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Appendix A  SST Program Details 

Each year from 1996 to 2011, the OSHA Data Initiative (ODI) surveyed between 60,000 

and 80,000 workplaces with at least 40 employees in a set of hazardous industries OSHA 

identified based on US Bureau of Labor Statistics (BLS) data.1, 2 OSHA sent the ODI survey 

mid-year and establishments reported summary data on their injuries, illnesses, and employment 

from the previous calendar year, based on logs that OSHA required them to keep of every work-

related injury and illness.3 

As part of the SST program that OSHA operated from 1999 to 2014, each year—between 

April and August—OSHA created a primary and a secondary SST target list based on the prior 

year’s ODI survey data. The primary list consisted of the roughly 3,500 establishments whose 

prior-year ODI survey indicated the highest rates of injuries causing days away from work, 

restricted work, or a transfer (DART injuries) or the highest rates of injuries causing days away 

from work (DAFW injuries). Both DART rate and DAFW rate were measured as the number of 

such injuries reported over a year per 100 full-time employees working 40-hour weeks that year. 

The secondary list contained the roughly 7,000 establishments with the next-highest rates. In the 

early years of our sample period, these cutoffs were based exclusively on DART rates; starting in 

2005, they were a function of both DART and DAFW rates. For example, in 2008, the primary 

list included establishments whose 2007 ODI data indicated that in 2006 they experienced 

DART rates of at least 11 or DAFW rates of at least 9 and the secondary list included 

establishments reporting DART rates between 7 and 11 or DAFW rates between 5 and 9. The 

specific cutoffs for the primary and secondary lists changed each year and, beginning in 2009, 

varied by industry. We restrict our analysis to the 2001–2010 target lists because those are the 

only years for which we could obtain primary and secondary lists from OSHA. Establishments 

on the primary and secondary lists in those years reported average DART rates of 12.8 and 7.0, 

                                                 

1 Specifically, the US Bureau of Labor Statistics (BLS) Survey of Occupational Injuries and Illnesses gathered data 

each year from a sample of approximately 200,000 establishments drawn from all private-sector industry 

establishments. OSHA selected for the SST program a subset of industries that BLS classified as “high hazard 

industries.” OSHA used BLS annual “high hazard industries” lists until 2003, when BLS stopped updating them, 

and from then on used the 2003 edition. 
2 OSHA intended to survey each establishment meeting these criteria—that is, with at least 40 employees and in the 

specified hazardous industries—at least once every three years.  
3 OSHA Form 300, which OSHA standard 29 CFR 1904 requires employers to complete, is available at 

https://www.osha.gov/recordkeeping/RKform300pkg-fillable-enabled.pdf. 

https://www.osha.gov/recordkeeping/RKform300pkg-fillable-enabled.pdf
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respectively, both of which are several times the average DART rate of 2.3 for all private-sector 

establishments over this period (US Bureau of Labor Statistics 2015).  

After constructing the year’s primary and secondary lists, OSHA notified each of its 81 

area offices of all those establishments on the primary list that were located in that office’s 

region. If an area office did not anticipate having sufficient resources to inspect its entire primary 

list, a “cycle” ensued whereby the office entered the number it anticipated being able to inspect 

into OSHA software. The software then randomly assigned the subset of establishments from the 

primary list that the area office was to inspect. If the area office inspected them all before OSHA 

headquarters issued the next year’s list, another cycle ensued whereby the area office estimated 

how many additional inspections it could conduct and the software generated a new random set 

of establishments from the remainder of its primary list. When an area office had at least 

attempted inspections at all of its primary list, it repeated this process with the secondary list (for 

details, see US Occupational Safety and Health Administration 2008b). Thus, most area offices 

were assigned to inspect a random subset of either their primary or secondary list (but never 

both).  

When an OSHA inspector arrived to conduct an SST inspection, he or she explained that 

the establishment was being inspected because it had a relatively high injury rate.4 The 

inspection itself was similar to other types of OSHA inspections: the inspector walked through 

the establishment to assess hazards that could lead to injuries or illnesses, then conducted a 

closing conference with representatives from management and (sometimes) the employees. The 

inspector typically discussed any violations and also “the strengths and weaknesses of the 

employer’s occupational safety and health system and any other applicable programs, and 

advises the employer of the benefits of an effective program and provides information, such as 

OSHA’s website, describing program elements” (US Occupational Safety and Health 

Administration 2016: 3–20). If the inspector discovered violations of OSHA regulations, a few 

weeks later OSHA would issue a citation and typically assess a fine. Establishments could appeal 

fines and OSHA often reduced them if the violation was remediated immediately.  

 

                                                 

4 OSHA did not inform establishments that they were on the SST target list until an inspector showed up 

unannounced for an inspection.  
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Table B1: Pipeline from Full SST Target Lists to the Randomized Sample

Primary list Secondary list Primary & secondary lists

Assigned to Not Assigned to Not Assigned to Not
inspection assigned inspection assigned inspection assigned

# % of # % of # % of # % of # % of # % of
total total total total total total

Number of establishment-directivesa on 2010 SST target lists and...

In states under federal OSHA jurisdictionb 20,708 100.0 13,314 100.0 7,455 100.0 50,349 100.0 28,163 100.0 63,663 100.0

Restrict to area-office–directives that randomized lists

On a primary list that was started but not exhausted c 8,084 39.0 10,063 75.6 . . . .

Primary list exhausted, and on a secondary started but not exhausted c . . . . 5,150 69.1 7,472 14.8

Located in an area-office–directive that randomized (overall) . . . . . . . . 13,234 47.0 17,535 27.5

Restrict to establishments eligible for SST inspection

Not subject to deletion criteria d 6,589 31.8 7,747 58.2 4,145 55.6 5,234 10.4 10,734 38.1 12,981 20.4

Drop establishments targeted for concerns with ODI reporting quality

Has non-missing ODI data in directive year e 6,363 30.7 7,474 56.1 4,032 54.1 5,094 10.1 10,395 36.9 12,568 19.7

DART and DAFW rates meet selection criteria for corresponding list e 5,935 28.7 7,099 53.3 3,923 52.6 5,003 9.9 9,858 35.0 12,102 19.0

Cross-checks that establishment exists

Found in NETS 5,813 28.1 6,941 52.1 3,850 51.6 4,913 9.8 9,663 34.3 11,854 18.6

Alive in year t − 2 [NETS] f 5,496 26.5 6,556 49.2 3,684 49.4 4,721 9.4 9,180 32.6 11,277 17.7

Alive in year t [NETS] g 5,316 25.7 6,341 47.6 3,593 48.2 4,585 9.1 8,909 31.6 10,926 17.2

Final steps for analysis sample

Not a nursing home in 2002 directive h 5,151 24.9 5,980 44.9 3,398 45.6 4,079 8.1 8,549 30.4 10,059 15.8

SST cycle is opened i 4,806 23.2 5,980 44.9 3,308 44.4 4,079 8.1 8,114 28.8 10,059 15.8

DART rate, employment, hours (all from t − 2) in common support 4,805 23.2 5,968 44.8 3,305 44.3 4,073 8.1 8,110 28.8 10,041 15.8

Area-office–directive has ≥ 1 assigned and not-assigned meeting restrictions 4,279 20.7 5,253 39.5 2,698 36.2 3,911 7.8 6,977 24.8 9,164 14.4

a An establishment-directive refers to a specific instance of an establishment being placed on a particular year’s SST target list.
b Restricts to the 29 states under federal OSHA jurisdiction. While a few of the 21 states with state-run OSHA offices participated in SST, they were not subject to oversight
from the federal office. See Figure A.1 for details.
c Restricts to establishments on (a) the primary list and belonging to an area-office–directive that assigned strictly between 5 and 95% of its primary list to inspection, or (b)
the secondary list and belonging to an area-office–directive that assigned 100% of its primary list to inspection and assigned strictly between 5 and 95% of its secondary list to
inspection. This is the subset of the target lists that was randomized.
d An establishment is subject to the deletion criteria if, within 2 years prior to the directive start date—or 3 years, beginning with the 2009 SST directive start date—it had an
inspection in IMIS coded as a comprehensive safety inspection or as a records-only inspection or if it is a nursing home and had a focused inspection.
e A subset of establishments that either do not respond to the ODI survey or report very low injury rates are placed on the target list each year to assess the reliability of their
reported data. Because these establishments are targeted precisely because of concerns over the accuracy of their data, we remove them from our sample.
f Drops establishments that, according to NETS, were not in operation two calendar years before the directive year.
g Drops establishments not alive at the start of the directive year, as such establishments were ineligible for SST inspection.
h The 2002 SST directive said nursing homes were to be excluded from the 2002 target list, due to OSHA’s concurrent National Emphases Program on nursing homes. We
therefore drop such establishments from the sample.
i An area office could assign subsets of its target list to inspection in cycles. Once it inspected each establishment in a cycle, it could create another one. In some cases, if an Area
Office had created a cycle but had not yet opened it (i.e., begin inspecting it), it was told by OSHA headquarters to move on (e.g. to the next year’s target list). We therefore
drop such unopened cycles from our sample. We identify unopened SST cycles as those in which less than 5% of eligible establishments in the cycle show up in IMIS with an
SST inspection in the directive year.
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Table B2: Industry Tabulation for SST Target Lists and Randomized Sample
Subset

(1) (2) (3) (4)
All SST Randomized

target lists sample
Count % of total Count % of total

Agriculture, forestry, fishing 764 0.8% 150 0.9%

Mining 59 < .01% 4 < .01%

Construction 38 < .01% 4 < .01%

Manufacturing 50,349 54.8% 9,148 56.7%

Wholesale trade 10,436 11.4% 1,770 11.0%

Retail trade 4,827 5.3% 863 5.3%

Transportation, warehousing 14,894 16.2% 2,291 14.2%

Other services 1,173 1.3% 221 1.4%

Nursing homes 9,291 10.1% 1,690 10.5%

Number of establishment-directives 91,831 16,141

An establishment-directive corresponds to a unique instance of an establishment being
included on an annual SST target list from 2001 to 2010 (some establishments are
included in multiple years’ target lists). The sample in Columns 1 and 2 includes
the entire 2001–2010 SST target lists in states under federal OSHA jurisdiction. The
subsample in Columns 3 and 4 includes the subset of establishment-directives on the
SST target lists that are included in our randomized sample, as described in Table A.1.
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Table B3: Targeting on Predicted Injuries or Estimated Treatment Effects Yields
Similar Benefits Whether via Machine Learning Metrics Based a) Only on Data OSHA
Would Have Had Available or b) on All Data

Sample = 2007–2010 target lists
Predicted injuries and Treatment effects estimated on: 2001–2006 sample 2001–2010 sample

(1) (2) (3) (4)

Assigned to inspection if targeting on highest -0.792 -0.967
predicted injuries (0.367)* (0.292)***
Assigned to inspection if targeting on highest -0.589 -0.664
estimated treatment effects (0.323)+ (0.286)**

# observations 4,785 4,785 4,785 4,785

The dependent variable in each column is equal to the average number of injuries an establishment
experienced over the 5-year period comprising the directive year and 4 subsequent years. The
sample is establishment-directives in the randomized sample on the 2007–2010 SST target lists.
Would be assigned in benchmark policy is a dummy equal to 1 if an establishment’s estimated
treatment effect or predicted injuries is high enough to be assigned to inspection in this policy.
See Section 3.4.2 for details. In Columns 1–2, estimated treatment effects and predicted injuries
are estimated from a causal forest (Super Learner) run on the 2001–2010 target lists, using the
method described in Section 2.3. The regression estimates correspond to the median γ̂1 from
Equation 5 across 250 sample splits, estimated on the 2007–2010 sample. In Columns 3–4, the
models underlying estimated treatment effects and predicted injuries are trained on the 2001–2006
samples, then applied out of sample to the 2007–2010 samples; the estimates correspond to γ̂1
from Equation 5 estimated once on the 2007–2010 sample.
Robust standard errors in parentheses. +p<.1, *p<.05, **p<.01.
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Figure B1: The 29 States That OSHA Directly Regulates (in Gray)

Private-sector establishments in the 29 states in gray are under federal OSHA jurisdiction. Source:
www.osha.gov/dcsp/osp/. Map created with https://mapchart.net/usa.html.
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Figure B2: SST Inspection Rates by Year Relative to Directive Year
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The figure shows the percent of establishments in our randomized sample with at least one completed SST
inspection by the end of each calendar year relative to the directive year, separately for those assigned and not
assigned to inspection.
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Appendix C  Sample Attrition 

As discussed in Section 3.1, we do not observe ODI-reported injury data in any year of 

the post-period (the directive year and four following calendar years) for 15 percent of our 

randomized sample (though most have post-period data for other outcomes we examine). Such 

attrition might be a concern if, for example, it is correlated with assignment to SST inspection. 

Here we discuss the sources of our sample attrition and assess its relationship with assignment to 

inspection.  

Table C.1 illustrates factors leading to sample attrition. While the overall attrition rate is 

14.9 percent, this falls to 10.9 percent among those establishments on the 2001–2007 SST target 

lists. Because the ODI survey ended in 2011, establishments on the 2008–2010 lists had fewer 

opportunities to be surveyed. When we further restrict the sample to those establishments that 

never change industry and whose employment never drops below 40 in the post-period, the 

attrition rate drops slightly from 10.9 percent to 9.8 percent. This suggests that factors that would 

render establishments ineligible for the ODI survey are not a major source of sample attrition. 

The final row of Table C.1 assesses the role of establishment survival: one clear way to 

exit the sample is to shut down. Indeed, further restricting the sample to those establishments 

alive during the entire post-period reduces the attrition rate to 5.9 percent. Thus, over 60 percent 

of the sample attrition can be explained by straightforward observable characteristics.  

 

Table C.1: Sources of ODI Attrition 

 (1) (2) (3) 

 

Number of establishment-directives in 

the randomized sample that…  

  

…lack ODI data 

in the post-period 

…have ODI data 

in the post-period 

% with no 

ODI data: 

(1)/[(1)+(2)] 

Analysis sample 2,405 13,736 14.9% 

 …and in 2001–2007 target lists 1,269 10,353 10.9% 

  …and employment [NETS] remained above 40 1,064 9,674 9.9% 

   …and never changed industry 916 8,457 9.8% 

    …and remained alive during sample period 491 7,864 5.9% 

 

More pressing than why sample attrition occurs is whether it is correlated with 

assignment to SST inspection. In Table C.2, we report the coefficients from a series of 

regressions that predict an indicator variable equal to 1 if an establishment has ODI-reported data 
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in any of the post-period years, with the key explanatory variable being assigned to SST 

inspection and controlling for directive-year fixed effects. The columns report estimates of this 

model on each of the sample restrictions in Table C.1.  

Reassuringly, in all columns, the coefficient on assigned to SST inspection is tiny and 

statistically indistinguishable from zero, implying that the attrition in ODI-reported data is 

unlikely to bias our estimates of the effects of SST inspections on ODI-reported outcomes. 

 

Table C.2. Does Assignment to Inspection Predict ODI Attrition? 

  (1) (2) (3) (4) (5) 

Sample =  

Randomized 

sample 

2001–

2007 

target 

lists 

…and 

employment 

[NETS] 

remained 

above 40 

…and 

never 

changed 

industry 

…and 

remained 

alive 

      

Assigned to SST inspection 0.0022 0.0077 0.0086 0.0087 0.0062 

 (0.0055) (0.0058) (0.0058) (0.0062) (0.0052) 

Directive-year fixed effects Y Y Y Y Y 

Observations 16,141 11,622 10,738 9,373 8,355 

R-squared 0.041 0.003 0.003 0.003 0.003 

Dependent variable sample mean  0.851 0.891 0.901 0.902 0.941 

      

Each column reports estimates from a separate OLS regression, in which the dependent variable is an 

indicator of whether an establishment has ODI-reported data in any of the five years made up of the 

directive year and the four following years. Robust standard errors in parentheses. +p<.1, *p<.05, 

**p<.01.  
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Appendix D Validity of ODI-reported Injury Rates 

Because our analysis relies on injury data that establishments self-report to OSHA as part 

of the OSHA Data Initiative (ODI), data accuracy could be a concern. 

First, we note that measurement error in ODI-reported injuries—at least for those injuries 

employees report to their employer—might not be a significant concern in practice. Messiou and 

Zaidman (2005) compared establishment-level workers’ compensation data to ODI-reported data 

in 2003 and—while finding differences—found no systematic underreporting of injuries to ODI. 

Moreover, OSHA routinely audits a random sample of ODI respondents to verify the accuracy of 

their ODI responses by comparing them to the establishment’s OSHA log forms, assessing large 

fines if the ODI response is found to be inaccurate. The threat of such audits provides employers 

incentives to report accurately to ODI and OSHA’s prior audits have found low rates of 

misreporting (ERG and National Opinion Research Center 2009; ERG 2013). 

Still, one may be concerned about measurement error affecting our estimates. There is 

very likely classical measurement error (that is, pure noise) in injuries reported to ODI. In 

addition, there is evidence in other contexts that injuries reported to government surveys are 

often an undercount. Many factors could explain this divergence, but two primary ones are that 

(a) some employees might not report some injuries to their employers and (b) some employers 

might not report some injuries to OSHA (for a thorough discussion of these factors, see Azaroff, 

Levenstein, and Wegman 2002). Younger employees are less likely to report their injuries, as are 

employees who suffer less-serious injuries and those who work in states that offer less-generous 

workers’ compensation benefits (Biddle and Roberts 2003). Smaller employers are less likely to 

report injuries to OSHA (Oleinick, Gluck, and Guire 1995; Dong et al. 2011) and all employers 

are less likely to report less-serious injuries to OSHA (Boden, Nestoriak, and Pierce 2010).5 

As long as these sources of measurement error in injury reporting are unaffected by 

OSHA inspections, they will increase the standard errors of our estimates but not bias the 

coefficients. More worrisome is the potential for inspections to affect the accuracy of self-

                                                 

5 A few studies have compared the US Bureau of Labor Statistics’ Survey on Occupational Injuries and Illnesses 

(SOII) to workers’ compensation data to estimate the reliability of data collected by the SOII. While the SOII is 

distinct from ODI, its format is quite similar and both rely on employers’ logs of OSHA-recordable injuries; thus, 

lessons from these studies probably apply to ODI. A consistent finding is that injuries which are more acute and 

easier to diagnose (such as amputations) are reported quite accurately in the BLS survey, whereas chronic injuries 

(such as carpal tunnel syndrome), injuries that are more difficult to diagnose (such as those that result in hearing 

loss), and occupational illnesses are more likely to be misreported (Ruser 2008; Nestoriak and Pierce 2009). 



14 

reported injuries. On the one hand, inspections could increase reported injuries; for example, if 

OSHA issues recordkeeping violations that motivate employers to keep more complete injury 

records. In this case, even if inspections truly lead to lower injuries, this effect would bias 

regression estimates towards inspections increasing injuries reported to the ODI. On the other 

hand, inspections could decrease the reporting of subsequent injuries by leading establishments 

to perceive that this would reduce the likelihood of future inspections. In this case, inspections 

could lead to fewer reported injuries while having no effect on their actual occurrence.  

While the extent of such bias is unobservable, we nonetheless address this concern in 

several ways. First, our primary outcome is the most serious class of injuries—those causing 

days away from work—for which the potential for measurement error is smaller than for total 

injuries (Boden, Nestoriak, and Pierce 2010). Second, given evidence that underreporting injuries 

is more common among smaller establishments, the extent of underreporting should be mitigated 

by the fact that ODI only surveyed establishments with at least 40 employees until 2009 and with 

at least 20 employees thereafter. Third, we conducted a robustness check which excluded from 

our analysis any establishment that OSHA had ever cited for a recordkeeping violation, which in 

our sample constitutes roughly 7 percent of establishments assigned to inspection and 4 percent 

of establishments not assigned to inspection. 
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Appendix E Estimating the Social Cost of Serious Injuries during Our 

Sample Period 

Waehrer et al. (2007) estimate that the social cost of a serious injury—the combined costs 

to employers, workers, and the rest of society from injuries causing days away from work—in 

2002 was $37,016. Our goal is to estimate the cost in 2005—the median year of our sample—but 

in 2018 dollars. 

According to Leigh (2011), medical costs make up roughly a quarter of the social costs of 

injuries, with the remaining three-quarters made up of indirect costs such as foregone wages and 

loss to home production (e.g. child care, cooking and cleaning). Because medical care spending 

rose 24 percent from 2002 to 2005,6 we scale up 25 percent of the $37,016 figure ($9,254) by 24 

percent to estimate that the medical cost portion was $11,475 in 2005. We assume that indirect 

costs grew at the rate of inflation, noting that, according to the US Bureau of Labor Statistics,  

the consumer price index (CPI) rose by 8.6 percent from 2002 to 2005.7 We therefore scale up 

the indirect portion (75 percent of $37,016) by 8.6 percent to estimate it as $30,150 in 2005. 

Thus, we estimate a serious injury in 2005 to cost $41,625 ($11,475 + $30,150) in 2005 dollars. 

To convert this to 2018 dollars, we note that the US Bureau of Labor Statistics reports 

that the CPI rose by 28.6 percent from 2005 to 2018.8 Thus, the social cost of a 2005 serious 

injury in 2018 dollars is $41,625* 1.286 = $53,529. 
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Appendix F Pre-specification Plan 

We pre-specified our design and posted our subsequent pre-analysis plan to the Open 

Science Framework at https://osf.io/2snka/. 

The first version of our pre-analysis plan, posted in July 2015, provided the basic outline 

of our study and described our primary outcome variables and our planned empirical 

specifications to estimate the overall effects of inspections. We also uploaded the Stata code we 

would use to estimate our regressions.  

To ensure that estimates are not vulnerable to large outliers or threats to identification, we 

conducted a series of tests to pre-specify our regression specification. We first blinded ourselves 

to each establishment’s assignment status. In each of 500 simulation runs, we created an 

assigned to placebo inspection dummy that randomly assigned 0 or 1 to each establishment-

directive in our randomized sample, with a probability corresponding to the proportion of 

establishments that OSHA historically assigned to inspection. We then estimated the effect of 

assigned to placebo inspection on various outcomes using several functional forms and 

approaches to handle outliers.9 Our objective was to identify which specifications most often 

yielded a precisely estimated zero coefficient on the assigned to placebo inspection dummies 

across all simulations. This procedure led us to choose the specification described in Section 

2.1.2.10 

After posting this plan, we found several minor glitches in our pre-specified design, 

which we therefore updated over the next months. For example, because we initially believed a 

large share of establishments assigned to control in one year would become assigned to treatment 

(that is, assigned to inspection) in later years, we originally planned to estimate the effects of 

inspections using outcomes within a window of three years before and after the focal year. 

However, while creating our analysis sample, we learned that this “crossover” of controls was 

not as large as we thought and that our power would increase if we estimated outcomes using a 

window of four years before and after the focal year. As another example, we pre-specified that 

one specification would control for “employment” but we had intended “ln(employment).”  

                                                 

9 For example, we considered OLS specifications in regressions with injury rate (both level and log) as the 

dependent variable. 
10 We posted our pre-analysis plan to the Open Science Framework on July 10, 2015 at https://osf.io/2snka/.  

ps://osf.io/2snka/
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After specifying our randomized sample in the original pre-analysis plan, we learned of 

some unique features of the SST program in 2002 and 2003 that we deemed important to 

incorporate into our analysis. We also made some improvements to our fuzzy linking between 

the SST target lists and IMIS, which slightly changed our analysis sample. 

We incorporated these changes in an updated version of our pre-analysis plan, which we 

uploaded to the Open Science Framework in January 2016. 

Our initial and updated pre-analysis plans included plans to assess the effects of OSHA 

inspections on business outcomes, but we decided not to include those analyses in this paper.  
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Appendix G Predictors in the Machine Learning Analyses 

This appendix lists the variables we included in the two machine learning exercises: 

1) Using causal forest to construct establishments’ estimated treatment effects 

2) Using Super Learner to construct establishments’ predicted injuries 

 

When any establishment was missing a variable, we replaced it with that variable’s sample mean.  

Location and year variables 

 Dummies for 10 OSHA regions 

 Dummy if the establishment is in a large metro area 

 Number of days after a work-related injury until the injured worker can receive workers’ 

compensation, as determined by the establishment’s state  

 State leave-one-out mean11 annual serious injury rate,12 lagged 2 years  

 Dummies for directive year 

Industry and size variables 

 Establishment’s annual total working hours, lagged 1 and 2 years  

 Establishment’s annual log employment reported in NETS, lagged 1 year 

 4-digit SIC leave-one-out mean annual serious injury rate, lagged 2 years  

 3-digit SIC leave-one-out mean annual penalties assessed at OSHA inspections, lagged 1 

year 

 Dummy for manufacturing sector  

 Dummy for nursing home sector 

Compliance-related variables 

 Dummy if establishment had any OSHA inspection prior to directive year 

 Dummy if establishment had any OSHA complaint inspection from t-1 to t-3 

                                                 

11 A leave-one-out mean is the mean of the variable, excluding the focal establishment. 
12 Serious injury rate refers to the annual number of injuries causing days away from work per 100 full-time 

workers. 
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Other establishment characteristics  

 Establishment age reported in NETS, lagged 2 years  

 Dummy for standalone firm, lagged 1 year  

 Establishment's minimum monthly PAYDEX score, lagged 2 years 

Variables related to injuries and to ODI  

 Number of years establishment was previously on an SST target list 

 Establishment’s average annual number of serious injuries, t-1 to t-4 

 Establishment’s annual serious injury rate, lagged 1, 2, and 3 years  

 Establishment’s annual transfer/restriction injury rate, lagged 2 years  

 Establishment’s annual other recordable injury rate, lagged 2 years  

 Establishment’s annual serious injury rate, squared, lagged 2 years  

 Establishment’s total annual number of days away from work due to injuries, lagged 2 

years  

 Dummy for "has ODI data in t-1"  

 Dummy for "has ODI data in t-3"  

 Establishment’s annual serious injury rate from t-2, interacted with dummies for 4 

employment quartiles (from NETS) in t-2. 

 

The causal forest to estimate treatment effects also included the percentage of establishments 

selected for inspection in the establishment’s area-office–directive primary or secondary list.  
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Appendix H Assessing Generalizability: Can Results from the Randomized 

Sample be Applied to the Nonrandomized Sample?  

Our estimation of the number of injuries OSHA could avert under alternative targeting 

policies relies on using half of the randomized sample to (a) generate predicted injuries that 

establishments would experience if not assigned to inspection (that is, 𝑌(0)), and (b) generate 

estimated treatment effects that establishments would experience if they were assigned to 

inspection (that is, 𝑌(1) − 𝑌(0)). We then use these estimates, which were trained and validated 

on the randomized sample, to estimate the effects of counterfactual policies that target 

establishments from the overall historical SST target lists, including establishments beyond our 

randomized sample (the “nonrandomized sample”). Establishments in the nonrandomized sample 

include those that (a) were on an area office’s target list in a directive year in which fewer than 5 

percent or more than 95 percent of the establishments listed were assigned to inspection, (b) had 

been inspected under SST in the prior two years, and (c) met other exclusion criteria described in 

Table B.1 in Appendix B. In this appendix, we first briefly describe our approach to generalizing 

from the randomized sample. We then discuss and empirically assess threats to the validity of 

our approach.  

Generalizing from the Randomized Sample 

We adapt the Chernozhukov et al. (2020) procedure to generate estimates that pertain to 

the entire historical SST target lists as follows. Each time we partition the randomized sample 

into training and holdout samples, we also keep a random 50-pecent partition of the 

nonrandomized sample. In the training sample, we use the causal forest to estimate treatment 

effects and the Super Learner to estimate predicted injuries if not assigned to inspection. We 

then apply these models to construct predicted injuries and estimated treatment effects for all 

establishments in the holdout sample and the random 50-percent subset of the establishments in 

the nonrandomized sample that we kept. We use the combined holdout sample and 

nonrandomized subsample to construct the groupings that correspond to each targeting policy. 

Next, we estimate regressions of Equation 5 on the holdout sample to generate the coefficients 

(𝛾s) that correspond to the mean number of injuries averted among the establishments in each 

group. We estimate the total number of injuries averted under a counterfactual policy by 
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multiplying the 𝛾s by the number of establishments in each group (in both the randomized and 

nonrandomized samples) that OSHA assigns to inspection in the policy.  

Addressing Potential Threats to Validity 

There are two reasons that the estimates from our procedure might not generalize to the 

entire historical SST target lists and thus might result in misleading estimates of targeting policy 

counterfactuals. First, if establishments in the randomized and nonrandomized samples have 

different distributions of observable characteristics (different Zs), then our estimate of the 

average treatment effect of establishments that would be targeted in a particular policy 

(estimated on the randomized sample only) would be biased. Second, establishments in the 

randomized and nonrandomized sample could have different unobservable characteristics, in 

which case a causal forest model estimated on the randomized sample would poorly predict 

treatment effects for the nonrandomized sample (even if the two groups’ distributions of 

observables were indistinguishable). We address these concerns below. 

Do Establishments in the Two Samples Have Different Observable Characteristics? 

If establishments in the randomized and nonrandomized samples have different 

distributions of observable characteristics, then the two groups might well have different 

distributions of underlying treatment effects and expected injuries. However, this potential 

concern is alleviated in our context because we find that the distributions of our estimates of 

these two metrics in the randomized sample are very similar to their distributions in the 

nonrandomized sample, as is apparent in Panels (a) and (b) of Figure H.1. Panel (a) depicts the 

distribution of predicted injuries generated from applying a Super Learner that was trained on 

those establishments in the randomized sample that were not assigned to inspection, and then 

applied to the rest of the randomized sample and to the nonrandomized sample. Panel (b) depicts 

the distribution of estimates of treatment effects generated from applying a causal forest on all 

establishments in the randomized sample (including those assigned to inspection) and then 

applied to the nonrandomized sample. Because the distributions of both metrics are very similar 

across the two samples, it is unlikely that any differences in observable characteristics between 

the randomized and nonrandomized samples render our estimates of counterfactual policies 

inconsistent.  
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Figure H.1. Distribution of predicted injuries and estimated treatment effects for Establishments 

on the SST Historical Target List in the Randomized versus Nonrandomized Sample 

Panel A: Predicted injuries 

 

Panel B: Estimated treatment effects  

 
The sample for these kernel density plots is the establishments on the 2001–2010 historical SST target lists. 

Predicted injuries are estimated using a Super Learner to predict 𝑦𝑖𝑡
𝑝𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅ among all establishments not assigned to 

inspection in the randomized sample and extrapolating the estimates to the rest of the target list. Estimated treatment 

effects are estimated using a causal forest to predict treatment effects for all establishments in the randomized 

sample and extrapolating the estimates to the rest of the target list. 
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Do Establishments in the Two Samples Have Different Unobservable Characteristics? 

Our machine learning estimates of the models underlying an establishment’s treatment 

effect of assignment to inspection and its expected injuries if not assigned to inspection are 

estimated on the randomized sample. These models could have poor out-of-sample predictive 

power for the nonrandomized sample if establishments in the two samples had different 

unobservable characteristics.  

Unfortunately, we cannot test the out-of-sample predictive power of our model to 

estimate treatment effects because an establishment’s underlying treatment effect (𝑌(1) − 𝑌(0)) 

is unobservable. Fortunately, we can test whether the model that predicts expected injuries 

(𝑌(0)) generates predictions that are less accurate in the nonrandomized sample than in the 

randomized sample because uninspected establishments’ injuries are (eventually) observable. We 

can do the same for an estimate of the model determining the number of injuries an 

establishment would experience if assigned to inspection (𝑌(1)).  

Recall that in the Chernozhukov et al. (2020) algorithm, we estimate expected injuries 

(𝑌(0)) using a Super Learner to predict 𝑦𝑖𝑡
𝑝𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅

 (the number of serious injuries an establishment 

experiences averaged over the assignment year and four subsequent years) for the establishments 

assigned to control in the training sample. We then use the results to generate 𝑌(0)̂—our 

prediction of expected injuries—for those in the holdout sample and the nonrandomized sample. 

We repeat this process 250 times. 

To test whether the predictions of expected injuries are more accurate or less accurate for 

the holdout subset of the randomized sample compared to the nonrandomized sample, we 

conduct the following exercise. For each of our 250 iterations, among establishments not 

assigned to inspection, we regress realized 𝑦𝑖𝑡
𝑝𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅

 on 𝑌(0)̂ separately for those in the holdout 

sample and those in the nonrandomized sample. Among those establishments that OSHA did not 

assign to inspection, 𝑦𝑖𝑡
𝑝𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅

 equates to 𝑌(0). Thus, we are regressing establishments’ realized 

expected injuries (𝑌(0)) on its predicted value, 𝑌(0)̂. We save the median coefficient and 

standard error on 𝑌(0)̂, as well as the median R2, across the 250 iterations.  

We find that for these establishments not assigned to inspection, both in the holdout 

sample and in the nonrandomized sample, the median coefficients on 𝑌(0)̂ are close to 1 and the 

estimates are statistically indistinguishable from each other (Table H.1, Columns 1 and 2). The 



26 

R2s are high and nearly identical and the root mean squared error (MSE) are also nearly 

identical. In other words, our model to predict expected injuries, which was estimated on half of 

the randomized sample, has equal predictive power with respect to realized injuries for the other 

half of the randomized sample and for the nonrandomized sample. 

We go one step further to perform a similar exercise to assess predictions of the number 

of injuries an establishment would experience if assigned to inspection; that is, 𝐸[𝑌(1)|𝑍], or 

𝑌(1). In each of our 250 iterations, we estimate 𝑌(1) using a Super Learner to predict injuries 

among those in the training sample that were assigned to inspection. We then use this model to 

generate 𝑌(1)̂ for both the holdout and nonrandomized samples. Analogous to what we did 

before, in each iteration we regress realized 𝑦𝑖𝑡
𝑝𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅

 on its predicted value for establishments 

assigned to inspection, first in the holdout sample and then in the nonrandomized sample. 

As reported in Columns 3 and 4 of Table H.1, we find that 𝑌(1)̂ has essentially equal 

predictive power for the holdout sample and the nonrandomized sample.  

Overall, this exercise bolsters confidence that our estimates derived from applying the 

Chernozhukov et al. (2020) procedure to the randomized sample generate unbiased estimates of 

the number of injuries OSHA could avert by re-targeting the entire SST target list. 
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Table H.1. Comparing the Predictive Power of Establishments’ Estimated Injuries If Not 

Treated, 𝑩(𝒁), for the Randomized Controls and for the Nonrandomized Samples 

 

 Dep var = Average annual # of serious injuries during post-period 

  (1) (2)   (3) (4) 

Sample =  
Establishments not assigned to 

inspection in the… 
 Establishments assigned to 

inspection in the… 

  

Holdout sample 

(subset of the 

randomized 

sample) 

Nonrandomized 

sample 
  

Holdout sample 

(subset of the 

randomized 

sample) 

Nonrandomized 

sample 

Expected injuries if 

not assigned (𝑌(0)̂) 

1.028 1.063  
  

(0.033) (0.008)  
        

Expected injuries if 

assigned (𝑌(1)̂) 
  

 1.025 1.086 

  
 (0.036) (0.013) 

      
Root MSE 3.82 4.03  3.84 4.20 

R2 0.68 0.70   0.68 0.71 

 
The table assesses whether our machine-learning–based estimates of the annual number of serious injuries an 

establishment would experience if not assigned to inspection (Y(0)) and the number it would experience if it were 

assigned to inspection (Y(1)) have differential predictive power for establishments in the randomized sample vs. the 

nonrandomized sample. For each of 250 splits of the data, we train the Super Learner algorithm on establishments 

not assigned to inspection in the training sample (a random half of the randomized sample) to train the model to 

predict Y(0) and then apply the model to construct predicted injuries (𝑌(0)̂) in the holdout sample (the other half of 

the randomized sample) and the nonrandomized sample. In each split, focusing on establishments that were not 

historically assigned to inspection, we regress establishments’ realized mean annual serious injury count on their 

𝑌(0)̂, separately for establishments in the holdout sample (Column 1) and the nonrandomized sample (Column 2). 

We use an analogous procedure in Columns 3 and 4 to assess the predictive power of 𝑌(1)̂, restricting to 

establishments that were assigned to inspection in the historical policy. The table reports the median coefficient and 

SE on 𝑌(0)̂ and 𝑌(1)̂ and the median R2, across the 250 splits. 
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Appendix I  Robustness Checks on Estimate of Intention-to-treat Effect on 

Injuries 

We consider several other specifications as robustness checks for our ANCOVA model 

(Equation 1).  

In a pre-specified robustness check, we estimated the effect of assignment to inspection 

using a difference-in-differences specification.13  

We also sought to minimize the chances that our estimates were contaminated by 

inspections leading to more complete reporting of injuries. Therefore, we reestimated the 

intention-to-treat specification corresponding to Column 1 of Table 3 but excluded any 

establishment that OSHA had ever cited for recordkeeping violations during our sample period 

(7 percent and 4 percent of establishments assigned and not assigned to inspection, 

respectively).14  

We also averaged the outcomes during the directive year and four following years into 

one observation per establishment-directive to construct a new dependent variable, 𝑦𝑖𝑡
𝑝𝑜𝑠𝑡̅̅ ̅̅ ̅̅ ̅

. We 

reestimate the ANCOVA model (omitting the 𝜏-year fixed effects, 𝜃𝜏) on this outcome, using 

OLS rather than Poisson because the outcome includes non-integer values.  

As a final check, we report the average intention-to-treat estimate from the 

Chernozhukov et al. (2020) procedure. Chernozhukov et al. (2020) also lets us estimate the 

overall average effect of assignment to inspection, which is β1 from the following regression 

model estimated on the holdout sample: 

𝑌 = 𝛼1 + 𝛼2𝐵(𝑍) + 𝛽1(𝐷 − 𝑝(𝑍)) + 𝛽2(𝐷 − 𝑝(𝑍)) ∗ (𝑆 − 𝐸𝑆) + 𝜖 . (I. 1) 

See Chernozhukov et al. (2020) for details on notation. We estimate 𝛽1̂ from the holdout sample. 

As noted in Section 2.3.1, we conduct 250 iterations of this process on 250 sample splits, then 

reverse the roles of the training and holdout samples and repeat the same process, obtaining 

another set of coefficients for each iteration pertaining to the other half of the sample split. For 

                                                 

13 We estimate the following difference-in-differences regression model for this robustness check: 

𝑦𝑖𝑗𝑡𝜏 =  𝛼1𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑖𝑡 ∗ 𝟙(𝜏 ≥ 0) + 𝜇𝑗𝑡 ∗ 𝟙(𝜏 ≥ 0) + 𝜆𝑖𝑡 + 𝜃𝜏 + 𝜖𝑗𝑖𝑡𝜏 .  
All variables here are defined as in Equations 1 and 2. We control for 𝑃𝜏 separately to account for changes in injuries 

(and other outcomes) following the directive year that would have occurred even without an SST inspection. 
14 As one other robustness check, we drop establishment-year observations for which the establishment, according to 

the NETS database, is no longer in operation. We lose only a few hundred observations and obtain essentially 

identical estimates (results not shown). 
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each iteration we take the average of these two coefficients. We use the median point estimate as 

our point estimate of the average treatment effect and use the 2.5th and 97.5th percentiles as the 

range of our 90-percent confidence interval. 

We report results from these specification checks in Table I.1. The difference-in-

differences estimate (Column 1:  = -0.033, SE = 0.017) is nearly identical to the estimate from 

the ANCOVA specification ( = -0.035, SE = 0.017). Excluding establishments with any 

recordkeeping violation during our sample period (Column 2) yields a coefficient ( = - 0.040, 

SE=0.018) slightly larger in magnitude than that from our baseline specification, which is 

consistent with the idea that establishments cited for recordkeeping violations are subsequently 

less likely to underreport injuries. Our OLS estimate on the collapsed outcome variable (Column 

3) yields a point estimate of  = - 0.178 (SE = 0.081), which, as a percent of the control mean (-

0.178/ 4.62 = 3.8 percent), is essentially identical to the estimate from the Poisson model. 

Finally, the point estimate using Chernozhukov et al. (2020) (-0.168, 90% CI = [-0.193, -

0.140] is quite similar to our OLS estimate in Column 3 but is actually more precise. In short, 

our results are robust to these several specification checks.  
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Table I.1: Intention-to-treat Effects of SST Inspection on Serious Injuries: Robustness and 

Alternative Specification 

 

 

 

  



31 

Appendix J Assessing the Lucas Critique: Can We Estimate Effects of 

New Targeting Rules Using Historical Data? 

Our approach to estimating the effects of alternative targeting strategies does not consider the 

potential behavioral effects on uninspected establishments. Because alternative targeting 

strategies change the threat of inspection, such behavioral changes could render our estimates 

misleading. In Section 3.4.1, we provided evidence that such effects are, in fact, unlikely to be 

important in our setting. This appendix provides more details and evidence to support that 

conclusion. In particular, we use a regression discontinuity (RD) design that yields no evidence 

that establishments experienced a change in injuries in response to discrete changes in the threat 

of inspection in the historical SST program. These non-results bolster confidence that our main 

analyses yield accurate estimates of the effects of alternative targeting regimes despite our not 

considering their potential effects on uninspected establishments.  

Quantifying the Change in the Threat of Inspection at the Primary and Secondary Cutoffs  

To determine establishments’ distance from the primary and secondary list cutoffs, we 

reviewed the annual SST directives over 2001–2010 to identify the relevant injury rate cutoffs 

for each year’s directive (which in all cases were based on injury rates two years prior). As 

described in Appendix A, in the early years of this range, these cutoffs were based exclusively on 

DART rates. For example, the 2002 primary list comprised establishments whose DART rates 

exceeded 14 in the year 2000. In the later years, the cutoffs were a function of DART and 

DAFW rates. For example, the 2006 primary list comprised establishments whose 2004 DART 

rates exceeded 12 and establishments whose 2004 DAFW rates exceeded 9. For each directive 

year t, we calculate the difference between establishment i’s relevant injury rate from t-2 and the 

relevant cutoff (which we designate c). For example, 𝐷𝐴𝑅𝑇𝑖,𝑡−2 − 𝑐𝑝𝑟𝑖,𝑑𝑎𝑟𝑡,𝑡 is this quantity for 

an establishment’s DART rate relative to the DART element of the primary list cutoff. The 

distance metric to determine an establishment’s eligibility for the primary list in year t is 

calculated as:  

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝒊𝒕
𝒑𝒓𝒊

=  𝐦𝐚𝐱{(𝑫𝑨𝑹𝑻𝒊,𝒕−𝟐 − 𝒄𝒑𝒓𝒊,𝒅𝒂𝒓𝒕,𝒕), (𝑫𝑨𝑭𝑾𝒊,𝒕−𝟐 − 𝒄𝒑𝒓𝒊,𝒅𝒂𝒇𝒘,𝒕)}. (𝐉. 𝟏) 

An establishment is eligible for the primary list in year t if this distance metric is zero or positive; 

larger values denote establishments with injury rates further away (increasingly worse) than the 

cutoff. We analogously calculate this distance metric for the secondary list.  
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Our sample restrictions for this analysis are similar to those in our main analysis: we drop 

establishments (a) whose recent inspection histories make them ineligible for SST inspection, (b) 

whose ODI data quality were flagged as questionable, (c) that were not alive in year t-2 

according to NETS, or (d) that reported fewer than 40 employees to ODI in year t-2. See Table 

B.1 for details about these criteria.15 The regression discontinuity design does not require 

randomization, so we include all area offices, not just the subset of those that randomized their 

target lists. 

Figures 3a and 3b and the associated discussion in Section 3.4.1 provided graphical 

evidence that establishments just above the primary or secondary cutoffs faced a higher threat of 

inspection than those just below. To quantify the magnitude of this change in threat level, we 

estimate the following regression model on the sample described in the previous paragraph: 

𝒚𝒊𝒕𝝉 =  𝜶 + 𝜸 ∗ 𝟙(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝒊𝒕
𝒑𝒓𝒊

≥  𝟎) + 𝒇(𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝒊𝒕
𝒑𝒓𝒊

) + 𝛃 𝑿𝒊𝒕 + 𝝐𝒊𝒕𝝉. (𝐉. 2) 

The outcome variable y is an indicator coded 1 if establishment i was SST-inspected in 

year t or t+1. 𝟙(⋅) is an indicator function that equals 1 for establishments eligible for the primary 

list—that is, when 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝒆𝒊𝒕
𝒑𝒓𝒊

≥ 0—and 0 for those ineligible. 𝑓(⋅) is a polynomial in 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝒊𝒕
𝒑𝒓𝒊

; we use the approach developed by Calonico et al. (2019) to select the degree of the 

polynomial. To improve precision on our estimate of 𝛾, we include the following controls in 𝑋𝑖𝑡: 

year fixed effects, OSHA-region fixed effects, manufacturing and nursing-home-industry 

dummies, and the log of the establishment’s total working hours in year t-2. We use an 

analogous specification—but with 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑡
𝑠𝑒𝑐—for the secondary list cutoff. To establish the 

sample for these regressions, we use the approach developed by Calonico et al. (2019) to select 

the bandwidth around the cutoffs—that is, the range of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑡
𝑝𝑟𝑖

 and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑡
𝑠𝑒𝑐 above and 

below zero included in our regressions—that minimizes mean squared error (MSE) and which 

we refer to as the MSE-optimal bandwidth. 

Table J.1 reports the results. Corroborating the visual evidence in Figure 3b, Column 1 

reveals that just barely making it above the primary cutoff yields a 31-percentage-point increase 

                                                 

15 We also drop nursing homes for all years except 2009–2010 for this analysis. Nursing homes were excluded from 

the secondary list in all years prior to 2009. While they were included on the primary list in earlier years, their 

inclusion was not based on the same cutoff rule as other industries.  
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in the probability of receiving an SST inspection in that or the following year (p < 0.01). Column 

2 reveals an essentially identical increased threat of inspection at the secondary cutoff.  

Quantifying the Change in Injuries Associated with the Change in Threat of Inspection at 

the Primary and Secondary Cutoffs  

Having established that the threat of inspection changes substantially at the primary and 

secondary list thresholds, we use a regression discontinuity design to examine whether 

establishments above these thresholds, which faced a greater threat of inspection, had better 

safety outcomes, which would suggest that establishments facing a higher inspection threat 

improved their safety management effort. Because a regression discontinuity design is valid only 

if being just above or just below the cutoff is random, we first conduct a test of whether 

establishments manipulated their injury rates around the cutoffs, in which case the randomization 

would be violated. 

Do Establishments Manipulate Reported Injuries to Reduce Threat of Inspection?  

As shown above, among establishments with injury rates near the cutoff for primary or 

secondary list, those whose injury rates two years prior were just above a cutoff face 

discontinuously higher threat (risk) of inspection than those whose historical injury rates were 

just below a cutoff. If the threat effect were important and managers knew OSHA’s targeting 

rule, establishments would have an incentive to underreport their injuries to keep below the 

cutoffs. We look for evidence of this by assessing whether there is bunching of reported injury 

rates just below the cutoff levels for the primary and secondary lists.  

Conceptually, such bunching is unlikely for two reasons. First, it is difficult for 

establishments to misreport their injuries to ODI, as explained in Appendix D. Second, the 

cutoffs for the SST directive in a given year were based on injury rates from two years prior and 

the SST cutoffs usually changed from year to year, making them difficult to predict.  

To test for the presence of bunching, Figure J.1 reports the density of 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑡
𝑝𝑟𝑖

 and 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖𝑡
𝑠𝑒𝑐. If establishments are strategic and able to misreport their injuries, then we should 

see bunching of reported injuries just below the cutoffs for the primary and secondary lists. 

However, the density appears smooth in both cases and a formal manipulation test based on 
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Cattaneo, Jansson, and Ma (2018) fails to reject that the density is not continuous.16 Thus, we 

find no evidence that establishments strategically misreport injuries to reduce their threat of 

inspection. 

Do Establishments Facing a Higher Risk of Inspection Subsequently Experience Fewer Injuries? 

Comparing injury rates of establishments just above these cutoffs to those of 

establishments just below them risks confounding two factors that might improve safety: the 

threat of being inspected and the experience of being inspected. The latter contaminates our 

desired estimate of the threat factor because establishments above these thresholds are actually 

inspected at higher rates than those below these thresholds. 

To isolate the threat effect on subsequent injury rates, we leverage the fact that in each 

year, some area offices inspected only a subset of establishments on their primary list and that 

other area offices completed their primary list and inspected only a subset of establishments on 

their secondary list. Thus, many establishments on primary and secondary lists were not 

inspected; we focus on a subset of these. 

Specifically, we use a regression discontinuity approach to estimate Equation J.1 for the 

following subsamples for which 𝛾 should reflect purely an estimate of increased threat of 

inspection. We first focus on establishments eligible for SST inspection that met the following 

three criteria: they (a) were in the jurisdiction of an area office that began its primary list, (b) had 

injury rates just above or just below the primary list cutoff (defining “just above” and “just 

below” using the MSE-optimal bandwidth approach described above), and (c) were not selected 

for SST inspection. We then focus on a second set of establishments eligible for inspection that 

met the following three analogous criteria pertaining to the secondary list: they (a) were in the 

jurisdiction of an area office that completed its primary list and began its secondary list, (b) had 

injury rates just above or just below the secondary list cutoff, and (c) were not selected for SST 

inspection. Establishments in these two subsamples faced a discontinuous threat of inspection at 

the cutoff but, due to OSHA’s resource constraints, were not actually inspected.  

Table J.2 reports our results. In Column 1, the dependent variable is an indicator coded 1 

when an establishment was subjected to an SST inspection in year t or t+1. Even though the 

                                                 

16 This evidence corroborates Li and Singleton (2019), who also find no evidence of bunching around the SST 

cutoffs. 
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estimate in Column 1 of Table J.1 indicated that the overall threat of inspection changed 

substantially at the primary cutoff, the actual inspection rates for this subsample barely changed 

across the cutoff. In Column 2, the dependent variable is log(serious injuries) in year t+1. 

Corroborating the visual evidence in Figure 3d, the estimate indicates no difference in 

subsequent injuries between those just above and just below the primary cutoff (= 0.00, SE = 

0.06). Columns 3 and 4 indicate a similar null threat effect for establishments just above the 

secondary cutoff.  

We conduct another test to assess the effect of heightened threat on injury rates. Columns 

5 and 6 focus on all establishments that (a) were in the jurisdiction of an area office that did not 

begin its secondary list and (b) had injury rates just above or below the secondary cutoff (again 

using the MSE-optimal bandwidth). While those just above the cutoff were at greater threat of 

inspection, none of the establishments in this sample were actually subjected to an SST 

inspection. As expected, Column 5 of Table J.2 shows that the change in the realized probability 

of inspection among these establishments near the cutoff is essentially zero. Corroborating the 

estimates in Columns 2 and 4, Column 6 shows no difference in subsequent injuries at the 

secondary cutoff for this subsample (=0.01; SE=0.03). 

To summarize, the estimates in this section provide no evidence that establishments’ 

safety changed in response to a change in their threat of inspection. First, we showed that 

reported injuries were not strategically bunched just below the primary or secondary list cutoffs, 

which would have suggested strategic misreporting to reduce the threat of inspection. Second, 

our regression results indicate that uninspected establishments’ injuries were unaffected by a 

change in their threat of inspection. 

This unresponsiveness to changes in the threat of inspection implies that such potential 

behavioral changes by establishments in response to a change in targeting strategy would be 

second-order relative to the specific deterrence effects of realized inspections. Thus, these results 

give us confidence that our main analysis estimates the overall effects of alternative targeting 

strategies on injuries, and that effects on uninspected establishments are minimal and thus not a 

serious confounding factor in our context. 
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Table J1: An Injury Rate Just Above the Primary or Secondary
List Cutoff Raised Establishments’ Risk of Inspection

(1) (2)
Dep var = SST-inspected in t or t+ 1

Sample= Establishments in boundary of area office that...
began primary list began secondary list

(c = primary (c = secondary
cutoff) cutoff)

Injury rate ≥ cutoff 0.31 0.30
(0.01)** (0.02)**

Robust p-value 0.000 0.000
# observations 22,054 8,170
Left bandwidth 2.30 1.15
Right bandwidth 1.53 1.70

The running variable in Column 1, defined in Equation H.1, determines
whether an establishment’s injury rates from two years prior render
it eligible for the SST primary list. The running variable in Column
2 is defined analogously for eligibility for the secondary list. In each
column, # observations refers to the number of establishments with
injury rates in year t − 2 within the left and right bandwidths around
the cutoff (also reported in each panel). The MSE-optimal bandwidths
are selected, based on the method in Cattaneo, Jansson, and Ma (2018),
separately for each regression. All regressions include controls for region
fixed effects and year fixed effects, a manufacturing dummy, and the log
of the establishment’s working hours from t− 2.
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Figure J1: Density of Establishments’ Injury Rates Relative to the Primary and Secondary List Cutoffs
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Note: These figures display the density of Distancepriit and Distancesecit —defined in Equation H.1—in the top

and bottom panels, respectively. Distancepriit and Distancesecit are the “running variables” that determine
whether an establishment’s injury rate from year t− 2 is high enough to make it eligible for the SST primary or
secondary list, respectively, in year t. The sample includes those establishments that a) were considered for the
2001–2010 SST Target Lists (except nursing homes for all years prior to 2009), b) had not received an inspection
in the prior two years, and c) reported injury rates that resulted in the absolute value of their Distancepriit or
Distancesecit being less than 2.0.
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Table J2: Establishments Facing a Higher Threat of Inspection Did Not Experience a Change in Injuries

(1) (2) (3) (4) (5) (6)
Sample= Establishments not assigned to inspection and in boundary of area office that...

began primary began secondary did not begin secondary

Dep var = SST-inspected in log injuries, SST-inspected in log injuries, SST-inspected in log injuries,
t or t+ 1 t+ 1 t or t+ 1 t+ 1 t or t+ 1 t+ 1

Injury rate ≥ cutoff 0.02 0.00 0.02 -0.03 -0.00 0.02
(0.01) (0.06) (0.01)* (0.05) (0.00) (0.03)

Robust p-value 0.143 0.985 0.029 0.565 0.801 0.546
# observations 14,263 4,776 8,166 4,072 23,345 12,187
Left bandwidth 1.86 1.20 1.28 1.34 1.73 1.52
Right bandwidth 1.75 1.01 1.23 1.23 0.92 1.77

The running variable in Columns 1–2, defined in Equation H.1, determines whether an establishment’s injury rates from
two years prior render it eligible for the SST primary list. The running variable in Columns 3–6 is defined analogously for
eligibility for the secondary list. In each column, # observations refers to the number of establishments with injury rates in
year t−2 within the left and right bandwidths around the cutoff (also reported in each panel). The MSE-optimal bandwidths
are selected, based on the method in Cattaneo, Jansson, and Ma (2018), separately for each regression. All regressions include
controls for region fixed effects and year fixed effects, a manufacturing dummy, and the log of the establishment’s working
hours from t− 2.
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Appendix K Did Inspections of Establishments near the SST Cutoffs 

Reduce Injuries?  

The analysis in Section 3.4.1 and Appendix J showed that the increased threat of 

inspection near the SST cutoff did not affect establishments’ subsequent injury rates. Using a 

slightly different sample, we can also use this regression discontinuity approach to estimate the 

local average treatment effect of (realized) SST inspections on establishments’ subsequent 

injuries. This approach complements our main approach outlined in Section 2.3.1, which 

leverages the subset of randomized inspections to estimate the average effects of SST 

inspections.  

In Panel A of Figure K.1, we replicate Figure 3c, but use a broader sample of 

establishments eligible for an SST inspection whose lagged DART rates were just above or 

below the primary list cutoff that year, including not only establishments meeting these criteria 

that were not inspected (as in Figure 3c) but also those that were inspected. With this broader 

sample, Panel A of Figure K.1 depicts the sum of the direct and threat effects of inspections. 

Because Figure 3c already showed no threat effect at the cutoff, any change in injuries at the 

cutoff in Figure K.1 represents the direct effect of being inspected. Panel A of this figure reveals 

that establishments just barely above the primary list cutoff and thus placed on the primary list 

subsequently exhibited a discontinuous downward shift in serious injuries the following year. 

Panel B illustrates a similar discontinuity at the secondary cutoff. 

We quantify this graphical effect by applying the same regression discontinuity design 

discussed in Appendix J to samples akin to those used in Appendix J, except here we also 

include establishments that were actually assigned to inspection. We report results in Table K.1. 

Given this sample, 𝛾 represents the combined effects on injuries of a heightened threat of 

inspection and of an actual inspection, but because the results in Appendix J reveal essentially no 

threat effect, 𝛾 effectively represents an intention-to-treat estimate of the effect of being 

inspected. Corroborating the visual evidence in Figure K.1, the point estimate in Column 1 

indicates that establishments just above the primary cutoff subsequently experience 7 percent 

(p=0.08) fewer serious injuries than those just below.17 Column 2 indicates a similar reduction in 

                                                 

17 This evidence corroborates Li and Singleton (2019), who estimate the effects of SST inspections using a similar 

research design (using the primary list cutoff only) and find similar magnitudes.  
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injuries for establishments just above the secondary cutoff (𝛽̂ = −0.08, 𝑝 = 0.09). In Column 3, 

we combine the two samples from Columns 1–2 to generate a single intention-to-treat estimate 

of the effect of receiving an SST inspection, based on crossing either the primary or secondary 

cutoff. The point estimate is quite similar to that from both Columns 1 and 2 and, consistent with 

the larger sample size, more precise (𝛽̂ = −0.07, 𝑝 = 0.02). 

These results bolster the evidence in the main text that realized inspections improve 

safety.18 
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18 It is instructive to compare the magnitude of the average treatment effect of SST inspections implied by our main 

estimates in Section 3.1 to the effect size implied in Table J.1. Specifically, the estimate reported in Column 1 in 

Table J.1 implies an “intent to treat” effect of SST inspection on serious injuries of 6.7 percent (𝛽̂ =
−0.07, exp(−0.07) = −0.067). Scaled by the “first-stage” coefficient in Column 1 (the extent to which being just 

above the primary cutoff raised the risk of inspection) implies a local average treatment effect of SST inspections of 

-0.067/0.31 = 21.7 percent. This estimate is twice as large as our main estimate of the average treatment effect of 

SST inspections in Section 3.1, which is 9 percent. The implied magnitude is similar for the secondary cutoff. There 

are two reasons that these estimates might differ. First, our main approach estimates an average treatment effect, 

whereas the result in Table K.1 is a local average treatment effect pertaining only to the establishments with injury 

rates near the cutoff; if treatment effects are heterogeneous, these two effects could differ. Second, the results in 

Table K.1 only consider injuries one year after the directive year, whereas our main estimates consider the effects on 

injuries up to four years after the directive year. 



Figure K1: Further Evidence That SST Inspections Led to Fewer Injuries: Intention-to-treat Estimates from a
Fuzzy Regression Discontinuity Design
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(b)

Each figure displays a binned scatterplot, in which the x-variable is the “running variable” that determines
whether an establishment’s injury rate from year t− 2 is high enough to make it eligible for the SST primary list
(top panel) or secondary list (bottom panel) in year t. For each figure, the y-variable is provided in the title.
The sample includes those establishments that were considered for the 2001–2010 SST target lists (except
nursing homes for all years prior to 2009) and were eligible for an SST inspection.
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Table K1: Further Evidence that SST Inspections Led to Fewer In-
juries: Intention-to-treat Estimates from a Fuzzy Regression Discon-
tinuity Design

(1) (2) (3)
Sample= Establishments in boundary of area office that began...

primary list secondary list either primary
or secondary

Dep var = log injuries, t+ 1

Injury rate ≥ cutoff -0.07 -0.08 -0.07
(0.04)+ (0.04)+ (0.03)*

Robust p-value 0.083 0.091 0.021
# observations 7,447 4,664
Left bandwidth 1.02 1.57 1.17
Right bandwidth 1.74 1.48 1.56

The running variable in Column 1, defined in Equation J.1, determines whether
an establishment’s injury rates from two years prior render it eligible for the
SST primary list. The running variable in Column 2 is defined analogously for
eligibility for the secondary list. In each column, # observations refers to the
number of establishments with injury rates in year t − 2 within the left and
right bandwidths around the cutoff (also reported in each panel). The MSE-
optimal bandwidths are selected, based on the method in Cattaneo, Jansson,
and Ma (2018), separately for each regression. All regressions include controls
for region fixed effects and year fixed effects, a manufacturing dummy, and the
log of the establishment’s working hours from t− 2.
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