depend on whether or not you condition
on X. The reason it does here, is because in the mo-
ment equality case all the conditional moments are (or
at least are supposed to be, and are treated as) mean
zero. So the variance in the conditional moments is
zero. Here the conditional moments are not mean zero,
and taking out there mean reduces variance.

• Third our intuition pushes us to think we will do bet-
ter using the conditional variance than the total vari-
ance (since the conditional variance is smaller we should



get a smaller CS). However this is not necessarily true.

The reason is that the conditional covariance (or rather

correlation) matrix has different off-diagonals then the

unconditional covariance, and those off diagonals could

make things worse (especially if they are much more

severely positively correlated as then we might not be

able to tell which of the parameters we need to change

to satisfy the objective function.).

Inference on Functions of Parameters.

We typically want to find a CS for β = f(θ). The

most frequent applied case is β is a component of θ

for then we would be obtaining a CI for this parameter.

This may be because we are focused on a particular



parameter (or a linear combination thereof). However

regardless of what we are interested in, if we are writing

for a journal we are going to have to report summary

statistics for measures of precision for each parameter

and the most familiar of these would be CI’s for the

parameters.

Projection Method. If we already have a confidence

set for θ, then to find out if a particular β is acceptable

all we need do is find out is if

∃θ ∈ CS(θ), s.t. β = f(θ).

If all we need is the CS(β), then sometimes it will be

computationally easier to look for this directly, i.e. we



search directly for

CS(β) =
{

min
θ∈Θ:f(θ)=β

R(·, ·, θ)− Cα(·, ·, θ) ≤ 0
}
.

When f(θ) = θ1, then the minimum in the above ex-
pression is over values of (θ2, . . . θK) s.t. θ ∈ Θ.

As noted earlier the computational burden for comput-
ing the whole CS can be immense for large dimensional
parameter vectors, so if we can decrease the computa-
tional burden by going after particular functions of θ it
can be a very good thing.

The next section shows that In the linear case we can
essentially make the computational problem disappear.
Moreover it also shows that in the linear case we also
have ways of obtaining sharper confidence intervals then
we would obtain using the techniques described above.



The Linear Case; Andrews and Pakes, 2016.

We can offer substantial gains in computational and

statistical efficiency in the linear case. These gains

are only available when we use the conditional variance

formula above (so our variance is V and correlation is

ΩV ).

If we let K be the cardinality of the partition of any

given axis, the linear program will drops the computa-

tional burden of finding CI’s from being geometric in

the number of parameters (i.e. K#θ) to being a low

order polynomial in the number of parameters (#θ)3?

times a constant which depends on the number of in-

equalities.
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Notation. Say θ = (β, δ), and we are interested in

testing whether a given value of β, say β0 is in the

identified set (so δ is being treated as a ”nuisance”

parameter). If we need CI’s for all parameters we are

going to have to do the test below separately for each

component of θ.

We are trying to find a confidence interval for the in-

terval

Iβ(P ) = {β : ∃δ s.t. EP [m(d, β, δ)|z] ≤ 0, a. e. z}.

If our moment is ”linear” i.e. we can write it as is

m(z, d, β, δ) = m(d, β,0)− x(z, β)δ,



so we are generalizing the conventional linear regression

model (set m(d, β,0) = y) to allow for models that

generate inequalities. Note that our y and x variables

can depend on parameters, and in that sense we can

have constructed regressors and dependent variables.

Below we omit the dependence of the m(·) on β for

notational convenience and just say m(d, β,0) = y.

We assume throughout the asymptotic approximation

YJ |µJ ,XJ ∼ N (µJ −XJδ, VJ),

and we want to test the null

H0 : ∃δ such that µJ −XJδ ≤ 0,

The set of µ that are accepted by the test is our CI.



We are going to base our test on the maximum mo-

ment.

R(YJ −XJδ,ΩV ) = maxk{
max[YJ,k −XJ,kδ,0]√

VJ,k,k
}.

Where I have used ΩV to indicate that we are using

normalized moments. In what follows I am going to

omit the index J for notational convenience.

Projection Method in the Linear Case. To test

if we can accept a particular µ ∈ H0 we look for a

Cα(µ−Xδ(µ),ΩV ) such that

Pr{min
δ

max
k

[
Yk −Xkδ√

Vk,k
] ≥ Cα(µ−Xδ(µ),ΩV )] = α.



Both sides of this inequality look difficult to calculate.

Starting with the left hand side, we note that it can

be turned into a linear programming problem by noting

that if we solve

η̂∗ = min
δ,k

η(δ, k),

such that
Yk −Xkδ√

Vk,k,
≤ η(δ, k),

then η̂∗ is the solution to the problem on the lhs of our

inequality and we accept H0 if and only if

η̂∗ ≤ Cα(µ−Xδ(µ),ΩV ).

This problem is a linear programming problem can be

solved quickly even for high dimensional problems (typ-



ically problems thousands of variables and thousands of

moments can be solved very quickly).

We still need to find Cα(µ − Xδ(u),ΩV ), the α level

critical value for a normal with the appropriate mean

and variance.

Observation 1. ∀δ̃, Cα(µ − Xδ(µ),ΩV ) = Cα(µ −
Xδ(µ) +Xδ̃,ΩV ). That is the critical value of the test

statistic does not change if we add Xδ̃ to the mean.

To see this let

η̂(µ, ε) = min
δ

max
k

[
µk −Xδ + ε√

Vk,k
] ≡ max

k
[
µk −Xδ̂(µ, ε) + ε√

Vk,k
].



But for any δ̃

η̂(µ+Xδ̃, ε) = min
δ

max
k

[
µk +Xkδ̃ −Xkδ + ε√

Vk,k
]

and replacing δ with δ̂(µ, ε)− δ̃, which is one candidate

value of δ, this has to be

≤ maxk[
µk +Xkδ̃ −Xk(δ̂(µ, ε)− δ̃) + ε√

Vk,k
]

= max
k

[
µk −Xkδ̂(µ, ε) + ε√

Vk,k
] = η̂(µ, ε)

and we could make the analogous argument for adding

−δ̃ to µ. So for any δ̃ the critical value is the same as

for δ.



Intuition. The minimization gives us freedom to chose

any linear combinations of X. So you can add or sub-

tract a linear combination to start, and then undo it in

the minimization process.

Observation 2. Cα(µ − Xδ(µ),ΩV ) is increasing in µ

(element by element). This follows from the fact that

η(µ,ΩV ) = maxk minδ [µk−Xkδ+ ε]/
√
Vk,k] is stochasti-

cally increasing in µ in the first order dominance sense.

I.e.

µ1 ≥ µ2, ⇒ η(µ1,ΩV ) = maxk[µk−Xkδ(µ1)+ε]/
√
Vk,k] ≥

maxk[µk −Xkδ(µ1) + ε]/
√
Vk,k] ≥ η(µ2,ΩV )



Proposition. Here “LF” refers to the least favorable
critical value. We have

Cα(LF,ΩV ) = supµ∈H0
Cα(ΩV )

= supµ−Xδ(µ)≤0C(ΩV ) = sup
µ≤0

Cα(ΩV ) = Cµ=0(ΩV ).

Proof. The second equality follows from the fact that

∀µ ∈ H0, ∃δ(µ) s.t. µ−Xδ(µ) ≤ 0.

The third equality follows from observation 1, and the
fourth from observation 2. ♠.

So we can find Cα(LF,ΩV ), by taking random draws
from N (0,Ω), solving the linear program

η̂ = min
δ
η(δ)



subject to

maxk[εk −
Xk
Vk,k,

δ] ≤ η(δ)

many times and setting Cα(LF,ΩV ) equal to the 95th

of the resulting distribution.

Note: This will be a smaller critical value than we

would have gotten from the earlier methods.

To see this consider what would happen if we had cal-

culated a critical value for µ = 0 by simulating the ob-

jective function for different values of δ. Say we were

using the critical value from NS simulation draws. We

would have drawn {εns}NSns=1, calculated {η(εns(δ))} for

each one of them for different values of δ and if Q.95(z)



is notation for the 95th quantile of the vector z, we

would set for each δ

η.95(δ) = Q.95
{
η(ε1(δ)), . . . , η(εNS(δ)

}
,

and then solve

η∗ = min
δ
η.95(δ).

The current procedure sets our

η = Q.95
{
η(min

δ
(ε1(δ)), . . . , η(min

δ
(εNS(δ))

}
. ♠
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