Proof of Lemma 1: The first step, analogous to Myerson (1981), establishes that given the information acquisition of the buyers, it is sufficient for them to report their posteriors. Let Y be the action space in \mathcal{M}, and τ be the distribution of posteriors that the buyer acquires in equilibrium. For each $\mu \in \text{supp}(\tau)$, the buyer will choose some strategy $\xi : \mu \rightarrow \Delta(Y)$. Let $\hat{x}(\xi(\mu_1), \ldots, \xi(\mu_N))$ be the vector of probabilities that buyers receive the item by playing according to strategy ξ; similarly, define $\hat{t}(\xi(\mu_1), \ldots, \xi(\mu_N))$ to be the vector of expected transfers. One can then define the direct revelation mechanism \mathcal{M}' where each buyer reports her posterior μ_i, and the probabilities of receiving the item and transfers are given by

$$ x(\mu_1, \ldots, \mu_N) = \hat{x}(\xi(\mu_1), \ldots, \xi(\mu_N)) $$

$$ t(\mu_1, \ldots, \mu_N) = \hat{t}(\xi(\mu_1), \ldots, \xi(\mu_N)) $$

Hence each buyer receives the same expected utility as in \mathcal{M} for each possible report of posterior; since ξ was an equilibrium strategy in \mathcal{M}, it is optimal in \mathcal{M}' to report one’s true posterior.

Similarly, any distribution of posteriors τ' will yield a weakly lower payoff than τ, as the same set of payoffs is feasible in \mathcal{M}' as from acquiring τ' in mechanism \mathcal{M} and then choosing $\xi(\mu)$ for each $\mu \in \text{supp}(\tau')$. Hence it will be optimal to acquire τ in \mathcal{M}'.

The above shows that it is without loss to consider mechanisms in which the seller recommends that the buyer acquire τ, and report their posterior μ;
there will then be a unique \(x \) for each reported \(\mu \). It is also clear that for each \(x \), there must be a unique \(t \), since otherwise the buyer could misreport her type \(\mu \) in order to get a lower \(t \). To complete the proof, one must show conversely that for each \(x \), there is a unique \(\mu \in \text{supp}(\tau) \) that receives the item with probability \(x \). Suppose otherwise; let \(1_x(s) \) be the indicator function on the signal space that takes the value 1 if, upon receiving signal \(s \), the buyer receives the item with probability \(x \), and 0 otherwise. This is a measurable function with respect to \(\pi \), and so the buyer’s ex-ante payoff is given by

\[
\sum_{\theta \in \Theta} \int_S \int_0^1 (x\theta - t(x)) 1_x(s)\mu_0(\theta) dx d\pi(s|\theta) - H(\mu_0) + \int_{\Delta(\Theta)} H(\mu) d\tau(\mu)
\]

where \(t(x) \) is the transfer associated with \(x \). If the set of signal realizations for which the same \(x \) is chosen is of measure greater than 0 with respect to \(\pi \), then there exists \(\hat{\pi} \) in which all signal realizations \(s \) for which \(x \) is chosen are merged into one signal \(\hat{s} \), upon whose reception the buyer again chooses \(x \). If \(\mu(\cdot|s) \) is not the same almost everywhere for all such \(s \), then the cost of information acquisition is strictly lower, and hence an improvement for the buyer. Hence it is without loss that there is a unique \(\mu \) for which \(x \) is chosen almost everywhere. □

Proof of Lemma 2: To see that (IR-A) is implied by the other constraints, let \(\bar{x} \equiv \min \{ x \in X \} \). By standard single-crossing arguments from (IC-I), \(E_{\mu(x)}[\theta] \) is increasing in \(x \). Thus, for all \(x \in X \),

\[
\bar{x} E_{\mu(x)}[\theta] - t(\bar{x}) \geq \bar{x} E_{\mu(\bar{x})}[\theta] - t(\bar{x}) \geq 0
\]

Furthermore, the buyer can acquire no information, which is costless. Therefore, by (IC-I),

\[
\int \int [x(\mu)\theta - t(x(\mu))] d\mu(\theta) d\tau(\mu) - [H(\mu_0) - \int H(\mu) d\tau(\mu)] \geq
\int \int [\bar{x} \theta - t(\bar{x})] d\mu(\theta) d\tau(\mu) - [H(\mu_0) - H(\mu_0)]
\]
\[= \int [x^* \theta - t(x^*)] \, d\mu_0(\theta) \]

\[\geq 0 \]

where the last inequality is by (IR-I).

For part (ii), we show that if there is a deviation ex interim that is an improvement for the buyer, then there exists some \(\hat{\pi} \) that is an improvement ex ante for the buyer. By Bayes’ rule and Fubini’s theorem, the buyer’s objective in (IC-A) can be written as the linear operator of \(\pi(\cdot|\theta) \),

\[
F(\pi) \equiv \sum_{\theta \in \Theta} \int_X [x \theta - t(x)] + H\left(\frac{d\pi(x|\theta) \mu_0(\theta)}{\sum_{\theta' \in \Theta} d\pi(x|\theta') \mu_0(\theta')} \right) \, d\pi(x|\theta) \mu_0(\theta) \tag{15}
\]

where \(\frac{d\pi(x|\theta)}{\sum_{\theta' \in \Theta} d\pi(x|\theta')} \) is the Radon-Nikodym derivative of the measure \(d\pi(x|\theta) \mu_0(\theta) \) with respect to \(\sum_{\theta' \in \Theta} d\pi(x|\theta') \mu_0(\theta') \). By assumption, since \(\pi \) is a valid signal (i.e. it generates posteriors via Bayes’ rule), the measures \(\{\pi(\cdot|\theta)\}_{\theta \in \Theta} \) are absolutely continuous with their sum and so this Radon-Nikodym derivative is well defined.

Suppose that for some subset of allocations \(Y = \{x\} \) that are recommended with positive probability according to \(\pi \), there is some action \(\hat{x}(x) \) that the buyer strictly prefers, i.e.

\[
\sum_{\theta} \int_Y [\hat{x}(x) \theta - t(\hat{x}(x))] \mu_0(\theta) \, d\pi(x|\theta) > \sum_{\theta} \int_Y [x \theta - t(x)] \mu_0(\theta) \, d\pi(x|\theta)
\]

This same ex-interim payoff could be achieved by using the recommendation strategy \(\hat{\pi}(x|\theta) \) where, instead of recommending \(x \), \(\hat{x}(x) \) is recommended, i.e.

\[
d\hat{\pi}(x|\theta) = \begin{cases}
0, & x \in Y \\
d\pi(x|\theta) + \int_{y \in Y \setminus \hat{x}(y) = x} d\pi(y|\theta), & x \notin Y
\end{cases}
\]

Moreover, since \(H \) is concave, the information cost is reduced because the buyer no longer distinguishes between the cases where \(x \) was recommended and \(\{y \in Y : \hat{x}(y) = x\} \) was recommended, and instead generates a single posterior
that is the weighted average (according to \(\tau \)) of \(\mu(\cdot|x) \) and \(\{ \mu(\cdot|y) : \hat{x}(y) = x \} \).
Thus the buyer could improve her expected payoff at least as much by an ex-ante deviation for any \(\pi \). □

Proof of Lemma 3: By Lemma A, \(\exists \epsilon > 0 \) such that \(\mu(\theta|x) > \epsilon, \forall \theta, x \). Hence \(H(\mu(\cdot|x)) \) and \(\frac{\partial H}{\partial \mu(\theta)}(\mu(\cdot|x)) \) are bounded. By (15), one can view the buyer’s objective as a linear operator of \(\pi(\cdot|\theta) \).

Consider the set of finite signed measures \(\{ \hat{\pi}(\cdot|\theta) \}_{\theta \in \Theta} \) that are absolutely continuous with respect to \(\pi \), and endow it with the norm

\[
\| \hat{\pi} \| = \left(\sum_{\theta \in \Theta} \int \left(\frac{d\hat{\pi}(x|\theta)}{d\pi(x|\theta)} \right)^2 d\pi(x|\theta) \mu_0(\theta) \right)^{1/2}
\]

Thus \(\{ \hat{\pi}(\cdot|\theta) \}_{\theta \in \Theta} \) constitutes a normed vector space. Of particular interest are those \(\hat{\pi} \) such that \(\hat{\pi}(\cdot|\theta) \) is a conditional probability measure. For such \(\hat{\pi} \), consider the vector \(\epsilon(\hat{\pi} - \pi) \). As the linear operator

\[
A(x, \theta) = x\theta - t(x) + h(x, \theta)
\]

is bounded, in the limit,

\[
\lim_{\epsilon \to 0} \frac{1}{\epsilon\| \hat{\pi} - \pi \|} [F(\pi + \epsilon(\hat{\pi} - \pi)) - F(\pi) - \epsilon \sum_{\theta \in \Theta} \int_X A(x, \theta) d(\hat{\pi} - \pi)(x|\theta) \mu_0(\theta)] = 0
\]

and so \(F \) is Fréchet differentiable. Hence in order to be optimal, one must have that for all conditional probability measures \(\hat{\pi} \),

\[
\sum_{\theta \in \Theta} \int_X A(x, \theta) d(\hat{\pi} - \pi)(x|\theta) \mu_0(\theta) = 0
\]

and so \(A(x, \theta) = A(x', \theta) \) almost everywhere with respect to \(\pi \). Thus (3) is necessary.

For the sufficiency of (3), suppose that \(\pi \) is suboptimal, and that instead some \(\hat{\pi} \) is better for the buyer. First, the conditional distribution \(\hat{\mu}(\cdot|x) \) must be weak* continuous with respect to \(x \) almost everywhere: suppose not, and
that there exists some point x^* around which there exists $\epsilon > 0$ such that, for every $\delta > 0$, the open ball $B_\delta(x^*)$ contains two subsets of positive measure $X_1^\epsilon, X_2^\epsilon$ such that $|\mu(\cdot|x_1) - \mu(\cdot|x_2)| > \epsilon$, for all $x_i \in X_i^\epsilon$, respectively. Then for sufficiently small δ, the alternative signal that recommends x^* instead of any other $x \in B_\delta(x^*)$ will be an improvement, as the information cost will be strictly lower by the strong concavity of H, while by the compactness of M, the loss from recommending x^* instead vanishes as $\delta \to 0$ (recalling that, by (IC-I), $t(\cdot)$ must be continuous in x). That is, indicating this alternative recommendation by $\hat{\pi}_\delta$, for small enough δ,

$$
\sum_{\theta \in \Theta} \int_X [x\theta - t(x) + H(\frac{d\hat{\pi}_\delta(x|\theta)\mu_0(\theta)}{\sum_{\theta' \in \Theta} d\hat{\pi}_\delta(x|\theta')\mu_0(\theta')})]d\hat{\pi}_\delta(x|\theta)\mu_0(\theta) \\
- \sum_{\theta \in \Theta} \int_X [x\theta - t(x) + H(\frac{d\pi(x|\theta)\mu_0(\theta)}{\sum_{\theta' \in \Theta} d\pi(x|\theta')\mu_0(\theta')})]d\pi(x|\theta)\mu_0(\theta) \\
= \sum_{\theta \in \Theta} \hat{\pi}(B_\delta(x^*)|\theta)[x^*\theta - t(x^*)] + H(\int_{B_\delta(x^*)} d\hat{\pi}_\delta(x|\theta)\mu_0(\theta)) \\
- \sum_{\theta \in \Theta} \int_{B_\delta(x^*)} [x\theta - t(x) + H(\frac{d\pi(x|\theta)\mu_0(\theta)}{\sum_{\theta' \in \Theta} d\pi(x|\theta')\mu_0(\theta')})]d\pi(x|\theta)\mu_0(\theta) > 0
$$

Next, consider the case where $\hat{\pi}$ is absolutely continuous with respect to π. For any $\alpha \in (0, 1)$, consider the conditional probability measures $(1-\alpha)\pi + \alpha\hat{\pi}$. This will also be an improvement for the buyer over π, since

$$
\sum_{\theta \in \Theta} \int_X [x\theta - t(x) + H(\frac{d\pi(x|\theta)\mu_0(\theta)}{\sum_{\theta' \in \Theta} d\pi(x|\theta')\mu_0(\theta')})]d\pi(x|\theta)\mu_0(\theta) \\
< (1-\alpha) \sum_{\theta \in \Theta} \int_X [x\theta - t(x) + H(\frac{d\pi(x|\theta)\mu_0(\theta)}{\sum_{\theta' \in \Theta} d\pi(x|\theta')\mu_0(\theta')})]d\pi(x|\theta)\mu_0(\theta) \\
+ \alpha \sum_{\theta \in \Theta} \int_X [x\theta - t(x) + H(\frac{d\hat{\pi}(x|\theta)\mu_0(\theta)}{\sum_{\theta' \in \Theta} d\hat{\pi}(x|\theta')\mu_0(\theta')})]d\hat{\pi}(x|\theta)\mu_0(\theta)
$$
\[
\leq \sum_{\theta \in \Theta} \int_X \left[x \theta - t(x) + H \left(\frac{((1 - \alpha)d\pi + \alpha d\hat{\pi})(x|\theta)\mu_0(\theta)}{\sum_{\theta' \in \Theta}((1 - \alpha)d\pi + \alpha d\hat{\pi})(x|\theta')\mu_0(\theta')} \right)) \right] ((1 - \alpha)d\pi + \alpha d\hat{\pi})(x|\theta)\mu_0(\theta)
\]

(17)

where the second inequality is from merging recommendations of the same \(x \), and the fact that \(\pi \neq \hat{\pi} \) and \(H \) is concave. Subtracting (16) from (17), dividing by \(\alpha \), and taking the limit as \(\alpha \to 0 \), this becomes the Fréchet derivative as above in the direction of \(\hat{\pi} - \pi \):

\[
0 < \sum_{\theta \in \Theta} \int_X \left[x \theta - t(x) + h(x, \theta) \right] (d\hat{\pi} - d\pi)(x|\theta)\mu_0(\theta)
\]

yielding that for some positive measure of \(x \) and \(\hat{x} \) with respect to \(\pi \) and some positive measure of \(\hat{x} \) with respect to both \(\pi, \hat{\pi} \),

\[
\sum_{\theta \in \Theta} [x \theta - t(x) + h(x, \theta)] < \sum_{\theta \in \Theta} [\hat{x} \theta - t(\hat{x}) + h(\hat{x}, \theta)]
\]

and so, for some \(\theta \),

\[
x \theta - t(x) + h(x, \theta) < \hat{x} \theta - t(\hat{x}) + h(\hat{x}, \theta)
\]

contradicting (3).

Now suppose that \(\hat{\pi} \) is singular with respect to \(\pi \). Since \(\pi \) is a recommendation strategy, for any \(x \in X \), the open ball of radius \(\epsilon \) has measure \(\pi(B_\epsilon(x)|\theta) > 0 \). Then construct the alternative measure \(\hat{\pi}_\epsilon \) defined by partitioning \([0,1]\) into intervals \(I \) of length between \(\epsilon/2 \) and \(\epsilon \) whose endpoints are not mass points of \(\hat{\pi} \), and set, for all \(x \in I \),

\[
d\hat{\pi}_\epsilon(x|\theta) = \frac{\int_{I \cap X} d\hat{\pi}(\hat{x}|\theta)}{\int_{I \cap X} d\pi(\hat{x}|\theta)} d\pi(x|\theta)
\]

Clearly, \(\hat{\pi}_\epsilon \) is absolutely continuous with respect to \(\pi \). By the compactness of \(M \) and the Portmanteau theorem,

\[
\lim_{\epsilon \to 0} \sum_{\theta \in \Theta} \int_X \left[x \theta - t(x) + H \left(\frac{d\hat{\pi}_\epsilon(x|\theta)\mu_0(\theta)}{\sum_{\theta' \in \Theta} d\hat{\pi}_\epsilon(x|\theta')\mu_0(\theta')} \right) \right] d\hat{\pi}_\epsilon(x|\theta)\mu_0(\theta)
\]
But for low enough ϵ, that would mean that $\hat{\pi}_\epsilon$ is also better than π, which we saw was impossible for any measure that is absolutely continuous with respect to π. □

Proof of Lemma 4: I define a system of partial differential equations defining the motion of $(x, t(x), \mu(\cdot|x))$, and show that they have a unique solution. I then verify that the necessary and sufficient conditions of Lemma 3 are satisfied.

I start by deriving a differentiable law of motion that satisfies (3), which will be used to show sufficiency. Thus I show that there exists a differentiable locus of points on which the buyer’s choice has its support; one can then convert it to a mechanism in recommendation strategies by dropping the values of x that are not in the support, and invoking Lemma 3 on the remaining values of x to verify that it is optimal for the buyer. First, to define $t'(x)$, any solution that is optimal for the buyer must satisfy (IC-I). It is well known from Myerson (1981) that in order to do so,

$$
\lim_{\epsilon \to 0} \frac{h(x + \epsilon, \theta) - h(x, \theta)}{\epsilon} = E_{\mu(\cdot|x)}[\theta]
$$

(18)

So, one can define

$$
\frac{\partial h}{\partial x}(x, \theta) \equiv \lim_{\epsilon \to 0} \frac{h(x + \epsilon, \theta) - h(x, \theta)}{\epsilon} = E_{\mu(\cdot|x)}[\theta] - \theta
$$

(19)

This implicitly defines the law of motion of beliefs from $\mu(\cdot|x)$. By (2), for $\mu(\cdot|x)$ to be differentiable,

$$
\frac{\partial h}{\partial x}(x, \theta) = \sum_{\theta'' \in \Theta} \frac{\partial^2 H}{\partial \mu(\theta'') \partial \mu(\theta)}(\mu(\cdot|x)) \frac{\partial \mu}{\partial x}(\theta''|x)(1 - \mu(\theta|x))
$$
\[
- \sum_{\theta'' \in \Theta} \sum_{\theta' \neq \theta} \frac{\partial^2 H}{\partial \mu(\theta'') \partial \mu(\theta')} (\mu(\cdot|x)) \frac{\partial \mu}{\partial x} (\theta''|x) \mu(\theta'|x)
\]

(20)

Thus, for any constant \(C_{\mu(\cdot|x)}\),

\[
\sum_{\theta' \in \Theta} \frac{\partial^2 H}{\partial \mu(\theta') \partial \mu'(\theta')} (\mu(\cdot|x)) \frac{\partial \mu}{\partial x} (\theta'|x) = -(\theta + C_{\mu(\cdot|x)}), \forall \theta
\]

(21)

is a solution to (20), as by plugging these values into (18), (19) is satisfied. Since \(H\) is strongly concave, the Hessian \(H(\mu(\cdot|x))\) is negative definite, and so

\[
\begin{pmatrix}
\frac{\partial \mu}{\partial x}(\theta_1|x) \\
\vdots \\
\frac{\partial \mu}{\partial x}(\theta_K|x)
\end{pmatrix} = -H^{-1}(\mu(\cdot|x))
\begin{pmatrix}
\theta_1 + C_{\mu(\cdot|x)} \\
\vdots \\
\theta_K + C_{\mu(\cdot|x)}
\end{pmatrix}
\]

(22)

Lastly, in order to be a probability distribution, \(\sum_{\theta \in \Theta} \frac{\partial \mu}{\partial x}(\theta|x) = 0\), which means that, indicating the \((i, j)\)th entry of \(H^{-1}\) by \(H^{-1}_{(i,j)}\),

\[
C_{\mu(\cdot|x)} = -\frac{\sum_{i=1}^{K} \sum_{j=1}^{K} \theta_j H^{-1}_{(i,j)}(\mu(\cdot|x))}{\sum_{i=1}^{K} \sum_{j=1}^{K} H^{-1}_{(i,j)}(\mu(\cdot|x))}
\]

(23)

It now remains to be shown that the system of differential equations defined by (18) and (22) has a solution, in order to demonstrate that the assumption of differentiability yields a valid solution. Since \(H\) is twice Lipschitz continuously differentiable and strongly concave, \(H(\mu)\) is Lipschitz continuous in \(\mu\) and bounded away from 0, and so \(H^{-1}\) is Lipschitz continuous as well. Lastly, by (23), \(C_{\mu(\cdot|x)}\) is defined by the ratio of Lipschitz continuous functions, and so \(C_{\mu}\) is itself Lipschitz continuous in \(\mu\). By the Picard-Lindelöf theorem (Coddington and Levinson, Theorem 5.1), there exists an interval \([x-a, x+b]\) on which the system \((x, t(x), \mu(\cdot|x))\) has a unique solution.

By the fundamental theorem of calculus, it then follows that (3) is satisfied for all pairs \(x, x' \in [x-a, x+b]\). Hence any distribution \(\tau\) over \(\{\mu(\cdot|x) : x \in [x-a, x+b]\}\) is optimal for the buyer given prior \(\mu_0 = \int d\tau(\mu(\cdot|x))\) by Lemma.
3, and so (18) and (22) are sufficient for (IC-A) to be satisfied, with

$$\frac{\partial}{\partial x} \{E_{\mu(|x)}[\theta]\} = - \sum_{\theta, \theta' \in \Theta} \left[\frac{\partial^2 H}{\partial \mu(\theta) \partial \mu(\theta')} (\mu(\cdot|x)) \right] \left(\frac{\partial \mu(\theta')}{\partial x} \right) \left(\frac{\partial \mu(\theta)}{\partial x} \right) (\theta|x) > 0 \quad (24)$$

as is easily derived from multiplying (21) by $\frac{\partial \mu(\theta|x)}{\partial x}$ and summing over θ; the inequality is due to the negative-definiteness of the Hessian matrix.\(^1\)

To see that one can set $[x - a, x + b] = [0, 1]$, suppose that the maximal such value of a were less than x. Beliefs $\mu(\cdot|x - a)$ must still be in the interior of the simplex by Lemma A since $x + b - t(x + b) - (x - a) + t(x - a) \leq b - a + \max\{\theta \in \Theta\}$. Thus, the conditions of the Picard-Lindel"of theorem are still satisfied, and so this cannot be the supremum. The same reasoning applies to b.

For necessity, one must show that any incentive-compatible solution to the buyer’s problem must be identical to that given above. To do so, fix x^*, and suppose that there exists $\tilde{\tau}$ that places positive measure, for some subset of allocations $\{x\}$, on beliefs $(\tilde{t}(x), \hat{\mu}(\cdot|x)) \neq (t(x), \mu(\cdot|x))$, where the beliefs on the right-hand side are those derived from (18) and (22). Consider the distribution $\tilde{\tau}$ over $\{\mu(\cdot|x)\}$ whose pushforward measure over $x \in [0, 1]$ is uniform. Then, by Lemma 3, $\alpha \hat{\tau} + (1 - \alpha)\tilde{\tau}$ is optimal for the buyer for any $\alpha \in (0, 1)$ given prior $\tilde{\mu}_0 = \alpha \mu_0 + \int_{(\mu(\cdot|x))} \tilde{d} \tau (\mu(\cdot|x))$. It is immediate that in order to satisfy (IC-I), the transfers conditional on x must be the same under the mechanisms that generate $\hat{\tau}$ and $\tilde{\tau}$, respectively. Thus, by (2) and (3),

$$H(\hat{\mu}(\cdot|x)) + \frac{\partial H}{\partial \mu(\theta)} (\hat{\mu}(\cdot|x)) (1 - \hat{\mu}(\theta|x)) - \sum_{\theta' \neq \theta} \frac{\partial H}{\partial \mu(\theta')} (\hat{\mu}(\cdot|x)) \hat{\mu}(\theta'|x)$$

$$= H(\mu(\cdot|x)) + \frac{\partial H}{\partial \mu(\theta)} (\mu(\cdot|x)) (1 - \mu(\theta|x)) - \sum_{\theta' \neq \theta} \frac{\partial H}{\partial \mu(\theta')} (\mu(\cdot|x)) \mu(\theta'|x) \quad (25)$$

Multiplying the above by $\hat{\mu}(\theta|x)$ and $\mu(\theta|x)$, then summing over $\theta \in \Theta$ and

\(^1\)As remarked in the discussion following Lemma 3, any set of triplets $(x, t(x), \mu(\cdot|x))$ that satisfies (3) and on which τ has its support is incentive compatible, and so the monotonicity of $E_{\mu(|x)}[\theta]$ is implied anyway.
taking the difference between the former and the latter, one gets

\[
\sum_{\theta \in \Theta} \left(\frac{\partial H}{\partial \mu(\theta)}(\mu(\cdot|x)) - \frac{\partial H}{\partial \mu(\theta)}(\hat{\mu}(\cdot|x)) \right) (\mu(\theta|x) - \hat{\mu}(\theta|x)) = 0 \tag{26}
\]

By the intermediate value theorem, there exists some \(\alpha \in [0, 1] \) such that for \(\tilde{\mu} \equiv \alpha \mu(\cdot|x) + (1 - \alpha) \hat{\mu}(\cdot|x) \),

\[
\frac{\partial H}{\partial \mu(\theta)}(\mu(\cdot|x)) - \frac{\partial H}{\partial \mu(\theta)}(\hat{\mu}(\cdot|x)) = \sum_{\theta' \in \Theta} \frac{\partial^2 H}{\partial \mu(\theta) \partial \mu(\theta')} (\tilde{\mu})(\mu(\theta'|x) - \hat{\mu}(\theta'|x)) \tag{27}
\]

Combining (26) and (27), one gets

\[
\sum_{\theta \in \Theta} \sum_{\theta' \in \Theta} \frac{\partial^2 H}{\partial \mu(\theta) \partial \mu(\theta')} (\tilde{\mu})(\mu(\theta'|x) - \hat{\mu}(\theta'|x)) (\mu(\theta|x) - \hat{\mu}(\theta|x)) = 0
\]

But by the negative-definiteness of \(H \), the left-hand side must be negative, contradiction. □

Proof of Theorem 1: By Lemma 1, any contour mechanism can be implemented by recommendation strategies. Conversely, by Lemmas 3 and 4, the contour mechanism satisfies (IC-A) and (IC-I). Since \(\mathbf{t}(0) \leq 0 \) and (IC-I) is satisfied, (IR-I) is satisfied by standard arguments (e.g. Myerson, 1981). By Lemma 2, (IR-I) implies (IR-A). Hence all four constraints are satisfied □

Proof of Proposition 1: Immediate from (18) and (22) defining an autonomous system of differential equations. □

Proof of Theorem 2: I first establish that an optimal mechanism exists. It is clear that any contour mechanism’s revenue can be increased if \(\mathbf{t}(0) < 0 \), and so it is without loss of optimality to restrict attention to ones with \(\mathbf{t}(0) = 0 \). Within this set, let \(\{C_m\}_{m=1}^\infty \) be a sequence of such contour mechanisms, and let \(\tau_m \) be the corresponding distributions over posteriors. By Lemma A, there exists \(\epsilon > 0 \) such that for all \(m \), \(\mu(\theta|x) \geq \epsilon \). As shown in the proof of Lemma 4 in equations (18) and (22), the functions \(\mathbf{t}'(x) \) and \(\frac{\partial H}{\partial \mu} (\cdot|x) \) are Lipschitz continuous on any compact set in the interior of the simplex, no matter what \(\mu(\cdot|x) \) is, and so \(\{\mathbf{t}_m\} \) and \(\{\mu_m(\cdot|x)\} \) are equi-Lipschitz continuous. Therefore,
by the Arzelà-Ascoli theorem, there exists a subsequence of \(\{(C_m, \tau_m)\}_{m=1}^{\infty} \) such that \(C_m \to C \) uniformly and \(\tau_m \to \tau \) in the weak* topology, with support within the same compact set. By Coddington and Levinson, Theorem 7.1, the solutions of differential equations for a sequence of starting points converge uniformly to a solution of the differential equations for the limit point as well, so the limit values of \((t(x), \mu(\cdot|x)) \) in \(C \) satisfy (3). Therefore \(\tau \) is an incentive-compatible distribution by Lemma 3. This implies that the set of feasible payoffs to the seller is compact, and so a maximum exists.

Given the existence of an optimal mechanism, it follows that by Theorem 1, any implementable mechanism can be expressed by some \(C \). As \(v_C(\mu) = -\infty \) for all \(\mu \) not contained in \(C \), the support of \(co(v_C) \) must be contained in \(C \) with probability 1. Hence optimization over mechanisms satisfying (8) yields the overall optimal mechanism. That \(t(0) = 0 \) follows from being able to increase \(t(x) \) by some \(\epsilon > 0 \) without violating either (IC-A) or (IR-I) for \(\mu \) otherwise.

Proof of Corollary 1: This follows immediately from Kamenica and Gentzkow (2011, Proposition 4 in their Online Appendix).

Proof of Proposition 2: Suppose that, given \(C \), some \(\tau \) is optimal such that \(x^* \equiv \sup\{x : \exists \mu \in \text{supp}(\tau) : x(\mu) = x\} < 1 \). Then the mechanism \(\hat{C} \) in which, starting from \((x(\cdot)m\hat{t}(\cdot)) \), \(1 - x^* \) is added to all values of \(x \leq x^* \), and all triplets corresponding to \(x > x^* \) are excluded, also satisfies (3). Thus \(\tau \) remains optimal, where the choice of \(x \) under \(\hat{C} \), \(\hat{x}(\mu) \) equals \(x(\mu) + 1 - x^* \), and \(t(x) = \hat{t}(x) \), by Proposition 1. By Lemma 4, one can then complete \(\hat{C} \) to apply to values of \(x < 1 - x^* \). Since, by (18), \(\hat{t}'(x) > 0 \), one can then increase \(\hat{t} \) by \(\int_0^{1-x^*} \hat{t}'(x)dx \) for \(\hat{x}(\mu) \geq 1 - x^* \) while maintaining (3) and (IR-I).

Proof of Theorem 3: For each choice of \(C \), there will either be as much information revelation as possible in the case of convex \(\hat{t} \), or none in the case of concave \(\hat{t} \), by Kamenica and Gentzkow (2011, Proposition 1). Thus it must also be true for the optimal \(C \).

Proof of Lemma 5: Fix \(\tau \), and suppose that it is not of the form described in the statement of the lemma. The first step is to show that there is a mean-
preserving spread of this form. With binary states, one can rewrite (12) as

$$\int_\mu^1 x(\mu)d\tau(\mu) \leq \frac{1 - [\tau(\mu < \hat{\mu})]^N}{N}$$

Differentiating this when it holds with equality, one gets

$$-x(\hat{\mu})d\tau(\hat{\mu}) = -[\tau(\mu < \hat{\mu})]^{N-1}d\tau(\hat{\mu})$$

$$\implies \tau(\mu < \hat{\mu}) = [x(\hat{\mu})]^\frac{1}{N-1}$$

$$\implies d\tau(\mu) = \frac{1}{N-1}[x(\mu)]^{\frac{1}{N-1}-1}x'(\mu)d\mu$$

with boundary condition $\tau(\mu \leq \bar{\mu}) = 1$, where $x(\bar{\mu}) = 1$. Let

$$\mu^* \equiv \inf\{\hat{\mu} : \tau(\mu < \hat{\mu}) = [x(\hat{\mu})]^\frac{1}{N-1}, \forall \hat{\mu} > \hat{\mu}\}$$

Note that (28) does not depend on the exact distribution below μ. Thus, to find a mean-preserving spread, one need only consider the distribution between $\underline{\mu}$ and μ^*.

I show that for any other τ satisfying (12) not of the form of the lemma, there exists a mean-preserving spread that satisfies (12); by Zorn’s lemma, there will then be a maximal element, that must be of the form of the lemma. First, suppose that there is an atom at some $\mu^* \in (\underline{\mu}, \mu^*)$. Then there for sufficiently small $\epsilon > 0$, (12) does not hold with equality at $\hat{\mu}$, $\forall \hat{\mu} \in (\mu^*, \mu^* + \epsilon)$ or else (12) would be violated at μ^*.

Moreover,

$$\lim_{\epsilon \to 0} \tau(\mu \in (\mu^* - \epsilon, \mu^* + \epsilon)) = \tau(\mu^*)$$

Consider the following mean-preserving spread: replace τ by $\hat{\tau}^\epsilon$ which, for all $\mu \in [\mu^* - \epsilon^2, \mu^* + \epsilon]$, assigns all mass to $\{\mu^* - \epsilon^2, \mu^* + \epsilon\}$, while preserving $E_{\hat{\tau}^\epsilon}[\mu] = \mu_0$. By Bayes’ rule,

$$\lim_{\epsilon \to 0} \tau(\mu \in [\underline{\mu}, \mu^* - \epsilon^2]) + \frac{1}{1 + \epsilon}\tau(\mu^*) \leq \lim_{\epsilon \to 0} \hat{\tau}^\epsilon(\mu < \mu^* + \epsilon) \leq \lim_{\epsilon \to 0} \tau(\mu \in [\underline{\mu}, \mu^* + \epsilon] \setminus \{\mu^*\}) + \frac{1}{1 + \epsilon}\tau(\mu^*)$$
Since clearly
\[
\lim_{\epsilon \to 0} \tau(\mu \in [\mu, \mu_* - \epsilon^2]) = \lim_{\epsilon \to 0} \frac{1}{1 + \epsilon} \tau(\mu_* - \epsilon) = \tau(\mu_* - \epsilon)
\]
then by the squeeze theorem,
\[
\lim_{\epsilon \to 0} \hat{\tau}\epsilon(\mu < \mu_* + \epsilon) = \lim_{\epsilon \to 0} \tau(\mu < \mu_* + \epsilon)
\]
Thus \(\hat{\tau}\epsilon\) does not violate (12) at \(\mu_* + \epsilon\). For all \(\mu \leq \mu_* - \epsilon^2\), the right-hand side of (12) is the same as under \(\tau\), while by Jensen’s inequality,
\[
\int_{\mu}^{1} x(s) d\hat{\tau}\epsilon(s) \leq \int_{\mu}^{1} x(s) d\tau(s)
\]
Hence (12) is satisfied everywhere by \(\hat{\tau}\epsilon\) for \(\epsilon\) sufficiently small.

Alternatively, suppose that there are no such atoms. Then \(\tau\) is continuous for \(\mu \in (\mu, \mu^*)\). Consider \(\mu_* \in \text{supp}(\tau)\) such that \(\mu_* \in (0, \mu^*)\) and (12) does not hold with equality. By assumption, such a point exists. Then for sufficiently small \(\epsilon\), (12) does not hold with equality for all \(\mu \in (\mu_* - \epsilon^2, \mu_* + \epsilon)\). Thus the construction of the previous paragraph can be used to create a mean-preserving spread that does not violate (12) here either.

Finally, note that for a fixed \(\mu\), \(E[\mu]\) is decreasing in \(\mu^*\). There is therefore a unique \(\mu^*\) for which \(E_\tau[\mu] = \mu_0\). If one increases \(\mu\), then if \(\tau(\mu)\) does not increase as well, the new resultant distribution \(\hat{\tau}_\mu\) will strictly first-order stochastically dominate \(\tau\). As this implies \(E_{\hat{\tau}_\mu}[\mu] > \mu_0\), this is impossible. □

Proof of Proposition 3: By Jensen’s inequality, any mean-preserving spread of any \(\tau\) is a weak improvement for the seller. By Lemma 5, any \(\tau\) has a feasible mean-preserving spread unless it satisfies (12) with equality above some \(\mu^*\), and no other posterior aside from \(\mu\) is in the support. Hence some such \(\tau\) will be optimal. That this can be implemented by a second-price auction with a reserve price \(r\) can be seen by setting \(r = \int_{\mu}^{\mu^*} \hat{v}(\mu) d\mu\) and using the revenue equivalence theorem (Myerson, 1981). □
Before presenting the proofs of Proposition 4 and Theorem 4, I introduce some additional notation and a useful lemma, analogous to Lemma 5. Consider the pushforward measure σ as generated by $x(\mu)$ where μ is distributed according to τ. One can then write (12) as

$$\int_{x^*}^1 x d\sigma(x) \leq \frac{1 - \sigma(x < x^*)}{N}, \forall x^* \in [0, 1]$$ \hspace{1cm} (29)

Lemma B: For any σ satisfying (29), there exists a mean-preserving spread $\hat{\sigma}$ over $x \in [0, 1]$ that

(i) satisfies (29) with equality between some x^* and 1;

(ii) sets $\sigma((0, x^*)) = 0$; and

(iii) has an atom at $x = 0$.

Proof: Suppose that (29) is satisfied for all $x \geq x^*$. As in the proof of Lemma 5, it is easy to show that in order to find a mean-preserving spread, one need only consider the distribution between 0 and x^*, since (29) for $x > x^*$ does not depend on the exact distribution of lower values, but only on their cumulative distribution up to x.

If there is an atom at some $x^*_* \in (0, x^*)$, then for sufficiently small $\epsilon > 0$, (29) does not hold with equality at \hat{x}, $\forall \hat{x} \in (x^*_*, x^*_* + \epsilon)$, or else (29) would be violated at x^*_* itself. Moreover,

$$\lim_{\epsilon \to 0} \sigma(x^*_* - \epsilon, x^*_* + \epsilon) = \sigma(x^*_*)$$

Consider the following mean-preserving spread: replace σ with $\hat{\sigma}^\epsilon$, which, for all $x \in [x_\epsilon - \epsilon^2, x_\epsilon + \epsilon]$, assigns all mass to $\{x_\epsilon - \epsilon^2, x_\epsilon + \epsilon\}$, while preserving $E_{\hat{\sigma}^\epsilon}[x] = E_{\sigma}[x]$. By Bayes’ rule,

$$\lim_{\epsilon \to 0} \sigma([0, x_\epsilon - \epsilon^2]) + \frac{1}{1 + \epsilon} \sigma(x_\epsilon) \leq \lim_{\epsilon \to 0} \hat{\sigma}^\epsilon([0, x_\epsilon + \epsilon]) \leq \lim_{\epsilon \to 0} \sigma([0, x_\epsilon + \epsilon]\{x_\epsilon\}) + \frac{1}{1 + \epsilon} \sigma(x_\epsilon)$$

$$\implies \lim_{\epsilon \to 0} \hat{\sigma}^\epsilon([0, x_\epsilon + \epsilon]) = \lim_{\epsilon \to 0} \sigma([0, x_\epsilon + \epsilon])$$

and so $\hat{\sigma}^\epsilon$ does not violate (29) at $x_\epsilon + \epsilon$. For all $x \leq x_\epsilon - \epsilon^2$, the right-hand
side of (29) is the same as under σ, while $\int_x^1 s \hat{\sigma}'(s) = \int_x^1 s \sigma(s)$. Thus, (29) is satisfied everywhere for $\hat{\sigma}'$ for ϵ sufficiently small.

Now suppose instead that there are no such atoms. Then σ is continuous for $x \in (0, x^*)$. Consider $x_* \in \text{supp}(\sigma)$ such that $x_* \in (0, x^*)$ and (29) does not hold with equality. By assumption, such a point exists. Then, for sufficiently small ϵ, (29) does not hold with equality for all $x \in (x_* - \epsilon^2, x_* + \epsilon)$. Thus the construction of the previous paragraph can be used to create a mean-preserving spread that does not violate (29) here either.

By Zorn’s lemma, there then exists a maximal mean-preserving spread, which must satisfy (i)-(iii). □

Proof of Proposition 4: Since H is quadratic, H is independent of μ. By (22) and (23), this means that $\frac{\partial \mu}{\partial x}(\theta|x)$ is constant, i.e. not dependent on x or μ. Thus, for any contour mechanism C, all values of $\mu(\cdot|x)$ are linear in x. By (24), so is $E_{\mu(\cdot|x)}[\theta]$, and as a result by (18) t is quadratic in x, with initial conditions $t(0) = 0$ and $t'(0) = E_{\mu}[\theta]$. Letting σ be the pushforward measure over X defined by τ and $x(\mu)$, any mean-preserving spread $\hat{\sigma}$ over X also defines a mean-preserving spread $\hat{\tau}$ over μ given C, and vice versa. Any such mean-preserving spread increases the seller’s expected payoff due to $t(x)$ being quadratic in x (and hence convex). By Lemma B, a maximal mean-preserving spread places an atom at $x = 0$ while satisfying (12) with equality for all $x > x^*$ for some x^*, while placing measure 0 on $x \in (0, x^*)$. By the revenue equivalence theorem of Myerson (1981), this can be implemented by a second-price auction with a reserve price. □

Proof of Theorem 4: (i) The information acquisition cost is given by

$$c(\tau_N) = \int [H(\mu_0) - H(\mu)]d\tau_N(\mu)$$

By (12), the buyer’s probability of winning $E_{\tau_N}[x_N(\mu)] \to 0$, so her expected utility converges to 0 as well. Thus (with some abuse of notation), $\tau_N \to \delta_{\mu_0}$ in the weak* topology, where δ_{μ_0} is the Dirac measure that places probability 1 on μ_0. Therefore, $E_{\mu}[\theta] \to E_{\mu_0}[\theta]$.

15
(ii) Again, by (12), \(E_{\tau_N}[x_N(\mu)] \to 0 \). By Proposition 1, \(x'(\mu) \) is determined for any \(\mu \) regardless of \(\mu \). By (2) and (3), \(\frac{\partial \mu}{\partial x}(\theta|x=0) \) is continuous in \(\mu \) since \(H \) is twice continuously differentiable, and so \(x'(\mu) \) is uniformly continuous on any closed ball \(B \) around \(\mu_0 \) such that \(B \) is in the interior of the simplex. As shown above, for sufficiently large \(N \), \(\tau_N(\mu \in B) \to 1 \), so \(\tau_N \to \delta_{\mu_0} \); by (12), \(|\tau_N - \delta_{\mu_0}| \to 0 \) in the weak* topology, where \(\delta_{\mu_0} \) is the Dirac measure that places probability 1 on \(\mu_0 \). By the triangle inequality from (i), this means that \(\mu_N \to \mu_0 \).

(iii) Fix function \(t(x) \). Since \(E_{\mu(\cdot|x)}[\theta] \) is strictly increasing in \(x \) by (24), \(t(x) \) will be a strictly convex function by (18). Hence by Jensen’s inequality, for any \(\sigma \) that does not satisfy the properties of Lemma B, there exists \(\hat{\sigma} \) that satisfies the properties in Lemma B such that \(\int_0^1 t(x)d\hat{\sigma}(x) > \int_0^1 t(x)d\sigma(x) \). As in the proof of Proposition 3, any \(\sigma \) that satisfies these properties can be implemented by a second-price auction with reserve price \(r = t(x^*) \) by the revenue equivalence theorem of Myerson (1981).

Next, for any fixed \(t \), the distribution \(\sigma \) satisfying the properties in Lemma B that maximizes \(\int_0^1 t(x)d\sigma(x) \) is that which sets \(x^* = 0 \), as for any other value, the distribution over \(x \in [x^*,1] \) would remain unchanged by setting \(x^* \) instead. Since \(t \) is a strictly increasing function and the new distribution first-order stochastically dominates the old one, this increases \(\int_0^1 t(x)d\sigma(x) \). Thus, for fixed \(t(\cdot) \), a second-price auction with a reserve price of 0 is optimal.

I now show that in the limit as \(N \to \infty \), there is a unique limit value \(t(x) \) of any implementable sequence of \(\{ t_N(x) \}_{N=1}^\infty \), and so one will be able to invoke the above result to conclude that this form of auction is optimal. First, consider the sequence of distributions \(\{ \tau_N \} \) and their pushforward measures \(\{ \sigma_N \} \). For sufficiently high \(N \), there exists Bayes-plausible \(\hat{\tau}_N \) such that its pushforward measure \(\hat{\sigma}_N \) satisfies the properties in Lemma B and is a mean-preserving spread of \(\sigma_N \), with some corresponding value of \(x^* \). To see this, by Coddington and Levinson, Theorem 7.6, for any \(\epsilon > 0 \) there exists \(\delta > 0 \) such that if \(\mu \in B_\delta(\mu_0) \) (the closed ball of radius \(\delta \) around \(\mu_0 \) in the simplex), then the solutions for \((t(x),\mu(\cdot|x)) \) under \(\mu = \mu \) differ from those under \(\mu = \mu_0 \) by
at most \(\epsilon\) in the Euclidean topology. Consider the function

\[
\phi_N(\mu) = \mu + \frac{1}{2}[\mu_0 - \int_0^1 \mu(\cdot|x)d\hat{\tau}_N(\mu(\cdot|x))]
\]

Clearly, \(\phi_N(\mu) = \mu\) if and only if \(\int_0^1 \mu(\cdot|x)d\hat{\tau}_N(\mu(\cdot|x)) = \mu_0\). As \(\mu(\cdot|x)\) is uniformly continuous in \(\mu \in \bar{B}_\delta(\mu_0)\), it follows that for \(N\) large enough, \(\|\mu - \int_0^1 \mu(\cdot|x)d\hat{\tau}_N(\mu(\cdot|x))\| < \delta\) by (12) and (22) for all \(\mu \in B_\delta(\mu_0)\), as \(\tau\) converges to the Dirac measure on \(\mu\) by (ii). Hence, by the triangle inequality,

\[
|\mu_0 - \phi_N(\mu)| \leq \frac{1}{2}|\mu_0 - \mu| + \frac{1}{2} \left| \int_0^1 \mu(\cdot|x)d\hat{\tau}_N(\mu(\cdot|x)) - \mu \right|
\]

\[
\leq \frac{1}{2}\delta + \frac{1}{2}\delta = \delta
\]

and so \(\phi_N(\mu) \in \bar{B}_\delta(\mu_0)\). Since \(\phi_N(\mu)\) is continuous, by the Brouwer fixed point theorem there exists \(\mu \in B_\delta(\mu_0)\) such that \(\phi_N(\mu) = \mu\), which implies that \(\int_0^1 \mu(\cdot|x)d\hat{\tau}_N(\mu(\cdot|x)) = \mu_0\) as required. Thus, given \(\tau_N\) and \(\sigma_N\), there exist such \(\hat{\tau}_N\) and \(\hat{\sigma}_N\), respectively, for high enough \(N\).

Let \(t_N\) and \(\hat{t}_N\) be the corresponding transfer functions. Consider any subsequence such that \(\sigma_N \rightarrow \sigma\) and \(\hat{\sigma}_N \rightarrow \hat{\sigma}\) in the weak* topology. For any \(y\), by the Portmanteau theorem,

\[
\int_0^y \sigma([0,x])dx \leq \liminf \int_0^y \sigma_N([0,x])dx \leq \liminf \int_0^y \hat{\sigma}_N([0,x])dx = \int_0^y \hat{\sigma}([0,x])dx
\]

where the last holds with equality because either \(\hat{\sigma}\) is absolutely continuous (if \(x^* = 0\)) or \(\hat{\sigma}([0,x^*]) = \hat{\sigma}(x = 0)\). Thus, \(\hat{\sigma}\) is a mean-preserving spread of \(\sigma\). Moreover, by the Lipschitz continuity of \(H\), both \(t_N \rightarrow t_{\mu_0}\) and \(\hat{t}_N \rightarrow t_{\mu_0}\) uniformly on \([0,1]\), where \(t\) is defined for the contour starting at \(\mu = \mu_0\) (Coddington and Levinson, Theorem 7.1). Since \(t\) is also continuous, by the Portmanteau theorem and the dominated convergence theorem,

\[
\lim_{N \to \infty} \int_0^1 Nt_{\mu_0}(x)d\sigma(x) = \lim_{N \to \infty} \int_0^1 Nt_N(x)d\sigma_N(x)
\]
assuming that \(\lim_{N \to \infty} \int_0^1 N t_{\mu_0}(x) d\sigma_N(x) \) is finite. Differentiating (29) when it holds with equality at \(x \) yields

\[
x = \left[\hat{\sigma}_N((0, x)) \right]^{N-1}
\]

\[
\Rightarrow \frac{d\hat{\sigma}_N}{dx}(x) = \frac{(x)^{\frac{2-N}{N-1}}}{N-1} \leq \frac{2}{N x}
\]

Indeed,

\[
\lim_{N \to \infty} N \frac{d\hat{\sigma}_N}{dx}(x) = \frac{1}{x}
\]

Since, by (18),

\[
x \cdot \min\{\theta \in \Theta\} \leq t(x) \leq x \cdot \max\{\theta \in \Theta\}
\]

by the dominated convergence theorem we have (even for \(x^* = 0 \), by defining for each \(N \) at the limit as \(x^* \to 0 \))

\[
\int_{x^*}^1 N t_{\mu_0}(x) d\sigma_N(x) \leq \int_{x^*}^1 2 \max\{\theta \in \Theta\} d\sigma(x)
\]

\[
\Rightarrow \lim_{N \to \infty} \int_{x^*}^1 N t_{\mu_0}(x) d\sigma_N(x) = \int_{x^*}^1 \frac{t_{\mu_0}(x)}{x} dx
\]

As observed earlier, for fixed \(t(\cdot) \), setting \(x^* = 0 \) is optimal. Therefore, any mechanism in the limit is dominated by a second-price auction with reserve price 0, which yields the revenue as given in (13). \(\square \)