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Overview

1 Time Series Representations of Dynamic Macro Models
Structural State Space Models, MA, VARMA and VAR representations; Estimating Dynamic Causal Effects;
Misspecification: Nonfundamentalness, Nonlinearities, and Time Aggregation

2 State-Space Models and the Kalman Filter
State Space Models, Kalman Filter, Forecasting, Maximum Likelihood Estimation

3 Local Projections
Impulse Responses as Dynamic Treatment Effects, LP Estimation and Basic Inference, VAR-LP Impulse
Response Equivalence

4 Identification of Dynamic Causal Effects
Identification with Covariance Restrictions or Higher Moments. Proxy SVAR/SVAR-IV, Internal instrument
SVAR

5 Inference for Impulse Responses
Inference methods for VAR/LP impulse responses. Detecting weak instruments; Robust Inference Methods;
Joint inference for VAR and LP impulse responses

6 Impulse Response Heterogeneity
Kitagawa Decomposition, Time Varying Impulse Responses

7 Other Uses of Impulse Responses
Impulse Response Matching and Indirect Inference; Estimating Structural Single Equations using Impulse
Responses, SP-IV; Counterfactuals with Impulse Responses, Optimal Policy Perturbations



A huge literature estimates dynamic causal effects to various shocks in various ways:

Monetary policy shocks
Romer and Romer (1989), Christiano, Eichenbaum, and Evans (1999), Kuttner (2001), Christiano, Eichenbaum, and Evans

(2005), Gertler and Karadi (2015), Antoĺın-D́ıaz, Petrella, and Rubio-Raḿırez (2021), Bauer and Swanson (2022), ...

Tax shocks
Romer and Romer (2010), Blanchard and Perotti (2002), Mountford and Uhlig (2009), Mertens and Ravn (2013), Mertens and

Ravn (2014), Mertens and Montiel Olea (2018), Lewis (2021), ...

Government spending shocks
Ramey and Shapiro (1998), Blanchard and Perotti (2002), Ramey (2011), Mountford and Uhlig (2009), Lewis (2021) ...

General aggregate demand or supply shocks
Blanchard and Quah (1989), Angeletos, Collard, and Dellas (2020), Shapiro and Watson (1988)...

Technology shocks
Gaĺı (1999), Fisher (2006), Beaudry and Portier (2006)

Oil shocks, credit shocks, uncertainty shocks, etc.

See e.g. Ramey (2016), Kilian and Lütkepohl (2017) for recent overviews.

These impulse response estimates inform policy and guide macroeconomic theory



IRFs (often) also quantify contributions of shocks to fluctuations in macro aggregates

Forecast Error Variance (FEV) Decomposition

The share of the FEV for zi,t at horizon h explained by ϵj,t is

Ωh =

∑h
n=0(m

j
n(i))

2∑Nz
l=1

∑h
n=0(m

l
n(i))

2

where mj
h(i) is the i-th element in M j

h

Historical Counterfactuals

Let ϵ∗j,t = ϵj,t but ϵ∗−j,t = 0 for all t, then

B(L)z∗t = Dϵ∗t = Dj ϵj,t

provides the counterfactual history of z∗t with all ϵ−j,t set to zero.



4. Other Uses of Impulse Responses

4.1 Estimating Theoretical Models with Impulse Response Matching

4.2 Estimating Single Structural Equations with Impulse Responses

4.3 Counterfactuals Under Alternative Policy Rules

4.4 Evaluating Optimality of Policy



Impulse Response Matching

Recall the SMA(∞) representation of the solution of a theoretical model

zt =
(
D +A(I − GL)−1FL

)
ϵt

where the coefficients of the state space respresentation {G,F ,A,D} are specific
functions of deep structural parameters θ ∈ Θ

The ‘constrained’ SMA(∞) is zt = M(θ, L)ϵt =
∑q

i=0 Mi (θ)ϵt−i

The ‘unconstrained’ SMA(∞) is zt = M(L)ϵt =
∑q

i=0 Mi ϵt−i (in population)

Impulse Response Matching Conditions

γ(θ): m × 1 theoretical IRF coefficients from the Mi (θ)’s

γ0: m× 1 unconstrained coefficients from the Mi ’s corresponding to γ(θ)

γ̂T → γ0 for T → ∞ (consistent IRF estimator)

γ0 = γ(θ) , γ(θ) invertible (identification)



Impulse Response Matching

Impulse Response Matching Estimator Rotemberg and Woodford (1997)

An impulse response matching estimator of θ is

θ̂ = argmin
θ∈Θ

(γ̂T − γ(θ))′W (γ̂T − γ(θ))

where W is a p.s.d weighting matrix.

The estimator θ̂ minimizes the distance between the theoretical and empirical impulse
responses, and θ̂ → θ for T → ∞.

Let Σ̂ be a consistent estimator of the covariance matrix of the IRFs γ̂T

Common choices for W are

W = Σ̂−1, the optimal weighting matrix

W = diag(Σ̂−1), only the diagonal elements Σ̂−1



Example: Christiano, Eichenbaum, and Evans (2005) Monetary Impulse
Response Matching

6

Fig. 1.—Model- and VAR-based impulse responses. Solid lines are benchmark model
impulse responses; solid lines with plus signs are VAR-based impulse responses. Grey areas
are 95 percent confidence intervals about VAR-based estimates. Units on the horizontal
axis are quarters. An asterisk indicates the period of policy shock. The vertical axis units
are deviations from the unshocked path. Inflation, money growth, and the interest rate
are given in annualized percentage points (APR); other variables are given in percentages.
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Fig. 1.—Continued
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Fig. 1.—Model- and VAR-based impulse responses. Solid lines are benchmark model
impulse responses; solid lines with plus signs are VAR-based impulse responses. Grey areas
are 95 percent confidence intervals about VAR-based estimates. Units on the horizontal
axis are quarters. An asterisk indicates the period of policy shock. The vertical axis units
are deviations from the unshocked path. Inflation, money growth, and the interest rate
are given in annualized percentage points (APR); other variables are given in percentages.



Indirect Inference with Impulse Responses

There is not always a direct match between theoretical and empirical impulse responses
(e.g. lag truncation, nonfundamentalness, violation of identification restrictions)

Suppose γ̂T is from an approximating SVAR, zt =
∑p

i=1 Bzt−i + ut and some impact
matrix Dj .

We can simulate the model and obtain N artificial samples of length T , and for each
sample n obtain γ̂nT (θ), the IRF estimate from the approximating SVAR

IRF Indirect Inference Conditions

γ̂nT (θ) → γ(θ) for T → ∞
γ̂T → γ0 for T → ∞
γ0 = γ(θ), γ(θ) invertible (identification)

γ(θ) are auxiliary parameters rather than true theoretical impulse responses



Indirect Inference with Impulse Responses

Indirect Inference Estimator Gourieroux, Monfort, and Renault (1993)

An indirect inference estimator of θ is

θ̂ = argmin
θ∈Θ

(
γ̂T − 1

N

N∑
n

γ̂nT (θ)
)′
W

(
γ̂T − 1

N

N∑
n

γ̂nT (θ)
)

where W is a p.s.d. weighting matrix.

The estimator θ̂ minimizes the distance between the theoretical and empirical auxiliary
parameters, and θ̂ → θ for T → ∞.

IRF Matching/indirect inference are similar to GMM and SMM, but with structural
impulse response coefficients instead of moments.



Example: Mertens and Ravn (2011)

Impulse responses to unanticipated and pre-announced changes in income tax based
on direct measures of Romer and Romer (2010)

Medium-scale RBC model
Tax experiments potentially informative about a range of important parameters:

Consumption dynamics:

CES utility consumption parameter σ

Degree of habit persistence µ

Fraction of hand-to-mouth agents 1− ζ

Investment dynamics:

Investment adjustment cost in capital and durables ϕk and ϕv ,

Labor supply and capacity utilization:

Inverse Frisch labor supply elasticity κ

Capacity utilization elasticity ψ

Fiscal policy rules:

Elasticity of spending to tax revenues, πG



Example: Mertens and Ravn (2011)

(a) Unanticipated Tax Cut (b) Anticipated Tax Cut
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Figure 4: Impulse Responses in the Benchmark Model

Anticipated tax shocks are announced at date -6 and implemented at date 0.

(a) Unanticipated Tax Cut (b) Anticipated Tax Cut
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Figure 4: Impulse Responses in the Benchmark Model

Anticipated tax shocks are announced at date -6 and implemented at date 0.



Example: Mertens and Ravn (2011)

(a) Unanticipated Tax Cut (b) Anticipated Tax Cut
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Figure 4: Impulse Responses in the Benchmark Model

Anticipated tax shocks are announced at date -6 and implemented at date 0.

(a) Unanticipated Tax Cut (b) Anticipated Tax Cut
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Figure 4: Impulse Responses in the Benchmark Model

Anticipated tax shocks are announced at date -6 and implemented at date 0.



Example: Mertens and Ravn (2011)

Table 3: Estimation Results

Model σ µ κ φk φv ψk ρn,1 ρn,2 ρk,1 ρk,2 πG ς Obj.
(1) Benchmark 3.762 0.880 0.976 8.488 7.795 0.619 1.483 -0.484 1.707 -0.729 – – 78.77

(0.198) (0.008) (0.116) (0.355) (0.448) (0.060) (0.032) (0.032) (0.015) (0.015)
(2) No Durables 3.058 0.747 0.125 5.966 – 0.611 0.999* 0* 1.654 -0.684 – – 95.28

(0.145) (0.020) (0.036) (0.184) (0.044) (0.011) (0.012)
(3) No Habits 7.183 – 1.103 10.786 7.995 0.626 1.564 -0.565 1.724 -0.743 – – 113.22

(0.201) (0.130) (0.445) (0.430) (0.044) (0.026) (0.026) (0.011) (0.011)
(4) Endogenous G 1.829 0.926 0.477 6.032 7.265 0.459 1.102 -0.103 1.671 -0.698 0.221 – 68.15

(0.176) (0.006) (0.058) (0.274) (0.448) (0.0530) (0.071) (0.071) (0.016) (0.016) (0.026)
(5) Fixed Capital Tax 2.651 0.926 1.334 3.010 1.866 0.011 1.597 -0.598 – – – – 145.01

(0.134) (0.007) (0.116) (0.252) (0.184) (0.007) (0.018) (0.018)
(6) Fixed Labor Tax 0.411 0.906 0∗ 2.179 3.201 4.377 – – 1.392 -0.406 – – 110.46

(0.021) ( 0.006) (0.097) (0.158) (0.084) (0.009) (0.008)
(7) Rule-Of-Thumb 3.328 0.917 0.287 6.752 6.712 0.512 1.388 -0.389 1.707 -0.728 – 0.848 66.74

Households (0.185) (0.007) (0.071) (0.317) (0.392) ( 0.049) (0.026) (0.026) (0.013) (0.013) (0.006)

Standard errors are given in parentheses.

∗: The parameter was against the boundary of the parameter space.



4. Other Uses of Impulse Responses

4.1 Estimating Theoretical Models with Impulse Response Matching

4.2 Estimating Single Structural Equations with Impulse Responses

4.3 Counterfactuals Under Alternative Policy Rules

4.4 Evaluating Optimality of Policy



Estimating Single Structural Equations with Impulse Responses

IRF matching/indirect inference require fully specified theoretical models

Sometimes we only want to estimate the parameters of a single structural equation
without specifying a complete model

Turns out this is simple using regressions in impulse response space

Regressions with impulses from distributed lag specifications Barnichon and Mesters (2020)

Regressions with impulses from VARs, LPs, ... Lewis and Mertens (2022)



General Estimation Problem

yt = β′Yt + υt ,

yt : scalar outcome variable

Yt : NY × 1 endogenous variables

β: NY × 1 structural parameters of interest

Example: Hybrid NK Phillips curve

πt = γbπt−1 + γf Etπt+1 + λgapt + υt

yt = πt

Yt = [πt−1,Etπt+1, gapt ]′

β = [γb, γf , λ]
′

Well-known endogeneity problems (simultaneity, measurement error).

Common to use lags as instrumental variables (e.g. πt−2, gapt−1, ...) Gaĺı and Gertler (1999)



General Estimation Problem

yt = β′Yt + υt ,

yt : scalar outcome variable

Yt : NY × 1 endogenous variables

β: NY × 1 structural parameters of interest

Example: Hybrid NK Phillips curve

πt = γbπt−1 + γf Etπt+1 + λgapt + υt

yt = πt

Yt = [πt−1,Etπt+1, gapt ]′

β = [γb, γf , λ]
′

Well-known endogeneity problems (simultaneity, measurement error).
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Estimation Problem

yt = β′Yt + υt ,

Using lagged endogenous variable zt−h as instrument requires E [υtzt−h] = 0.

Strong assumption in macro applications if h is small.

Choosing large h weakens identification.

Example: Hybrid NK Phillips curve

πt = γbπt−1 + γf Etπt+1 + λgapt + υt

Allowing persistence in υt seems important empirically, e.g. Smets and Wouters
(2007).

Lags of πt , gapt or other macro variables are not valid instruments in general.

Barnichon and Mesters (2020) propose lags of available direct measures of shocks mt

as instruments.

If uncorrelated with υt , these shocks are valid instruments.
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IV with Direct Shock Measures

yt = β′Yt + υt ,

Let mt be a (scalar) direct shock measure (e.g. monetary policy shock)

Consider a distributed lag (DL) mt ,mt−1, ...,mt−H+1 as instrumental variables

IV Identification Conditions

E [mt−hYt ] ̸= 0 for h = 0, . . . ,H − 1 , H ≥ NY (relevance)

E [mt−hυt ] = 0 for h = 0, . . . ,H − 1 (exogeneity)

Define Xt = [mt , ...,mt−H+1]
′.

The data is demeaned: 1
T

∑
yt = 0, 1

T

∑
Yt = 0 , 1

T

∑
Xt = 0

Let y : T × 1, Y : T × NY , X : T × H

The 2SLS-DL estimator is β̂2SLS = (Y ′PXY )−1Y ′PX y with PX = X (XX ′)−1X ′



IV with Direct Shock Measures

Y ′PXY /T = ((X ′X/T )−
1
2 X ′Y /T )′︸ ︷︷ ︸

Θ̂DL′
Y

((X ′X/T )−
1
2 X ′Y /T )︸ ︷︷ ︸

Θ̂DL
Y

Y ′PX y/T = ((X ′X/T )−
1
2 X ′Y /T )′︸ ︷︷ ︸

Θ̂DL′
Y

((X ′X/T )−
1
2 X ′y/T )︸ ︷︷ ︸

Θ̂DL
y

Θ̂DL
Y : H × NY OLS estimator in regression of Yt on (X ′X/T )−

1
2 Xt , i.e. impulse

response coefficients of Yt to a one-std innovation in mt

Θ̂DL
y : H × 1 OLS estimator in regression of yt on (X ′X/T )−

1
2 Xt , i.e. impulse

response coefficients of yt to a one-std innovation in mt

2SLS-DL is a Regression in Impulse Response Space Barnichon and Mesters (2020)

The 2SLS estimator with mt ,mt−1, ...,mt−H+1 as instrumental variables is the
OLS coefficient in a regression in impulse response space

β̂2SLS = (Θ̂DL′
Y Θ̂DL

Y )Θ̂DL′
Y Θ̂DL

y



IV with Direct Shock Measures

The SMA(∞) representations of yt and Yt imply that

υt =
∑
j

µj,0ϵj,t +
∑
j

µj,1ϵj,t−1 + ...

Restated Exogeneity Requirements for 2SLS-DL

For h = 0, ...,H − 1:

µj,lE [mtϵj,t+h−l ] = 0, l = h;∀j (Contemporaneous Exogeneity)

µj,lE [mtϵj,t+h−l ] = 0, l = h + 1, ...,∞;∀j (Lag Exogeneity)

µj,lE [mtϵj,t+h−l ] = 0, l = 0, ..., h − 1; ∀j (Lead Exogeneity)

mt must be exogenous with respect to all non-excluded (i.e. µj,l ̸= 0) past, present
and future shocks

We could add zt−1, zt−2, ... as controls to span the history of non-excluded shocks and
get rid of lag exogeneity

Unfortunately, zt−1, zt−2, ... likely also spans the excluded shocks that correlate with
mt , so this generally weakens identification



From 2SLS-DL to SP-IV

2SLS-DL: identifies structural parameters by regressing impulse responses from
DLs with direct measures of shocks

SP-IV: identifies structural parameters by regressing impulse responses from
VARs or LPs using any identification scheme from Section 4

SP-IV: System Projections on Instrumental Variables (SP-IV) Lewis and Mertens (2022)



System Projections with Instrumental Variables (SP-IV)

Let y⊥
t (h), Y⊥

t (h) denote h + 1-step ahead forecast errors conditional on
Zt−1 = [z ′t−1 z ′t−2 ...]

′.

If yt = β′Yt + υt , then

y⊥
t (h) = β′Y⊥

t (h) + υ⊥t (h)

Let m⊥
t denote one-step ahead forecast error conditional on Zt−1 = [z ′t−1 z ′t−2 ...]

′.

H:# of horizons, Nm = dim(m⊥
t ).

HNm ≥ NY SP-IV identifying moments: E [υ⊥t (h)m⊥
t ] = 0 for h = 0, . . . ,H − 1.

Without conditioning on Zt−1 and under stationarity, identical to

HNm 2SLS-DL identifying moments: E [υtmt−h] = 0 for h = 0, . . . ,H − 1



The GMM problem

Consider forecasting models that are linear in Zt−1, e.g. VARs or LPs

Let y⊥
H,t and Y⊥

H,t stack the forecast errors in yt and Yt .

E [υ⊥H,t(β)⊗m⊥
t ] = 0 , HNm identifying conditions

E

[[
y⊥′
H,t(ζ),Y

⊥′
H,t(ζ),m

⊥′
t (ζ)

]′
⊗ Zt−1

]
= 0 , forecasting moments

where υ⊥H,t(b) = y⊥
H,t − (b′ ⊗ IH)Y⊥

H,t ,

y⊥
H,t(d), Y

⊥
H,t(d), m

⊥
t (d) are functions of d with true value ζ.

Given a p.s.d. weighting matrix and mild assumptions, the GMM problem is separable
in b and d .

Two-step procedure: (1) forecasting step, (2) structural estimation step



SP-IV with Local Projections

Using weights IH ⊗ E [m⊥
t m⊥′

t ]−1, GMM problem is equivalent to minimizing
Tr(u⊥H Pm⊥u⊥′

H ) where

y⊥
H = (β′ ⊗ IH)Y⊥

H + u⊥H

Closed form solution a restricted system 2SLS estimator:

β̂ =
(
R′(Y⊥

H Pm⊥Y⊥′
H ⊗ IH)R

)−1
R′ vec(y⊥

H Pm⊥Y⊥′
H )

where R = INY
⊗ vec(IH)

SP-IV is a Regression in Impulse Response Space Lewis and Mertens (2022)

β̂ =
(
Θ̂′

Y Θ̂Y

)−1
Θ̂′

Y Θ̂y

Θ̂y (HNm × 1) and Θ̂Y (HNm ×NY ) contain the LP estimates of the impulse
responses to the standardized shocks m⊥

t

Similarly, SP-IV VAR is a regression with SVAR impulse responses



Implementation in Phillips Curve Example

πt = γbπt−1 + γf Etπt+1 + λgapt + υt

Let mt , for example, denote a measure of monetary policy shocks

1 Estimate ÎRF of πt and gapt to mt , e.g. using VAR or LP that conditions on Zt−1

2 Construct ÎRFY using IRFgap and lead and lag of IRFπ

3 Regress ÎRFπ on ÎRFY → γ̂b, γ̂f , λ̂

Any of the identification schemes from Section 4 (proxies, recursive, ...) are OK as
long as E [υ⊥t+hm

⊥
t ] = 0 holds for the identified shock m⊥

t

Can stack IRFs to different (standardized) shocks Nm ≥ 1

Exogeneity does not require IRFs are individal dynamic causal effects, can also just be
a rotation to shocks that are exogenous

No need to use all horizons in practice



What are the Advantages of SP-IV over 2SLS-DL?

More Identification Options using IRFs from LPs or VARs

Weaker Exogeneity Conditions

Potential Efficiency Gains

Stronger Identification



Weaker Exogeneity Conditions

The SMA(∞) representations of yt and Yt imply that

υt =
∑
j

µj,0ϵj,t +
∑
j

µj,1ϵj,t−1 + ...

Exogeneity Requirements for SP-IV

Assume Zt−1 spans the history of non-excluded shocks, for h = 0, ...,H − 1:

µj,lE [mtϵj,t+h−l ] = 0, l = h;∀j (Contemporaneous Exogeneity)

µj,lE [mtϵj,t+h−l ] = 0, l = 0, ..., h − 1;∀j (Lead Exogeneity)

For Zt−1 that spans the history non-excluded shocks, SP-IV does not require lag
exogeneity .

Note, weaker assumption than ϵt is fundamental for zt (partial fundamentalness)



Efficiency Gains

SP-IV asymptotically more efficient if Var(υ⊥H,t) is ‘small’ relative to Var(υt).

More likely if υt is persistent (predictable) and H is not too large.

AR(1) example: υt = ρυt−1 + υt
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Stronger Identification

Weak instrument problems are common.

Lead to small sample bias and incorrect inference.

Conditioning on Zt−1 removes predictable variation on Yt and can improve the
signal-to-noise ratio of mt .

SP-IV performs better in small samples.

Including Zt−1 as exogenous regressors in 2SLS instead weakens identification, as
Zt−1 is likely to span lags of mt .



Inference for SP-IV

Inference under strong identification is standard:

√
T (β̂ − β)

d→ N(0, Vβ )

V̂β =
(
R′(Y⊥

H P
m⊥Y⊥′

H ⊗ IH )R
)−1

R′
(
Y⊥
H P

m⊥Y⊥′
H ⊗ Σ̂

u⊥
H

)
R
(
R′(Y⊥

H P
m⊥Y⊥′

H ⊗ IH )R
)−1

Bias-based first-stage test for weak instruments based on the test statistic

mineval{Ω̂− 1
2 R′(Y⊥

H Pm⊥Y⊥′
H ⊗ IH)RΩ̂− 1

2 }

where Ω̂ = R′(Σ̂v⊥
H

⊗ IH)R and Σ̂v⊥
H

is the HK × HK variance of the first-stage

residuals. When H = 1, same as Stock-Yogo (2005). Critical values for H > 1 are
non-standard, application-specific and obtained numerically.

Identification robust inference can be based on

AR-statistic (also Stock and Wright, 2000, S-statistic for GMM)

KLM-statistic (Kleibergen, 2005, KLM-statistic for GMM)
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Simulation Evidence

Phillips curve in Smets Wouters (2007)

πt = γbπt−1 + γf Etπt+1 + λgapt + υt

ut = ρuut−1 + ϵpt − µpϵ
p
t−1 , | ρu |< 1

Nm = 1: monetary policy shock

Controls Zt−1: four lags of seven endogenous variables

Fully exogenous, or lag endogenous (RR shock on inflation lags)

T = 200, 500, 5000

H = 8, 20



Lag Endogenous Instrument

Mean, Nm = 1,T = 5000

H = 8 Mean
Estimator γb γf λ

True 0.15 0.85 0.05

OLS 0.48 0.48 0.00

2SLS 0.26 0.58 -0.09
2SLS-C 0.41 0.18 1.46

SP-IV LP 0.26 0.60 -0.08
SP-IV LP-C 0.16 0.84 0.05
SP-IV VAR 0.12 0.83 0.09
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True Shocks as Instruments

Mean parameter estimates, Nm = 1

H = 8 T = 250 T = 500 T = 5000
Estimator γb γf λ γb γf λ γb γf λ

True 0.15 0.85 0.05 0.15 0.85 0.05 0.15 0.85 0.05

OLS 0.47 0.47 0.00 0.48 0.48 0.00 0.48 0.48 0.00

2SLS 0.27 0.51 0.01 0.23 0.60 0.01 0.17 0.83 0.04
2SLS-C -0.08 0.33 0.14 -0.04 0.32 0.32 1.07 0.58 1.09

SP-IV LP 0.26 0.50 0.01 0.23 0.60 0.01 0.17 0.83 0.04
SP-IV LP-C 0.29 0.64 0.04 0.24 0.74 0.05 0.16 0.84 0.05
SP-IV VAR 0.23 0.81 0.03 0.18 0.84 0.05 0.12 0.83 0.09
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Application: Inflation-Activity Disconnect

Based on the muted response of inflation to a Main Business Cycle Shock, Angeletos,
Collard, and Dellas (2020) conclude inflation is disconnected from the business cycle

2SLS-DL and SP-IV allow a formal econometric investigation of claims about
relationships across impulse responses

IRF Core CPI IRF Unemployment FEVD
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Parameter Estimates

π1q
t = (1− γf )π

1y
t−3 + γf π

1y
t+12 + λUt + υt ,

2SLS-DL SP-IV
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4. Other Uses of Impulse Responses

4.1 Estimating Theoretical Models with Impulse Response Matching

4.2 Estimating Single Structural Equations with Impulse Responses

4.3 Counterfactuals Under Alternative Policy Rules

4.4 Evaluating Optimality of Policy



Counterfactuals Under Alternative Policy Rules

We can learn a lot from dynamic causal effects of e.g. monetary policy shocks

But ultimately, systematic monetary policy is much more important

Changes in systematic policy change expectations and therefore the dynamic causal
effects to all shocks

However, we can still study the effects of changes in systematic policy using
semi-structural evidence:

McKay and Wolf (2022)



Observed Economy

Suppose the actual economy follows the model

pt = αyt +
∞∑
n=0

ϵp,nt−n (E1)

yt = Hy (θ, α)Et [yt+1] +Hp(θ, α)pt +Hϵy (θ, α)ϵ
y
t (E2)

pt is a scalar policy tool, e.g. the funds rate

ϵpt = [ϵp,0t ϵp,1t ϵp,2t ...] is an infinite-dimensional vector of i.i.d ‘policy news shocks’

yt is NY × 1 vector of macro variables, e.g. inflation, output, etc.

ϵyt is Nϵy × 1 vector of i.i.d ‘non-policy shocks’

E1 is a policy feedback rule, e.g. a Taylor rule

E2 contains the structural equations, e.g. consumption Euler, Phillips curve, etc ...

{Hy ,Hp ,Hϵy } generally depend on the ‘deep’ structural parameters θ and α



Observed Economy

pt = αyt +
∞∑
n=0

ϵp,nt−n (E1)

yt = Hy (θ, α)Et [yt+1] +Hp(θ, α)pt +Hϵy (θ, α)ϵ
y
t (E2)

The observed data zt = [pt y ′
t ]

′ is generated by {ϵyi }Ti=−∞ and {ϵpi }Ti=−∞

Assumption: Uniqueness

There is unique solution satisfying (E1)-(E2), in SMA(∞) form

pt = Mpy (L, θ, α)ϵ
y
t +Mpp(L, θ, α)ϵ

p
t

yt = Myy (L, θ, α)ϵ
y
t +Myp(L, θ, α)ϵ

p
t

Assumption: Econometrician Information

{Hy (θ, α),Hp(θ, α),Hϵy (θ, α)} is unknown

Myp(L, θ, α) and Mpp(L, θ, α), are known

The economic structure is unknown, but the dynamic causal effects of policy shocks
on yt and pt are known.



Example: New Keynesian Model

Rt = ϕππt +
∞∑
n=0

ϵp,nt−n

Et∆gapt+1 = Rt − Etπt+1 − sdt

πt = κgapt + βEtπt+1 + sst

Rt︸︷︷︸
pt

=
[

0 ϕπ
]︸ ︷︷ ︸

α

[
gapt
πt

]
︸ ︷︷ ︸

yt

+
∞∑
n=0

ϵp,nt−n

[
gapt
πt

]
︸ ︷︷ ︸

yt

=

[
1 1
κ β + κ

]
︸ ︷︷ ︸

Hy

Et

[
gapt+1
πt+1

]
︸ ︷︷ ︸

Etyt+1

+

[
−1
−κ

]
︸ ︷︷ ︸

Hp

Rt︸︷︷︸
pt

+

[
sst
sdt

]
︸ ︷︷ ︸

ϵ
y
t

with θ = [κ β]′ and κ > 0, ϕπ > 1, 0 ≤ β < 1



Counterfactual Economy †

Consider the same economy, but with a different policy rule (and no policy shocks)

p†t = α†yt (E†
1 )

y†
t = Hy (θ, α

†)Et [y
†
t+1] +Hp(θ, α

†)pt +Hϵy (θ, α
†)ϵyt (E†

2 )

Assumption: Uniqueness †

There is unique solution satisfying (E†
1 )-(E

†
2 ), in SMA(∞) form

p†t = Mpy (L, θ, α
†)ϵyt

y†
t = Myy (L, θ, α

†)ϵyt

Same sequence of non-policy shocks {ϵyi }Ti=−∞ as in the actual economy

In general, Myy (L, θ, α†) ̸= Myy (L, θ, α)

Entire impulse-propagation system changes when α→ α†



Counterfactual Economy ∗

Consider again the actual economy, but change sequence of policy shocks {ϵp∗t−i}Ti=−∞

p∗t = Mpy (L, θ, α)ϵ
y
t +Mpp(L, θ, α)ϵ

p∗
t

y∗
t = Myy (L, θ, α)ϵ

y
t +Myp(L, θ, α)ϵ

p∗
t

Same sequence of non-policy shocks {ϵyi }Ti=−∞ as in the actual economy

The stochastic processes p∗t and y∗ are solutions to (E1)-(E2)

All we are doing is changing the policy shock sequence to generate counterfactual
realizations of p∗t and y∗

t

A single policy shock per period suffices to ensure that p∗t = α†y∗
t always holds

However, it is generally not be the case that Et [p∗t+h] = α†Et [y∗
t+h].

Lucas’ critique



Example: New Keynesian Model

New Keynesian model, but set sdt = 0, ϵp,nt = 0 for all n > 0, and sst = ρsst−1 + ϵst

The solution is Rt

gapt
πt

 =
1

1 + ϕπκ

 1 ϕπ(1− ρ)
−1 −(ϕπ − ρ)
−κ 1− ρ

[
ϵp,0t

∆−1(1− ρL)−1ϵst

]
(1)

where ∆ = det
(
I − ρC−1

)
, C−1 = 1

1+ϕπκ

[
1 1− βϕπ
κ β + κ

]
The impulse response of inflation is

Et−1[πt+h | ϵst = 1]− Et−1[πt ] =
(1− ρ)ρh∆−1

1 + ϕπκ

In the counterfactual economy, the impulse response of inflation is

Et−1[π
†
t+h | ϵst = 1]− Et−1[π

†
t ] =

(1− ρ)ρh(∆†)−1

1 + ϕ†πκ

where ∆† = det
(
I − ρ(C†)−1

)
, (C†)−1 = 1

1+ϕ
†
πκ

[
1 1− βϕ†π
κ β + κ

]



Example: New Keynesian Model

Suppose for every h we choose the monetary policy shock νh such that

Et−1[R
∗
t+h | ϵst = 1]− Et−1[Rt ] = ϕ†π

(
Et−1[π

∗
t+h | ϵst = 1]− Et−1[πt ]

)
such that the counterfactual Taylor rule holds ex post at al horizons

The resulting impulse response of inflation is

Et−1[π
∗
t+h | ϵst = 1, νh]− Et−1[πt ] =

(1− ρ)ρh(∆)−1

1 + ϕ†πκ

Generally not the same as in the counterfactual economy since ∆ ̸= ∆† unless ρ = 0

The shocks that enforce the new rule at each horizon are not anticipated in advance.



Counterfactuals With Impulse Responses

Key Assumptions for Policy Counterfactuals with Impulse Responses

CFA1 {Hy ,Hp ,Hϵy } do not depend on α

Hy (θ, α) = Hy (θ) , Hy (θ, α) = Hy (θ) , Hϵy (θ, α) = Hy (θ)

CFA2 There exists a sequence {ϵp∗t−i}Ti=−∞ such that for all t and h ≥ 0

Et [p
∗
t+h] = α†Et [y

∗
t+h]

Policy Counterfactuals with Impulse Responses McKay and Wolf (2022)

Under Uniqueness, Uniqueness †, CFA1 and CFA2,

p†t = Mpy (L, θ, α)ϵ
y
t +Mpp(L, θ, α)ϵ

p∗
t = p∗t , Et [p

†
t+h] = Et [p

∗
t+h]

y†
t = Myy (L, θ, α)ϵ

y
t +Myp(L, θ, α)ϵ

p∗
t = y∗

t , Et [y
†
t+h] = Et [y

∗
t+h]

All conditional expectations in the counterfactual economy † can be replicated exactly
by a (unique) sequence of policy shocks {ϵp∗t−i}Ti=−∞ under the decision rules in the
observed economy



Counterfactuals With Impulse Responses

Intuition:
Policy following the α†-rule is exactly equivalent to deviating from the α-rule in a way
that (1) perfectly mimicks the α†-rule and (2) is known perfectly in advance by all
private agents

The underlying model equations in (E2)− (E†
2 ) can arbitrarily more complicated as

long as CFA2, and the other assumptions continue to hold, see McKay and Wolf
(2022)

Throughout linearity is required

The methodology allows counterfactuals conditional on an identified non-policy shock

For counterfactuals with unconditional data, a fundamentalness assumption is also
required.



Example: New Keynesian Model

Key Assumptions for Policy Counterfactuals with Impulse Responses

CFA1 {Hy ,Hp ,Hϵy } do not depend on α

Hy (θ, α) = Hy (θ) , Hy (θ, α) = Hy (θ) , Hϵy (θ, α) = Hy (θ)

Rt︸︷︷︸
pt

=
[

0 ϕπ
]︸ ︷︷ ︸

α

[
gapt
πt

]
︸ ︷︷ ︸

yt

+
∞∑
n=0

ϵp,nt−n

[
gapt
πt

]
︸ ︷︷ ︸

yt

=

[
1 1
κ β + κ

]
︸ ︷︷ ︸

Hy

Et

[
gapt+1
πt+1

]
︸ ︷︷ ︸

Etyt+1

+

[
−1
−κ

]
︸ ︷︷ ︸

Hp

Rt︸︷︷︸
pt

+

[
sst
sdt

]
︸ ︷︷ ︸

ϵ
y
t

with θ = [κ β]′ and κ > 0, ϕπ > 1, 0 ≤ β < 1

Hy and Hp indeed do not depend on α, CFA2 is satisfied



Counterfactuals With Impulse Responses

The solution to the NK model with news shocks is[
gapt
πt

]
=

1

1 + ϕπκ

∞∑
m=0

C−m

[
−1
−κ

] ∞∑
n=m

ϵp,nt+m−n

+
1

1 + ϕπκ

[
−(ϕπ − ρ)

1− ρ

]
∆−1(1− ρL)−1ϵst

Et−1

[[
gap∗t+h
π∗
t+h

]
|ϵst = 1, ν0

]
− Et−1

[
gapt+h

πt+h

]
=

1

1 + ϕπκ

∞∑
m=h

Ch−m

[
−1
−κ

]
ν0(m) +

1

1 + ϕπκ

[
−(ϕπ − ρ)

1− ρ

]
∆−1ρh

Et−1[R
∗
t+h | ϵst = 1, ν0]− Et−1[Rt ] = ϕπ

(
Et−1[π

∗
t+h | ϵst = 1, ν0]− Et−1[πt ]

)
+ ν0(h)

Choose the news shocks ν0(h) such that for all h = 0, ...,Np

ν0(h) = (ϕ†π − ϕπ)
(
Et−1[π

∗
t+h | ϵst = 1, ν0]− Et−1[πt ]

)
For Np → ∞, the resulting impulse response of inflation is

Et−1[π
∗
t+h | ϵst = 1, ν0]− Et−1[πt ] =

(1− ρ)ρh(∆†)−1

1 + ϕ†πκ



McKay and Wolf (2022) HANK Theoretical Example

Rule switch from Rt = ϕππt +
∑∞

n=0 ϵ
p,n
t−n to Rt = ϕRRt−1 +(1−ϕR)(ϕππt +ϕxgapt)

Sims & Zha Strategy

2 Shocks: Match 1-Period-Ahead Expectations

Full Date-0 Shocks: Match All Expectations

Figure 1: The grey and orange lines in the left and middle panels show output and inflation
responses to the cost-push shock εt under the policy rules (28) and (29) in the HANK model. The
dark blue dashed lines give output and inflation counterfactuals constructed through the policy
shocks on the right, set to enforce the counterfactual rule ex post and in expectation for the next
ns − 1 periods, for ns = 1 (top panel, = Sims & Zha), ns = 2 (middle panel) and ns = ∞ (bottom
panel). Lighter shades of blue correspond to news about policy at longer horizons.
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McKay and Wolf (2022) Monetary Policy Counterfactuals

In reality, we do not have a (rotation) of complete set of policy news shocks

Reasonable approximations of future policy paths with linear combinations of different
identified monetary policy shocks

McKay and Wolf (2022) identify monetary policy shocks using Romer and Romer
(2004) and Gertler and Karadi (2015) as mt in an internal instrument SVAR

Romer & Romer (2004) Shock

Gertler & Karadi (2015) Shock

Figure C.1: Impulse responses after the Romer & Romer shock (top panel) and the Gertler &
Karadi shock (bottom panel). The grey areas correspond to 16th and 84th percentile confidence
bands, constructed using 10,000 draws from the posterior distribution of the reduced-form VAR
parameters.

C.3 Results for omitted monetary policy counterfactuals

In Section 4 we presented detailed results for only three of our counterfactuals—output

gap targeting, the Taylor rule, and optimal average inflation targeting policy—and only for

our baseline method, not the Sims & Zha (1995) refinement. We here provide the remaining

results. Throughout this section, our measure of rule accuracy is the horizon-by-horizon error

in enforcing the desired counterfactual rule (i.e., the argument of (31) or (B.1)). For our

Sims & Zha refinement we set ψ = 1, corresponding to an equal penalty on rule inaccuracy

and ex post policy shock surprises.
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McKay and Wolf (2022) Monetary Policy Counterfactuals

Response to a technology news shock from Ben Zeev and Khan (2015) under
counterfactual monetary policy rules

Approximate simple Taylor rule Rt = 0.5Rt−1 + (1− 0.5)× (1.5πt + gapt)Policy Counterfactual, Taylor Rule

Figure 4: Output gap, inflation and interest rate impulse responses to a contractionary investment-
specific technology shock under the prevailing baseline rule (dotted grey) and the best feasible
approximation to a simple Taylor-type rule ît = 0.5̂it−1 + 0.5 × (1.5π̂t + ŷt) (orange), computed
following (31). The shaded areas correspond to 16th and 84th percentile confidence bands. The
distance between black dashed and orange lines in the right panel is the implementation error (i.e.,
the argument of (31)).

with λπ = λy = 1, W = diag(1, β, β2, · · · ) and β = 1/1.01. Results for our optimal policy

counterfactual are displayed in Figure 5. The key takeaway here is that this optimal policy

counterfactual differs very little from actually observed outcomes. In other words, there is

little room to improve upon the observed allocation by changing policy within the space of

policy instrument paths spanned by our two identified policy shocks.

Appendices C.3 and C.4 present several further applications. First, we consider the two

remaining policy counterfactuals: nominal GDP targeting and a nominal interest rate peg.

We find that nominal GDP targeting can be implemented very accurately; interestingly, this

counterfactual looks quite similar to our estimated outcomes under the baseline rule, with

interest rates cut only slightly less aggressively. Matters look different for a nominal interest

rate peg, however. Here, nominal interest rates in our best Lucas critique-robust counterfac-

tual still fall by quite a bit too much, in particular at short horizons. Our empirical method

thus in this case does not allow an accurate characterization of the desired counterfactual.

Second, we for all five counterfactual rules present results for the multi-shock Sims & Zha

refinement discussed in Section 3.2. For four of our five counterfactuals, allowing for ex post

shocks to further improve the rule fit does not materially alter our conclusions. The reason

is simple: the contemplated counterfactual policy rules are already implemented well using
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McKay and Wolf (2022) Monetary Policy Counterfactuals

Response to a technology news shock from Ben Zeev and Khan (2015) under
counterfactual monetary policy rules

Approximate output gap targeting rulePolicy Counterfactual, Output Gap Targeting

Figure 3: Output gap, inflation and interest rate impulse responses to a contractionary investment-
specific technology shock under the prevailing baseline rule (dotted grey) and the best feasible
approximation to output gap targeting (orange), computed following (31). The shaded areas cor-
respond to 16th and 84th percentile confidence bands. Perfect output gap targeting is displayed as
the black dashed line.

between the black dashed and orange lines indicates whether or not our method is able to

accurately implement the counterfactual rule. While the orange lines show our counterfactual

path of interest rates, the black lines instead use the Taylor rule to map the output gap and

inflation paths shown in the left and middle panels into paths of nominal interest rates. The

distance between the two is thus simply the argument of (31)—i.e., the implementation error.

We see that the counterfactual Taylor rule is imposed relatively well throughout, except at

a couple of quarters after the initial shock (where interest rates are still cut by too much

relative to the Taylor rule prescription).

Third, we proceed in the spirit of the recent change in the Federal Reserve’s strategy

and consider a policymaker with preferences over output and average inflation π̄t, where

π̄t =
∑K

ℓ=0 ωℓπt−ℓ.
25 We then represent the loss function of a dual mandate policymaker

with preferences over average inflation as

L = λππ̄ππ
′Wπ̄ππ + λyyyy

′Wyyy

25Here K denotes the maximal (lagged) horizon that enters the inflation averaging, and ωℓ denotes the
weight on the ℓth lag, with

∑
ℓ ωℓ = 1 and ωℓ ≥ 0 ∀ℓ. For our application we setK = 20 and ωℓ ∝ exp(−0.1ℓ).

Suitably stacking the weights {ωℓ}, we can define a linear map Π̄ such that π̄̄π̄π = Π̄× πππ.
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4. Other Uses of Impulse Responses

4.1 Estimating Theoretical Models with Impulse Response Matching

4.2 Estimating Single Structural Equations with Impulse Responses

4.3 Counterfactuals Under Alternative Policy Rules

4.4 Evaluating Optimality of Policy



Evaluating Optimality of Policy

We can approximate outcomes under counterfactual systematic policies with impulse
responses to multiple policy shocks

Given a policy loss function, we can also approximate the optimal policy

Barnichon and Mesters (2022), McKay and Wolf (2022)



Optimal Policy

Consider again

yt = HyEt [yt+1] +Hppt +Hϵy ϵ
y
t (E2)

where pt is a scalar policy tool.

The policy loss function is

Lt =
1

2
y ′
t yt

Optimal policy requires

∂Lt

∂pt
= H′

pyt = 0

In the New Keynesian model yt = [gapt πt ]′

H′
pyt =

[
−1 −κ

] [ gapt
πt

]
= 0 ⇒ gapt = −κπt



Optimal Policy

Let the policy rule in the observed economy be

pt = αyt +
∞∑
n=0

ϵp,nt−n (E1)

ϵpt = [ϵp,0t ϵp,1t ϵp,2t ...] is an infinite-dimensional vector of i.i.d ‘policy news shocks’

Assume there is a unique solution in SMA(∞) form:

pt = Mpy (L)ϵ
y
t +Mpp(L)ϵ

p
t

yt = Myy (L)ϵ
y
t +Myp(L)ϵ

p
t

where Mab(L) =
∑∞

h=0 Mab,hL
h

Consider

∂Lt

∂ϵpt
= M′

yp,0yt = Mpp,0H′
pyt

If the policy rule is optimal, then H′
pyt = 0 such that M′

yp,0yt = 0



Optimal Policy

If the impact impulse response coefficients Myp,0 are known, than a feasible test of
policy optimality is based on the condition M′

yp,0yt = 0

Intuition: If policy is optimal, there should be no deviations from the policy rule that
lead to a lower loss

In the New Keynesian model M′
yp,0 =

[
−1

1+κϕπ

−κ
1+κϕπ

]
M′

yp,0yt =
[

−1
1+κϕπ

−κ
1+κϕπ

] [ gapt
πt

]
= 0 ⇒ gapt = −κπt

We can test deviations from optimal policy and even calculate policy improvements
using empirical estimates of impulse responses to policy shocks



Optimal Policy

Let Yt = [y ′
t y ′

t+1 ...]
′ stack the current and all future values of yt containing the

arguments in the policy loss function

Policy loss function

Lt = Et [Y′
tWYt ] where p.s.d W contains policy weights

Uniqueness

There is a unique solution to the model generating the observed yt , in SMA(∞)
form

yt = Myy (L)ϵ
y
t +Myp(L)ϵ

p
t



Optimal Policy Perturbations

Let Pt = [p′t p′t+1 ...]
′ stack the current and all future values of pt

Let Pe
t = EtPt denote the observed expected policy path at time t

Let Pe,†
t denote a proposed alternative expected policy path at time t

Let Pe,opt
t denote the expected policy path under optimal policy, i.e. minimizing Lt

Uniqueness Conditions

Uniqueness Under Optimal Policy: The optimal policy Pe,opt
t is unique

Uniqueness †: There is a unique solution to the model for y†
t under Pe,†

t

Condition for Optimal Policy Barnichon and Mesters (2022)

Pe,†
t = Pe,opt

t ⇔ ▽Lt |Pe,opt
t

= M†′WEtY
†
t = 0

where M† contains the dynamic causal effects on Y†
t under the proposed alter-

native policy



Optimal Policy Perturbations

Optimal Policy Perturbation Barnichon and Mesters (2022)

The optimal policy perturbation δt such that Pe,†
t + δt = Pe,opt

t is given by

δt = −(M†′WM†)−1M†′WEtY
†
t = 0

Projection coefficient in the weighted projection of EtY
†
t on -M†

Policy deviations should not be able to reduce the sum of squared projection residuals
(i.e. the policy objective)

Barnichon and Mesters (2022) check ‘policy mistakes’ δt at any time t in observed
data with the following:

Policymakers ‘outlook’, EtYt

M, the dynamic causal effect of policy shocks from the observed data

Knowledge of the policy weights W



Barnichon and Mesters (2022) Application to Monetary Policy

EtYt and M are population objects, in practice both are sampled with error such that
δt is a random variable

The test of policy optimality becomes a statistical test of the null that δt = 0.

EtYt is measured by median FOMC projection in the Summary of Economic
Projections

M in theory requires a (rotation) of a full sequence of news shock. In practice,
Barnichon and Mesters (2022) use impulse response to high frequency shocks around
FOMC announcement in the FFR target and 10 year Treasury yield

The baseline policy loss function is Lt = ||Πt ||2 + ||Ut ||2 where Πt and Ut stack the
vector of inflation gaps and unemployment gaps from t to t + H



Barnichon and Mesters (2022) Application to Monetary Policy

Figure 4: A sequence of OPP for Fed monetary policy (1990-2019)
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Notes: Top panels: the fed funds rate (“FFR”, left-panel) and the difference between the 10-year bond yield
and the fed funds rate (“Slope of yield curve”, right panel). The yellow shaded area denotes the zero-lower
bound (ZLB) period. Bottom panels: time series for the two elements of the subset OPP: the short-rate
OPP (labeled “OPP for current FFR”, left panel) and the slope OPP (labeled “OPP for slope of FFR path”,
right panel) over 1990-2019 for a policy maker with a dual inflation–unemployment mandate (λ = 1). The
grey areas capture impulse response and model uncertainty at 68% (darker shade) and 95% (lighter shade)
confidence. The three case studies are marked as 3 points: June 1990 (green), April 2008 (red) and April
2010 (blue).
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Gaĺı, Jordi (1999). “Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate Fluctuations?”

In: American Economic Review 89.1, pp. 249–271. doi: 10.1257/aer.89.1.249.

Gertler, Mark and Peter Karadi (2015). “Monetary Policy Surprises, Credit Costs, and Economic Activity”. In: American

Economic Journal: Macroeconomics 7.1.

Gourieroux, C., A. Monfort, and E. Renault (1993). “Indirect Inference”. In: Journal of Applied Econometrics 8, S85–S118.

Kilian, Lutz and Helmut Lütkepohl (2017). Structural Vector Autoregressive Analysis. Themes in Modern Econometrics.

Cambridge University Press. doi: 10.1017/9781108164818.

Kuttner, Kenneth N. (2001). “Monetary policy surprises and interest rates: Evidence from the Fed funds futures market”. In:

Journal of Monetary Economics 47.3, pp. 523–544.

Lewis, Daniel and Karel Mertens (2022). Dynamic Identification Using System Projections and Instrumental Variables. Working

Paper 2204. Federal Reserve Bank of Dallas. doi: 10.24149/wp2204.

Lewis, Daniel J (May 2021). “Identifying Shocks via Time-Varying Volatility”. In: The Review of Economic Studies 88.6,

pp. 3086–3124. doi: 10.1093/restud/rdab009.

McKay, Alisdair and Christian K Wolf (2022). What Can Time-Series Regressions Tell Us About Policy Counterfactuals? Working

Paper 30358. National Bureau of Economic Research. doi: 10.3386/w30358.
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