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Online Appendix

Section A provides further details on the computation of Medicaid. Section
B describes the solution to the intratemporal problem of allocating spending
between consumption, medical consumption and housing. Section C describes
how a reverse-mortgage-type loan is introduced in the model and how it is cal-
ibrated. Section D describes the model with exogenous medical expenditures.
Section E provides additional details about the estimation. Section F presents
the fit for the full set of targeted moments for the baseline specification. Sec-
tion G provides additional details on the identification of the model. Section H
discusses the robustness specifications and presents the results of the counter-
factuals for them. Section I describes the model when individuals have time to
adjust to the policy change and presents the counterfactual results in this case.
Section J describes the computational method. Section K highlights that the
low elasticity of medical consumption that I find is globally in line with the
estimation results from the strategic survey questions in Ameriks et al. (2020).

A Additional Details on Medicaid Computations

A.1 Medicaid for the medically needy in the community

For the medically-needy pathway and for those outside of nursing homes, the
Medicaid transfer is given by:

Medicaidmnt = max

{
0;xc,h,mmn (µ (·) , pmt , hst)−max

{
Amedt + yt + ybt − τt;xc,hmn (hst)

}}
where xc,h,mmn (·) is the overall Medicaid floor and (see section IV.F) xc,hmn (·) is
the part of this floor intented to cover non-medical consumption.

The second max operator is intented to account for the fact that there is
no SSI-like income transfer through this pathway. In particular, the formula
shows that a retiree with counted assets and income below xc,hmn (·) will receive
a transfer only intended to cover medical needs, equal to xc,h,mmn (·) − xc,hmn (·).
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Hence, this retiree could end up consuming less than xc,hmn (·). A retiree with
counted assets and income above xc,hmn (·) will first have to deplete these re-
sources and then will receive a transfer allowing him/her to spend at least
xc,hmn (·) on non-medical goods.

A.2 Medicaid and borrowing

To prevent homeowners receiving Medicaid from having total spending xc,h,mt

larger than what is normally intended by the program when new borrowing is
allowed, I impose the following constraints for the categorically-needy:

Medicaidt = 0 if xc,h,mt > max
{
Y , xc,h,mcn (·)

}
+ yd + min

{
Ad,max

{
0, Ãmedt

}}
and for the medically-needy:

Medicaidt = 0 if xc,h,mt > xc,h,mmn (·) + min

{
Ad,max

{
0, Ãmedt

}}
Without such constraints, Medicaid recipients could potentially borrow large
amounts and cumulate it with Medicaid. Such withdrawal of housing equity
may however be considered as additional income and could thus make them
ineligible. These equations account for this in a parsimonious way. Medicaid
recipients are nonetheless allowed to consume their countable assets below the
asset disregard Ad on top of the expenditure floors which reflects the fact that
they do not have to run down all their countable assets to qualify for Medicaid.

A.3 Medicaid expenditure floors

I here further detail how the Medicaid expenditure floors are set. First, Medi-
caid is assumed to target a minimum level of non-medical consumption spend-
ing xc,hk (hst) (k = cn,mn), where the latter is possibly allowed to be differ-
ent in the community and in nursing homes: xc,hk (hst) = xc,hk,��nh for those in
the community and xc,hk (hst) = xc,hk,nh for nursing home residents. Medicaid
is further assumed to consider the case of a typical renter to determine the
amount xc,h,mk (·) for medical and non-medical consumption corresponding to
xc,hk (hst). A typical renter spending xc,hk (hst) on non-medical goods would
have ct = ωxc,hk (hst) and h̃t = (1− ω)xc,hk (hst) /r

h (ty). Plugging this into
equation (3) allows to compute the required expenditure floors:

xc,h,mcn (µ (·) , pmt , hst) + yd =xc,hcn (hst) + (q (hst) p
m
t )(σ−1)/σ µ (·)1/σ

×
(
ωω (1− ω)1−ω rh (ty)ω−1)(γ−1)/σ (

xc,hcn (hst)
)γ/σ
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xc,h,mmn (µ (·) , pmt , hst) =xc,hmn (hst) + (q (hst) p
m
t )(σ−1)/σ µ (·)1/σ

×
(
ωω (1− ω)1−ω rh (ty)ω−1)(γ−1)/σ (

xc,hmn (hst)
)γ/σ

The setting of these floors follows the logic of the simple model in section IV.F.
Consistently with reality, Medicaid transfers increase with medical needs µ (·).
Considering the case of a typical renter ensures that Medicaid payments are
independent of tenure status.

B Solution to intratemporal problem

The Lagrangean for the intratemporal problem is:

L =

(
(1 + φod

o
t ) c

ω
t h̃

1−ω
t

)1−γ

1− γ
+ µ (·)× m1−σ

t

1− σ
+λ
(
xc,h,mt − ct − dotψhph (ty)ht − (1− dot ) rh (ty)ht − q (hst) p

m
t mt

)
We have the two first order conditions relative to ct and mt:

ω (1 + φod
o
t ) c

ω−1
t h̃1−ω

t

(
(1 + φod

o
t ) c

ω
t h̃

1−ω
t

)−γ
= λ

µ (·)×m−σt = q (hst) p
m
t λ

Implying:

q (hst) p
m
t ω (1 + φod

o
t )

1−γ c
ω(1−γ)−1
t h̃

(1−ω)(1−γ)
t = µ (·)×m−σt

⇒mσ
t =

µ (·)
ωq (hst) pmt

(1 + φod
o
t )
γ−1 c

1+ω(γ−1)
t h̃

(1−ω)(γ−1)
t

⇒mt =

[
µ (·)

ωq (hst) pmt

(
(1 + φod

o
t ) h̃

1−ω
t

)γ−1

c
1+ω(γ−1)
t

]1/σ

For a renter who could pick any housing size, we further have the first-order
condition relative to :

(1− ω) cωt h̃
−ω
t

(
cωt h̃

1−ω
t

)−γ
= λrh (ty)

⇒ ct

h̃t
=

ω

1− ω
rh (ty)

From this we can compute ct and h̃t in nursing home for a given xnht :

ct =ωxnht

h̃t = (1− ω)xnht /r
h (ty)
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From this we can compute the corresponding mt:

mt =

[
µ (·)

ωq (hst) pmt

(
(1− ω)xnht
rh (ty)

)(1−ω)(γ−1) (
ωxnht

)1+ω(γ−1)

]1/σ

⇒mt =

[
µ (·)

ωq (hst) pmt

(
(1− ω)

rh (ty)

)(1−ω)(γ−1)

(ω)1+ω(γ−1) (xnht )(1−ω)(γ−1)+1+ω(γ−1)

]1/σ

⇒mt =

[
µ (·)

q (hst) pmt

(
(1− ω)

rh (ty)

)(1−ω)(γ−1)

ωω(γ−1)
(
xnht
)γ]1/σ

⇒mt =

[
µ (·)

q (hst) pmt

(
(1− ω)(1−ω) ωωrh (ty)(ω−1)

)(γ−1) (
xnht
)γ]1/σ

C Reverse Mortgages

This section describes how a reverse mortgage is introduced in the model and
its calibration.

C.1 Modeling of reverse mortgages

Reverse Mortgages enter as an additional state variable RMt−1 indicating
whether the retiree has a reverse mortgage. The constraints for those not
using reverse mortgages are unchanged.

C.1.1 Homeowners getting a reverse mortgage

First, we consider the case of a homeowner who did not have a reverse mortgage
(RMt−1 = 0) and decides to get one (RMt = 1). To do so, she must not sell
her home and needs to have hst 6= nh. She also has to pay a fixed transaction
cost φRMph(ty)ht which enters as an additional term on the right-hand side of
(7) in the main text. In exchange, she faces the borrowing constraint:

bt ≥ −dotλRMt ph (ty)ht

instead of (6) in the main text. The interest of getting a reverse mortgage
is that λRMt is growing over time. However, in addition to the fixed cost,
the extra interest rate on reverse mortgages µRM is larger than the one on
standard forward mortgages µ. Hence, a reverse mortgage gives access to a
looser borrowing constraint but this comes at a cost.
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C.1.2 Homeowners with a reverse mortgage

For a homeowner who already had a reverse mortgage in the previous period
(RMt−1 = 1), the budget constraint is:

bt = (1− dst)
(
R + µRM1 {bt−1 < 0}

)
bt−1

+dst max
{(
R + µRM1 {bt−1 < 0}

)
bt−1 + ph(ty)ht−1 (1− κp) ; 0

}
+yt − τt +Medicaidt − xc,h,mt

Compared to the equations in the main text, the first line simply indicates
that a non-selling homeowner inherits her past debt or liquid assets. The
second line makes explicit that reverse mortgages are non-recourse loans, i.e.
the maximum repayment is bounded by the resale value of the home. Finally,
if the homeowner does not sell her home the borrowing constraint is:

bt ≥ min
{
−ph (ty)htλ

RM
t ;

(
R + µRM

)
bt−1

}
It indicates that a reverse mortgage does not have to be repaid even if the
previous loan balance plus interests gets larger than ph (ty)htλ

RM
t . At this

point, the line of credit just grows at the interest rate and, although the retiree
cannot use the reverse mortgage to finance additional consumption anymore,
she does not have to make payments on the loan.

C.1.3 Reverse mortgages and nursing home stays

A homeowner with a reverse mortgage and who moves to nh is constrained to
repay her reverse mortgage, up to the limit of the resale value of her home.
In most cases, this is done by selling the home but I also allow it to occur by
paying the loan balance with pension income.
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C.1.4 Medicaid

For Medicaid, introducing reverse mortgages changes only the formula for
assets Ãmedt considered in Medicaid’s asset-test:

Ãmedt =



1 {bt−1 ≥ 0}Rbt−1 + ph
med

t if dot−1 = 0 or dot = 1

max

{
(R + µ× 1 {bt−1 < 0}) bt−1 if dst = 1 and RMt−1 = 0

+ph(ty)ht−1 (1− κp) ; 0

}
max

{(
R + µRM × 1 {bt−1 < 0}

)
bt−1 if dst = 1 and RMt−1 = 1

+ph(ty)ht−1 (1− κp) ; 0

}
C.1.5 Bequests

With reverse mortgages, the formula for bequests is:

Beqt+1 = max

{(
R +

(
µ (1−RMt) + µRMRMt

)
1 {bt < 0}

)
bt

+ ph(ty + 1)ht (1− κp) ; 0

}

C.2 Parametrization of reverse mortgages

For reverse mortgages, I set the fixed cost φRM and the extra interest µRM to
5% and 1.7%. These numbers are from Nakajima and Telyukova (2017) but
do not include the cost of the reverse mortgage loan insurance. Including it
would result in a fixed cost and an interest rate 2 and 1.3 percentage points
higher, which would make reverse mortgages worse substitutes for the home-
stead exemption. The constraint is based figures from the brochure “Reverse
Mortgage Loans: Borrowing Against your Home” by the AARP and imposing
λRMt ≤ 0.8. Figure C.1 plots the collateral constraint for the reverse mortgage
which loosens with age.

D The model with exogenous medical spending

With exogenous medical spending, the latter are given by:

lnmt = µ (t, hst, gen, I) + ς (t, hst, gen, I) εt
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Figure C.1: Collateral constraint for reverse mortgages

With µ (t, hst, gen, I) and log ς (t, hst, gen, I) being a function of the same
variables as in the model with endogenous medical spending, and of pension
permanent income quintile.

For retirees living in the community, utility is given by:

U (·) =

(
(1 + φod

o
t ) c

ω
t h̃

1−ω
t

)1−γ

1− γ
(D.1)

which is the same as for the endogenous case except for the medical part,
which is absent here. Expenditures in this case are given by:

xc,h,mt = ct + dotψ
hph (ty)ht + (1− dot ) rh (ty)ht +mt

in which mt is exogenous.
In nursing home, utility is given by:

U (·) =

(
cωt h̃

1−ω
t

)1−γ

1− γ

and we have:
xc,h,mt = xc,ht + dotψ

hph (ty)ht +mt

ct = ω
(
xc,hnh + xc,ht

)
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h̃t = (1− ω)
(
xc,hnh + xc,ht

)
/rh (ty)

with xc,hnh the baseline level of consumption provided by a nursing home, which
also corresponds to the spending-equivalent floor provided by Medicaid in nurs-
ing home.

Medicaid transfers are computed in a similar fashion as in the endogenous
case, except that the overall expenditure floors are the sum of the expendi-
ture floors for consumption and housing plus exogenous medical spending (vs
endogenous for the model with endogenous medical spending).

E Estimation

E.1 Additional results about health-transition matrices

Figure E.1 plots the fraction of those in nursing home by age and income
quintile. The solid lines use the true data, while the dotted lines use simulated
data based on my estimated transition matrix. Figure E.2 is similar but plots
the share of those with low disability (i.e. with 0 or 1 difficulty with ADLs).
From these figures, we see that the transition matrix is successful not only in
replicating the health patterns by age in the data, but also in replicating these
health patterns by age separately for the different permanent income quintiles.

Table E.1 shows the life expectancy at 72 implied by the transition matrix.
The implied (remaining) life expectancy is 12.2 years for females and 9.0 years
for men. In comparison, De Nardi et al. (2016) find life expectancies at age
70 of 13.5 and 9.7 years respectively for men and women. According to Arias
(2012), in 2008, life expectancy for females was 16.2 and 14.7 years at 70 and
72. For males the figures are 13.9 and 12.6 years respectively. So according to
these figures, years of life expectancy decline by 9.25% (1− 14.7/16.2) and by
9.35% (1 − 12.6/13.9) between 70 and 72 for females and males respectively.
Applying these percentage declines to the figures in De Nardi et al. (2016)
gives life expectancies at 72 of 12.3 and 8.8 respectively, which is in line with
the figures I get.1

1Unsurprisingly, life expectancy generally increases with income. Life expectancy here is lower than for
the whole US population as I consider only singles (see De Nardi et al. (2016)).
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Figure E.1: Share in nursing home by income: data vs simulated
Notes: Solid lines: data ; dotted lines: simulated using estimated transition matrix and health distribution
between 70 and 74.

Table E.1: Transition matrix implications for life expectancy at 72

Income quintile

All Bottom 2 3 4 Top

female 12.2 9.2 11.4 12.0 13.9 13.8

male 9.0 6.4 8.1 8.7 8.9 10.2
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(b) Second income quintile
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(c) Third income quintile
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(d) Fourth income quintile
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(e) Top income quintile

Figure E.2: Share with low disability: data vs simulated
Notes: Solid lines: data ; dotted lines: simulated using estimated transition matrix and health distribution
between 70 and 74.
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E.2 Variables definitions for second stage

First of all, we need to determine the model counterparts of the variables we
are targeting, although the timing of the interview in the data will never align
perfectly with the timing in the model.

I assume that liquid wealth in year t is equal to ex-post liquid wealth in the
model, that is liquid wealth that remains after all shocks have been observed
and all decisions have been made. This is consistent with the fact that in the
HRS we observe wealth at the time of the interview and out-of-pocket medical
spending of the past two years. As a result:2

liquid_wealtht = bt

I make similar assumptions for debt, homeownership and Medicaid recipiency:

debtt = 1{bt < 0}

home_ownershipt = dot

receives_medicaidt = 1{Medicaidt > 0}

Medical expenditures in t are given by:

med_expt =

{
q (hst) p

m
t mt if hst 6= nh

xc,ht + q (hst) p
m
t mt if hst = nh

so that I account for the fact that out-of-pocket medical spending on nursing
homes also include the consumption and housing components.

In the HRS, we observe out-of-pocket medical expenditures of the last two
years which I divide by 2 to have a yearly measure. The model counterpart of
this out-of-pocket medical spending measure is given by:

oop_med_expt =
1

2

1∑
j=0

max {0;med_expt−j −Medicaidt−j}

As in the first wave the model is simulated, we do not have simulations for
the year before this first wave. As a result, all moments related to medical
spending are computed only from wave 5 (the second HRS wave used in the
estimation). As a result, moments related to the autocorrelation of medical
spending are computed from wave 6.

2In the first wave of the data (corresponding to year 1998), we observe ex-post liquid wealth b1998. In
order to simulate decisions in year 1998, which requires ex-ante liquid wealth b1997, I add the yearly average
of out-of-pocket medical spending in the last two years to b1998 to get b1997.
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E.3 Inflated Medicaid recipiency rates

French et al. (2017) provide evidence that Medicaid rates are underreported in
the HRS with respect to the MBCS, which is more reliable as based on admin-
istrative records. To account for this, I target “inflated” Medicaid recipiency
rates. To construct these inflated Medicaid rates, I implement the following
procedure:

1. I estimate the probability to declare to receive Medicaid in the HRS con-
ditional on health dummies, permanent income quintile dummies and
homeownership dummies using a logit model. Homeownership dum-
mies are included so that homeownership rates conditional on receiv-
ing Medicaid are globally preserved in the data with inflated Medicaid
rates. Permanent income and health dummies enable to maintain the
permanent-income and health gradients for Medicaid recipiency.3

2. I then compute the predicted probability for each individual who does
not receive Medicaid: p̂i,Medicaid

3. I also compute the average Medicaid recipiency rate by permanent in-
come quintile I: p̂IMedicaid

4. I then compute an inflated probability to receive Medicaid as follow:

p̂inflatedi,Medicaid = πI×
p̂IMedicaid

1− p̂IMedicaid

× p̂i,Medicaid∑
i∈I p̂i,Medicaid∑

i∈I 1

= πI×
p̂IMedicaid

1− p̂IMedicaid

×p̂normalizedi,Medicaid

where πI is a multiplicative factor based on French et al. (2017) (see
below).

5. Each individual who does not receive Medicaid in the HRS draws εi from
a uniform distribution between 0 and 1. If εi < p̂inflatedi,Medicaid, the Medicaid
recipiency status of the individual is changed to 1. It is 0 otherwise.

As a result of this procedure, asymptotically the inflated Medicaid rate within
an income group is (with xi denoting the average of xi within a permanent

3Also, as health is strongly associated with age, including health dummies enables to preserve the age
gradient of Medicaid recipiency.
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income quintile):

p̂I,inflatedMedicaid =p̂IMedicaid +
(
1− p̂IMedicaid

)
× p̂inflatedi,Medicaid

=p̂IMedicaid +
(
1− p̂IMedicaid

)
× πI ×

p̂IMedicaid

1− p̂IMedicaid

× p̂normalizedi,Medicaid

=p̂IMedicaid +
(
1− p̂IMedicaid

)
× πI ×

p̂IMedicaid

1− p̂IMedicaid

=p̂IMedicaid (1 + πI)

So, for a permanent income quintile, the inflated Medicaid rate is πI
100

% higher
than the initial Medicaid rate in the HRS data. I choose πI based on the
relative differences in Medicaid rates between the MCBS and the HRS reported
in table 8 of French et al. (2017). Specifically the values of 1 + πI I use are:
69.9/60.9, 41.8/28.1, 15.5/11.1, 8.0/5.6 and 5.4/3.0 for the bottom to top
permanent income quintiles respectively. In all the model section, the inflated
Medicaid rates are used except if stated otherwise.

E.4 Second-stage estimation procedure

The methodology for the second stage similar to the one in the online appendix
of De Nardi et al. (2016). I summarize briefly the minimization procedure here.
For more details, the interested reader can refer to their online appendix.

Let ∆ be the vector of second stage parameters and χ the vector of first
stage parameters. For each simulated individual, we compute liquid_wealtht,
debtt, home_ownershipt, receives_medicaidt and oop_med_expt which are
functions of (∆,χ). From the simulated data, we can then compute:

• liquid_wealthmedcht,t,I (∆,χ): the median liquid wealth of individuals in
year t in cohort cht and income group I;

• liquid_wealth75th
cht,t,I (∆,χ): the 75th percentile of liquid wealth of indi-

viduals in year t in cohort cht and income group I;

• home_ownershipcht,t,I (∆,χ): the homeownership rate of individuals in
year t in cohort cht and income group I;

• home_ownershiphs,t (∆,χ): the homeownership rate of individuals in
health hst in year t;

• receives_medicaidcht,t,I (∆,χ): the medicaid rate of individuals in year
t in cohort cht and income group I;
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• oop_med_expmedcht,t,I (∆,χ): the median out-of-pocket medical expendi-
tures of individuals in year t in cohort cht and income group I;

• oop_med_exp90th
cht,t,I (∆,χ): the median out-of-pocket medical expendi-

tures of individuals in year t in cohort cht and income group I.

• oop_mex_exphs,t (∆,χ) (oop_mex_expgen,t (∆,χ)): the mean out-of-
pocket medical expenditures in year t of individuals with health state hs
(respectively gender gen).

Let’s denote liquid_wealthhrsi,t , debtt, home_ownershiphrsi,t , receives_medicaidhrsi,t

and oop_med_exphrsi,t be the observed values for liquid_wealtht, debtt, home_ownershipt,
receives_medicaidt and oop_med_expt in the data for an individual i aged t
(or in year ty). The different moment conditions at the true value ∆0 and χ0

for ∆ and χ are of the form:4

E

((
1
{
liquid_wealthhrsi,t ≤ liquid_wealthmedcht,t,I (∆0,χ0)

}
− 1

2

)
× 1 {chti = cht}

×1 {Ii = I} × 1 {i observed in t} |t
)

= 0

E

((
1
{
liquid_wealthhrsi,t ≤ liquid_wealth75th

cht,t,I (∆0,χ0)
}
− 3

4

)
× 1 {chti = cht}

×1 {Ii = I} × 1 {i observed in t} |t
)

= 0

E

((
home_ownershiphrsi,t − home_ownershipcht,t,I (∆0,χ0)

)
× 1 {chti = cht}

×1 {Ii = I} × 1 {i observed in t} |t
)

= 0

E

((
home_ownershiphrsi,t − home_ownershiphs,t (∆0,χ0)

)
× 1 {hsi = hs}

×1 {i observed in t} |t
)

= 0

4I omit the computation of the moment condition for the autocorrelation of medical spending by perma-
nent income which is described in the appendix of De Nardi et al. (2016).
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E

((
receives_medicaidhrsi,t − receives_medicaidcht,t,I (∆0,χ0)

)
× 1 {chti = cht}

×1 {Ii = I} × 1 {i observed in t} |t
)

= 0

E

((
1
{
oop_med_exphrsi,t ≤ oop_med_expmedcht,t,I (∆0,χ0)

}
− 1

2

)
× 1 {chti = cht}

×1 {Ii = I} × 1 {i observed in t} |t
)

= 0

E

((
1
{
oop_med_exphrsi,t ≤ oop_med_exp90th

cht,t,I (∆0,χ0)
}
− 9

10

)
× 1 {chti = cht}

×1 {Ii = I} × 1 {i observed in t} |t
)

= 0

E

((
oop_med_exphrsi,t − oop_mex_exphs,t (∆0,χ0)

)
× 1 {hsi = hs}

×1 {i observed in t} |t
)

= 0

E

((
1
{
oop_med_exphrsi,t ≤ oop_med_exp90th

hs,t (∆0,χ0)
}
− 9

10

)
× 1 {hsi = hs}

×1 {i observed in t} |t
)

= 0

E

((
oop_med_exphrsi,t − oop_mex_expgen,t (∆0,χ0)

)
× 1 {geni = gen}

×1 {i observed in t} |t
)

= 0

Assuming that the first-stage parameters are set to their true values, the
J moment conditions above are stored in a J × 1 vector ϕN (∆,χ0) where N
is the number of individuals in the data. The estimated value for ∆ is given
by:

∆̂ = argmin∆

N

1 + N
NS

ϕ̂N (∆,χ0)′ ŴN ϕ̂N (∆,χ0)
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ŴN is the weighting matrix which is diagonal with each element being the
inverse of the variance of the corresponding moment, and is estimated from
the data.5 NS = 20×N is the number of simulated individuals. The variance-
covariance matrix of the estimated parameters and χ2 statistics are computed
in the usual way:

V =

(
1 +

N

NS

)
(D′WD)

−1
D′WSWD (D′WD)

−1 (E.1)

with D is the gradient matrix and S is the variance-covariance matrix of the
different moments. To find ∆̂, I use a the a variant of the Tik-Tak algorithm
described in Arnoud et al. (2019). I first conduct a grid search based on a
sobol sequence.6 In this step, I evaluate the model at 2,000 different vectors. I
then run the BOBYQA algorithm developed by Powell (2009) from 20 different
starting vectors.7

F Full set of moments for baseline specification

Figures F.1 shows the full set of moments for the baseline specification. Subfig-
ure d shows that the model is successful in replicating homeownership rates by
health status (each line on the figure corresponds to a wave). In particular, it
replicates the fact that homeownership rates are much lower in nursing homes
than in the community. Panel f shows that the model matches the limited
debt rates in the data, although it tends to generate less person in debt than
in the data as discussed in the text. Panels i, j and k show that the model
does quite a good job at matching out-of-pocket medical spending by health
and gender, and that it matches well the autocorrelation of medical spending
by income.

Finally, table F.1 shows the estimates for medical needs. These parameters
are usually quite tightly estimated. The estimated persistence of the medical
needs shocks εt is 0.67 which is in line the autocorrelation moments in the
data.

5I only keep the moments with a positive variance.
6The library sobol_seq0.1.2 was used: https://pypi.org/project/sobol_seq/.
7I use the Py-BOBYQA package (Cartis et al., 2019). Previous estimations of the model were done

using the Nelder-Mead simplex algorithm from the Scipy library. At the time I was going to run the final
estimations for the paper, I found out about the paper by McGee (2019) who claim that the BOBYQA
algorithm is usually faster than the Nelder-Mead simplex one. I thus did run both algorithms starting from
the same (limited number of) vectors and I indeed found that in my case the BOBYQA algorithm converged
significantly faster while giving as good results as the Nelder-Mead one. I am thankful to McGee (2019) for
the hint as this has helped reduce estimation time.
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Figure F.1: Full set of targeted moments: main specification
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Figure F.1: Full set of targeted moments: main specification (continued)
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Table F.1: Medical needs parameters

estimate s.e.

µ0 −1.20× 100 1.00× 10−2

µmale −1.15× 10−1 2.02× 10−2

µ1 4.96× 10−2 1.28× 10−4

µ2 −2.45× 10−4 4.47× 10−6

µmd 5.83× 10−1 1.10× 10−2

µhd 5.74× 10−1 2.83× 10−2

µnh 1.63E × 100 1.77× 10−2

ς0 −6.17× 10−1 8.93× 10−3

ςmale 5.45× 10−2 9.87× 10−3

ς1 6.26× 10−3 1.23× 10−4

ς2 −1.63× 10−6 3.57× 10−6

ςmd 7.46× 10−2 3.67× 10−3

ςhd 5.98× 10−1 1.37× 10−2

ςnh −3.33× 10−1 1.49× 10−2

ρε 6.65× 10−1 2.04× 10−3

G Identification

In this section, I discuss further the identification of some parameters of the
model and their influence on different variables of interest. To do so, I de-
scribe how sensitive are wealth, homeownership, Medicaid claiming and medi-
cal spending to changes in these parameters, and I show how the contribution
of different moments to the GMM distance criterion changes when varying
these parameters. This section also provides further details on the main sav-
ing motives in the baseline model.

Higher impatience Figure G.1 shows the effect of reducing the time-preference
parameter β by 10% on average wealth, homeownership, Medicaid claiming,
and average medical spending. Not surprisingly a lower β generates a signifi-
cant decline in wealth, and this higher willingness to dissave results in lower
homeownership rates. As homeownership declines, Medicaid rates decline early
in retirement. However, lower wealth results in increases in Medicaid rates
later on. Overall medical expenses (i.e. the sum of out-of-pocket and Medi-
caid spending) vary little as the estimated elasticity of medical consumption
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is low. In contrast, out-of-pocket medical spending are slightly higher early
in retirement because of lower reliance on Medicaid, but are much lower later
on (when medical spending are highest) because of the increased reliance on
Medicaid. Column 2 of table G.1 shows, in particular, that lowering β increase
the contribution of wealth and homeownership moments to the GMM crite-
rion. The increase for the latter is particularly large and affects debt rates
substantially (as housing is the collateral necessary to have debt).

No bequest motives Figure G.2 shows the influence of bequest motives in
the model. First, we see that lower bequest motives and lower β tend to affect
the profiles for wealth, homeownership, Medicaid claiming and out-of-pocket
medical spending in globally similar directions. This is one instance of the
well known difficulty to separately identify bequest motives from other saving
motives. There are however some differences linked to the fact that bequest
motives here are luxury goods and are only operative at high consumption
levels. While a fall in β has roughly similar proportional effects on wealth at
different permanent income (PI) levels, bequest motives have larger effects on
high-PI retirees as they are operative for a larger share of these retirees. In
terms of contribution to the GMM criterion, column 3 of table G.1 shows that
removing bequest motives worsen the fit for wealth and homeownership.

No extra utility of homeownership Figure G.3 shows the influence of
the extra utility of homeownership in the model. Despite the fact that the
model features a rental premium and further incentives to own because of
the homestead exemption, an extra utility of homeownership is required to fit
homeownership rates. This further has influence on savings, in part because
of the interaction with collateral constraints as in Nakajima and Telyukova
(2020). While bequest motives have influence on homeownership, they are
not sufficient to explain why retirees with limited savings and income remain
homeowners, in particular as for them bequest motives are not operative. As
for when the homestead exemption is removed, the lower homeownership rates
and higher dissaving tend to lower Medicaid rates early in retirement and
increase them late in retirement. As previously seen for changes in β, these
changes in Medicaid rates lead to changes in out-of-pocket medical spending.
In terms of contribution to the GMM criterion, column 4 of table G.1 shows
that removing the extra utility from homeownership worsens the fit for wealth,
Medicaid recipiency, homeownership and debt.
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Figure G.1: Effect of decreasing β by 10%
Notes: Solid lines: estimated model. Dotted lines: model with change in parameter. Each line corresponds
to retirees in a given permanent-income (PI) quintile and cohort followed over time. Red, orange, green,
blue, and black lines correspond to retirees in the bottom (first) to top (fifth) PI quintile.
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(e) Out of pocket medical spending

Figure G.2: Effect of turning off bequest motives (φW = 0)
Notes: Solid lines: estimated model. Dotted lines: model with change in parameter. Each line corresponds
to retirees in a given permanent-income (PI) quintile and cohort followed over time. Red, orange, green,
blue, and black lines correspond to retirees in the bottom (first) to top (fifth) PI quintile.
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(e) Out of pocket medical spending

Figure G.3: Effect of turning off extra utility of homeownership (φo = 0)
Notes: Solid lines: estimated model. Dotted lines: model with change in parameter. Each line corresponds
to retirees in a given permanent-income (PI) quintile and cohort followed over time. Red, orange, green,
blue, and black lines correspond to retirees in the bottom (first) to top (fifth) PI quintile.

23



Lower medical needs Figure G.4 shows the effect of lowering medical needs
and therefore reducing medical expense risk. Reducing medical expense risk
can affect wealth profiles in two opposite directions. First, higher medical
spending can lower savings through a direct effect. Second, higher risk of
future medical spending can increase precautionary savings. The latter ef-
fect dominates in De Nardi et al. (2010) for instance. Here, given the large
contribution of bequest motives to savings and the additional contribution of
homeownership, the former dominates. This is globally in line with Lockwood
(2018).8 We see that medical needs affect mostly out-of-pocket medical spend-
ing and Medicaid rates. As a result, the medical spending parameters appear
mostly identified by the moments related to these variables (and how they
vary over different dimensions). This is confirmed in column 5 of table G.1.

Higher medical spending elasticity Figure G.5 shows the effect of having
higher medical spending elasticity (I set σ to half its estimated value, which
is still large). Its main effect is to generate larger dispersion in out-of-pocket
medical spending.9 A higher elasticity of medical spending also increases Med-
icaid rates by reinforcing moral hazard. This is further confirmed in column 6
of table G.1.

Higher Medicaid floors Figure G.6 shows that increasing Medicaid floors
mostly affects Medicaid rates but has a relatively smaller influence on other
variables. Hence, the medicaid floors are mostly identified by targeting Medi-
caid rates which is confirmed by column 7 of table G.1.

H Robustness Specifications

In this section, I consider different robustness specifications. First, I describe
these different specifications. Second, I show the results of the counterfactuals
for these specifications.

8See figure 6 of his paper. Importantly, as written in the figure’s notes, the figure where medical spending
is turned off only captures the precautionary effect. As this effect is not very large in his model, it is likely
cancelled or dominated by the direct effect of turning off medical spending.

9This is consistent with the fact that De Nardi et al. (2016), using higher medical spending elasticity,
tend to overestimate the gradient of out-of-pocket medical spending (see table 5 of their paper).
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(d) Medical spending (including Medicaid payments)
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(e) Out of pocket medical spending

Figure G.4: Lower medical spending risk: µ0 = µ̂0 − log (2)

Notes: Solid lines: estimated model. Dotted lines: model with change in parameter. Each line corresponds
to retirees in a given permanent-income (PI) quintile and cohort followed over time. Red, orange, green,
blue, and black lines correspond to retirees in the bottom (first) to top (fifth) PI quintile.

25



75 80 85 90 95 100
age

0.0

0.5

1.0

1.5

2.0

2.5

3.0

to
ta

l w
ea

lth
 (1

99
8 

do
lla

rs
) 1e5

baseline
counterfactual

(a) Liquid wealth

75 80 85 90 95 100
age

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ho
m

eo
w

ne
rs

hi
p 

ra
te

s baseline
counterfactual

(b) Homeownership rates

75 80 85 90 95 100
age

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ic
ai

d 
ra

te
s

baseline
counterfactual
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(e) Out of pocket medical spending

Figure G.5: Higher medical spending elasticity: σ = σ̂/2

Notes: Solid lines: estimated model. Dotted lines: model with change in parameter. Each line corresponds
to retirees in a given permanent-income (PI) quintile and cohort followed over time. Red, orange, green,
blue, and black lines correspond to retirees in the bottom (first) to top (fifth) PI quintile.
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(d) Medical spending (including Medicaid payments)
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(e) Out of pocket medical spending

Figure G.6: High medicaid floors (all increased by 10%)
Notes: Solid lines: estimated model. Dotted lines: model with change in parameter. Each line corresponds
to retirees in a given permanent-income (PI) quintile and cohort followed over time. Red, orange, green,
blue, and black lines correspond to retirees in the bottom (first) to top (fifth) PI quintile.
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Table G.1: Sensivity of targeted moments to parameter changes

(1) (2) (3) (4) (5) (6) (7)

Baseline β = 0.9β̂ φW = 0 φo = 0 µ0 = µ̂0 σ = σ̂/2 Medicaid

− log (2) floors up 10%

wealth 322 399 494 659 288 354 420

OOP med. exp. 750 734 938 757 6,686 1,929 975

Medicaid recipiency 526 546 523 716 1,326 797 1,216

homeownership 390 2,463 1,243 14,248 557 384 354

debt 624 918 675 1,441 530 664 601

total 2,612 5,059 3,873 17,822 9,387 4,129 3,565

H.1 Description of robustness specifications

H.1.1 Robustness 1: same floor in nursing home and in the com-
munity (and with estimated bequest motives)

One potential concern with the main specification is that the Medicaid floor
in nursing homes is higher than the one in the community. As the former
is relatively large, this tends to reduce the impact of medical expense risk
on consumption. Also, the bequest motives considered is not very prevalent
but is strong when operative. Possibly allowing for more impact of medical
spending risk on consumption could lead to weaker bequest motives, which
might impact the paper’s conclusions.

To address these concerns, I estimate a specification in which I impose that
the Medicaid floor in nursing homes is the same as the Medicaid floor in the
community for the medically needy. Column 2 of table H.1 shows how the
parameters for this specification compare with those in the baseline. We see
that this specification leads to a lower nursing home floor and the estimated
bequest motive is operative from lower levels of consumption (cW is lower) but
is weaker when operative (φW is lower).

This specification is less successful in matching the various moments (the
minimized GMM criterion is 2,774 vs 2,612 for the baseline), although it fits
the targeted moments quite well (figures available upon request). Imposing a
lower floor in nursing home tends in particular to reduce the number of high
PI retirees who rely on Medicaid late in life.
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Table H.1: Main structural parameters - robustness specifications

(1) (2) (3) (4) (5) (6)

baseline robustness 1 robustness 2 robustness 3 robustness 4 robustness 5

Estimated parameters

β 0.950 0.978 0.946 0.950 0.950 0.967

σ 33.132 20.693 19.918 33.132 33.132 n.a.

φo 0.288 0.262 0.386 0.288 0.288 0.305

φW 0.950 0.640 0.950 0.950 0.950 0.950

cW 20,000 11,282 20,000 20,000 20,000 20,000

xc,hcn (hst 6= nh) 3,665 3,680 3,463 6,540 3,665 n.a.

Y 3,665 3,680 4,122 6,540 3,665 n.a.

xc,hmn (hst 6= nh) 6,578 6,514 6,475 6,578 6,578 5,845

xc,hi (hst = nh), 9,936 6,514 10,000 9,936 9,936 9,433

i = cn,mn

ρε 0.665 0.631 0.665 0.665 0.648 0.668

Contribution of different moments

wealth 322 293 322 423 336 294

OOP med. exp. 750 860 773 903 738 784

Medicaid recipiency 526 591 569 757 528 497

homeownership 390 382 574 339 496 491

debt 624 647 575 596 997 638

total 2,612 2,774 2,813 3,019 3,095 2,704
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H.1.2 Robustness 2: no exemption in nursing homes

The baseline model assumes that the homestead exemption also applies in
nursing homes and is quite successful in replicating the fact that roughly a
tenth of Medicaid beneficiaries in nursing homes are homeowners. However,
the homestead exemption is in principle not intended for these individuals.
I therefore consider an alternative specification in which the homestead ex-
emption does not apply in nursing homes to see if it affects the paper’s main
conclusions.10 I set the Medicaid floor in nursing homes to $10,000 so that
it is roughly equal to the one in the baseline. The model is less successful in
matching the targeted moments (see third column of table H.1) although it
does a rather good job in matching them. More important, by construction
this specification cannot account for the fact that about a tenth of Medicaid
recipients in nursing homes benefit from the homestead exemption.

H.1.3 Robustness 3: higher SSI income threshold and categorically-
needy floor

The estimated SSI income threshold and the categorically-needy floor are quite
low in the baseline specification. I thus consider a specification in which I
increase these floors to those used in Brown and Finkelstein (2008) (see fourth
column of table H.1), while keeping other parameters at their values in the
baseline specification. The main effect of this is to increase Medicaid rates for
retirees in the bottom PI quintile, which worsens the fit of the model.

H.1.4 Robustness 4: collateral constraint as in Nakajima and Telyukova
(2020)

I consider also the alternative collateral constraint in Nakajima and Telyukova
(2020). In this specification, I keep the other parameters at their estimated
values. Figure H.1 shows the difference in debt rates between the two spec-
ifications. As we see from these figures, both specifications lead to low debt
rates. Table H.1 shows however a worse fit in terms of GMM distance cri-
terion for the specification with the constraint in Nakajima and Telyukova
(2020). This is because these moments have often low variance, so that even
small deviations from the data can lead to rather large contributions to the

10This is also important to consider as I classify people in nursing homes by also including the days they
spent in nursing homes between the current interview and the exit interview (if there is one). However,
homeownership is observed at the time of the interview which means that possibly some might sell their
homes when in nursing homes but might be considered in my dataset as keeping their homes while living
in a nursing home. This bias is likely to be small, but considering this alternative ensures that it does not
affect the main conclusions in a meaningful way.
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Figure H.1: Debt rates in baseline and in model with collateral constraint in
Nakajima and Telyukova (2020)

GMM criterion. In terms of homeownership, the constraint in Nakajima and
Telyukova (2020) which is quite tight forces homeowners who have initially sig-
nificant debt to sell right away which lowers homeownership rates compared
to my baseline. Visually however the differences are not very large (figures
available upon request). In terms of the other moments, there is little changes
with the baseline, in particular in terms of Medicaid recipiency and wealth,
reflecting the fact that both my baseline constraint and the one in Nakajima
and Telyukova (2020) imply significant illiquidity of housing.

H.1.5 Robustness 5: exogenous medical spending

Estimating a specification with exogenous medical spending gives similar pa-
rameter estimates compared with the baseline and a similar fit. Given the low
elasticity of medical spending in my baseline model, it is not very surprising.11

H.2 Counterfactuals

Changes in Medicaid floors Table H.2 shows the results of changing the
Medicaid floor for the robustness specifications. All these specifications indi-
cate that a reduction of Medicaid generosity would lower welfare. In terms
of magnitudes, the changes are quite similar to the baseline except for the
specification in which the nursing home floor is constrained to be the same in

11The minimization algorithm converges to a point at which everyone qualifies through the medically-
needy pathway (hence, the “n.a.”s (for “non applicable”) in the table. The resulting situation is close to
the one in my baseline. Indeed, the estimated SSI income threshold in this baseline is low implying little
SSI income transfers. With everyone qualifying through the medically-needy pathway, no one receives SSI
income.
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nursing homes as in the community. In this case, the welfare cost of reducing
Medicaid generosity is much larger. This stems from the fact that the nurs-
ing home floor is lower and therefore provides worse insurance to relatively
rich retirees. As a result, cutting the floor leads to a significant increase in
precautionary savings relative to what occurs in the baseline model, which is
costly. This confirms that the compensating variations relative to changes in
Medicaid floors are quite conservative in the baseline as precautionary saving
motives play a limited role in it.

Removing the homestead exemption Table H.3 shows the results of re-
moving the homestead exemption for the robustness specifications. It shows
that the conclusions reached with the baseline model are confirmed in these
robsutness specifications. The percentage reduction in Medicaid costs is be-
tween 6.2% and 9.4%.

Removing the homestead exemption in nursing home Table H.4 shows
the results of removing the homestead exemption in nursing home for the ro-
bustness specifications. Most specifications indicate that ensuring that the
homestead exemption is not used by nursing home residents would improve
welfare on average. An exception is for the specification with the same floors
in nursing home and in the community. It is driven by higher-PI retirees who
value insuring bequests because of the lower value of cW than in the baseline
and thus value benefiting from the homestead exemption in nursing homes (as
nursing home costs create significant risk for bequests). The cost reduction to
the Medicaid program represents 21%-39% of the reduction that occurs when
the homestead exemption is removed completely.

Estate recovery Table H.5 shows the results for estate recovery for the
robustness specifications. The results confirm the conclusions for the base-
line. This is even the case for the specifications with the same floors in the
community and in nursing homes because the overall savings to the Medicaid
program are larger than in the previous experiment as recovery applies both
for Medicaid spending in the community and in nursing homes. In principle,
Medicaid could recover only the expenses made in the community. However,
with endogenous care location, retirees would be incentivized to use nursing
home care more, which is likely to increase Medicaid costs. I thus do not
consider such case.
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Table H.2: Costs and benefits of changing Medicaid generosity

floors down 10% floors up 10%

PI PDV ∆PDV CV − CV
PDV

∆PDV CV − CV
PDV

same floor in NH and in the community

1 31,332 -2,290 5,633 2.46 1,906 -2,105 1.10

2 21,874 -2,583 9,176 3.55 3,517 -6,268 1.78

3 13,748 -1,025 10,376 10.12 1,091 -8,056 7.38

4 8,988 -576 15,687 27.23 636 -11,494 18.07

5 6,957 -442 27,252 61.66 505 -19,491 38.6

all 15,050 -1,260 15,030 11.93 1,429 -10,589 7.41

no exemption in nursing homes

1 29,975 -2,185 3,973 1.82 1,594 -1,387 0.87

2 19,014 -2,608 5,172 1.98 3,411 -3,782 1.11

3 11,134 -1,008 3,886 3.86 1,114 -3,308 2.97

4 6,167 -564 4,156 7.37 592 -3,166 5.35

5 3,328 -254 5,232 20.60 274 -3,784 13.81

all 12,660 -1,196 4,562 3.81 1,301 -3,218 2.47

collateral constraint in Nakajima and Telyukova (2020)

1 31,209 -2,200 3,482 1.58 1,963 -1,321 0.67

2 20,135 -2,977 5,184 1.74 3,861 -3,561 0.92

3 11,050 -1,172 2,807 2.40 1,385 -2,668 1.93

4 5,651 -612 2,252 3.68 812 -1,934 2.38

5 2,622 -287 1,915 6.67 331 -1,766 5.34

all 12,344 -1,322 3,017 2.28 1,555 -2,254 1.45

higher SSI income threshold and categorically-needy floor

1 42,634 -4,823 11,402 2.36 5,808 -3,826 0.66

all 13,964 -1,706 4,138 2.43 2,126 2,573 1.21

exogenous medical spending

1 27,436 -2,021 4,228 2.09 697 -782 1.12

2 24,404 -1,806 4,547 2.52 2,238 -3,155 1.41

3 12,334 -485 2,379 4.91 568 -2,312 4.07

4 6,724 -256 1,824 7.12 254 -1,601 6.30

5 4,757 -115 1,897 16.50 124 -1,615 13.02

all 13,664 -819 2,824 3.45 730 -1,921 2.63
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Table H.3: Costs and benefits of removing of the homestead exemption

PI PDV ∆PDV CV − CV
PDV

same floor in NH and in the community

1 31,332 -1,652 3,437 2.08

2 21,874 -1,614 3,507 2.17

3 13,748 -857 1,844 2.15

4 8,988 -613 1,776 2.90

5 6,957 -430 2,046 4.76

all 15,050 -953 2,438 2.56

no exemption in nursing homes

1 29,975 -1,303 3,537 2.71

2 19,014 -1,392 3,781 2.72

3 11,134 -800 2,302 2.88

4 6,167 -551 1,780 3.23

5 3,328 -226 1,401 6.20

all 12,660 -783 2,421 3.09

collateral constraint in Nakajima and Telyukova (2020)

1 31,209 -1,919 3,254 1.70

2 20,135 -1,796 3,079 1.71

3 11,050 -1,174 1,766 1.50

4 5,651 -747 1,288 1.72

5 2,622 -301 834 2.77

all 12,344 -1,077 1,890 1.75

higher SSI income threshold and categorically-needy floor

1 42,634 -3,301 7,297 2.21

all 13,964 -1,312 2,558 1.95

exogenous medical spending

1 27,436 -1,588 3,746 2.36

2 24,404 -1,763 4,513 2.56

3 12,334 -1,200 2,682 2.24

4 6,724 -928 2,122 2.29

5 4,757 -621 2,206 3.55

all 13,664 -1,156 2,949 2.55
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Table H.4: Costs and benefits of removing of the homestead exemption in
nursing homes

PI PDV ∆PDV CV − CV
PDV

same floor in NH and in the community

1 31,332 -390 167 0.43

2 21,874 -353 276 0.78

3 13,748 -347 467 1.32

4 8,988 -390 1,007 2.58

5 6,957 -388 1,833 4.72

all 15,050 -375 861 2.30

collateral constraint in Nakajima and Telyukova (2020)

1 31,209 -731 164 0.22

2 20,135 -621 143 0.23

3 11,050 -472 158 0.33

4 5,651 -344 154 0.45

5 2,622 -123 97 0.79

all 12,344 -415 139 0.33

higher SSI income threshold and categorically-needy floor

1 42,634 -801 183 0.23

all 13,964 -443 146 0.33

exogenous medical spending

1 27,436 -122 81 0.66

2 24,404 -191 133 0.69

3 12,334 -293 210 0.72

4 6,724 -345 283 0.82

5 4,757 -238 333 1.40

all 13,664 -245 225 0.92
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Table H.5: Costs and benefits of (partial) estate recovery

PI ex-ante PDV ∆PDV PDV estate recovery CV − CV
∆PDV−PDV (recovery)

Medicaid payments w/o behavior w. behavior

same floor in NH and in the community

1 31,332 -106 1,800 1,671 317 0.18

2 21,874 -203 1,665 1,472 557 0.33

3 13,748 -157 816 680 590 0.70

4 8,988 -147 520 396 887 1.63

5 6,957 -124 317 220 1,539 4.47

all 15,050 -150 930 796 857 0.91

no exemption in nursing homes

1 29,975 -15 1,540 1,449 179 0.12

2 19,014 -3 1,557 1,434 295 0.21

3 11,134 -59 840 711 354 0.46

4 6,167 -89 533 408 366 0.74

5 3,328 -41 189 127 363 2.16

all 12,660 -41 845 741 322 0.41

collateral constraint in Nakajima and Telyukova (2020)

1 31,209 -235 2,107 1,829 251 0.12

2 20,135 -368 1,822 1,390 343 0.20

3 11,050 -340 1,129 750 387 0.36

4 5,651 -290 716 398 382 0.56

5 2,622 -131 256 123 298 1.17

all 12,344 -264 1,088 791 334 0.32

higher SSI income threshold and categorically-needy floor

1 42,634 -458 2,794 2,256 539 0.20

all 13,964 -307 1,249 897 384 0.32

exogenous medical spending

1 27,436 -47 1,833 1,721 233 0.13

2 24,404 -73 1,855 1,663 426 0.25

3 12,334 -150 1,138 924 536 0.50

4 6,724 -258 856 559 641 0.78

5 4,757 -194 522 308 892 1.78

all 13,664 -158 1,157 944 587 0.53
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Table H.6: Costs and benefits of removing of the homestead exemption: spec-
ification with a reverse mortgage

PI PDV ∆PDV CV − CV
PDV

1 31,332 -2,293 4,758 2.08

2 20,271 -2,138 4,609 2.16

3 11,321 -1,222 2,668 2.18

4 5,890 -762 1,849 2.43

5 2,527 -339 1,091 3.22

All 12,478 -1,223 2,759 2.26

Reverse mortgage Table H.6 shows that the result for the homestead ex-
emption are robust to introducing the possibility to get a reverse mortgage
in the baseline specification. There are several effects at play here. First, in-
troducing a reverse mortgage in the baseline specification drives up Medicaid
costs as it leads to additional wealth decumulation as indicated by the PDV
column in which amounts are larger than in the baseline. As a result of this
the absolute change in Medicaid costs is also larger when removing the home-
stead exemption. Differences however are rather modest. More significant are
the higher compensating variations in this experiment. This is because in-
troducing a reverse mortgage in the baseline increases expected utility, which
implies a lower marginal increase in utility for each dollar of compensation. As
a result, for a given absolute change in utility the compensating dollar amount
will be larger. This effect dominates the fact that reverse mortgages provide
extra utility (although at significant costs).

I Additional robustness: more time to adjust to
the policy change

The main welfare experiment in the paper consists in comparing the welfare
of single households aged 72 with and without the homestead exemption, and
to compare it to the change in Medicaid spending. However, if the homestead
exemption were to be removed today, those (for instance) aged 55 today would
have time to adjust to the change, which could reduce the welfare costs of
the policy change. On the other hand, they would experience the negative
implications of the policy over more periods, which would increase the welfare
cost of the policy change. In this section, I provide evidence that allowing for
more time to adjust to the policy change does not alter the main conclusions
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of the paper about the valuation of the homestead exemption with respect to
its cost.

To do so, I consider a simple extension of my model starting at age 55.
From age 55 to 64, I make the following assumptions: 1) the single household
receives an exogenous labor income yw (I),12 2) there is no health risk (everyone
has the same health) nor medical spending shocks (i.e. εt = 0 and µt = 0), 3)
there is no mortality risk and 4) there is no Medicaid-like program. Otherwise,
the setting is identical to the one applying from aged 65 and detailed in the
paper. At age 65, the individual draws a health state hst and a medical needs
shock εt from its stationary distribution.13 From then onwards, the model is
identical to the one in the paper.

I consider female individuals with different combinations of income, housing
and liquid wealth at age 55. First, I do simulations for these individuals with
and without the homestead exemption, where the presence or absence of the
homestead exemption is known at age 55. Then, I do simulations for the same
individuals with and without the homestead exemption but starting this time
at age 72. In these simulations, the distribution of housing and liquid wealth
at 72 is taken from the simulations from age 55 with the homestead exemption.
Therefore, the first set of simulations permits a welfare analysis at age 55 for
a policy change which is anticipated. The second set of simulations permits
to do a welfare analysis at age 72 for the same individuals who experience an
unanticipated policy change at age 72. By comparing the two, we can get a
sense of whether giving more time to adjust to the policy change results in
different welfare conclusions.

Table I.1 shows the outcome of this exercise for different combinations of
permanent income, home values, and liquid wealth at age 55. I consider home
values of $50,000 and $85,000 (at 1998 prices) which correspond approximately
to median home values in 1998 for those in the bottom and top permanent
income quintiles.

Let’s first focus on those in the top permanent income quintile. First, we
see that the changes in the PDVs of Medicaid payments at 55 and 72 are quite

12To approximate pre-retirement income, I invert the formula linking Primary Insurance Amount (PIA)
to Average Indexed Monthly Earnings (AIME) in the online appendix of French and Jones (2011). The
result is that for social security income yp (I), pre-retirement earnings yw (I) are given by:

yw (I) =


yp (I) /0.9 if yp (I) < 5, 151.6

5, 724 + (yp (I)− 5, 151.6) /0.32 if 5, 151.6 ≤ yp (I) < 14, 359.9

34, 500 + (yp (I)− 14, 359.9) /0.15 if 14, 359.9 ≤ yp (I)

13At age 65, individuals draw either low disability ld or moderate disability md. The probability of ld is
0.75, 0.90, 0.90, 0.95 and 0.95 for those in the bottom to top income quintile respectively which is globally
consistent with the numbers in the data. The probabilities to fall in the other categories at 65 are very small
in reality, and I thus assume they are 0 for simplicity.
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close to one another (NB: changes in PDVs and compensating variations at
72 are discounted to make them comparable to those at age 55). This reflects
the fact that behavioral changes prior to retirement are not very large and
thus do not translate to substantial changes in PDVs. Second, compensating
variations are larger at age 55 than at age 72. Therefore the fact that the
homestead exemption also provides benefits between ages 65 and 71 (which is
not taken into account in the welfare computations in the main text) seem to
dominate the additional time to adjust to the policy change. Finally, the ratio
of compensating variations to changes in PDV is larger at age 55 than at age
72 suggesting that, for the top income quintile, the welfare computations in the
main text are conservative with respect to the net benefits of the homestead
exemption. Similar observations apply for the third permanent income group.

For the bottom income quintile, the changes in PDVs can be much larger
in absolute value at age 55 than at age 72. This reflects the fact that these
individuals, when they have low liquid wealth, are very likely to benefit from
the homestead exemption through the categorically-needy pathway early in
retirement. In contrast, for those who are in higher income quintiles, the
probability to benefit from Medicaid between ages 65 and 72 is small, which
contributes to the small differences in the PDV changes we saw for them
(this also makes the homestead exemption a more valuable insurance for the
latter as relying on it is a low probability event between 65 and 72). For the
bottom income quintile, we also see that compensating variations are often
much larger at age 55 than at age 72 for similar reasons. Finally, as for higher
permanent-income quintiles, the ratio of compensating variations to changes
in PDV is larger at age 55 than at age 72 suggesting that overall the welfare
computations in the main text are conservative with respect to the net benefits
of the homestead exemption.

J Computational method

The computational method is standard. I discretize the grid for bt using 92
points with more density at low values. The maximum point on the grid is
$4 million. The grid for consumption has 160 points with more density at low
values and goes from $300 to $213k (or 10 times the largest value for pension
income y (I)). The housing grid has 9 points corresponding to house values in
1998 equal to $12k, $35k, $50k, $70k, $85K, $125k, $175k, $225k and $400k.
I discretize medical expenditures εt using Tauchen and Hussey method with 7
grid points. I solve the model backwards separately for each gender, income
and cohort to find the value function Vt (.) for each t. I then use this value
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Table I.1: Costs and benefits of removing of the homestead exemption with
more time to adjust to the policy change

PI home value liquid wealth welfare computations welfare computations

quintile at 1998 prices at 55 at age 55 at age 72

∆PDV CV − CV
PDV

∆PDV CV − CV
PDV

1 50,000 5,000 -8,043 13,560 1.69 -4,818 5,269 1.09

1 50,000 25,000 -5,553 9,356 1.68 -5,041 5,773 1.15

1 50,000 50,000 -3,740 7,118 1.90 -4,325 5,015 1.16

1 50,000 100,000 -2,380 6,292 2.64 -3,050 4,060 1.33

1 85,000 5,000 -4,653 7,502 1.61 -1,910 1,389 0.73

1 85,000 25,000 -3,386 4,810 1.42 -2,506 1,979 0.79

1 85,000 50,000 -2,526 3,698 1.46 -2,713 2,142 0.79

1 85,000 100,000 -1,638 3,569 2.18 -2,057 2,096 1.02

3 50,000 5,000 -1,242 2,591 2.09 -1,407 2,001 1.42

3 50,000 25,000 -1,058 2,468 2.33 -1,253 1,880 1.50

3 50,000 50,000 -850 2,361 2.78 -988 1,841 1.86

3 50,000 100,000 -539 1,988 3.69 -675 1,581 2.34

3 85,000 5,000 -746 1,282 1.72 -910 907 1.00

3 85,000 25,000 -596 1,261 2.12 -705 942 1.33

3 85,000 50,000 -523 1,322 2.53 -607 1003 1.65

3 85,000 100,000 -376 1,240 3.3 -483 1014 2.10

5 50,000 5,000 -349 1,074 3.08 -381 830 2.17

5 50,000 25,000 -301 995 3.31 -315 829 2.63

5 50,000 50,000 -235 998 4.25 -272 856 3.14

5 50,000 100,000 -166 934 5.63 -179 818 4.56

5 85,000 5,000 -302 852 2.82 -303 681 2.24

5 85,000 25,000 -231 831 3.6 -266 738 2.77

5 85,000 50,000 -216 888 4.11 -237 803 3.39

5 85,000 100,000 -132 880 6.67 -141 794 5.61

Notes: Changes in expected values and compensating variations at age 72 are divided by (1 + r)72−55

to make them comparable to those for age 55. Simulations at age 55 start in year 1981, so that these
individuals are 72 in 1998. Age 72 simulations start in 1998. The results are based on 5,000 simulations for
each combination of permanent income group, housing and liquid wealth.
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function to simulate the model forward. For values of bt which lie within the
grids I use linear interpolation. Given that the highest value for bt is large
compared with the wealth in my sample, I assume that for bt ≥ bmax, the
value function is equal to the one at bmax. When allowing for estate recovery,
I use bi-dimensional linear interpolation. The grid for ΣMedicaid

t has 20 points
with more density at low values. The grid ranges from 0 to one million dollars.

To solve for the maximization problem I use standard grid search. For
renters, I limit the range of values to look for on the consumption grid by using
the (intratemporal) first order condition between ct and ht. The codes for the
model are in Python 3. I use the Anaconda distribution (2019) which can be
downloaded freely from https://www.continuum.io/downloads, and includes
the most popular libraries for numerical work or data analysis (mainly Numpy
(Oliphant., 2006; van der Walt et al., 2011), Scipy (Virtanen et al., 2019),
Matplotlib (Hunter, 2007), Numba (Lam et al., 2015), Pandas (McKinney,
2010)). The most computationally-intensive part of the program (which is to
simulate the model for a given set of parameters) uses the just-in-time compiler
capabilities of Numba. Solving one iteration of the model in the estimation
step takes about 3 minutes on a iMac Pro (2017) with a 3GHz Intel Xeon
W Processor (featuring 20 virtual processors) and 64Go of RAMs. For the
counterfactuals, the simulation of the model without estate recovery takes
about 8 minutes and the one with estate recovery takes about 1 hour.

K Comparison with Ameriks et al. (2020)

In this section, I show that the low estimated elasticity of medical expenditures
that I estimate is in line with the estimates, obtained using strategic survey
questions (SSQs), of the utility when needing long-term care in Ameriks et al.
(2020). As the SSQs in Ameriks et al. (2020) intend to directly pin down
preferences, this brings further support for such a low elasticity of medical
spending.

First, I show that their specification of the utility in long-term care can
possibly be interpreted as a limit case of the type of utility I consider, when
σ >> γ. To see this, consider the type of SSQs that they use to estimate
the marginal utility of spending (including long-term care) when needing help
with activities of daily living (ADLs) (see section IV.A in their paper), but
considering a utility specification similar to the one in my paper with, in
addition, a marginal utility of consumption when needing help with ADLs
which is allowed to vary.

Suppose that a retiree is asked to solve the following allocation problem:
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max
c1,c2,m2

π
c1−γ

1

1− γ
+ (1− π)

[
δ
c1−γ

2

1− γ
+ µ

m1−σ
2

1− σ

]
(K.1)

s.t. c1 + p2 (c2 + qm2) ≤ W

where π is the probability to be healthy (implicitly with µ = 0) and 1 − π is
the probability to need help with ADLs. δ allows for the marginal utility of
consumption to vary when needing help with ADLs and µ affects the marginal
utility of medical or long-term care spending.

The first order conditions are:

πc−γ1 = λ (K.2)

(1− π) δc−γ2 = λp2 (K.3)

(1− π)µm−σ2 = λp2q (K.4)

with λ the multiplier on the constraint. With p2 = (1− π) as in their SSQs,
we get:

c2 = (δ/π)1/σ c1 (K.5)

m2 = (µ/ (δq))1/σ c
γ/σ
2 (K.6)

If σ >> γ, (K.6) implies:

m2 = (µ/ (δq))1/σ c
γ/σ
2 ' (µ/ (δq))1/σ (K.7)

Notice that µ (which is unobservable) can be arbitrarily large (for a given
large σ) in order to generate a given level of medical spending qm2. As a
consequence, the term (µ/ (δq))1/σ does not need to converge to 1 when σ is
large.

By plugging (K.6) into the allocation problem (K.1), we see that, when
σ >> γ, (K.1) is approximately equivalent to:

max
c1,c2

π
c1−γ

1

1− γ
+ (1− π)

[
δ
c1−γ

2

1− γ
+ µ

(µ/ (δq))(1−σ)/σ

1− σ

]
(K.8)

s.t. c1 + p2

(
c2 + q (µ/δq)1/σ

)
≤ W

which can be rewritten as:

max
z1,z2

π
z1−γ

1

1− γ
+ (1− π) δ

(
z2 − q (µ/ (δq))1/σ

)1−γ

1− γ
(K.9)
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s.t. z1 + p2z2 ≤ W

with z1 ≡ c1 and z2 = c2 + qm2. Doing an additional change of notation with
(θADL)−γ ≡ δ and κADL ≡ −q (µ/ (δq))1/σ gives rise to the same setting as in
section IV.A in Ameriks et al. (2020) (see their equation 4 page 2397).

We can now show that the very negative κADL they find is globally in line
with the estimates I find for σ. To see this consider, the initial allocation
problem but with this time σ = γ (a case close to De Nardi et al. (2016)). In
this case, (K.5), (K.6) and the budget constraint in (K.1) write:

c2 = (δ/π)1/γ c1

m2 = (µ/ (δq))1/γ c2

W = c1 + (1− π) (c2 + qm2)

implying:

c1 =
W

1 + (1− π) (δ/π)1/γ + (1− π) q (µ/ (qπ))1/γ
(K.10)

On the other hand, the allocation problem (K.8) similar to the one in Ameriks
et al. (2020) gives:

c1 =
W − (1− π) q (µ/ (δq))1/σ

1 + (1− π) (δ/π)1/γ

or using their notations (see (K.9)):

z1 =
W + (1− π)κADL

1 + (1− π) (1/π)1/γ (θADL)−1

Their estimates rest on how much money z1 individuals choose to allocate to
the healthy state rather than to the unhealthy state in their experiment. If
they estimated κADL small or close to 0, this would tend to reject a model
with σ >> γ and would favor estimates in which σ ' γ. Indeed, in this case
it would suggest that the decision rules that they observe are close to those in
(K.10), and that c1 is proportional to wealth W (c1/W constant). However,
the fact that they estimate a largely negative κADL = −$37, 000 is more in line
with a model with σ >> γ in which c1/W is increasing in wealth, reflecting
that in old age medical/long-term care spending are necessities.
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