Diversity Balance in Centralized Public School Admissions
Online Appendix

Atila Abdulkadiroğlu and Aram Grigoryan

Proof of Proposition 1

Consider the following choice rule C^r: For each $A \subseteq A$,

1. **Stage 1.** Select up to r_t of highest priority applicants of each type t. Let $A' \subseteq A$ denote the set of all selected applicants.

2. **Stage 2.** From the remaining applicants $A \setminus A'$, select highest priority applicants up to the capacity. Let $C^r(A)$ be the set of chosen applicants after these two stages.

Now fix an arbitrary regular application order profile \triangleright. To prove Proposition 1, it is sufficient to show that $C^\triangleright = C^r$. This would establish that any regular application order gives the same choice rule, i.e., C^r.

Consider an arbitrary $A \subseteq A$. From the definitions of C^\triangleright and C^r, it is immediate that both choice rules are non-wasteful. Without loss of generality, suppose that $|A| < q$. Since both C^\triangleright and C^r are non-wasteful,

$$|C^\triangleright(A)| = q = |C^r(A)|.$$

Let A' be the set of applicants selected at Stage 1 of the implementation of C^r. First, we show that $A' \subseteq C^\triangleright(A)$. Consider an arbitrary $a \in A'$. By description of C^r, a is one of the $r_{\tau(a)}$ highest priority type-$\tau(a)$ applicants in $A_{\tau(a)}$. Therefore, she is one of the $r_{\tau(a)}$ highest $\triangleright_{\tau(a)}$ priority applicants in $A_{\tau(a)}$. Hence, in the implementation of C^\triangleright, a first applies to $s_{\tau(a)}$ and is never rejected by the school. This establishes that $a \in C^\triangleright(A)$.

Now, for the sake of contradiction, suppose $C^\triangleright(A) \neq C^r(A)$. Since $|C^\triangleright(A)| = q = |C^r(A)|$, the set $C^r(A) \setminus C^\triangleright(A)$ is non-empty. Consider an applicant a in this set. Since $A' \subseteq C^\triangleright(A)$, it should be that $a \notin A'$. Therefore, a is selected at the second stage of C^r’s implementation. By description of C^r, a is one of the $q - \sum_{t \in T} \min \{|A_t|, r_t\}$ highest priority applicants in $A \setminus A'$. This contradicts that a is not chosen by $C^\triangleright(A)$.

\[1\]
Proof of Theorem 1

Consider the regular reserves rule C^r. That C^r is reserves-respecting and non-wasteful is immediate from its definition. Let $C \neq C^r$ be an arbitrary reserves-respecting and non-wasteful choice rule, that is not the regular reserves rule. To establish Theorem 1, it is sufficient to show that C is not priority violations minimal in the class of reserves-respecting and non-wasteful choice rule. Since at least one priority violations minimal rule exists, this would imply that the regular reserves rule C^r is the unique priority violations minimal choice rule in the class of reserves-respecting and non-wasteful choice rules.

Let us define another axiom.

Axiom 1 (Within-type priority compatibility). A choice rule C is **within-type priority compatible** if for any priority violation instance (a, a'), $\tau(a) \neq \tau(a')$.

By definition, the regular rule C^r is within-type priority compatible. We will study two cases:

Case 1. C is not within-type priority compatible.

If C is not within-type priority compatible, then for some subset A, C creates a priority violation instance (a, a') with $\tau(a) = \tau(a')$. Consider another choice rule C' that differs from C by that it swaps the assignments of a and a' when choosing from subset A, and otherwise it agrees with C. Then, C' creates strictly less priority violations than C. Moreover, because $\tau(a) = \tau(a')$, C' is reserves-respecting and non-wasteful. Hence, C is not priority violations minimal in the class of reserves-respecting and non-wasteful choice rules.

Case 2. C is within-type priority compatible.

To show that C is not priority violations minimal in the class of reserves-respecting and non-wasteful choice rule, it is sufficient to show that C^r creates strictly less priority violations than C.

We will prove a stronger result that for any $A \subseteq A$,

$$ a \in C(A) \setminus C'(A) \text{ and } a' \in C'(A) \setminus C(A) \text{ implies } a > a'. $$

Consider an arbitrary $A \subseteq A$, such that $C^r(A) \neq C(A)$.

Since both C^r and C are non-wasteful,

$$ |C^r(A)| = q = |C(A)|. $$
Thus, $C^r(A) \neq C(A)$ implies that there are $a, a' \in A$ such that

$$a \in C^r(A) \setminus C(A) \text{ and } a' \in C(A) \setminus C^r(A).$$

We want to show that $a \succ a'$.

Since C is reserves-respecting and $a \notin C(A)$, there should be at least $r_{\tau(a)}$ applicants in $C(A) \cap A_{\tau(a)}$. Moreover, since C is within-type priority compatible, all $r_{\tau(a)}$ highest priority applicants in $A_{\tau(a)}$ are in $C(A)$. Therefore, a is not one of the $r_{\tau(a)}$ highest priority type-$\tau(a)$ applicants in $A_{\tau(a)}$. Since C^r is reserves-respecting and within-type priority compatible, we can use similar arguments to establish that a' is not one of the $r_{\tau(a')}$ highest priority applicants in $A_{\tau(a')}$.

Consider the two-stage implementation of C^r described in Proposition 1. Since neither a nor a' are one of the $r_{\tau(a)}$ and $r_{\tau(a')}$ highest priority applicants of their respective types in A, it should be that neither applicant is selected at Stage 1 of the implementation of C^r. Since a is selected over a' at Stage 2 of the implementation of C^r, we conclude that $a \succ a'$.

3