Local Projections: Inference
Òscar Jordà and Karel Mertens

AEA Continuing Education 2023

Last updated: December 27, 2022

The views expressed herein do not necessarily represent those of any of the institutions in the Federal Reserve System

See also:
https://sites.google.com/site/oscarjorda/home/local-projections
REVIEW OF IDENTIFICATION WITH LOCAL PROJECTIONS

Most of this already discussed in the previous lecture
The issue
(Some) threats to identification

Recall, we need $s_t|x_t$ randomly assigned

Some examples when identification fails:
- excluded observables: correlated with s_t and y_t
- unobservables: correlated with s_t and y_t
- simultaneity: s_t and y_t jointly determined

(Some) solutions (well known from VARs):
- parametric zero restrictions
- *internal* instruments
- *external* instruments
- identification through heteroscedasticity
- ... and others
Recall: zero short-run restrictions

Cholesky decomposition – Wold causal ordering

\[\Sigma = PP' \text{ with } P \text{ lower triangular:} \]

always exists and is unique, but ...

- different ordering of the variables, different \(P \)
- implied 0 restrictions may be incorrect
- just-identification \(\Rightarrow \) ordering cannot be tested
- however, trivial to implement

Interpretation:

- \(y_{(1),t} \) does not contemporaneously depend on others
- \(y_{(2),t} \) only depends on \(y_{(1),t} \) contemporaneously
- \(y_{(3),t} \) only depends on \(y_{(1),t}, y_{(2),t} \) contemporaneously
- and so on...
Recursive identification in LPs

Suppose $n \times 1$ vector y_t

Decide the causal ordering.
Include the contemporaneous values of variables causally ordered first:

$$y_{j,t+h} = \mu^h_j + \beta^h_{j,1}y_{1,t} + \ldots + \beta^h_{j,i-1}y_{i-1,t} + \beta^h_{j,i}y_{i,t} + \sum_{k=1}^{p} c^h_{j,k}y_{t-k} + v_{j,t+h}$$

Structural LP Estimate

\[
\hat{R}_{ij}(h) = \hat{\beta}^h_{j,i}; \quad h = 0, 1, \ldots, H; \quad i, j \in \{1, \ldots, n\}
\]

Remark: good idea to order treatment variable $(y_{i,t})$ last → variation cannot be explained by observables
Long-run zero restrictions with LPs

Two step procedure

Blanchard and Quah (1989) example:
\[y_t = (x_t, u_t), \]
where \(x_t \) is log real GDP; \(u_t \) is unemployment rate

Step 1: long-run LP

\[
x_{t+H} - x_{t-1} = \alpha_H + \delta_{x,H} y_t + \sum_{k=1}^{p} c_{x,k}^H y_{t-k} + v_{x,t+H}
\]

\(\delta_{x,H} \): linear combination that best explains long-run GDP (i.e. supply shock)

Remark: choose \(H \) large
Long-run identification

Step 2

\[y_{j,t+h} = \mu_h + \beta_{j,h}(\hat{\delta}_{x,H}y_t) + \sum_{k=1}^{p} c_{j,k}^h y_{t-k} + v_{j,t+h}; \quad j = x, u; \quad h = 0, 1, \ldots, H \]

Remarks:

- \(\beta_{j,h} \) is the response of the \(j^{th} \) variable to supply shock, in period \(h \)
- \(\hat{\delta}_{x,H}y_t \) comes from first step
- little guidance on how to choose \(H \). Try different values
- Idea can be generalized in a number of ways: medium-run identification?
Sign restrictions

Example: monetary shock \rightarrow positive response of r_{t+h} for $h = 0, 1, \ldots, H$ with $R_r(0) = 1$ normalization

Idea: find all linear combinations δ such that $R_r(h) > 0$ and $R_r(0) = 1$

Step 1: $r_{t+h} = \mu_{r,h} + g_{r,h}y_t + \sum_{k=1}^{p} c_{r,k}^h y_{t-k} + v_{r,t+h} \rightarrow \hat{g}_{r,h}$

Step 2: $y_{j,t+h} = \mu_{j,h} + \gamma_{j,h}y_t + \sum_{k=1}^{p} c_{j,k}^h y_{t-k} + v_{j,t+h} \rightarrow \hat{\gamma}_{j,h}$

Step 3: find δ such that

$$\sup_{\delta} \delta' \hat{\gamma}_{j,h} \quad s.t. \quad \delta' \hat{g}_{r,0} = 1$$

$$\delta' \hat{g}_{r,h} \geq 0 \quad for \quad h = 1, \ldots, H$$

same for inf to obtain upper and lower bounds for $R_{ry}(h)$
Remarks

- note this is set identification not point identification
- hence inference is much more complicated
- Plagborg-Møller and Wolf (2021, ECTA) provide solution algorithm
- choice of H matters, could be relatively short
- simulation methods (bayesian) another way to go?
- may combine with other constraints
Suppose z_t is a vector of instruments for the structural shock $\epsilon_{1,t}$ and denote $z_t^P = z_t - P(z_t | w_t)$ where w_t collects all controls in the LP (e.g. y_{t-j}).

1. **Relevance:** $E(\epsilon_{1,t}^P z_t^{P'}) = \alpha' \neq 0$

2. **Basic exogeneity:** $E(\epsilon_{j,t}^P z_t^{P'}) = 0, \quad j \neq 1$

3. **Lead-Lag exogeneity:** $E(\epsilon_{j,t+h}^P z_t^{P'}) = 0, \forall j, h \neq 0$

Remarks:

- usual IV conditions except lead-lag exogeneity because dynamics
Assumption 1: \(\mathbf{y}_t = \mu + \Theta(L) \mathbf{\epsilon}_t \); where:

\[
\Theta(L) \equiv \sum_{h=0}^{\infty} \Theta_h L^h \text{ s.t. } \sum_{h=0}^{\infty} \|\Theta_h\| < \infty \text{ with } \|\Theta_h\|^2 = tr(\Theta_h' \Theta_h)
\]

and \(\Theta(x) \) has full column rank for all complex scalars \(x \) on the unit circle.

Remarks:

- \(\mathbf{\epsilon}_t \) are structural, hence possibly \(\Theta_0 \neq I \)
- we can have \(n_\epsilon > n_y \) (non-invertibility)
- \(\mathbf{y}_t \) is strictly stationary
- \(\Theta_h \) is the structural impulse response coefficient matrix
LP-IV: Assumptions 2

Assumption 2: $z_t = c_z + \sum_{h=1}^{\infty} (G_h z_{t-h} + \Lambda_h y_{t-h}) + \alpha \epsilon_{1,t} + \nu_t$ with:

- $\alpha \neq 0$ relevance condition
- $1 - \sum_{h=1}^{\infty} G_h L^h$ has all roots outside unit circle
- $\sum_{h=1}^{\infty} ||\Lambda_h|| < \infty$
- $\nu_t \perp \epsilon_{t-j}$ for any j, ν_t is measurement error

Remarks:

- Assumptions 1 and 2 \rightarrow validity of LP-IV and SVAR-IV
- but LP-IV does not require invertibility

See Plagborg-Møller and Wolf (2021) for more details
Example code: LPIV_example.do
Recall: Impulse responses as a comparison of two averages

\[\mathcal{R}(h) = E\left(E[y_{t+h} | s_t = s + \delta, x_t] - E[y_{t+h} | s_t = s, x_t] \right) \]

- \(y_{t+h} \): outcomes
- \(s_t \): intervention
- \(s \): baseline, e.g., \(s = 0 \)
- \(\delta \): dose, e.g., \(\delta = 1; \delta = var(\epsilon)^{1/2}; \ldots \)
- \(x_t \): exogenous and predetermined variables
A trivial example

Suppose \(s_t \in \{0, 1\} \) is randomly assigned, then:

\[
\mathcal{R}(h) = \frac{1}{N_1} \sum_{t=1}^{T-h} y_{t+h} s_t - \frac{1}{N_0} \sum_{t=1}^{T-h} y_{t+h} (1 - s_t)
\]

\[
N_1 = \sum_{t=1}^{T-h} s_t; \quad T - h = N_1 + N_0
\]

Remarks:
- inefficient (not using \(x_t \)), but consistent
- could control for \(x_t \) with Inverse Propensity score Weighting (IPW)
- feels like the potential outcomes paradigm used in micro
- could have regressed \(y_{t+h} \) on \(s_t \), same thing (could add \(x_t \) easily)
Inverse propensity score weighting

The basics: an alternative/complement to regression control

let \(s_t \in \{0, 1\} \) be policy treatment;

\[
y_{t,H} = (y_t, y_{t+1}, \ldots, y_{t+H})
\]

Selection on observables or conditional ignorability:

\[
y(s) \perp s | x \quad s \in \{0, 1\}
\]

suppose \(s \) randomly assigned, then no need for \(x \):

\[
\hat{R}(h) = \frac{1}{T_1} \sum_{t=1}^{T} S_t \ y_{t+h} - \frac{1}{T_0} \sum_{t=1}^{T} (1 - S_t) \ y_{t+h}
\]

\[
y_{t+h} = \mu_0^h + S_t \gamma_h + v_{t+h} \rightarrow R = \gamma
\]
Rosenbaum and Rubin 1983
the propensity score as a sufficient statistic

before: $y(s) \perp s | x$; now: $y(s) \perp s | p(s = 1 | x)$ $s \in \{0, 1\}$

hence, if $\hat{p}_t = p(s_t = 1 | x_t; \hat{\theta})$ then:

$$\hat{R}(h) = \frac{1}{T^*_1} \sum_{t=1}^{T} \left(\frac{S_t \ y_{t+h}}{\hat{p}_t} \right) - \frac{1}{T^*_0} \sum_{t=1}^{T} \left(\frac{(1 - S_t) \ y_{t+h}}{1 - \hat{p}_t} \right)$$

with

$$T^*_1 = \sum_{t=1}^{T} \frac{S_t}{\hat{p}_t}; \quad T^*_0 = \sum_{t=1}^{T} \frac{1 - S_t}{1 - \hat{p}_t}$$
Doubly robust IPW estimators

regression augmented IPW:

\[y_{t+h} = \frac{S_t}{\hat{p}_t} (\mu_0^h + (x_t - \mu_x)^h_0) + \frac{1-S_t}{1-\hat{p}_t} (\mu_1^h + (x_t - \mu_x)^h_1) + v_{t+h} \]

see also augmented IPW by Lunceford and Davidian (2004)

Remarks:
- \(\hat{p}_t \) usually a first-stage logit/probit → affects inference
- IPW literature provides SE formulas, but not for time series settings
- one solution is to use the bootstrap

IPW code available here
INFEERENCE
Why is inference different with local projections?
It is the MA structure of the residuals

recall the AR(1) example, $y_t = \rho y_{t-1} + u_t$. By recursive substitution:

$$y_{t+h} = \rho^{h+1} y_{t-1} + u_{t+h} + \rho u_{t+h-1} + \ldots + \rho^h u_t$$

so in a local projection:

$$y_{t+h} = \beta_{h+1} y_{t-1} + v_{t+h}; \quad v_{t+h} = u_{t+h} + \rho u_{t+h-1} + \ldots + \rho^h u_t$$

In general, we don’t know the MA structure
Jordà (2005) recommended HAC standard errors, e.g. Newey-West
LAG AUGMENTATION A SIMPLER, MORE ELEGANT SOLUTION
MONTIEL-OLEA AND PLAGBORG-MØLLER. 2021. ECONOMETRICA
The logic of lag augmentation
A simple example

DGP: \(y_t = \rho y_{t-1} + u_t; \ u_t \) strictly stationary, \(E(u_t|\{u_s\}_{s \neq t}) = 0 \)

LP: \(y_{t+h} = \beta_h y_t + v_{t+h}; \ v_{t+h} \sim MA(h) \)

Plug DGP into LP: \(y_{t+h} = \beta_h u_t + \gamma_h y_{t-1} + v_{t+h} \)

FWL logic: obtain \(\beta_h \) by regressing \(y_{t+h} - \gamma_h y_{t-1} \) on \(y_t - \rho y_{t-1} \)

\[
\hat{\beta}_h = \frac{\sum_{t=1}^{T-h} (y_{t+h} - \gamma_h y_{t-1})(y_t - \rho y_{t-1})}{\sum_{t=1}^{T-h} (y_t - \rho y_{t-1})^2} = \frac{\sum_{t=1}^{T-h} (\beta_h u_t + v_{t+h})u_t}{\sum_{t=1}^{T-h} u_t^2}
\]

\[
= \beta_h + \frac{\sum_{t=1}^{T-h} v_{t+h}u_t}{\sum_{t=1}^{T-h} u_t^2}
\]
Key insight
Same logic if DGP is VAR(p)

Recall:

\[\hat{\beta}_h = \beta_h + \frac{\sum_{t=1}^{T-h} v_{t+h} u_t}{\sum_{t=1}^{T-h} u_t^2} \quad \rightarrow \quad \sigma^2(\hat{\beta}_h) = \frac{\sum_{t=1}^{T-h} \hat{v}_{t+h}^2 \hat{u}_t^2}{\left(\sum_{t=1}^{T-h} \hat{u}_t^2\right)^2} \]

although \(v_{t+h} \sim MA(h) \), note that \(v_{t+h} u_t \sim MA(0) \) since for any \(s < t \):

\[
E[v_{t+h} u_t v_{s+h} u_s] = E[E[v_{t+h} u_t v_{s+h} u_s | u_{s+1}, u_{s+2}, \ldots]] \\
= E[v_{t+h} u_t v_{s+h} E[u_s | u_{s+1}, u_{s+2}, \ldots]] \\
= 0
\]

Takeaway: do lag-augmented LP with White corrected errors.
No need for Newey-West
Wild bootstrap with lag augmentation

Response of j^{th} variable to a shock

1. Lag-augmented LP \to collect $\hat{\beta}_{j,h}, \hat{\sigma}_{j,h} = \hat{\sigma}(\hat{\beta}_{j,h})$
2. $\text{VAR}(p) \to \hat{u}_t$ (option: bias-adjust VAR coeffs Pope, 1990 procedure)
3. $\text{VAR}(p) \to \hat{\beta}_{j,h}^{\text{VAR}}$
4. For each bootstrap iteration $b = 1, \ldots, B$:
 1. Generate bootstrap residuals $\hat{u}_t^* \equiv Z_t \hat{u}_t; \ Z_t \sim N(0,1)$ (wild bootstrap)
 2. draw a block of p initial observations (y_1^*, \ldots, y_p^*) at random from $T - p + 1$ blocks of p observations from the data
 3. Generate y_t^* with (y_1^*, \ldots, y_p^*) initial observations, the bias-corrected $\text{VAR}(p)$ coeffs, and \hat{u}_t^*
 4. Apply augmented LP to $\{y_t^*\} \to \hat{\beta}_{j,h}^*, \hat{\sigma}_{j,h}^*$
 5. Store $\hat{\mathbf{t}}^*_b = (\hat{\beta}_{j,h}^* - \hat{\beta}_{j,h}^{\text{VAR}})/\hat{\sigma}_{j,h}^*$
5. Compute $\alpha/2$ and $1 - \alpha/2$ quantiles of $\{\hat{\mathbf{t}}^*_b\}_{b=1}^B$, say $\hat{q}_{\alpha/2}$ and $\hat{q}_{1-\alpha/2}$ respectively
6. the percentile confidence interval is:

$$\left[\hat{\beta}_{j,h} - \hat{\sigma}_{j,h}\hat{q}_{1-\alpha/2}, \hat{\beta}_{j,h} - \hat{\sigma}_{j,h}\hat{q}_{\alpha/2}\right]$$

See https://github.com/jm4474/Lag-augmented_LocalProjections
Parametrically adjusted standard errors

General LP:

\[y_{t+h} = \beta_h s_t + \gamma_h x_t + v_{t+h}; \quad v_{t+h} = u_{t+h} + \phi_1 u_{t+h-1} + \ldots + \phi_h u_t \]

Note: make no assumptions on how \(y, s, \) and \(x \) are dynamically related

hence no assumption on \(\phi_1, \ldots, \phi_h \)

Can view the LP as the DGP and estimate the \(\phi_j \) directly as XMA(h) model
Lusompa’s (2019) FGLS procedure
See his paper for a bootstrap and Bayesian approaches

Step 1 (usual LP for $h = 0$):

$$y_t = \alpha_0 + x_t\beta_0 + s_t\gamma_0 + u_t \rightarrow \{\hat{u}_t\}; \hat{\gamma}_0$$

Step 2 (use step 1 to fix LHS variable):

$$\tilde{y}_{t+1} = \alpha_1 + x_t\beta_1 + s_t\gamma_1 + v_{t+1}; \quad \tilde{y}_{t+1} = y_{t+1} - \hat{u}_t\hat{\gamma}_0 \rightarrow \hat{\gamma}_1$$

Step 3 (use estimates from Step 1 and 2):

$$\tilde{y}_{t+2} = \alpha_2 + x_t\beta_2 + s_t\gamma_2 + v_{t+2}$$
$$\tilde{y}_{t+2} = y_{t+2} - (\hat{u}_t\hat{\gamma}_1 + \hat{u}_{t+1}\hat{\gamma}_0) \rightarrow \hat{\gamma}_2$$

rinse and repeat for steps 4 ... H

Note: always use Step 1 residuals \hat{u}_t in all steps
Further comments and remarks

Many interesting results from Lusompa (2019)

- VAR need not be DGP for FGLS to work
- in small samples with high persistence, NW has small sample bias
- similar result in Herbst and Johannsen (2020)
- shows two bootstrap algorithms
- shows Bayesian approach with time-varying example
- focus is on pointwise uncertainty, however
JOINT INFERENCE
LPS AS A GMM PROBLEM
A simplification first
The Frisch-Waugh-Lovell theorem

Elements of the problem:

\(y_t \): outcome variable (response)
\(x_t \): control variables (constant, predetermined endogenous and exogenous variables)
\(s_t \): treatment variable (impulse)
\(z_t \): instrumental variables (possibly none in which case, \(s_t = z_t \))

Let \(P_L(w_t|v_t) \) denote the linear regression of \(w_t \) on \(v_t \)

From now on, assume:

\[
\begin{align*}
 y_{t+h}^e & \overset{\text{def}}{=} y_{t+h} - P_L(y_{t+h}|x_t) \\
 s_t^e & \overset{\text{def}}{=} s_t - P_L(s_t|x_t) \\
 z_t^e & \overset{\text{def}}{=} z_t - P_L(z_t|x_t)
\end{align*}
\]
Basic univariate LP results

\[y_{t+h}^e = S_t^e \gamma_h + v_{t+h}; \quad h = 0, 1, \ldots, H \]

\[\sqrt{T}(\hat{\gamma}_h - \gamma_h) = \frac{1}{\sqrt{p}} \sum_{t=1}^{T-h} v_{t+h} S_t^e; \quad \frac{1}{T} \sum_{t=1}^{T} S_t^{e2} \xrightarrow{p} E(S_t^{e2}) = Q_s \]

\[\frac{1}{T^{1/2}} \sum_{t=1}^{T-h} v_{t+h}^e S_t^e \xrightarrow{d} N(0, \Omega); \quad \Omega = V \left(\frac{1}{T^{1/2}} \sum_{t=1}^{T-h} v_{t+h}^e S_t^e \right) \]

\[\Omega \approx \sum_{j=-\infty}^{\infty} E(S_t^e v_{t+h} v_{t+h-j} S_{t-j}^e) \approx \]

\[\frac{1}{T} \sum_{t=1}^{T-h} v_{t+h}^2 S_t^{e2} + \frac{1}{T} \sum_{l=1}^{L} \sum_{t=l+1}^{T-h} \omega_l v_{t+h} v_{t+h-l} S_t^e S_{t-l}^e; \quad \omega_l = 1 - \frac{l}{L+1} \]
Remarks

- I am using T instead of $T - h$ to keep it simple asymptotically, it makes no difference.
- Newey-West or any other HAC estimator ok.
- In principle, $L = h$; $h = 1, \ldots, H$
 can truncate at L_{max} for efficiency.
- Lusompa (2020) GLS directly tackles MA errors.
Set-up

\[y_{t,H}^e \equiv (y_t^e \ldots y_{t+H}^e)' ; \quad S_t^e \equiv I_{(H+1)} \otimes S_t^e \]
\[v_{t,H} \equiv (v_t \ldots v_{t+H})' ; \quad Z_t^e \equiv (X_t^e (I_{(H+1)} \otimes z_t^e)) ; \]

moment condition:

\[E[Z_t'(y_{t,H}^e - S_t^e \beta)] = E[Z_t' v_{t,H}] = 0 \]

with

\[R = \beta = (\beta_0 \ldots \beta_H)' \]
Objective function

recall the moment condition:

\[E[Z_t'(y_{t,H}^e - S_t^e \beta)] = E[Z_t' \nu_{t,H}] = 0 \]

objective function:

\[\min_{\beta} \left[\sum_{t=1}^{T-H} Z_t'(y_{t,H}^e - S_t^e \beta) \right]' \hat{\mathcal{W}} \left[\sum_{t=1}^{T-H} Z_t'(y_{t,H}^e - S_t^e \beta) \right] \]

\[\hat{\mathcal{W}} = \left(\frac{1}{T} \sum_{t=1}^{T-H} Z_t' \nu_{t,H} \nu_{t,H}' Z_t^e \right)^{-1} \]
Estimator

In the simple case

\[\hat{\gamma} = \left(\frac{1}{T} \sum_{t=1}^{T-H} Z_t^{e'} S_t^e \right)^{-1} \left(\frac{1}{T} \sum_{t=1}^{T-H} Z_t^{e'} y_{t,H}^e \right) \]

more generally:

\[\hat{\gamma} = \left(\frac{1}{T} \sum_{t=1}^{T-H} S_t^{e'} Z_t^e \hat{W} Z_t^{e'} S_t^e \right)^{-1} \left(\frac{1}{T} \sum_{t=1}^{T-H} S_t^{e'} Z_t^e \hat{W} Z_t^{e'} y_{t,H}^e \right) \]
The residual structure
Useful later when we construct GLS

\[v_{t,H} = \begin{pmatrix} v_t \\ v_{t+1} \\ \vdots \\ v_{t+H} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \ldots & 0 \\ \phi_1 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \phi_H & \phi_{H-1} & \ldots & 1 \end{pmatrix} \begin{pmatrix} u_t \\ u_{t+1} \\ \vdots \\ u_{t+H} \end{pmatrix} \]

in the AR(1) example, \(\phi_h = \phi^h \) and \(\beta_h = \phi_h \)

Note \(\hat{\phi}_h = \hat{\beta}_h \implies \) exploit for GLS
Estimating LP covariance matrix Σ

Using optimal \hat{W} defined earlier, usual GMM result is:

$$
\Sigma = \left(\frac{1}{T} \sum_{t=1}^{T} Z_t' S_t \left(\frac{1}{T} \sum_{t=1}^{T} Z_t' \Phi u_{t,H} u_{t,H}' \Phi' Z_t \right)^{-1} \right)^{-1}
$$

but Φ unknown. solutions:

- Newey-West (as we saw earlier)
- recursive estimates of Φ (GLS)
- block bootstrap
- Bayesian methods
Comments on GMM

- nothing unusual in using GMM to estimate LPs
- LPs induce MA structure on residuals
- optimal weighting matrix should reflect this
- GMM results on LM test useful later
- also useful later for Gaussian Basis Functions
ERROR BANDS
Inference on the trajectory of the response

key reference

"Simultaneous confidence bands: theory, implementation, and an application to SVARs" by José Luis Montiel Olea and Mikkel Plagborg-Møller

idea

\(R_h \) is correlated with \(R_{h-1} \)

In AR(1) example \(\text{CORR}(\hat{R}_h, \hat{R}_{h-1}) = \phi \)
The *sup-t* procedure for joint inference

let the $H \times 1$ vector $\hat{\mathcal{R}}$ collect impulse response coeffs
assume

$$\hat{\mathcal{R}} \overset{d}{\to} \mathcal{N}(\mathcal{R}, \Sigma)$$

can show error bands for response are such that:

$$P \left(\bigcap_{h=1}^{H} \left[\mathcal{R}_h \in \hat{\mathcal{R}}_h \pm c \hat{\sigma}_h \right] \right) \to P \left(\max_h |\sigma_h v_h| \leq c \right)$$

choose c as smallest c.v. with simultaneous coverage

$$c = q_{1-\alpha}(\Sigma) \equiv q_{1-\alpha} \left(\max_h |\sigma_h^{-1} v_h| \right)$$

where $v = (v_1, \ldots, v_H)' \sim \mathcal{N}(0_H, \Sigma)$ and $\sigma_h = \Sigma_{[h,h]}$
A simple algorithm to implement sup-t procedure based on asymptotic normality

start with estimates of the response: $\hat{\mathcal{R}}, \hat{\Sigma}$

1. draw i.i.d. vectors $\hat{\mathbf{v}}^{(s)} \sim \mathcal{N}(0, H, \hat{\Sigma})$, for $s = 1, \ldots, S$

2. define $\hat{q}_{1-\alpha}$ as the empirical $1 - \alpha$ quantile of $\max_h \hat{\sigma}_h^{-1} |\hat{\mathbf{v}}^{(s)}_h|$ across $s = 1, \ldots, S$ with $\hat{\sigma}_h = \Sigma_{[h,h]}$

3. construct bands as $\bigcap_{h=1}^{H} [\hat{\mathcal{R}}_h - \hat{\sigma}_h \hat{q}_{1-\alpha}, \hat{\mathcal{R}}_h + \hat{\sigma}_h \hat{q}_{1-\alpha}]$
Bootstrap/Bayesian version of sup-t algorithm

denote \hat{P} as either the bootstrap or posterior $\hat{\phi}$

1. $\hat{\phi}$ can be VAR parameters so that $\hat{R} = R(\hat{\phi})$
2. $\hat{\phi}$ can be local projection estimates so that $\hat{R} = \hat{\phi}$

and generate $s = 1, \ldots, S$ draws $\hat{R}^{(s)}$

Hence:

1. let $\hat{q}_{h,\delta}$ denote the empirical δ quantile of $\hat{R}_{h}^{(s)}$
2. \[
\hat{\delta} = \sup \left\{ \delta \in \left[\frac{\alpha}{(2H)}, \frac{\alpha}{2} \right] \mid \frac{\sum_{s=1}^{S} \mathbb{I}(\hat{R}^{(s)} \in \bigcap_{h=1}^{H} [\hat{q}_{h,\delta}, \hat{q}_{h,1-\delta}])}{S} \geq 1 - \alpha \right\}\]
3. construct bands as $\bigcap_{h=1}^{H} [\hat{q}_{h,\delta}, \hat{q}_{h,1-\delta}]$
SIGNIFICANCE BANDS
Motivation

A common situation with VARs

Response of log CPI to a monetary shock
Basic idea
some observations

- temptation: the response of CPI is basically zero
- observation 1: all (48) coefficients negative rather than randomly alternating between +/-
- observation 2: response coefficients (highly) correlated
- observation 3: collinearity \rightarrow low individual t-stats (wide bands), sometimes high F-stat

proposition: often the key question is significance of the overall response rather than estimation uncertainty

is the average treatment effect (ATE) different from zero?
A simple example

let \(\{y_t\}_{t=1}^{T} \) be mean zero, stationary and homoscedastic AR(1). Using local projections (LPs):

\[
y_{t+h} = \beta_h y_t + u_{t+h} \quad l = 1, \ldots, H
\]

so that

\[
\hat{\beta}_h = \frac{1}{n} \sum_{t=1}^{n} y_{t+h}y_t
\]

\[
\frac{1}{n} \sum_{t=1}^{n} \bar{y}_t^2
\]

with \(n \) subset of \(T \) observations available for estimation under the null

\[
H_0 : \beta_h = 0, \forall h \quad \rightarrow \quad \hat{u}_{t+h} = y_{t+h}
\]

here \(\hat{u} \) denotes the residuals under the null
A simple example
continued

using usual OLS formula for variance of $\hat{\beta}_h$, under the null,

$$
\tilde{\sigma}^2_{\hat{\beta}} = \frac{1}{n} \sum_{t=1}^{n} y_{t+h}^2 \quad \overset{p}{\to} \quad \frac{1}{n}
$$

since y_t is stationary and under H_0, no serial correlation

- hence, asymptotic confidence interval is $\pm c_{(1-\alpha/2)}/\sqrt{n}$
- $c_{(1-\alpha/2)}$ standard Gaussian critical value
- same as autocorrelogram error bands
Significance bands in a local projection
the autocorelogram is the LP in an AR(1)
Significance bands
LPIV set up and using x_t^e notation for $x_t - \mathcal{P}_L(x_t|l_t)$

LPIV: $y_{t+h}^e = s_t^e \gamma_h + u_{t+h}$. Instrument: z_t^e. Null: $H_0: \gamma_h = 0$

$$\sqrt{T}(\hat{\gamma}_h - 0) = \frac{1}{\sqrt{T}} \sum_{t=1}^{T-h} z_t^e y_{t+h}^e ; \quad \frac{1}{\sqrt{T}} \sum_{t=1}^{T-h} z_t^e y_{t+h}^e \overset{d}{\rightarrow} N(0, V) ;$$

$$\frac{1}{T} \sum_{t=1}^{T-h} z_t^e y_{t+h}^e \overset{p}{\rightarrow} q_{zs}$$

What is V under the null hypothesis?
The variance under the null

Key: the variance is not a function of h

\[
V = V \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T-h} z_t^e y_{t+h}^e \right) \approx \sum_{j=-\infty}^{\infty} E(z_t^e y_{t+h}^e z_{t-j}^e y_{t-h+j}^e)
\]

\[
= \sum_{j=-\infty}^{\infty} E(z_t^e z_{t-j}^e) E(y_{t+h}^e y_{t+h-j}^e) \quad \text{under } H_0 + \text{lead-lag exogeneity}
\]

\[
= \sum_{j=-\infty}^{\infty} \varphi_{z,j} \varphi_{y,j} = \varphi_{z,0} \varphi_{y,0} \quad \text{if } z \text{ serially uncorrelated}
\]

hence

\[
\hat{\sigma}_h^2 = \hat{q}_{zs}^{-1} \hat{V} \hat{q}_{zs}^{-1}
\]

Note: use Bartlett-type correction for \hat{V} (e.g. NW weights)