
 
MODULE THREE, PART ONE:   

PANEL DATA ANALYSIS IN ECONOMIC EDUCATION RESEARCH 
 

William E. Becker, William H. Greene and John J. Siegfried* 

 
 

As discussed in Modules One and Two, most of the empirical economic education research is 
based on a “value-added,” “change-score” or a “difference-in-differences” model specifications 
in which the expected improvement in student performance from a pre-program measure 
(pretest) to its post-program measurement (posttest) is estimated and studied for a cross section 
of subjects.   Other than the fact that testing occurs at two different points in time, there is no 
time dimension, as seen in the data sets employed in Modules One and Two.  Panel data analysis 
provides an alternative structure in which measurements on the cross section of subjects are 
taken at regular intervals over multiple periods of time.i   Collecting data on the cross section of 
subjects over time enables a study of change.   It opens the door for economic education 
researchers to address unobservable attributes that lead to biased estimators in cross-section 
analysis.ii  As demonstrated in this module, it also opens the door for economic education 
researchers to look at things other than test scores that vary with time. 
 
 This module provides an introduction to panel data analysis with specific applications to 
economic education.  The data structure for a panel along with constant coefficient, fixed effects 
and random effects representations of the data generating processes are presented.  Consideration 
is given to different methods of estimation and testing.  Finally, as in Modules One and Two, 
contemporary estimation and testing procedures are demonstrated in Parts Two, Three and Four 
using LIMDEP (NLOGIT), STATA and SAS.     
  
 
THE PANEL DATA SET  
 
As an example of a panel data set, consider our study (Becker, Greene and Siegfried, 
Forthcoming) that  examines the extent to which undergraduate degrees (BA and BS) in 
economics or PhD degrees (PhD) in economics drive faculty size at those U.S. institutions that 
offer only a bachelor degree and those that offer both bachelor degrees and PhDs.    
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We obtained data on the number of full-time tenured or tenure-track faculty and the 

number of undergraduate economics degrees per institution per year from the American 
Economic Association’s Universal Academic Questionnaire (UAQ). The numbers of PhD 
degrees in economics awarded by department were obtained from the Survey of Earned 
Doctorates, which is sponsored by several U.S. federal government agencies.  These sources 
provided data on faculty size and degree yearly data for each institution for 16 years from 1990-
91 through 2005-06.   For each year, we had data from 18 bachelor degree-granting institutions 
and 24 institutions granting both the PhD and bachelor degrees.   Pooling the cross-section 
observations on each of the 18 bachelor only institutions, at a point in time, over the 16 years, 
implies a panel of 288 observations on each initial variable.  Pooling the cross-section 
observations on each of the 24 PhD institutions, at a point in time, over the 16 years, implies a 
panel of 384 observations on each initial variable.  Subsequent creation of a three-year moving 
average variable for degrees granted at each type of institution reduced the length of each panel 
in the data set to 14 years of usable data.  

 
Panel data are typically laid out in sequential blocks of cross-sectional data.  For 

example, the bachelor degree institution data observations for each of the 18 colleges appear in 
blocks of 16 rows for years 1991 through 2006:  

 
  “College” identifies the bachelor degree-granting institution by a number 1 through 18.   
 
  “Year” runs from 1996 through 2006. 
 
  “BA&S” is the number of BS or BA degrees awarded in each year by each college. 
 
  “MEANBA&S” is the average number of degrees awarded by each college  
    for the 16-year period. 
 
  “Public” equals 1 if the institution is a public college and 2 if it is a private college. 
 
  “Bschol” equals 1 if the college has a business program and 0 if not. 
 
  “Faculty” is the number of tenured or tenure-track economics department faculty members.   
 
   “T” is a time trend running from −7 to 8, corresponding to years from 1996 through 2006. 
 
  “MA_Deg” is a three-year moving average of degrees (unknown for the first two years). 
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College  Year  BA&S  MEANBA&SPublic  Bschol  Faculty  T  MA_Deg
1  1991  50  47.375  2  1  11  ‐7  Missing 
1  1992  32  47.375  2  1  8  ‐6  Missing 
1  1993  31  47.375  2  1  10  ‐5  37.667 
1  1994  35  47.375  2  1  9  ‐4  32.667 
                 
↓  ↓  ↓  ↓  ↓  ↓  ↓    ↓ 
                 
1  2003  57  47.375  2  1  7  5  56 
1  2004  57  47.375  2  1  10  6  55.667 
1  2005  57  47.375  2  1  10  7  57 
1  2006  51  47.375  2  1  10  8  55 
2  1991  16  8.125  2  1  3  ‐7  Missing 
2  1992  14  8.125  2  1  3  ‐6  Missing 
2  1993  10  8.125  2  1  3  ‐5  13.333 
                 
↓  ↓  ↓  ↓  ↓  ↓  ↓    ↓ 
                 
2  2004  10  8.125  2  1  3  6  12.667 
2  2005  7  8.125  2  1  3  7  11.333 
2  2006  6  8.125  2  1  3  8  7.667 
3  1991  40  35.5  2  1  8  ‐7  Missing 
3  1992  31  37.125  2  1  8  ‐6  Missing 
                 
↓  ↓  ↓  ↓  ↓  ↓  ↓    ↓ 
                 
17  2004  64  39.3125  2  0  5  6  54.667 
17  2005  37  39.3125  2  0  4  7  51.333 
17  2006  53  39.3125  2  0  4  8  51.333 
18  1991  14  8.4375  2  0  4  ‐7  Missing 
18  1992  10  8.4375  2  0  4  ‐6  Missing 
18  1993  10  8.4375  2  0  4  ‐5  11.333 
18  1994  7  8.4375  2  0  3.5  ‐4  9 
                 
↓  ↓  ↓  ↓  ↓  ↓  ↓    ↓ 
                 
18  2005  4  8.4375  2  0  2.5  7  7.333 
18  2006  7  8.4375  2  0  3  8  6 
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In a few years for some colleges, faculty size was missing.  We interpolated missing data 

on the number of faculty members in the economics department from the reported information in 
the years prior and after a missing observation; thus, giving rise to the prospect for a half person 
in those cases.    If a panel data set such as this one has missing values that cannot be 
meaningfully interpolated, it is an “unbalanced panel,” in which the number of usable 
observations differs across the units.  If there are no missing values and there are the same 
number of periods of data for every group (college) in the sample, then the resulting pooled 
cross-section and time-series data set is said to be a “balanced panel.”  Typically, the cross-
section dimension is designated the i dimension and the time-series dimension is the t dimension.   
Thus, panel data studies are sometimes referred to as “it ” studies. 
 
 
THE PANEL DATA-GENERATING PROCESS 
 
There are three ways in which we consider the effect of degrees on faculty size.  Here we will 
consider only the bachelor degree-granting institutions.    
 
 First, the decision makers might set the permanent faculty based on the most current 
available information, as reflected in the number of contemporaneous degrees (BA&Sit).  That is, 
the decision makers might form a type of rational expectation by setting the faculty size based on 
the anticipated number of majors to receive degrees in the future, where that expectation for that 
future number is forecasted by this year's value.  Second, we included the overall mean number 
of degrees awarded at each institution (MEANBA&Si) to reflect a type of historical steady state.  
That is, the central administration or managers of the institution may have a target number of 
permanent faculty relative to the long-term expected number of annual graduates from the 
department that is desired to maintain the department’s appropriate role within the institution.iii   
Third,  the central authority might be willing to marginally increase or decrease the permanent 
faculty size based on the near term trend in majors, as reflected in a three-year moving average 
of degrees awarded (MA_Degit). 
 
 We then assume the faculty size data-generating process for bachelor degree-granting 
undergraduate departments to be   
 
 FACULTY sizeit = β1 + β2Tt + β3BA&Sit + β4MEANBA&Si + β5PUBLICi   (1) 
 + β6Bschl + β7MA_Degit +εit 

 
where the error term εit is independent and identically distributed (iid) across institutions and 
over time and E(εit

2|xit) = σ2 , for I = 18 colleges and T = 14 years (−5 through 8) for 252 
complete observations.  Notice that there is no time subscript on the mean number of degrees, 
public/private and B school regressors because they do not vary with time.   
 
 In a more general and nondescript algebraic form for any it study, in which all 
explanatory variables are free to vary with time and the error term is of the simple iid form with 
E(εit

2|xit) = σ2, the model would be written 
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Yit = β1 + β2X2it + β3X3it +. . . + βkXkit  + εit ,  for i = 1, 2,….I and, t = 1, 2, … T.   (2) 
 
 This is a constant coefficient model because the intercept and slopes are assumed not to 
vary within a cross section (not to vary across institutions) or over time.  If this assumption is 
true, the parameters can be estimated without bias by ordinary least squares applied directly to 
the panel data set.   Unfortunately, this assumption is seldom true, requiring us to consider the 
fixed-effect and random-effects models. 
 
 
FIXED-EFFECTS MODEL 
 
The fixed effects model allows the intercept to vary across institutions (or among whatever cross-
section categories that are under consideration in other studies), while keeping the slope 
coefficients the same for all institutions (or categories).  The model could be written as 
 

Yit = β1i + β2X2it + β3X3it  + εit .      (3) 
 
Where β1i suggests that there is a separate intercept for each unit.  No restriction is placed on 
how the intercepts vary, except, of course, that they do so independently of εit.  The model can be 
made explicit for our application by inserting a 0-1 covariate or dummy variable for each of the 
institutions except the one for which comparisons are to be made.  In our case, there are 18 
colleges; thus, 17 dummy variables are inserted and each of their coefficients is interpreted as the 
expected change in faculty size for a movement from the excluded college to the college of 
interest.  Alternatively, we could have a separate dummy variable for each college and drop the 
overall intercept.  Both approaches give the same results for the other coefficients and for the R2 
in the regression.  (A moment’s thought will reveal, however, that in this setting, either way it is 
formulated, it is not possible to have variables, such as type of school, that do not vary through 
time.  In the fixed effects model, such a variable would just be a multiple of the school specific 
dummy variable.) 
 
 To clarify, the fixed-effects model for our study of bachelor degree institutions is written 
(where Collgei = 1 if college i and 0 if not, for i = 1, 2, … 18) as  
 
FACULTY sizeit=β1+β2YEARt+β3BA&Sit+β4MEANBA&Si+β5PUBLICi+ 
    β6Bschl+ β7MA_Degit+ β8College1+β9College2+   (4) 
   β10College3+… +β23College16+β24College17+ εit. 
 
Here a dummy for college 18 is omitted and its effects are reflected in the constant term β1 when  
College1 = College2 =…= College16 = College17 = 0.   For example, β9 is the expected change 
in faculty size for a movement from college 18 to college 2.  Which college is omitted is 
arbitrary, but one must be omitted to avoid perfect collinearity in the data set.  In general, if i 
goes from 1 to  I categories, then only I − 1 dummies are used to form the fixed-effects model: 
 

Yit = β1 + β2X2it + β3X3it +. . . + βkXkit   
+ βk+1D1 + βk+2D2 + …+ βk+1DI−1 + βk+2D2 +… βk+(I−)1DI−1 + εit ,   (5) 

 for i = 1, 2,….I and, t = 1, 2, … T.   
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After creating the relevant dummy variables (Ds), the parameters of this fixed-effects model can 
be estimated without bias using by ordinary least squares.iv  
 
 If one has sufficient observations, the categorical dummy variables can be interacted with 
the other time-varying explanatory variables to enable the slopes to vary along with the intercept 
over time.  For our study with 18 college categories this would be laborious to write out in 
equation form.   In many cases there simply are not sufficient degrees of freedom to 
accommodate all the required interactions.v 

 
To demonstrate a parsimonious model setup with both intercept and slope variability 

consider a hypothetical situation involving three categories (represented by dummies D1, D2 and 
D3 )  and two time-varying explanatory variables (represented by X2it and X3it): 
 
 Yit = β1 + β2X2it + β3X3it + β4D1 + β5D2+ β6(X2it D1) +     (6) 
β7(X3it D1) + β8(X2it D2) + β9(X3it D2) + εit. 
 
In this model,  β1 is the intercept for category three, where D3 = 0.  The intercept for category one 
is  β1 + β4 and for category 2 it is β1 + β5.  The change in the expected value of Y given a change 
in X2 is β2 + β6D1 + β8D2; thus for category 1 it is β2 + β6 and for category 2 it is β2 + β8.  The 
change in the expected value of Y for a movement from category two to category three is 
 
       (β5  −  β4 ) + ( β8 −  β6 )X2it  +  (β9  − β7 ) X3it  .   (7) 
 
 Individual coefficients are tested in fixed-effects models as in any other model with the z 
ratio (with asymptotic properties) or t ratio (finite sample properties).  There could be category-
specific heteroscedasticity or autocorrelation over time.   As described and demonstrated in 
Module One, where students were grouped or clustered into classes, a type of White 
heteroscedasticity consistent covariance estimator can be used in fixed-effects models with 
ordinary least squares to obtain standard errors robust to unequal variances across the groups. 
Correlation of residuals from one period to the next within a panel can also be a problem.  If this 
serial correlation is of the first-order autoregressive type, a Prais-Winston transformation 
transformation might be considered to first partial difference the data to remove the serial 
correlation problem.   In general, because there are typically few time-series observations, it is 
difficult to both correctly identify the nature of the time-series error term process and 
appropriately address with a least-squares estimator.vi  Contemporary treatments typically rely 
on robust, “cluster” corrections that accommodate more general forms of correlation across time. 
 
 Hypotheses tests about sets of coefficients related to the categories in fixed-effects 
models are conducted as tests of linear restrictions for a subset of coefficients as described and 
demonstrated in Module One.  For instance, as a starting point one might want to test if there is 
any difference in intercepts or slopes.  For our hypothetical parsimonious model the null and 
alternative hypotheses are: 
 
 HO:  β4 = β5 = β6 = β7 = β8 = β9 = 0  vs.      (8) 
 HA: at least one of these six βs is not zero. 
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The unrestricted sum of squared residuals comes from the regression: 
 

      = b1 + b2x2it + b3x3it + b4D1 + b5D2 + b6(x2it D1)     (9) ˆity
  + b7(x3it D1) + b8(x2it D2) + b9(x3it D2). 
 
The restricted sum of squared residuals comes from the regression: 
 
 = b1 + b2x2it + b3x3it .       (10) ˆity
 
The relevant F statistic is  
 

F = [Restricted ResSS( 0) Unrestricted ResSS] / (9 3) .
Unrestricted ResSS/( 9)i

subset
T

= − −
Σ −

β

  (11)
 

 
 
 

RANDOM-EFFECTS MODELS 
 
The random effects model, like the fixed effects model, allows the intercept term to vary across 
units.  The difference is an additional assumption, not made in the fixed effects case, that this 
variation is independent of the values of the other variables in the model.  Recall, in the fixed 
effects case, we placed no restriction on the relationship between the intercepts and the other 
independent variables.  In essence, a random-effects data generating process is a regression with 
an intercept that is subject to purely random perturbations; it is a category-specific random 
variable (β1i).   The realization of the random variable intercept  β1i  is assumed to be formed by 
the overall mean plus the ith category-specific random term vi.  In the case of our hypothetical, 
parsimonious two explanatory variable model, the relevant random-effects equations are  
 

Yit = β1i + β2X2it + β3X3it  + εit .     (12) 
 β1i  = α + vi  with Cov[vi,(X1i2,X2it)] = 0. 

 
Inserting the second equation into the first produces the “random effects” model, 
 

Yit = α + β2X2it + β3X3it  + εit + vi .     (13) 
 
Deviations from the main intercept, α, as measured in the category specific part of the error term, 
vi, must be uncorrelated with the time-varying regressors (that is, vi, is uncorrelated with X2it and 
X3it) and have zero mean.  Because vi does not vary with time, it is reasonable to assume its 
variance is fixed given the explanatory variables.vii  Thus, 
 

E(vi| X2it, X3it) = 0 and E(vi
2| X2it, X3it) = θ2 .    (14) 

 
An important difference between the fixed and random effects models is that time-invariant 
regressors, such as type of school, can be accommodated in the random effects but not in the 
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fixed effects model.  The surprising result ultimately follows from the assumption that the 
variation of the constant terms is independent of the other variables, which allows us to put the 
term vi in the disturbance of the equation, rather than build it into the regression with a set of 
dummy variables.) 
 
 In a random-effects model, disturbances for a given college (in our case) or whatever 
entity is under study will be correlated across periods whereas in the fixed-effects model this 
correlation is assumed to be absent.  However, in both settings, correlation between the panel 
error term effects and the explanatory variables is also likely.  Where it occurs, this correlation 
will reflect the effect of substantive influences on the dependent variable that have been omitted 
from the equation – the classic “missing variables” problem.  The now standard Mundlak (1978) 
approach is a method of accommodating this correlation between the effects and means of the 
regressors.  The approach is motivated by the suggestion that the correlation can be explained by 
the overall levels (group means) of the time variables.  By this device, the effect, β1i, is projected 
upon the group means of the time-varying variables, so that 
 
 β1i  =   β1 + δ′ i ix w+         (15) 
 
where ix is the set of group (school) means of the time-varying variables and wi is a (now) 
random effect that is uncorrelated with the variables and disturbances in the model, wi~N(0, σw

2).  
 
 In fact, the random effects model as described here departs from an assumption that the 
school effect, vi, actually is uncorrelated with the other variables.  If true, the projection would 
be unnecessary However, in most cases, the initial assumption of the random-effects model, that 
the effects and the regressors are uncorrelated, is considered quite strong.  In the fixed effects 
case, the assumption is not made. However, it remains a useful extension of the fixed effects 
model to think about the “effect,” β1i, in terms of a projection such as suggested above – perhaps 
by the logic of a “hierarchical model,” for the regression.  That is, although the fixed effects 
model allows for an unrestricted effect, freely correlated with the time varying variables, the 
Mundlak projection adds a layer of explanation to this effect.  The Mundlak approach is a useful 
approach in either setting.  Note that after incorporating the Mundlak “correction” in the fixed 
effects specification, the resulting equation becomes a random effects equation. 
 
  Adding the unit means to the equations picks up the correlation between the school 
effects and the other variables as well as reflecting an expected long-term steady state.  Our 
random effects models for BA and BS degree-granting undergraduate economics departments is 
 
  FACULTY sizeit = β1 + β2YEARt + β3BA&Sit +     (16) 
   β4MEANBA&Si + β5PUBLICi + β6Bschl + β7MA_Degit +  εit + wi 
 
where error term ε is iid over time and E(εit

2|xit) = σi
2 for I = 18 colleges and T  = 14 years and 

E[ui
2] = θ2. 
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FIXED EFFECTS VERSUS RANDOM EFFECTS 
 
Fixed-effects models can be estimated efficiently by ordinary least squares whereas random-
effects models are usually estimated using some type of generalized least-squares procedure. 
GLS should yield more asymptotically efficient estimators if the assumptions for the random-
effects model are correct.  Current practice, however, favors the fixed-effects approach for 
estimating standard errors because of the likelihood that the stronger assumptions behind the 
GLS estimator are likely not satisfied, implying poor finite sample properties (Angrist and 
Pischke, 2009, p. 223).  This creates a bit of a dilemma, because the fixed effects approach is, at 
least potentially, very inefficient if the random effects assumptions are actually met.  The fixed 
effects approach could lead to estimation of K+1+n rather than K+2 parameters (including σ2). 
 

Whether we treat the effects as fixed (with a constant intercept β1 and dummy category 
variables) or random (with a stochastic intercept β1i) makes little difference when there are a 
large number of time periods (Hsiao, 2007, p. 41).    But, the typical case is one for which the 
time series is short, with many cross-section units, 

The Hausman (1978) test has become the standard approach for assessing the 
appropriateness of the fixed-effects versus random-effects model.  Ultimately, the question is 
whether there is strong correlation between the unobserved case-specific random effects and the 
explanatory variables.  If this correlation is significant, the random-effects model is inappropriate 
and the fixed-effects model is supported.  On the other hand, insignificant correlation between 
the specific random-effects errors and the regressors implies that the more efficient random-
effects coefficient estimators trump the consistent fixed-effects estimators.  The correlation 
cannot be assessed directly. But, indirectly, it has a testable implication for the estimators.  If the 
effects are correlated with the time varying variable, then, in essence, the dummy variables will 
have been left out of the random effects model/estimator.  The classic left out variable result then 
implies that the random effects estimator will be biased because of this problem, but the fixed 
effects estimator will not be biased because it includes the dummy variables.  If the random 
effects model is appropriate, the fixed effects approach will still be unbiased, though it will fail 
to use the information that the extra dummy variables in the model are not needed.  Thus, an 
indirect test for the presence of this correlation is based on the empirical difference between the 
fixed and random effects estimators. 

 Let βFE and βRE be the vectors of coefficients from a fixed-effects and random-effects 
specification.  The null hypothesis for purpose of the Hausman test is that under the random 
effects assumption, estimators of both of these vectors are consistent, but the estimator for βRE is 
more efficient (with a smaller asymptotic variance) than that of βFE.  Hausman’s alternative 
hypothesis is that the random-effects estimator is inconsistent (with coefficient distributions not 
settling on the correct parameter values as sample size goes to infinity) under the hypothesis of 
the fixed-effects model, but is consistent under the hypothesis of the random-effects model. The 
fixed-effects estimator is consistent in both cases.  The Hausman test statistic is based on the 
difference between the estimated covariance matrix for least-squares dummy variable coefficient 
estimates (bFE ) and that for the random-effects model: 
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H =  (bFE − bRE)´[Var (bFE ) − Var(bRE)]−1(bFE − bRE) 

 where H is distributed Chi square, with K (number in b) degrees of freedom. 

If the Chi-square statistic p value < 0.05, reject the Hausman null hypotheis and do not use 
random effects.  If the Chi-square statistic p value > 0.05, do not reject the Hausman null 
hypothesis and use random effects.  An intuitively appealing, and fully equivalent (and usually 
more convenient) way to carry out the Hausman test is to test the null hypothesis in the context 
of the random-effects model that the coefficients on the group means in the Mundlak-augmented 
regression are jointly zero. 

 

CONCLUDING COMMENTS 

As stated in Module One, “theory is easy, data are hard – hard to find and hard to get into a 
computer program for statistical analysis.”  This axiom is particularly true for those wishing to 
do panel data analysis on topics related to the teaching of economics where data collected for 
only the cross sections is the norm.   As stated in Endnote One, a recent exception is Stanca 
(2006), in which a large panel data set for students in Introductory Microeconomics is used to 
explore the effects of attendance on performance.  As with Modules One and Two, Parts Two, 
Three and Four of this module provide the computer code to conduct a panel data analysis with 
LIMDEP (NLOGIT), STATA and SAS, using the Becker, Greene and Siegfried (2009) data set. 
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ENDNOTES 
 

 
i   As seen in Stanca (2006), where a large panel data set for students in Introductory 
Microeconomics is used to explore the effects of attendance on performance, panel data analysis 
typically involved a dimension of time.  However, panels can be set up in blocks that involve a 
dimension other than time.  For example, Marburger (2006) uses a panel data structure (with no 
time dimension) to overcome endogeneity problems in assessing the effects of an enforced 
attendance policy on absenteeism and exam performance. Each of the Q multiple-choice exam 
questions was associated with specific course material that could be associated with the 
attendance pattern of N students, giving rise to NQ panel data records.  A dummy variable for 
each student captured the fixed effects for the unmeasured attribute of students and thus 
eliminating any student specific sample selection problem.    
 
ii   Section V of Link and Mulligan (1996) outlines the advantage of panel analysis for a range of 
educational issues.  They show how panel data analysis can be used to isolate the effect of 
individual teachers, schools or school districts on students' test scores.    
 
iii   One of us, as a member on an external review team for a well known economics department, 
was told by a high-ranking administrator that the department had received all the additional lines 
it was going to get because it now had too many majors for the good of the institution.  
Historically, the institution was known for turning out engineers and the economics department 
was attracting too many students away from engineering.   This personal experience is consistent 
with Johnson and Turner’s (2009, p. 170) assessment that a substantial part of the explanation for 
differences in student-faculty ratios across academic departments resides in politics or tradition 
rather than economic decision-making in many institutions of higher education. 
 
iv   As long as the model is static with all the explanatory variables exogenous and no lagged 
dependent variables used as explanatory variables, ordinary least-squares estimators are unbiased 
and consistent although not as efficient as those obtained by maximum likelihood routines. 
Unfortunately, this is not true if a lagged dependent variable is introduced as a regressor (as one 
might want to do if the posttest is to be explained by a pretest).  The implied correlation between 
the lagged dependent variable and the individual specific effects and associated error terms bias 
the OLS estimators (Hsiao, 2007, pp. 73-74).  
 
v  Fixed-effects models can have too many categories, requiring too many dummies, for 
parameter estimation.  Even if estimation is possible, there may be too few degrees of freedom 
and little power for statistical tests.  In addition, problems of multicollinearity arise when many 
dummy variables are introduced. 

vi Hsiao (2007, pp. 295-310) discusses panel data with a large number of time periods.  When T 
is large serial correlation problems become a big issue, which is well beyond the scope of this 
introductory module.  
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vii Random-effects models in which the intercept error term vi does not depend on time are 
referred to as one-way random-effects models. Two-way random-effects models have error terms 
of the form  
 

 εit = vi + εt + uit 
 
where vi is the cross-section-specific error, affecting only observations in the ith panel; εt is the 
time-specific component, which is unique to all observations for the tth period; and uit is the 
random perturbation specific to the individual observation in the ith panel at time t.  These two-
way random-effects models are also known as error component models and variance component 
models.  
 


