Online Appendix for

A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure

Liyang Sun, UC Berkeley and CEMFI
Jesse M. Shapiro, Harvard University and NBER

April 2022

This appendix formalizes claims made in the paper.

Claim 1. In the setting of Section “The Possibility of Heterogeneous Coefficients,” the expected value of the two-way fixed effects (TWFE) estimator of the exposure model, given the data $x = \{x_{10}, ..., x_{S0}\}$ for states $s \in \{1, ..., S\}$, is given by

$$E(\hat{\beta}|x) = \frac{\text{Cov}(\beta_s (1-x_{s0}), (1-x_{s0}))}{\text{Var}(1-x_{s0})}$$

where Cov (\cdot, \cdot) and Var (\cdot) denote the sample covariance and variance, respectively, and the expectation $E(\hat{\beta}|x)$ is taken with respect to the distribution of the errors ε_{st} conditional on the data $x = \{x_{10}, ..., x_{S0}\}$.

Proof. With only two time periods the TWFE estimator of the exposure model is equivalent to an OLS estimator of the first-differenced model

$$y_{s1} - y_{s0} = \delta_1 - \delta_0 + \beta (1-x_{s0}) + \varepsilon_{s1} - \varepsilon_{s0}.$$

Therefore the TWFE estimator based on the given sample is

$$\hat{\beta} = \frac{\text{Cov}(y_{s1} - y_{s0}, 1-x_{s0})}{\text{Var}(1-x_{s0})}.$$

8E-mail: lsun20@berkeley.edu, jesse.shapiro@fas.harvard.edu.
From the heterogeneous model we have that
\[y_{s1} - y_{s0} = \delta_1 - \delta_0 + \beta_s (1 - x_{s0}) + \varepsilon_{s1} - \varepsilon_{s0} \]
and therefore
\[\hat{\beta} = \frac{\text{Cov} (\beta_s (1 - x_{s0}) , 1 - x_{s0})}{\text{Var} (1 - x_{s0})} + \frac{\text{Cov} (\varepsilon_{s1} - \varepsilon_{s0} , 1 - x_{s0})}{\text{Var} (1 - x_{s0})}. \]
If \((\varepsilon_{s1} - \varepsilon_{s0})\) is mean zero conditional on \((1 - x_{s0})\) then the expected value of \(\hat{\beta}\) conditional on the data \(x = \{x_{10}, ..., x_{S_0}\}\) is
\[\mathbb{E} (\hat{\beta} | x) = \frac{\text{Cov} (\beta_s (1 - x_{s0}) , 1 - x_{s0})}{\text{Var} (1 - x_{s0})}. \]

Corollary 1. In the setting of Section “The Possibility of Heterogeneous Coefficients,” if \(\beta_s\) is independent of \(x_{s0}\) across states \(s\), then the expected value of the two-way fixed effects (TWFE) estimator of the exposure model, given the data \(x = \{x_{10}, ..., x_{S_0}\}\) for states \(s \in \{1, ..., S\}\), is given by
\[\mathbb{E} (\hat{\beta} | x) = \mathbb{E} (\beta_s) \]
for \(\mathbb{E} (\beta_s)\) the expected value of \(\beta_s\). Here the expectation \(\mathbb{E} (\hat{\beta} | x)\) is taken with respect to the distribution of the errors \(\varepsilon_{st}\) and coefficients \(\beta_s\) conditional on the data \(x\).

Proof. Based on a similar proof for Claim 1, we have that
\[\mathbb{E} (\hat{\beta} | x) = \frac{\mathbb{E} (\text{Cov} (\beta_s (1 - x_{s0}) , 1 - x_{s0})))}{\text{Var} (1 - x_{s0})} \]
where the expectation is now taken with respect to the distribution of the errors \(\varepsilon_{st}\) as well as \(\beta_s\) conditional on the data \(x = \{x_{10}, ..., x_{S_0}\}\). By the independence of \(\beta_s\) and \(x_{s0}\), we have that
\[\mathbb{E} (\text{Cov} (\beta_s (1 - x_{s0}) , 1 - x_{s0})) = \text{Cov} (\mathbb{E} (\beta_s) (1 - x_{s0}) , 1 - x_{s0}) = \mathbb{E} (\beta_s) \text{Var} (1 - x_{s0}), \]
and therefore that
\[E(\hat{\beta}|x) = E(\beta_s). \]

\[\square \]

Corollary 2. In the numerical example of Section “The Possibility of Heterogeneous Coefficients,” the expected value of the two-way fixed effects (TWFE) estimator of the exposure model, given the data \(x = \{x_{10}, \ldots, x_{S0}\} \) for states \(s \in \{1, \ldots, S\} \), lies outside the range of coefficients \([\min_s \beta_s, \max_s \beta_s]\) if and only if \(\lambda \neq 0 \). The same continues to hold when the sample is extended to include a totally unaffected state.

Proof. From Claim 1 we have that
\[E(\hat{\beta}|x) = \frac{\text{Cov}(\beta_s (1 - x_{s0}), 1 - x_{s0})}{\text{Var}(1 - x_{s0})}. \]

Because in the numerical example \(\beta_s = 1 + 0.5\lambda - \lambda x_{s0} \), we have that
\[E(\hat{\beta}|x) = 1 + 0.5\lambda - \lambda C \]
for
\[C = \frac{\text{Cov}(x_{s0} (1 - x_{s0}), (1 - x_{s0}))}{\text{Var}(1 - x_{s0})}. \]

In the setting of Section “The Possibility of Heterogeneous Coefficients,” given the data \(x = \{x_{10}, \ldots, x_{S0}\} \) where \(x_{s0} = 0.245 + s/100 \) for \(s = 1, \ldots, 50 \), by direct calculation we have that \(C \approx 0 \), which means that
\[E(\hat{\beta}|x) = 1 + 0.5\lambda. \]

If we add to the sample a totally unaffected state \(s = 0 \) with \(x_{00} = 1 \), and the remaining states \(s = 1, \ldots, 50 \) continue to follow \(x_{s0} = 0.245 + s/100 \), by direct calculation we have that \(C \approx 0.087 \), which means that
\[E(\hat{\beta}|x) \approx 1 + 0.413\lambda. \]

Therefore, with or without a totally unaffected state, when \(\lambda > 0 \) we have \(E(\hat{\beta}|x) > \beta_s \) for all \(s \) because \(\max_s \beta_s = 1 + 0.245\lambda \). Similarly, with or without a totally unaffected state, when \(\lambda < 0 \) we have \(E(\hat{\beta}|x) < \beta_s \) for all \(s \) because
\[\min_s \beta_s = 1 + 0.245\lambda. \] Finally, with or without a totally unaffected state, when \(\lambda = 0 \) we have \(\mathbb{E}\left(\hat{\beta}|x\right) = 1 = \mathbb{E}\left(\beta_s\right) = \max_s \beta_s = \min_s \beta_s. \)

Claim 2. In the setting of Section “The Possibility of Heterogeneous Coefficients,” there exists no estimator \(\hat{\beta}' \) that can be expressed as a function of the data \(\{(x_{s0}, y_{s0}, y_{s1})\}_{s=1}^S \) and whose expected value is guaranteed to be contained in \([\min_s \beta_s, \max_s \beta_s]\) for any heterogeneous model and any \(\{x_{s0}\}_{s=1}^S \).

Proof. It is sufficient to establish this claim for a special case with \(S = 2 \), some \(x_{s0} \)'s with \(0 < x_{20} \leq x_{10} < 1 \), \(\beta_1 < \beta_2 \), and \(\delta_0 \) known to be zero. The model for the data is then

\[
\begin{align*}
y_{s0} &= \alpha_s + \beta_s \cdot x_{s0} + \varepsilon_{s0} \\
y_{s1} &= \alpha_s + \delta_1 + \beta_s + \varepsilon_{s1}
\end{align*}
\]

with parameters \(\theta = \{(\alpha_s, \beta_s)\}_{s=1}^2, \delta_1, F_{\varepsilon|X} \), for \(F_{\varepsilon|X} \) the distribution of \((\varepsilon_{s0}, \varepsilon_{s1})\) conditional on \(x_{s0} \). Pick some estimator \(\hat{\beta}' \). Given any parameter \(\theta \), define the distinct parameter \(\theta' = \{(\alpha'_s, \beta'_s)\}_{s=1}^2, \delta'_1, F_{\varepsilon|X} \) given by

\[
\theta' = \left\{ \left(\alpha_s + \frac{\Delta \cdot x_{s0}}{1-x_{s0}}, \beta_s - \frac{\Delta}{1-x_{s0}} \right) \right\}_{s=1}^2, \delta_1 + \Delta, F_{\varepsilon|X} \)
\]

for some \(\Delta > (\beta_2 - \beta_1) \cdot (1-x_{20}) > 0 \).

We show that the two parameter values \(\theta \) and \(\theta' \) are observationally equivalent, which means the expected value of \(\hat{\beta}' \) must be the same under \(\theta \) and \(\theta' \). To see this, note that the distribution of \((y_{s0}, y_{s1})\) conditional on \(x_{s0} \) is the same under \(\theta \) and \(\theta' \):
However, the Δ is chosen such that

$$\beta'_1 = \beta_1 - \frac{\Delta}{1-x_{10}} < \beta_2 - \frac{\Delta}{1-x_{20}} = \beta'_2 < \beta_1 < \beta_2.$$

Therefore the expected value of $\hat{\beta}'$ cannot be contained in both $[\beta_1, \beta_2]$ and $[\beta'_1, \beta'_2]$, because these intervals do not intersect.

Claim 3. In the setting of Section “A Difference-in-Differences Perspective,” the exposure-adjusted difference-in-differences estimator $\hat{\beta}_{s,s'}^{DID}$ is equivalent to the TWFE estimator $\hat{\beta}$ based on the two states s and s'. Moreover, the expected value of $\hat{\beta}_{s,s'}^{DID}$, given the data $x = \{x_s, x_{s'}\}$ for states s and s', is given by

$$E(\hat{\beta}_{s,s'}^{DID} | x) = \frac{(1 - x_{s0}) \beta_s - (1 - x_{s'0}) \beta_{s'}}{x_{s'0} - x_{s0}},$$

where the expectation $E(\hat{\beta}_{s,s'}^{DID} | x)$ is taken with respect to the distribution of the errors ε_{st} conditional on the data $x = \{x_{s0}, x_{s'0}\}$.

Proof. For the first part of the claim, note that from the proof of Claim 1 we have

$$\hat{\beta} = \frac{Cov(y_{s1} - y_{s0}, 1 - x_{s0})}{Var(1 - x_{s0})},$$

where $\text{Cov}(\cdot, \cdot)$ and $\text{Var}(\cdot)$ denote the sample covariance and variance, respectively.
Since the sample includes only two states \(s\) and \(s'\), for the numerator we have

\[
\text{Cov} \left(\frac{y_{s1} - y_{s0}}{1 - x_{s0}}, \frac{1 - x_{s0}}{1 - x_{s'0}} \right) = \frac{1}{4} \left((y_{s1} - y_{s0}) - (y_{s'1} - y_{s'0}) \right) \left(1 - x_{s0} \right) + \frac{1}{4} \left((y_{s'1} - y_{s'0}) - (y_{s1} - y_{s0}) \right) \left(1 - x_{s'0} \right)
\]

\[
= \frac{1}{4} \left((1 - x_{s0}) - (1 - x_{s'0}) \right) \left((y_{s1} - y_{s0}) - (y_{s'1} - y_{s'0}) \right)
\]

where the first equality applies the definition of sample covariance and \(a - \frac{a+b}{2} = \frac{a-b}{2}\).

Similarly, for the denominator we have

\[
\text{Var} \left(\frac{1 - x_{s0}}{1 - x_{s'0}} \right) = \frac{1}{4} \left((1 - x_{s0}) - (1 - x_{s'0}) \right)^2.
\]

Plugging the above expressions into \(\hat{\beta}\) gives the equivalence to \(\hat{\beta}_{\text{DID}}^{s,s'}\).

Given the equivalence between \(\hat{\beta}\) and \(\hat{\beta}_{\text{DID}}^{s,s'}\) when the sample includes only two states \(s\) and \(s'\), we apply Claim 1 to derive the expected value of \(\hat{\beta}_{\text{DID}}^{s,s'}\). Specifically, Claim 1 implies that given the data \(x = \{x_{s0}, x_{s'0}\}\) for states \(s\) and \(s'\), we have

\[
E \left(\hat{\beta}_{\text{DID}}^{s,s'} \middle| x \right) = \frac{\text{Cov} \left(\frac{\beta_s (1 - x_{s0})}{1 - x_{s0}}, \frac{1 - x_{s0}}{1 - x_{s'0}} \right)}{\text{Var} \left(\frac{1 - x_{s0}}{1 - x_{s'0}} \right)}.
\]

Based on a similar simplification to the expression of \(\hat{\beta}_{\text{DID}}^{s,s'}\), we have

\[
\text{Cov} \left(\frac{\beta_s (1 - x_{s0})}{1 - x_{s0}}, \frac{1 - x_{s0}}{1 - x_{s'0}} \right) = \frac{1}{4} \left((1 - x_{s0}) - (1 - x_{s'0}) \right) \left(\frac{\beta_s - (1 - x_{s'0}) \beta_s'}{x_{s'0} - x_{s0}} \right)
\]

and therefore

\[
\frac{\text{Cov} \left(\frac{\beta_s (1 - x_{s0})}{1 - x_{s0}}, \frac{1 - x_{s0}}{1 - x_{s'0}} \right)}{\text{Var} \left(\frac{1 - x_{s0}}{1 - x_{s'0}} \right)} = \frac{(1 - x_{s0}) \beta_s - (1 - x_{s'0}) \beta_s'}{x_{s'0} - x_{s0}}.
\]

\(\square\)