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This is Part One of Module One.  It highlights the nature of data and the data-generating process, 
which is one of the key ideas of modern day econometrics.  The difference between cross-section 
and time-series data is presented and followed by a discussion of continuous and discrete 
dependent variable data-generating processes.  Least-squares and maximum-likelihood 
estimation is introduced along with analysis of variance testing.  This module assumes that the 
user has some familiarity with estimation and testing previous statistics and introductory 
econometrics courses.  Its purpose is to bring that knowledge up-to-date.  These contemporary 
estimation and testing procedures are demonstrated in Parts Two, Three and Four, where data are 
respectively entered into LIMDEP, STATA and SAS for estimation of continuous and discrete 
dependent variable models.      
 
 
CROSS-SECTION AND TIME-SERIES DATA 
 
In the natural sciences, researchers speak of collecting data but within the social sciences it is 
advantageous to think of the manner in which data are generated either across individuals or over 
time.  Typically, economic education studies have employed cross-section data. The term cross-
section data refer to statistics for each in a broad set of entities in a given time period, for 
example 100 Test of Economic Literacy (TEL) test scores matched to time usage for final 
semester 12th graders in a given year.  Time-series data, in contrast, are values for a given 
category in a series of sequential time periods, i.e., the total number of U.S. students who 
completed a unit in high school economics in each year from 1980 through 2008.  Cross-section 
data sets typically consist of observations of different individuals all collected at a point in time.  
Time-series data sets have been primarily restricted to institutional data collected over particular 
intervals of time.   
 
 More recently empirical work within education has emphasized panel data, which are a 
combination of cross-section and time-series data.  In panel analysis, the same group of 
individuals (a cohort) is followed over time.  In a cross-section analysis, things that vary among 
individuals, such as sex, race and ability, must either be averaged out by randomization or taken 
into account via controls.  But sex, race, ability and other personal attributes tend to be constant 
from one time period to another and thus do not distort a panel study even though the assignment 
of individuals among treatment/control groups is not random.  Only one of these four modules 
will be explicitly devoted to panel data.  
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CONTINUOUS DEPENDENT (TEST SCORE) VARIABLES  
 
Test scores, such as those obtained from the TEL or Test of Understanding of College 
Economics (TUCE), are typically assumed to be the outcome of a continuous variable Y that may 
be generated by a process involving a deterministic component (e.g., the mean of Y, yμ , which 
might itself be a function of some explanatory variables X1, X2 …Xk) and the purely random 
perturbation or error term components v and ε : 
  

it y itY vμ= +   or 1 2 2 3 3 4 4it it it it itY X X Xβ β β β ε= + + + + , 
 
where Yit is the test score of the ith person at time t and the it subscripts similarly indicate 
observations for the ith  person on the X explanatory variables at time t.  Additionally, normality 
of the continuous dependent variable is ensured by assuming the error term components are 
normally distributed with means of zero and constant variances: 2~ (0, )it vv N σ and 2~ (0, )it N εε σ .   
 

As a continuous random variable, which gets its normal distribution from epsilon, at least 
theoretically any value is possible.  But as a test score, Y is only supported for values greater than 
zero and less than the maximum test score, which for the TUCE is 30.  In addition, multiple-
choice test scores like the TUCE can only assume whole number values between 0 and 30, which 
poses problems that are addressed in these four modules.  

 
 The change score model (also known as the value-added model, gain score model or 
achievement model) is just a variation on the above basic model: 
 

 1 1 2 2 3 3 4 4it it it it it itY Y X X X uλ λ λ λ−− = + + + + , 
 
where Yit-1 is the test score of the ith person at time t−1.  If one of the X variables is a bivariate 
dummy variable included to capture the effect of a treatment over a control, then this model is 
called a difference in difference model: 
 

[(mean treatment effect at time t) – (mean control effect at time t)] – 
[(mean treatment effect at time t−1) − (mean control effect at time t−1)]  

      = [E(Yit |treatment =1) − E(Yit |treatment =0)] – [E(Yit-1 |treatment =1) − E(Yit-1 |treatment =0)] 
      = [E(Yit |treatment =1) − E(Yit-1 |treatment =1)] – [E(Yit |treatment =0) − E(Yit-1 |treatment =0)] 
      = the lambda on the bivariate treatment variable. 
 
Yit is now referred to as the post-treatment score or posttest and Yit-1 is the pre-treatment score or 
pretest.   Again, the dependent variable Yit −Yit-1 can be viewed as a continuous random variable, 
but for multiple-choice tests, this difference is restricted to whole number values and is bounded 
by the absolute value of the test score’s minimum and maximum.   
 
 This difference in difference model is often used with cross-section data that ignores 
time-series implications associated with the dependent variable (and thus the error term) 
involving two periods.  For such models, ordinary least-squares estimation as performed in 
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EXCEL and all other computer programs is sufficient.  However, time sequencing of testing can 
cause problems.  For example, as will be demonstrated in Module Three on sample selection, it 
is not a trivial problem to work with observations for which there is a pretest (given at the start of 
the term) but no posttest scores because the students dropped out of the class before the final 
exam was given.  Single equation least-squares estimators will be biased and inconsistent if the 
explanatory variables and error term are related because of time-series problems. 
 

Following the lead of Hanushek (1986, 1156-57), the change-score model has been 
thought of as a special case of an allegedly superior regression involving a lagged dependent 
variable, where the coefficient of adjustment ( *

0λ ) is set equal to one for the change-score model:  
 

 * * * * *
0 1 1 2 2 3 3 4 4it it it it it itY Y X X Xλ λ λ λ λ ω−= + + + + + . 

 
Allison (1990) rightfully called this interpretation into question, arguing that these are two 
separate models (change score approach and regressor variable approach) involving different 
assumptions about the data generating process.  If it is believed that there is a direct causal 
relationship or if the other explanatory X variables are related to the Yit-1 to Yit 

transition, then the regressor variable approach is justified.  But, as demonstrated to economic 
educators as far back as Becker (1983), the regressor variable model has a built-in bias 
associated with the regression to the mean phenomenon. Allison concluded, “The important 
point is that there should be no automatic preference for either model and that the only proper 
basis for a choice is a careful consideration of each empirical application . . . . In ambiguous 
cases, there may be no recourse but to do the analysis both ways and to trust only those 
conclusions that are consistent across methods.” (p. 110) 

1it itY Y− ⇒

 
 As pointed out by Allison (1990) and Becker, Greene and Rosen (1990), at roughly the 
same time, and earlier by Becker and Salemi (1977) and later by Becker (2004),  models to avoid 
are those that place a change score on the left-hand side and a pretest on the right.  Yet, 
educational researchers continue to employ this inherently faulty design.   For example, Hake 
(1998) constructed a “gap closing variable (g)” as the dependent variable and regressed it on the 
pretest: 
 

( ...)posttest score pretest scoreg gap closing f pretest score
maximum  score pretest score

−
= = =

−
 

where the pretest and posttest scores where classroom averages on a standardized physics test, 
and maximum score was the highest score possible.  Apparently, Hake was unaware of the 
literature on the gap-closing model.  The outcome measure g is algebraically related to the 
starting position of the student as reflected in the pretest:  g falls as the pretest score rises, for 
maximum score > posttest score  >  pretest score.i  Any attempt to regress a posttest-minus-
pretest change score, or its standardized gap-closing measure g on a pretest score yields a biased 
estimate of the pretest effect.ii 
 

As an alternative to the change-score models [ of the type posttest − pretest= 
f(treatement, . . . ) or posttest = f(pretest, treatment, …)], labor economics have turned to a 
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difference-in-difference model employing a panel data specification to assess treatment effects.  
But not all of these are consistent with the change score models discussed here.  For example, 
Bandiera, Larcinese and Rasul (2010) wanted to assess the effect in the second period of 
providing students with information on grades in the first period.  In the first period, numerical 
grade scores were assigned to each student for course work, but only those in the treatment were 
told their scores, and in the second period numerical grade score were given on essays.  That is, 
the treatment dummy variable reflected whether or not the student obtained grade information 
(feedback) on at least 75 percent of his or her course work in the first period, and zero if not.   
This treatment dummy then entered in the second period as an explanatory variable for the essay 
grade.     
 

More specifically, Bandiera, Larcinese and Rasul estimated the following panel data 
model for the ith student, enrolled on a degree program offered by department d, in time period t, 

 
' '

'
     [   ]     idct i c t t c d id idct

d
g F T T X TDα β γ δ μ= + × + + + + ε∑

 
 

where gidct is the ith student’s grade in department d for course (or essay) c at time t and αi is a 
fixed effect that captures time-invariant characteristics of the student that affect his or her grade 
across time periods, such as his or her underlying motivation, ability, and labor market options 
upon graduation.  Because each student can only be enrolled in one department or degree 
program, αi also captures all department and program characteristics that affect grades in both 
periods, such as the quality of teaching and the grading standards.  Fc is a equal to one if the 
student obtains feedback on his or her grade on course c and Tt identifies the first or second time 
period, Xc includes a series of course characteristics that are relevant for both examined courses 
and essays, and all other controls are as previously defined.   TDidˊ is equal to one if student i 
took any examined courses offered by department dˊ and is zero otherwise; it accounts for 
differences in grades due to students taking courses in departments other than their own 
department d.  Finally, εidct is a disturbance term. 

 
As specified, this model does not control for past grades (or expected grades), which is 

the essence of a change-score model.   It should have been specified as either 
 

1 '
'

      [   ]     idct i idct c t t c d id idct
d

g g F T T X TD 'α ω β γ δ μ−= + + × + + + + ε∑
 

or 
 

1 1 ' '
'

        [   ]     idct idct i idct c t t c d id idct
d

g g g F T T X TDα ω β γ δ μ− −= + + × + + + + ε∑
 

 
Obviously, there is no past grade for the first period and that is in part why a panel data 

set up has historically not been used when only “pre” and “post” measures of performance are 
available.  Notice that the treatment dummy variable coefficient β is inconsistently estimated 
with bias if the relevant past course grades in the second period essay-grade equation are 
omitted.  As discuss in Module Three on panel data studies, bringing in a lagged dependent 
variable into panel data analysis poses more estimation problems.  The thing emphasized here is 
that a change-score model must be employed in assessing a treatment effect.  In Module Four, 
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propensity score matching models are introduced for a means of doing this as an alternative to 
the least squares method employed in this module.  

 
 
DISCRETE DEPENDENT VARIABLES 
 
In many problems, the dependent variable cannot be treated as continuous.  For example, 
whether one takes another economics course is a bivariate variable that can be represented by Y = 
1, if yes or 0, if not, which is a discrete choice involving one of two options.  As another 
example, consider count data of the type generated by the question how many more courses in 
economics will a student take?  0, 1, 2 … where increasing positive values are increasingly 
unlikely.  Grades provide another example of a discrete dependent variable where order matters 
but there are no unique number line values that can be assigned.   The grade of A is better than B 
but not necessarily by the same magnitude that B is better than C.  Typically A is assigned a 4, B 
a 3 and C a 2 but these are totally arbitrary and do not reflect true number line values.  The 
dependent variable might also have no apparent order, as the choice of a class to take in a 
semester – for example, in the decision to enroll in economics 101, sociology 101, psychology 
101 or whatever, one course of study cannot be given a number greater or less than another with 
the magnitude having meaning on a number line.   
 

In this module we will address the simplest of the discrete dependent variable models; 
namely, those involving the bivariate dependent variable in the linear probability, probit and 
logit models.  

 
 

Linear Probability Model 
 
Consider the binary choice model where Yi = 1, with probability Pi , or Yi = 0, with probability 
(1–Pi.).  In the linear probability regression model iii xY εββ ++= 21 , 0)( =iE ε  implies 

iii xxYE 21)|( ββ += , where also iii xP |)iii xPxP |)(1()]|(ii xYE 1)[0()|( =+−= .  Thus, 

iiiii xPxxYE |)|( 21 =+= ββ , which we will write simply as Pi.  That is, the expected value of the 
0 or 1 bivariate dependent variable, conditional on the explanatory variable(s), is the probability 
of a success (Y = 1).  We can interpret a computer-generated, least-squares prediction of E(Y|x) 
as the probability that Y = 1 at that x value.   
 

In addition, the mean of the population error in the linear probability model is zero:   
 

  1 2 1 2

1 2

( ) (1 ) (0 )(1 )
( | ) 0 for ( | )

E x P x P
P x P E Y x P E Y x

ε β β β β
β β

= − − + − − −
= − − = − = =

 

 
However, the least squares Ŷ can be negative or greater than one, which makes it a peculiar 
predictor of probability.  Furthermore, the variance of epsilon is 
 

var(ε )  = Pi[ )(1 21 ixββ +− ]2 + (1–Pi ) ( )21 ixββ + 2= Pi( iP−1 )2 + (1–Pi )Pi
2 = Pi(1–Pi),  
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which (because Pi depends on xi) means that the linear probability model has a problem of 
heteroscedasticity. 
 

An adjustment for heteroscedasticity in the linear probability model can be made via a 
generalized least-squares procedure but the problem of constraining ix21 ββ +  to the zero – one 
interval cannot be easily overcome.  Furthermore, although predictions are continuous, epsilon 
cannot be assumed to be normally distributed as long as the dependent variable is bivariate, 
which makes suspect the use of the computer-generated t statistic.  It is for these reasons that 
linear probability models are no longer widely used in educational research. 
 
 
Probit Model 
 
Ideally, the estimates of the probability of success (Y = 1) will be consistent with probability 
theory with values in the 0 to 1 interval.   One way to do this is to specify a probit model, which 
is then estimated by computer programs such as LIMDEP, SAS and STATA that use maximum 
likelihood routines.  Unlike least squares, which selects the sample regression coefficient to 
minimize the squared residuals, maximum likelihood selects the coefficients in the assumed 
data-generating model to maximize the probability of getting the observed sample data.   
 
 The probit model starts by building a bridge or mapping between the 0s and 1s to be 
observed for the bivariate dependent variable and an unobservable or hidden (latent) variable that 
is assumed to be the driving force for the 0s and 1s:  
 
  *

1 2 2 3 3 4 4i i i i i iI X X X Xβ β β β ε= + + + + = β , where ~ (0,1)it Nε . 
 
and I* > 0 implies Y = 1 and  I* < 0 implies Y = 0 and 

( 1 | ) ( * 0) ( )i i i i iP P Y X G I G Z X β  . = = = > = ≤
 
G( ) and g( ) are the standard normal distribution and density functions, and  

∫
∞−

==
βX

dttgYP )()1( . 

 
 Within economics the latent variable I* is interpreted as net utility or propensity to take 
action.  For instance, I* might be interpreted as the net utility of taking another economics 
course. If the net utility of taking another economics course is positive, then I* is positive, 
implying another course is taken and Y = 1.  If the net utility of taking another economics course 
is negative, then the other course is not taken, I* is negative and Y = 0.   
 

The idea behind maximum likelihood estimation of a probit model is to maximize the 
density L with respect to σβ and  where the likelihood function is 
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2 / 2 2

2 / 2 2

( ) (2 ) exp( / 2 )
(2 ) exp[ β β / 2 ]

n

n

L f ε πσ σ

πσ σ

−

−

= = −

= − − −

ε'ε
(y X )'(y X )

 

 
The calculation of β∂∂ /L is not convenient but the logarithm (ln) of the likelihood function is 
easily differentiated  

 
 .  ββ ∂∂=∂∂ − //ln 1 LLL

 
Intuitively, the strategy of maximum likelihood (ML) estimation is to maximize (the log of) this 
joint density for the observed data with respect to the unknown parameters in the beta vector, 
where σ is set equal to one.  The probit maximum likelihood computation is a little more difficult 
than for the standard classical regression model because it is necessary to compute the integrals 
of the standard normal distribution.  But computer programs can do the ML routines with ease in 
most cases if the sample sizes are sufficiently large.  See William Greene, Econometric Analysis 
(5th Edition, 2003, pp. 670-671) for joint density and likelihood function that leads to the 
likelihood equations for β∂∂ /ln L . 
 

The unit of measurement and thus the magnitude of the probit coefficients are set by the 
assumption that the variance of the error term ε  is unity.  That is, the estimated probit 
coefficients along a number line have no meaning.  If the explanatory variables are continuous, 
however, the probit coefficients can be employed to calculate a marginal probability of success 
at specific values of the explanatory variables: 

 
xXgxxp ββ )(/)( =∂∂ , where g( ) is density zzGzg ∂∂= /)()( . 

 
Interpreting coefficients for discrete explanatory variables is more cumbersome as demonstrated 
graphically in Becker and Waldman (1989) and Becker and Kennedy (1992). 
 
 
Logit Model 
 
An alternative to the probit model is the logit model, which has nearly identical properties to the 
probit, but has a different interpretation of the latent variable I*.   To see this, again let  
 
  . )

)iz

|1( ii XYEP ==
 
The logit model is then obtained as an exponential function  
 
  ; thus, )1/()1/(1)1/(1 iiii zzzX

i eeeeP +=+=+= −− β

  1 1 , and  /(1 ) 1/(1i iz z
iP e e e− = − + = +

/(1 ) iz
i iP P e− = , which is the odd ratio for success (Y = 1) 

 
The log odds ratio is the latent variable logit equation 

W. E. Becker  Module One, Part One: Data Generating Processes  3‐ 23‐10: p. 7 
 



 
* ln

1
i

i i
i

P
iI z X

P
β

⎛ ⎞
= = =⎜ ⎟−⎝ ⎠
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A graph of the logistic function G(z) = exp(z)/[1+exp(z)] looks like the standard normal, as seen 
in the following figure, but does not rise or fall to 1.00 and 0.00 as fast: 
 
 

Graph of Logistic Function 
 

 
 
 
Nonparametrics 
 
As outlined in Becker and Greene (2001), recent developments in theory and computational 
procedures enable researchers to work with nonlinear modeling of all sorts as well as 
nonparametric regression techniques. As an example of what can be done consider the widely 
cited economic education application in Spector and Mazzeo (1980).  They estimated a probit 
model to shed light on how a student's performance in a principles of macroeconomics class 
relates to his/her grade in an intermediate macroeconomics class, after controlling for such things 
as grade point average (GPA) going into the class.  The effect of GPA on future performance is 
less obvious than it might appear at first.  Certainly it is possible that students with the highest 
GPA would get the most from the second course. On the other hand, perhaps the best students 
were already well equipped, and if the second course catered to the mediocre (who had more to 
gain and more room to improve) then a negative relationship between GPA and increase in 
grades (GRADE) might arise.  A negative relationship might also arise if artificially high grades 
were given in the first course.   The below figure provides an analysis similar to that done by 
Spector and Mazzeo (using a subset of their data).   
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In this figure, the horizontal axis shows the initial grade point average of students in the 

study.  The vertical axis shows the relative frequency of the incremental grades that increase 
from the first to the second course.  The solid curve shows the estimated relative frequency of 
grades that improve in the second course using a probit model (the one used by the authors).  
These estimates suggest a positive relationship between GPA and the probability of grade 
improvement in the second macroeconomics throughout the GPA range.  The dashed curve in 
the figure provides the results using a much less-structured nonparametric regression model.iii  
The conclusion reached with this technique is qualitatively similar to that obtained with the 
probit model for GPAs above 2.6, where the positive relationship between GPA and the 
probability of grade improvement can be seen, but it is materially different for those with GPAs 
lower than 2.6, where a negative relationship between GPA and the probability of grade 
improvement is found.  Possibly these poorer students received gift grades in the introductory 
macroeconomics course.   
 
 There are other alternatives to least squares that economic education researchers can 
employ in programs such as LIMDEP, STATA and SAS.  For example, the least-absolute-
deviations approach is a useful device for assessing the sensitivity of estimates to outliers. It is 
likely that examples can be found to show that even if least-squares estimation of the conditional 
mean is a better estimator in large samples, least-absolute-deviations estimation of the 
conditional median performs better in small samples.  The critical point is that economic 
education researchers must recognize that there are and will be new alternatives to modeling and 

W. E. Becker  Module One, Part One: Data Generating Processes  3‐ 23‐10: p. 9 
 



estimation routines as currently found in Journal of Economic Education articles and articles in 
the other journals that publish this work, as listed in Lo, Wong and Mixon (2008).  In this 
module and in the remaining three, only passing mention will be given to these emerging 
methods of analysis.   The emphasis will be on least-squares and maximum-likelihood 
estimations of continuous and discrete data-generating processes that can be represented 
parametrically. 
 
 
INDIVIDUAL OBSERVATIONS OR GROUP AVERAGES:  
WHAT IS THE UNIT OF ANALYSIS? 
 
In Becker (2004), I called attention to the implications of working with observations on 
individuals versus working with averages of individuals in different groupings.  For example, 
what is the appropriate unit of measurement for assessing the validity of student evaluations of 
teaching (as reflected, for example, in the relationship between student evaluations of teaching 
and student outcomes)?  In the case of end-of-term student evaluations of instructors, an 
administrator’s interest may not be how students as individuals rate the instructor but how the 
class as a whole rates the instructor.  Thus, the unit of measure is an aggregate for the class.  
There is no unique aggregate, although the class mean or median response is typically used.iv   
For the assessment of instructional methods, however, the unit of measurement may arguably be 
the individual student in a class and not the class as a unit.  Is the question: how is the ith 
student’s learning affected by being in a classroom where one versus another teaching method is 
employed?  Or is the question: how is the class’s learning affected by one method versus 
another?   The answers to these questions have implications for the statistics employed and 
interpretation of the results obtained.v   
 
 Hake (1998) reported that he has test scores for 6,542 individual students in 62 
introductory physics courses.  He works only with mean scores for the classes; thus, his effective 
sample size is 62, and not 6,542.   The 6,542 students are not irrelevant, but they enter in a way 
that I did not find mentioned by Hake.  The amount of variability around a mean test score for a 
class of 20 students versus a mean for 200 students cannot be expected to be the same.  
Estimation of a standard error for a sample of 62, where each of the 62 means receives an equal 
weight, ignores this heterogeneity.vi   Francisco, Trautman, and Nicoll (1998) recognized that the 
number of subjects in each group implies heterogeneity in their analysis of average gain scores in 
an introductory chemistry course.  Similarly, Kennedy and Siegfried (1997) made an adjustment 
for heterogeneity in their study of class size on student learning in economics. 
 
 Fleisher, Hashimoto, and Weinberg (2002) considered the effectiveness (in terms of 
student course grades and persistences) of 47 foreign graduate student instructors versus 21 
native English speaking graduate student instructors in an environment in which English is the 
language of the majority of their undergraduate students.  Fleisher, Hashimoto, and Weinberg 
recognized the loss of information in using the 92 mean class grades for these 68 graduate 
student instructors, although they did report aggregate mean class grade effects with the 
corrected heterogeneity adjustment for standard errors based on class size.  They preferred to 
look at 2,680 individual undergraduate results conditional on which one of the 68 graduate 
student instructors each of the undergraduates had in any one of 92 sections of the course.  To 
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ensure that their standard errors did not overstate the precision of their estimates when using the 
individual student data, Fleisher, Hashimoto, and Weinberg explicitly adjusted their standard 
errors for the clustering of the individual student observations into classes using a procedure akin 
to that developed by Moulton (1986).vii   
 
 Whatever the unit of measure for the dependent variable (aggregate or individual) the 
important point here is recognition of the need for one of two adjustments that must be made to 
get the correct standard errors.  If an aggregate unit is employed (e.g., class means) then an 
adjustment for the number of observations making up the aggregate is required.  If individual 
observations share a common component (e.g., students grouped into classes) then the standard 
errors reflect this clustering.  Computer programs such as LIMDEP (NLOGIT), SAS and 
STATA can automatically perform both of these adjustments.  
 
 
ANALYSIS OF VARIANCE (ANOVA) AND HYPOTHESES TESTING 
 
Student of statistics are familiar with the F statistic as computed and printed in most computer 
regression routines under a banner “Analysis of Variance” or just ANOVA.  This F is often 
presented in introductory statistics textbooks as a test of the overall all fit or explanatory power 
of the regression.   I have learned from years of teaching econometrics that it is better to think of 
this test as one of all population model slope coefficients are zero (the explanatory power is not 
sufficient to conclude that there is any relations between the xs and y in the population)  versus 
the alternative that at least one slope coefficient is not zero (there is some explanatory power).  
Thinking of this F statistic as just a joint test of slope coefficients, makes it easier to recognize 
that an F statistics can be calculated for any subset of coefficients to test for joint significance 
within the subset.   Here I present the theoretical underpinnings for extensions of the basic 
ANOVA to tests of subsets of coefficients.  Parts two three and four provide the corresponding 
commands to do these tests in LIMDEP, STATA and SAS. 
 
 As a starting point to ANOVA consider the F statistics that is generated by most 
computer programs.  This F calculation can be viewed as a decomposition or partitioning of the 
dependent variable into two components (intercept and slopes) and a residual:  
 

1 2b= + +2y i X b e  
 
where i  is the column of 1’s in the X matrix associated with the intercept and X2 is the 
remaining (k–1) explanatory x variables associated with the (k–1) slope coefficients in the  
vector.   The total sum of squared deviations  

1b

2b

 

  TotSS = 2 2 2

1 1

( ) ( ) (
n n

i i
i i

2 )y y y ny ny
= =

′− = − = −∑ ∑ y y   

measures the amount of variability in y around y , which ignoring any effect of the xs (in essence 
the b2 vector is assumed to be a vector of zeros).  The residual sum of squares  

  ResSS =  2

1

( )
n

i
i

e
=

′=∑ e e
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measures the amount of variability in y around , which lets b1 and b2 assume their least squares 
values.  

ŷ

  
 Partitioning of y in this manner enables us to test the contributions of the xs to explaining 
variability in the dependent variable.  That is,  
 

0 2 3H : ... 0kβ = β = β =  versus H :A at least one slope coefficient is not zero. 
 
For calculating the F statistic, computer programs use the equivalent of the following: 
 

 F=
2 2[( ) ] /[( 1) ( )] [( ) ] /( 1) (TotSS ResSS) /( 1)

/( ) /( ) ResSS /( )
ny n n K ny K K

n K n K n K
′ ′− − − − − − − − − −

= =
′ ′− −

y'y e e y'y e e
e e e e −

 

 
This F is the ratio of two independently distributed Chi-square random variables adjusted for 
their respective degrees of freedom.  The relevant decision rule for rejecting the null hypothesis 
is that the probability of this calculated F value or something greater, with K − 1 and n − K 
degrees of freedom, is less than the typical (0.10, 0.05 or 0.01) probabilities of a Type I error.  
   

Calculation of the F statistic in this manner, however, is just a special case of running two 
regressions: a restricted and an unrestricted.  One regression was computed with all the slope 
coefficients set equal (or restricted) to zero so Y is regressed only on the column of ones.  This 
restricted regression is the same as using Y to predict Y regardless of the values of the xs.  This 
restricted residual sum of squares, rree′ , is what is usually called the total sum of squares, 
TotSS = 2yn−yy' .  The unrestricted regression allows all of the slope coefficients to find their 
values to minimize the residual sum of squares, which is thus called the unrestricted residual 
sum of squares, , and is usually just list in a computer printout as the residual sum of 
squares ResSS= .   

uuee′
′e e

 
 The idea of a restricted and unrestricted regression can be extended to test any subset of 
coefficients.  For example, say the full model for a posttest Y is  
 

1 2 2 3 3 4 4i i i iY x x x= β +β +β +β + εi . 
 
Let’s say the claim is made that x3 and x4 do not affect Y.  One way to interpret this is to specify 
that , but .   The dependent variable is again decomposed into two components 
but now x1 is included with the intercept in the partitioning of the X matrix:  

3 4 0β = β = 2 0β ≠

 
ebXbXy 2211 ++= . 

 
where X1 is the matrix, with the first column containing ones and the second observations 
on x1 (b1 contains the y intercept and x1 slope coefficient) and X2 is the 

2n ×
2n × matrix, with two 

columns for x3 and x4  (b2 contains  x3 and x4  slope coefficients).   If the claim about x3 and x4  not 
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belonging in the explanation of Y is true, then the two slope coefficients in b2 should be set to 
zero because the true model is the restricted specification 
 

1 2 2i iY x= β +β + εi . 
 
 The null hypotheses is ; i.e., x2 might affect Y but x3 and x4  do not affect Y. 0 3 4H :β =β =0
 
 The alternative hypothesis is H :A 3 4β 0 or β 0≠ ≠ ; i.e.,. x3 and x4  both affect Y. 
 
 

The F statistic to test the hypotheses is then 
 

F  =
)/(

)]()/[(][

uuu

uruu

Kn
KnKn

−′
−−−′−′

ee
eeee rr  , 

 
where the restricted residual sum of squares rree′  is obtained from a simple regression of Y on x2, 
including a constant, and the unrestricted sum of squared residuals u u′e e is obtained from a 
regression of Y on x2, x3 and x4 , including a constant.  
 
 In general, it is best to test the overall fit of the regression model before testing any subset 
or individual coefficients.  The appropriate hypotheses and F statistic are  
 

0 2 3H : ... 0Kβ = β = = β =   (or 2
0H : 0R = ) 

H :A at least one slope coefficient is not zero  (or 2
0H : 0R ≠ ) 

 

F =
)/(

)1/(])[( 2

Kn
Kyn

−′
−′−−

ee
eeyy' . 

 
If the calculated value of this F is significant, then subsets of the coefficients can be tested as  
 

0H : ... 0s tβ = β = =    
H :A at least one of these slope coefficient is not zero 
   

   F = 
)/(

)]/[(][

uuu

uuu

Kn
qK

−′
−′−′

ee
eeee rr , for q =  k – number of restrictions. 

 
The restricted residual sum of squares rree′ is obtained by a regression on only the q xs that did 
not have their coefficients restricted to zero. Any number of subsets of coefficients can be tested 
in this framework of restricted and unrestricted regressions as summarized in the following table. 
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SUMMARY FOR ANOVA TESTING 
 
PANEL A.  TRADITIONAL ANOVA FOR TESTING  

0versus0 22 ≠= RR  
        Degrees of Mean 
Sum of Squares   Source   Freedom Square 
------------------------------------- -------------  -------------- ------- 
Total (to be explained)  2yn−yy'   n – 1   2

ys

Residual or Error (unexplained) ee′    n – k   2
es

Regression or Model (explained) 2yn−yX'b'   k – 1 
 

F = 
2

2
1 [1 (ResSS/TotSS)]/( 1) (TotSS-ResSS) /( 1)

1 ( ) (ResSS/TotSS) /( ) ResSS /( )
R /(K ) K K

( R )/ n K n K n K
− − −

= =
− − − −

−  

 
 
PANEL B. RESTRICTED REGRESSION FOR TESTING ALL THE  
SLOPES 0...32 ==== Kβββ  
        Degrees of Mean 
Sum of Squares      Source   Freedom Square 
-------------------------------     ---------------  -------------- ------- 
Restricted (all slopes = 0)     rree′ = 2yn−yy'  n – 1   2

ys

Unrestricted    uuee′ = ee′   n  – k   2
es

Improvement    2yn−yX'b'   k – 1 
 

 F = [Restricted ResSS( 0) Unrestricted ResSS]( 1)
Unrestricted ResSS /( )

slopes K
n k

= − −
−

 

 
 
PANEL C.  RESTRICTED REGRESSION FOR TESTING A SUBSET OF 
COEFFICIENTS === ...ts ββ 0 
       Degrees of   
Sum of Squares       Source  Freedom   
----------------------------------    ----------------  --------------   
Restricted ( === ...ts ββ 0)       n – q, for q =  k – number of restrictions  rree′
Unrestricted         n – k   uuee′
Improvement     r – ree′ uuee′    K – q 
 

F = [Restricted ResSS( 0) Unrestricted ResSS]( )
Unrestricted ResSS /( )

subset K q
n k

= − −
−
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 The F test of subsets of coefficients is ideal for testing interactions.  For instance, to test 
for the treatment effect in the following model both 4 and 5β β must be jointly tested against zero: 
 
 1 2 3 4 5ChangeScore female femaletreatment treatment GPAβ β β β β= + + + + +ε

0

 
 
  4 5 4 5: 0 : oro AH Hβ β β= = ≠β  
 

where "ChangeScore" is the difference between a student's test scores at the end and 
beginning of a course in economics, female = 1, if female and 0 if male, "treatment" = 1, 
if in the treatment group and 0 if not, and "GPA" is the student's grade point average 
before enrolling in the course. 

 
The F test of subsets of coefficients is also ideal for testing for fixed effects as reflected in sets of 
dummy variables.  For example, in Parts Two, Three and Four an F test is performed to check 
whether there is any fixed difference in test performance among four classes taking economics 
using the following assumed data generating process: 
 
 1 2 3 4 51 2 3post pre class class classβ β β β β= + + + + + ε

0

 
 
  3 4 5 3 4 5: 0 : , oro AH Hβ β β β β β= = = ≠  
 

where  “post” is a student’s post-course test score, “pre” is the student’s pre-course test 
score, and “class” identifies to which one of the four classes the students was assigned, 
e.g., class3 = 1 if student was in the third class and class3 = 0 if not.  The fixed effect for 
students in the fourth class (class1, class2 and class3 are zero)) is captured in the 
intercept 1β . 

 
It is important to notices in this test of fixed class effects that the relationship between the post 
and pre test (as reflected in the slope coefficient 2β ) is assumed to be the same regardless of the 
class to which the student was assigned.   The next section described a test for any structural 
difference among the groups. 
 
 
TESTING FOR A SPECIFICATION DIFFERENCE ACROSS GROUPS 
 
Earlier in our discussion of the difference in difference or change score model,  a 0-1 bivariate 
dummy variable was introduced to test for a difference in intercepts between a treatment and 
control group, which could be done with a single coefficient t test.   However, the expected 
difference in the dependent variable for the two groups might not be constant.  It might vary with 
the level of the independent variables.  Indeed, the appropriate model might be completely 
different for the two groups.  Or, it might be the same.   
 
 Allowing for any type of difference between the control and experimental variables 
implies that the null and alternative hypotheses are 
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   H0: = β 21 ββ =
   HA: , 21 ββ ≠
 
where the are KΧ1 column vectors containing the K coefficients for the 
control and the experimental groups .  Let 

2ββ and1 1 2 3 Kβ ,β ,β ,...β

1β 2β 1X and 2X contain the observations on the 
explanatory variables corresponding to the , including the column of ones for the 
constant β .  The unrestricted regression is captured by two separate regressions:  

2β1 βand

1

 

    . 
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
1 1 1

2 2 2

y X 0 β ε
y 0 X β ε

1

2

1

2

 
 That is, the unrestricted model is estimated by fitting the two regressions separately.  The 
unrestricted residual sum of squares is obtained by adding the residuals from these two 
regressions.  The unrestricted degrees of freedom are similarly obtained by adding the degrees of 
freedom of each regression.  
 
 The restricted regression is just a regression of y on the xs with no group distinction in 
beta coefficients: 
 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
[ ]1 1

2 2

y X 0 ε
β

y 0 X ε
. 

 
That is , the restricted residual sum of squares is obtained from a regression in which the data 
from the two groups are pooled and a single set of coefficients is estimated for the pooled data 
set.  
 

The appropriate F statistic is  
 

      F  =  [Restricted ResSS( ) Unrestricted ResSS]/
Unrestricted ResSS /[ 2 ]

K
n K

= −
−

1 2β β , 

 
where unrestricted ResSS = residuals sum of squares from a regression on only those in the 
control plus residuals from a regression on only those in the treatment groups.  
 

Thus, to test for structure change over J regimes, run separate regressions on each and 
add up the residuals to obtain the unrestricted residual sum of squares, ResSSu,with df = n – JK.  
The restricted residual sum of squares is ResSSr, with df = n – K.   
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0

r u

u

: and : ' are not equal

(ResSS ResSS ) / ( 1)
ResSS /( )

aH H s

K JF
n JK

= = =

− −
=

−

1 2 Jβ β . . . β β

 

 
This form of testing for a difference among groups is known in economics as a Chow 

Test.  As demonstrated in Part Two using LIMDEP and Parts Three and Four using STATA and 
SAS, any number of subgroups could be tested by adding up their individual residual sums of 
squares and degrees of freedom to form the unrestricted residual sums of squares and matching 
degrees of freedom.   
 
 
OTHER TEST STATISTICS 
 
Depending on the nature of the model being estimated and the estimation method, computer 
programs will produce alternatives to the F statistics for testing (linear and nonlinear) restrictions 
and structural changes.   What follows is only an introduction to these statistics that should be 
sufficient to give meaning to the numbers produced based on our discussion of ANOVA above.  
 
 The Wald (W) statistic follows the Chi-squared distribution with J degrees of freedom, 
reflecting the number of restrictions imposed: 
 

2( ) ~ ( )
/

r r u u

u u

W J
n

χ−
=

e 'e e 'e
e 'e

. 

 
If the model and the restriction are linear, then 
 

,
1 ( / )

nJ JW F
n k k n

= =
− −

F  

 
which for large n yields the asymptotic results 
 

W JF= . 
 
 
 The likelihood ratio (LR) test is formed by twice the difference between the log-
likelihood function for an unrestricted regression ( Lur ) and its value for the restricted regression 
(Lr ).  
 

LR =  2(Lur  − Lr ) > 0 . 
 
Under the null hypothesis that the J  restrictions are true, LR is distributed Chi-square with J 
degrees of freedom. 
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The relationship between the likelihood ratio test and Wald test can be shown to be 
 

2( ) ( )
2

r r u u r r u u

u u u u

n nLR W− −
= −

e 'e e 'e e 'e e 'e
e 'e e 'e

≤ . 

 
 The Lagrange multiplier test (LM) is based on the gradient (or score) vector 
 

⎥
⎦

⎤
⎢
⎣

⎡

+−
=⎥

⎦

⎤
⎢
⎣

⎡
∂∂
∂∂

)2/()2/(
/

/
/

42

2

2 σσ
σ

σ
β

εε'
εX'

nL
L

. 

 
where, as before, to evaluate this score vector with the restrictions we replace e = y − Xb with  
er = y − Xbr .   After sufficient algebra, the Lagrange statistic is defined by 
 

2 2~ ( )r r r rLM n nR Jχ−= =1e 'X(X'X) X'e /e 'e , 
 
where R2 is the conventional coefficient of determination from a regression of er on X, where er 
has a zero mean (i.e., only slopes are being tested).  It can also be shown that  
 

( )[1 /( )] 1 ( /
nJ WLM F

n k JF n k W n
= =

− + − + )
. 

 
Thus, LM LR W≤ ≤ . 
 
 
DATA ENTRY AND ESTIMATION 
 
I like to say to students in my classes on econometrics that theory is easy, data are hard – hard to 
find and hard to get into a computer program for statistical analysis.  In this first of four parts in 
Module One, I provided an introduction to the theoretical data generating processes associated 
with continuous versus discrete dependent variables.  Parts Two, Three and Four concentrate on 
getting the data into one of three computer programs: LIMDEP (NLOGIT), STATA and SAS.  
Attention is also given to estimation and testing within regressions employing individual cross-
sectional observations within these programs.  Later modules will address complications 
introduced by panel data and sources of endogeneity.  
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ENDNOTES 

 
][ 01 yyyi  Let the change or gain score be −=Δ , which is the posttest score minus the pretest 

score, and let the maximum change score be ][ 0maxmax yyy −=Δ , then 
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ii Let the posttest score ( ) and pretest score ( ) be defined on the same scale, then the model 
of the ith student’s pretest is  
 

β ,  
 
where 0β is the slope coefficient to be estimated, v is the population error in predicting the ith 
student’s  pretest score with ability, and all variables are measured as deviations from their 
means.  The ith student’s posttest is similarly defined by 

i0

iii vabilityy 111 )( +=
 

β   
 
The change or gain score model is then 
 

iiii vvabilityyy 010101 )( −+−=− ββ  

And after substituting the pretest for unobserved true ability we have  
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The least squares slope estimator  has an expected value of 
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Although v and are unrelated, E( v ) = 0, and are positively related, E( v ) > 0; 
thus, ββΔ≤Δ bbE . Becker and Salemi (1977) suggested an instrumental variable 
technique to address this source of bias and Salemi and Tauchen (1987) suggested a modeling of 
the error term structure. 
 
Hake (1998) makes no reference to this bias when he discusses his regressions and correlation of 
average normalized gain, average gain score and posttest score on the average pretest score.  In 
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http://www.consecol.org/vol5/iss2/art28/, he continued to be unaware of, unable or unwilling to 
specify the mathematics of the population model from which student data are believed to be 
generated and the method of parameter estimation employed.  As the algebra of this endnote 
suggests, if a negative relationship is expected between the gap closing measure 
 

g  = (posttest−pretest)/(maxscore−pretest)  
 
and the pretest, but a least-squares estimator does not yield a significant negative relationship for 
sample data, then there is evidence that something is peculiar.  It is the lack of independence 
between the pretest and the population error term (caused, for example, by measurement error in 
the pretest, simultaneity between g and the pretest, or possible missing but relevant variables) 
that is the problem.  Hotelling received credit for recognizing this endogenous regressor problem 
(in the 1930s) and the resulting regression to the mean phenomenon.  Milton Friedman received 
a Nobel prize in economics for coming up with an instrumental variable technique (for 
estimation of consumption functions in the 1950s) to remove the resulting bias inherent in least-
squares estimators when measurement error in a regressor is suspected.  Later Friedman (1992, 
p. 2131) concluded: “I suspect that the regression fallacy is the most common fallacy in the 
statistical analysis of economic data ...”  Similarly, psychologists Campbell and Kenny (1999, p. 
xiii) stated: “Regression toward the mean is a artifact that as easily fools statistical experts as lay 
people.” But unlike Friedman, Campbell and Kenny did not recognize the instrumental variable 
method for addressing the problem. 
 
In an otherwise innovative study, Paul Kvam (2000) correctly concluded that there was 
insufficient statistical evidence to conclude that active-learning methods (primarily through 
integrating students’ projects into lectures) resulted in better retention of quantitative skills than 
traditional methods, but then went out on a limb by concluding from a scatter plot of individual 
student pretest and posttest scores that students who fared worse on the first exam retain 
concepts better if they were taught using active-learning methods.  Kvan never addressed the 
measurement error problem inherent in using the pretest as an explanatory variable.  Wainer 
(2000) called attention to others who fail to take measurement error into account in labeling 
students as “strivers” because their observed test scores exceed values predicted by a regression 
equation.   
 
 
iii The plot for the probability model was produced by first fitting a probit model of the binary 
variable GRADE, as a function of GPA.  This produces a functional relationship of the form 
Prob(GRADE = 1) = Φ(α + βGRADE), where estimates of α and β are produced by maximum 
likelihood techniques.  The graph is produced by plotting the standard normal distribution 
function, Φ(α + βGRADE) for the values of GRADE in the sample, which range between 2.0 
and 4.0, then connecting the dots.  The nonparametric regression, although intuitively appealing 
because it can be viewed as making use of weighted relative frequencies, is computationally 
more complicated.  [Today the binomial probit model can be fitted with just about any statistical 
package but software for nonparametric estimation is less common.  LIMDEP (NLOGIT) 
version 8.0 (Econometric Software, Inc., 2001) was used for both the probit and nonparametric 
estimations.]   The nonparametric approach is based on the assumption that there is some as yet 

http://www.consecol.org/vol5/iss2/art28/
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unknown functional relationship between the Prob(GRADE = 1) and the independent variable, 
GPA, say Prob(Grade = 1 | GPA) = F(GPA).   The probit model based on the normal distribution 
is one functional candidate, but the normality assumption is more specific than we need at this 
point.  We proceed to use the data to find an approximation to this function.  The form of the 
‘estimator’ of this function is F(GPA*)  =  Σi = all observations w(GPA* −  GPAi )GRADEi.  The 
weights, ‘w(.),’ are positive weight functions that sum to 1.0, so for any specific value GPA*, the 
approximation is a weighted average of the values of GRADE.  The weights in the function are 
based on the desired value of GPA, that is GPA*, as well as all the data.  The nature of the 
computation is such that if there is a positive relationship between GPA and GRADE =1, then as 
GPA* gets larger, the larger weights in the average shown above will tend to be associated with 
the larger values of GRADE.  (Because GRADE is zeros and ones, this means that for larger 
values of GPA*, the weights associated with the observations on GRADE that equal one will 
generally be larger than those associated with the zeros.)  The specific form of these weights is as 
follows: w(GPA* −  GPAi)  =  (1/A)×(1/h)K[(GPA* − GPAi)/h].  The ‘h’ is called the smoothing 
parameter, or bandwidth, K[.] is the ‘kernel density function’ and A is the sum of the functions, 
ensuring that the entire expression sums to one.  Discussion of nonparametric regression using a 
kernel density estimator is given in Greene (2003, pp. 706-708).  The nonparametric regression 
of GRADE on GPA plotted in the figure was produced using a logistic distribution as the kernel 
function and the following computation of the bandwidth: let r equal one third of the sample 
range of GPA and let s equal the sample standard deviation of GPA.  The bandwidth is then h = 
.9×Min(r,s)/n1/5.  (In spite of their apparent technical cache, bandwidths are found largely by 
experimentation.  There is no general rule that dictates what one should use in a particular case, 
which is unfortunate because the shapes of kernel density plots are heavily dependent upon 
them.) 
 
 
iv Unlike the mean, the median reflects relative but not absolute magnitude; thus, the median may 
be a poor measure of change.  For example, the series 1, 2, 3 and the series 1, 2, 300 have the 
same median (2) but different means (2 versus 101). 
 
 
v To appreciate the importance of the unit of analysis, consider a study done by Ramsden (1998, 
pp. 352-354) in which he provided a scatter plot showing a positive relationship between a y-axis 
index for his “deep approach” (aimed at student understanding versus “surface learning”) and an 
x-axis index of “good teaching” (including feedback of assessed work, clear goals, etc.): 
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Ramsden’s regression ( ) seems to imply that a decrease (increase) in the 
good teaching index by one unit leads to a 0.35307 decrease (increase) in the predicted deep 
approach index; that is, good teaching positively affects deep learning.  But does it? 

xy 35307.0960.18 +=

 
Ramsden (1998) ignored the fact that each of his 50 data points represent a type of institutional 
average that is based on multiple inputs; thus, questions of heteroscedasticity and the calculation 
of appropriate standard errors for testing statistical inference are relevant.  In addition, because 
Ramsden reports working only with the aggregate data from each university, it is possible that 
within each university the relationship between good teaching (x) and the deep approach (y) 
could be negative but yet appear positive in the aggregate. 
 
When I contacted Ramsden to get a copy of his data and his coauthored “Paper presented at the 
Annual Conference of the Australian Association for Research in Education, Brisbane 
(December 1997),” which was listed as the source for his regression of the deep approach index 
on the good teaching index in his 1998 published article, he confessed that this conference paper 
never got written and that he no longer had ready access to the data (email correspondence 
August 22, 2000).  
 
Aside from the murky issue of Ramsden citing his 1997 paper, which he subsequently admitted 
does not exist, and his not providing the data on which the published 1998 paper is allegedly 
based, a potential problem of working with data aggregated at the university level can be seen 
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)1(4516.03881.21)1(ˆ xy −=

)2(0297.04847.17)2(ˆ xy −=

)3(4664.01663.17)3(ˆ xy −=

)(1848.06105.18)(ˆ meansxmeansy +=

ity

it

with three hypothetical data sets.  The three regressions for each of the following hypothetical 
universities show a negative relationship for y (deep approach) and x (good teaching), with slope 
coefficients of  –0.4516, –0.0297, and –0.4664, but a regression on the university means shows a 
positive relationship, with slope coefficient of +0.1848.  This is a demonstration of “Simpson’s 
paradox,” where aggregate results are different from dissaggregated results.  
 
University One 
 

     Std. Error = 2.8622  R2 = 0.81 n = 4 
y(1):  21.8  15.86  26.25  14.72 
x(1):  -4.11  6.82   -5.12  17.74 
 
University Two 
 

     Std. Error = 2.8341  R2 = 0.01 n = 8 
y(2):    12.60   17.90  19.00  16.45    21.96  17.1  18.61  17.85 
x(2):  -10.54  -10.53  -5.57  -11.54  -15.96  -2.1   -9.64   12.25 
 
University Three 
 

     Std. Error = 2.4286  R2 = 0.91 n = 12 
y(3):   27.10    2.02  16.81  15.42   8.84    22.90  12.77  17.52    23.20  22.60    25.90  
x(3):  -23.16  26.63   5.86    9.75  11.19  –14.29  11.51  –0.63  –19.21  –4.89  –16.16 
 
University Means 
 

     Std. Error = 0.7973     R2 = 0.75     n = 3 
 y(means):  19.658  17.684  17.735 
 x(means):    3.833   -6.704   -1.218 
 
 
vi Let  be the observed test score index of the ith student in the tth class, who has an expected 
test score index value of μ .  That is, ititity εμ += , where itε is the random error in testing such 

that its expected value is zero, 0)( =itE ε , and variance is , , for all and . 
Let

2σ 22 )( σε =itE i t

ty tnbe the sample mean of a test score index for the tth class of students.  That is, 

ttty εμ +=  and tt nE 22 )( σε = .  Thus, the variance of the class mean test score index is 
inversely related to class size. 
 
 
vii  As in Fleisher, Hashimoto, and Weinberg (2002), let giy be the performance measure of the ith  
student in a class taught by instructor g, let gF  be a dummy variable reflecting a characteristics 
of the instructor (e.g., nonnative English speaker), let gix  be a (1×n) vector of the student’s 
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observable attributes, and let the random error associated with the ith student taught by the gth 
instructor be giε .  The performance of the ith  student is then generated by 
 
    gi g gi giy F xγ β ε= + +  
 
where γ andβ are parameters to be estimated.  The error term, however, has two components: 
one unique to the ith student in the gth instructor’s class ( giu ) and one that is shared by all 
students in this class ( gξ ):  gi g giuε ξ= + .  It is the presence of the shared error gξ for which an 
adjustment in standard errors is required.  The ordinary least squares routines employed by the 
standard computer programs are based on a model in which the variance-covariance matrix of 
error terms is diagonal, with element 2

uσ .  The presence of the gξ terms makes this matrix block 

diagonal, where each student in the gth instructor’s class has an off-diagonal element 2
ξσ . 

 
In (May 11, 2008) email correspondence, Bill Greene called my attention to the fact that 
Moulton (1986) gave a specific functional form for the shared error term component 
computation.  Fleisher, Hashimoto, and Weinberg actually used an approximation that is aligned 
with the White estimator (as presented in Parts Two, Three and Four of this module), which is 
the "CLUSTER" estimator in STATA.  In LIMDEP (NLOGIT), Moulton’s shared error term 
adjustment is done by first arranging the data as in a panel with the groups contained in 
contiguous blocks of observations.  Then, the command is “REGRESS ; ... ; CLUSTER = spec. 
$” where "spec" is either a fixed number of observations in a group, or the name of an 
identification variable that contains a class number. The important point is to recognize that 
heterogeneity could be the result of each group having its own variance and each individual 
within a group having its own variance.  As discussed in detail in Parts Two, Three and Four, 
heteroscedasticity in general is handled in STATA with the “ROBUST” command and in 
LIMDEP with the “HETRO” command.   
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MODULE ONE, PART TWO:  READING DATA INTO LIMDEP, CREATING AND 
RECODING VARIABLES, AND ESTIMATING AND TESTING MODELS IN LIMDEP 

 

 

 

This Part Two of Module One provides a cookbook-type demonstration of the steps required to 
read or import data into LIMDEP.  The reading of both small and large text and Excel files are 
shown though real data examples.  The procedures to recode and create variables within 
LIMDEP are demonstrated.  Commands for least-squares regression estimation and maximum 
likelihood estimation of probit and logit models are provided. Consideration is given to analysis 
of variance and the testing of linear restrictions and structural differences, as outlined in Part 
One.  (Parts Three and Four provide the STATA and SAS commands for the same operations 
undertaken here in Part Two with LIMDEP.  For a thorough review of LIMDEP, see Hilbe, 
2006.) 

 

IMPORTING EXCEL FILES INTO LIMDEP  

LIMDEP can read or import data in several ways.  The most easily imported files are those 
created in Microsoft Excel with the “.xls” file name extension.  To see how this is done, consider 
the data set in the Excel file “post-pre.xls,” which consists of test scores for 24 students in four 
classes.   The column titled “Student” identifies the 24 students by number, “post” provides each 
student’s post-course test score, “pre” is each student’s pre-course test score, and “class” 
identifies to which one of the four classes the students was assigned, e.g., class4 = 1 if student 
was in the fourth class and class4 = 0 if not.  The “.” in the post column for student 24 indicates 
that the student is missing a post-course test score. 

student   post    pre   class1   class2   class3   class4 
1     31   22   1   0   0    0  
2     30   21   1   0   0    0  
3     33   23   1   0   0    0  
4     31   22   1   0   0    0  
5     25   18   1   0   0    0  
6     32   24   0   1   0    0  
7     32   23   0   1   0    0  
8     30   20   0   1   0    0  
9     31   22   0   1   0    0  
10     23   17   0   1   0    0  
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11     22   16   0   1   0    0  
12     21   15   0   1   0    0  
13     30   19   0   0   1    0  
14    21  14  0  0  1   0  
15    19  13  0  0  1   0  
16    23  17  0  0  1   0  
17    30  20  0  0  1   0  
18    31  21  0  0  1   0  
19    20  15  0  0  0   1  
20    26  18  0  0  0   1  
21    20  16  0  0  0   1  
22    14  13  0  0  0   1  
23    28  21  0  0  0   1  
24     .  12  0  0  0   1  
 

To start, the file “post-pre.xls” must be downloaded and copied to your computer’s hard drive.  
Once this is done open LIMDEP. Clicking on “Project,” “Import,” and “Variables…” yields the 
following screen display: 
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Clicking “Variable” gives a screen display of your folders in “My Documents,” in which you can 
locate files containing Excel ( .wk and .xls) files.   

 

 

 

 

The next slide shows a path to the file “post-pre.xls.”  (The path to your copy of “post-pre.xls” 
will obviously depend on where you placed it on your computer’s hard drive.)   Clicking “Open” 
imports the file into LIMDEP.   
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To make sure the data has been correctly imported into LIMDEP, click the “Activate Data 
Editor” button, which is second from the right on the tool bar or go to Data Editor in the 
Window’s menu.  Notice that the missing observation for Student 24 appears as a blank in this 
data editor.  The sequencing of these steps and the associated screens follow: 
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READING SPACE DELINEATED TEXT FILES INTO LIMDEP 

Next we consider externally created text files that are typically accompanied by the “.txt” or 
“.prn” extensions.   For demonstration purposes, the data set we just employed with 24 
observations on the 7 variables  (“student,”  “post,”  “pre,” “class1,” “class2,”  “class3,” and 
“class4”) was saved as the space delineated text file “post-pre.txt.”   After downloading this file 
to your hard drive open LIMDEP to its first screen:   
 

 

 

To read the file “post-pre.txt,” begin by clicking “File” in the upper left-hand corner of the 
ribbon, which will yield the following screen display: 
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Click on “OK” to “Text/Command Document” to create a file into which all your commands 
will go. 
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The “read” command is typed or copied into the “Untitled” command file, with all subparts of a 
command separated with semicolons (;).  The program is not case sensitive; thus, upper and 
lower case letters can be used interchangeably.  The read command includes the number of 
variables or columns to be read (nvar= ), the number of records or observations for each variable 
(nobs=  ), and the place to find the file (File= ).  Because the names of the variables are on the 
first row of the file to be read, we tell this to LIMDEP with the Names=1 command. If the file 
path is long and involves spaces (as it is here, but your path will depend on where you placed 
your file), then quote marks are required around the path.  The $ indicates the end of the 
command.  

 

Read;NVAR=7;NOBS=24;Names=1;File=  
"C:\Documents and Settings\beckerw\My Documents\WKPAPERS\NCEE - econometrics 
\Module One\post-pre.txt"$ 
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Upon copying or typing this read command into the command file and highlighting the entire 
three lines, the screen display appears as below and the “Go” button is pressed to run the 
command. 

 

 

 

LIMDEP tells the user that it has attempted the command with the appearance of  

 

 

To check on the correct reading of the data, click the “Activate Data Editor” button, which is 
second from the right on the tool bar or go to Data Editor in the Window’s menu.   Notice that if 
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you use the Window’s menus, there are now four files open within Limdep: Untitled Project 1*, 
Untitled 1*, Output 1*, and Data Editor.  As you already know, Untitled 1 contains your read 
command and Untitled Project is just information in the opening LIMDEP screen.  Output 
contains the commands that LIMDEP has attempted, which so far only includes the read 
command.  This output file could have also been accessed by clicking on the view square next to 
the X box in the following rectangle 

 

When it appeared to check on whether the read command  was properly executed. 
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READING LARGE FILES INTO LIMDEP 

LIMDEP has a data matrix default restriction of no more than 222 rows (records per variable), 
900 columns (number of variables) and 200,000 cells.  To read, import or create nonconforming 
data sets this default setting must be changed.   For example, to accommodate larger data sets the 
number of rows must be increased.  If the creation of more than 900 variables is anticipated,  
even if less than 900 variables were initially imported, then the number of columns must be 
increased before any data is read.  This is accomplished by clicking the project button on the top 
ribbon, going to settings, and changing the number of cells and number of rows.  

 As an example, consider the data set employed by Becker and Powers (2001), which 
initially had 2,837 records.  Open LIMDEP and go to “Project” and then “Settings…,” which 
yields the following screen display: 
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Increasing the “Number of Cells” from 200,000 to 2,000,000 and increasing “Rows” from 222 to 
3,000, automatically resets the “Columns” to 666, which is more than sufficient to read the 64 
variables in the initial data set and to accommodate any variables to be created within LIMDEP.  
Pressing “OK” resets the memory allocation that LIMDEP will employ for this data set. 
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This Becker and Powers data set does not have variable names imbedded in it.  Thus, they will 
be added to the read command.  To now read the data follow the path “Files” to “New” to 
“Text/Command  Document” and click “OK.”  Entering the following read statement into the 
Text/Command file, highlighting it, and pushing the green “Go” button will enter the 2,837 
records on 64 variables in file beck8WO into LIMDEP and each of the variables will be named 
as indicated by each two character label.    

READ; NREC=2837; NVAR=64; FILE=F:\beck8WO.csv; Names=  
A1,A2,X3, C,AL,AM,AN,CA,CB,CC,CH,CI,CJ,CK,CL,CM,CN,CO,CS,CT, 
CU,CV,CW,DB,DD,DI,DJ,DK,DL,DM,DN,DQ,DR,DS,DY,DZ,EA,EB,EE,EF, 
EI,EJ,EP,EQ,ER,ET,EY,EZ,FF,FN,FX,FY,FZ,GE,GH,GM,GN,GQ,GR,HB, 
HC,HD,HE,HF $ 
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Defining all the variables is not critical for our purposes here, but the variables used in the 
Becker and Power’s study required the following definitions (where names are not upper- and 
lower-case sensitive): 
 
 
A1: Term, where 1= fall, 2 = spring 
A2:  School code, where 100/199 = doctorate,  200/299 = comprehensive, 300/399 = lib arts, 
400/499 = 2 year 
hb:   initial class size (number taking preTUCE) 
hc:   final class size (number taking postTUCE) 
dm:  experiences measured by number of years teaching 
dj:   teacher’s highest degree, where Bachelors=1, Masters=2, PhD=3 
cc:   postTUCE score (0 to 30) 
an:   preTUCE score (0 to 30) 
ge:   Student evaluation measured interest 
gh:  Student evaluation measured textbook quality 
gm: Student evaluation measured regular instructor’s English ability 
gq:  Student evaluation measured overall teaching effectiveness 
ci:   Instructor sex (Male=1, Female=2) 
ck:  English is native language of instructor (Yes=1, No=0) 
cs:  PostTUCE score counts toward course grade (Yes=1, No=0) 
ff:  GPA*100 
fn:  Student had high school economics (Yes=1, No=0) 
ey: Student’s sex (Male=1, Female=2) 
fx:  Student working in a job (Yes=1, No=0) 
 
 
 
Notice that this data set is too large to fit in LIMDEP’s “Active Data Editor” but all of the data 
are there as verified with the following DSTAT command, which is entered in the 
Text/Command file and highlighted.  Upon clicking on the Go button, the descriptive statistics 
for each variable appear in the output file.  Again, the output file is accessed via the Window tab 
in the upper ribbon.  (Notice that in this data set, all missing values were coded −9. )  
 
 
Dstat; RHS= A1,A2,X3, C,AL,AM,AN,CA,CB,CC,CH,CI,CJ,CK,CL,CM,CN,CO,CS,CT, 
CU,CV,CW,DB,DD,DI,DJ,DK,DL,DM,DN,DQ,DR,DS,DY,DZ,EA,EB,EE,EF, 
EI,EJ,EP,EQ,ER,ET,EY,EZ,FF,FN,FX,FY,FZ,GE,GH,GM,GN,GQ,GR,HB, 
HC,HD,HE,HF $ 
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In summary, the LIMDEP Help menu states that the READ command is of the general form  
 

READ ;  Nobs  = number of observations 
  ;  Nvar  = number of variables 
  ;  Names = list of Nvar names 
 ;  File  = name of the data file $ 

 
The default is an ASCII (or text) data file in which numbers are separated by blanks, tabs, and/or 
commas.  Although not demonstrated here, LIMDEP will also read formatted files by adding the 
option “; Format = ( Fortran format )” to the read command.  In addition, although not 
demonstrated, small data sets can be cut and pasted directly into the Test/Command Document, 
preceded by a simple read command “READ ;  Nobs  = number of observations;  Nvar  = 
number of variables$”, where  “;Names = 1” would also be added if names appear on the line 
before the data. 
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LEAST-SQUARES ESTIMATION AND LINEAR RESTRICTIONS IN LIMDEP 

To demonstrate some of the least-squares regression commands in LIMDEP, read either the 
Excel or space delineated text version of the 24 observations and 7 variable “post-pre” data set 
into LIMDEP.  The model to be estimated is  

1 2 ( )post pre f classesβ β ε= + + +  

All statistical and mathematical instructions must be placed in the “Text/Command Document” 
of LIMDEP, which is accessed via the “File” to “New” route described earlier: 

 

 

Once in the “Text/Command Document,” the command for a regression can be entered.  
Before doing this, however, recall that the posttest score is missing for the 24th person, as can be 
seen in the “Active Data Editor.”   LIMDEP automatically codes all missing data that appear in a 
text or Excel file as “.” with the value −999.  If a regression is estimated with the entire data set, 
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then this fictitious −999 place holding value would be incorrectly employed.  To avoid this, all 
commands can be prefaced with “skip,” which tells LIMDEP to not use records involving −999.  
(In the highly unlikely event that −999 is a legitimate value, then a recoding is required as 
discussed below.)  The syntax for regressions in LIMDEP is  

Regress; lhs= ???; rhs=one, ??? $ 

where “lhs=” is the left-hand-side dependent variable and “rhs=” is the right-hand-side 
explanatory variable.  The “one” is included on the right-hand-side to estimate a y-intercept.  If 
this “one” is not specified then the regression is forced to go through the origin – that is, no 
constant term is estimated.   Finally, LIMDEP will automatically predict the value of the 
dependent variable, including 95 percent confidence intervals, and show the results in the output 
file by adding “fill; list” to the regression command:  

Regress; lhs= ???; rhs=one, ???; fill; list $ 

 To demonstrate some of the least-squares regression commands in LIMDEP read either 
the Excel or space delineated text version of the 24 observations and 7 variables “post-pre” data 
set into LIMDEP.  The model to be estimated is  

1 2 3 4 51 2 3post pre class class classβ β β β β= + + + + + ε  

To avoid the sum of the four dummy variables equaling the column of ones in the data set, the 
fourth class is not included.   The commands to be typed into the Untitled Text/Command 
Document are now  

 skip$ 

 Regress ; Lhs =post; Rhs =one, pre, class1, class2,class3; fill; list$ 

Highlighting these commands and pressing “Go” gives the results in the LIMDEP output file: 
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Predicted Values          (* => observation was not in estimating sample.) 
le One\post-pre.xls 
Observation        Observed Y   Predicted Y   Residual   95% Forecast Interval 
        1          31.000        31.214         -.2138      28.3089    34.1187 
        2          30.000        29.697          .3034      26.7956    32.5975 
        3          33.000        32.731          .2690      29.8090    35.6530 
        4          31.000        31.214         -.2138      28.3089    34.1187 
        5          25.000        25.145         -.1449      22.1774    28.1124 
        6          32.000        34.005        -2.0048      31.0444    36.9653 
        7          32.000        32.488         -.4876      29.5784    35.3968 
        8          30.000        27.936         2.0640      25.1040    30.7679 
        9          31.000        30.970          .0296      28.1000    33.8408 
       10          23.000        23.384         -.3843      20.5091    26.2594 
       11          22.000        21.867          .1329      18.9513    24.7828 
       12          21.000        20.350          .6502      17.3811    23.3186 
       13          30.000        28.195         1.8046      25.3167    31.0740 
       14          21.000        20.609          .3907      17.6757    23.5428 
       15          19.000        19.092         -.0920      16.1089    22.0752 
       16          23.000        25.161        -2.1609      22.3001    28.0218 
       17          30.000        29.713          .2874      26.8053    32.6199 
       18          31.000        31.230         -.2298      28.2811    34.1786 
       19          20.000        19.172          .8276      16.2549    22.0900 
       20          26.000        23.724         2.2759      20.8105    26.6377 
       21          20.000        20.690         -.6897      17.7866    23.5927 
       22          14.000        16.138        -2.1380      13.1530    19.1230 
       23          28.000        28.276         -.2758      25.2500    31.3016 
*      24         No data        14.621      No data        11.5836    17.6579 
 
 
 

From this output the Predicted posttest score is 14.621, with 95 percent confidence interval equal 
to  11.5836< E(y|X24)< 17.6579. 

A researcher might be interested to test whether the class in which a student is enrolled affects 
his/her post-course test score, assuming fixed effects only.  This linear restriction is done 
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automatically in LIMDEP by adding the following “cls:” command to the regression statement in 
the Text/Command Document. 
 
Regress ; Lhs =post; Rhs =one, pre, class1, class2,class3; CLS: b(3)=0,b(4)=0,b(5)=0$ 

Upon highlighting and pressing the Go button, the following results will appear in the output file: 
 
 
--> Regress ; Lhs =post; Rhs =one, pre, class1, class2,class3; CLS: b(3)=0,b(... 
 
 ************************************************************************ 
 * NOTE: Deleted      1 observations with missing data. N is now     23 * 
 ************************************************************************ 
 
le One\post-pre.xls 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = POST     Mean=   26.21739130    , S.D.=   5.384797808     | 
| Model size: Observations =      23, Parameters =   5, Deg.Fr.=     18 | 
| Residuals:  Sum of squares= 28.59332986    , Std.Dev.=        1.26036 | 
| Fit:        R-squared=  .955177, Adjusted R-squared =          .94522 | 
| Model test: F[  4,     18] =   95.89,    Prob value =          .00000 | 
| Diagnostic: Log-L =    -35.1389, Restricted(b=0) Log-L =     -70.8467 | 
|             LogAmemiyaPrCrt.=     .660, Akaike Info. Crt.=      3.490 | 
| Autocorrel: Durbin-Watson Statistic =   1.72443,   Rho =       .13779 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant    -3.585879292       1.6459223   -2.179   .0429 le One\post-pre.xl 
 PRE          1.517221644   .93156695E-01   16.287   .0000     18.695652 
 CLASS1       1.420780437       .90500685    1.570   .1338     .21739130 
 CLASS2       1.177398543       .78819907    1.494   .1526     .30434783 
 CLASS3       2.954037461       .76623994    3.855   .0012     .26086957 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
le One\post-pre.xls 
 
le One\post-pre.xls 
+-----------------------------------------------------------------------+ 
| Linearly restricted regression                                        | 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = POST     Mean=   26.21739130    , S.D.=   5.384797808     | 
| Model size: Observations =      23, Parameters =   2, Deg.Fr.=     21 | 
| Residuals:  Sum of squares= 53.19669876    , Std.Dev.=        1.59160 | 
| Fit:        R-squared=  .916608, Adjusted R-squared =          .91264 | 
|             (Note:  Not using OLS.  R-squared is not bounded in [0,1] | 
| Model test: F[  1,     21] =  230.82,    Prob value =          .00000 | 
| Diagnostic: Log-L =    -42.2784, Restricted(b=0) Log-L =     -70.8467 | 
|             LogAmemiyaPrCrt.=    1.013, Akaike Info. Crt.=      3.850 | 
| Note, when restrictions are imposed, R-squared can be less than zero. | 
| F[ 3,    18] for the restrictions =      5.1627, Prob =   .0095       | 
| Autocorrel: Durbin-Watson Statistic =   1.12383,   Rho =       .43808 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant    -2.211829436       1.9004224   -1.164   .2597 le One\post-pre.xl 
 PRE          1.520632737       .10008855   15.193   .0000     18.695652 
 CLASS1       .0000000000 ........(Fixed Parameter)........   .21739130 
 CLASS2   -.4440892099E-15........(Fixed Parameter)........   .30434783 
 CLASS3   -.4440892099E-15........(Fixed Parameter)........   .26086957 
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 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
le One\post-pre.xls 
 
 
 

From the second part of this printout, the appropriate F to test  
 

Ho: β3 =  β4 =  β5 = 0  versus Ha: at least one Beta is nonzero 
 
is F[df1=3,df2=18] = 5.1627, with p-value = 0.0095.  Thus, null hypothesis that none of the 
dummies is significant at 0.05 Type I error level can be rejected in favor of the hypothesis that at 
least one class is significant, assuming that the effect of pre-course test score on post-course test 
score is the same in all classes and only the constant is affected by class assignment.   

 
STRUCTURAL (CHOW) TEST  
 
The above test of the linear restriction  β3 = β4 = β5 = 0 (no difference among classes), assumed 
that the pretest slope coefficient was constant, fixed and unaffected by the class to which a 
student belonged.  A full structural test requires the fitting of four separate regressions to obtain 
the four residual sum of squares that are added to obtain the unrestricted sum of squares.  The 
restricted sum of squares is obtained from a regression of posttest on pretest with no dummies for 
the classes; that is, the class to which a student belongs is irrelevant in the manner in which 
pretests determine the posttest score. 
 
The commands to be entered into the Document/text file of LIMDEP are as follows: 
  
Restricted Regression 
 
Sample; 1-23$ 
Regress ; Lhs =post; Rhs =one, pre$ 
Calc    ; SSall = Sumsqdev$ 
 
Unrestricted Regressions 
 
Sample; 1-5$ 
Regress ; Lhs =post; Rhs =one, pre$ 
Calc    ; SS1 = Sumsqdev$ 
 
Sample; 6-12$ 
Regress ; Lhs =post; Rhs =one, pre$ 
Calc    ; SS2 = Sumsqdev$ 
 
Sample; 13-18$ 
Regress ; Lhs =post; Rhs =one, pre$ 
Calc    ; SS3 = Sumsqdev$ 
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Sample; 19-23$ 
Regress ; Lhs =post; Rhs =one, pre$ 
Calc    ; SS4 = Sumsqdev$ 
 
Calc;List ;F=((SSall-(SS1+SS2+SS3+SS4))/3*2) / ((SS1+SS2+SS3+SS4)/(23-4*2))$ 
 
The LIMDEP output is  
 
--> RESET 
--> READ;FILE="C:\Documents and Settings\beckerw\My Documents\WKPAPERS\NCEE -... 
--> Reject; post=-999$ 
--> Regress ; Lhs =post; Rhs =one, pre, class1, class2,class3; CLS: b(3)=0,b(... 
 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = POST     Mean=   26.21739130    , S.D.=   5.384797808     | 
| Model size: Observations =      23, Parameters =   5, Deg.Fr.=     18 | 
| Residuals:  Sum of squares= 28.59332986    , Std.Dev.=        1.26036 | 
| Fit:        R-squared=  .955177, Adjusted R-squared =          .94522 | 
| Model test: F[  4,     18] =   95.89,    Prob value =          .00000 | 
| Diagnostic: Log-L =    -35.1389, Restricted(b=0) Log-L =     -70.8467 | 
|             LogAmemiyaPrCrt.=     .660, Akaike Info. Crt.=      3.490 | 
| Autocorrel: Durbin-Watson Statistic =   1.72443,   Rho =       .13779 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant    -3.585879292       1.6459223   -2.179   .0429 
 PRE          1.517221644   .93156695E-01   16.287   .0000     18.695652 
 CLASS1       1.420780437       .90500685    1.570   .1338     .21739130 
 CLASS2       1.177398543       .78819907    1.494   .1526     .30434783 
 CLASS3       2.954037461       .76623994    3.855   .0012     .26086957 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
+-----------------------------------------------------------------------+ 
| Linearly restricted regression                                        | 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = POST     Mean=   26.21739130    , S.D.=   5.384797808     | 
| Model size: Observations =      23, Parameters =   2, Deg.Fr.=     21 | 
| Residuals:  Sum of squares= 53.19669876    , Std.Dev.=        1.59160 | 
| Fit:        R-squared=  .916608, Adjusted R-squared =          .91264 | 
|             (Note:  Not using OLS.  R-squared is not bounded in [0,1] | 
| Model test: F[  1,     21] =  230.82,    Prob value =          .00000 | 
| Diagnostic: Log-L =    -42.2784, Restricted(b=0) Log-L =     -70.8467 | 
|             LogAmemiyaPrCrt.=    1.013, Akaike Info. Crt.=      3.850 | 
| Note, when restrictions are imposed, R-squared can be less than zero. | 
| F[ 3,    18] for the restrictions =      5.1627, Prob =   .0095       | 
| Autocorrel: Durbin-Watson Statistic =   1.12383,   Rho =       .43808 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant    -2.211829436       1.9004224   -1.164   .2597 
 PRE          1.520632737       .10008855   15.193   .0000     18.695652 
 CLASS1       .0000000000 ........(Fixed Parameter)........   .21739130 
 CLASS2   -.4440892099E-15........(Fixed Parameter)........   .30434783 
 CLASS3   -.4440892099E-15........(Fixed Parameter)........   .26086957 
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 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
 
--> Sample; 1-23$ 
--> Regress ; Lhs =post; Rhs =one, pre$ 
 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = POST     Mean=   26.21739130    , S.D.=   5.384797808     | 
| Model size: Observations =      23, Parameters =   2, Deg.Fr.=     21 | 
| Residuals:  Sum of squares= 53.19669876    , Std.Dev.=        1.59160 | 
| Fit:        R-squared=  .916608, Adjusted R-squared =          .91264 | 
| Model test: F[  1,     21] =  230.82,    Prob value =          .00000 | 
| Diagnostic: Log-L =    -42.2784, Restricted(b=0) Log-L =     -70.8467 | 
|             LogAmemiyaPrCrt.=    1.013, Akaike Info. Crt.=      3.850 | 
| Autocorrel: Durbin-Watson Statistic =   1.12383,   Rho =       .43808 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant    -2.211829436       1.9004224   -1.164   .2575 
 PRE          1.520632737       .10008855   15.193   .0000     18.695652 
 
--> Calc    ; SSall = Sumsqdev $ 
--> Sample; 1-5$ 
--> Regress ; Lhs =post; Rhs =one, pre$ 
 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = POST     Mean=   30.00000000    , S.D.=   3.000000000     | 
| Model size: Observations =       5, Parameters =   2, Deg.Fr.=      3 | 
| Residuals:  Sum of squares= .2567567568    , Std.Dev.=         .29255 | 
| Fit:        R-squared=  .992868, Adjusted R-squared =          .99049 | 
| Model test: F[  1,      3] =  417.63,    Prob value =          .00026 | 
| Diagnostic: Log-L =       .3280, Restricted(b=0) Log-L =     -12.0299 | 
|             LogAmemiyaPrCrt.=   -2.122, Akaike Info. Crt.=       .669 | 
| Autocorrel: Durbin-Watson Statistic =   2.19772,   Rho =      -.09886 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant    -2.945945946       1.6174496   -1.821   .1661 
 PRE          1.554054054   .76044788E-01   20.436   .0003     21.200000 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
 
--> Calc    ; SS1 = Sumsqdev $ 
--> Sample; 6-12$ 
--> Regress ; Lhs =post; Rhs =one, pre$ 
 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = POST     Mean=   27.28571429    , S.D.=   5.023753103     | 
| Model size: Observations =       7, Parameters =   2, Deg.Fr.=      5 | 
| Residuals:  Sum of squares= 7.237132353    , Std.Dev.=        1.20309 | 
| Fit:        R-squared=  .952208, Adjusted R-squared =          .94265 | 
| Model test: F[  1,      5] =   99.62,    Prob value =          .00017 | 
| Diagnostic: Log-L =    -10.0492, Restricted(b=0) Log-L =     -20.6923 | 
|             LogAmemiyaPrCrt.=     .621, Akaike Info. Crt.=      3.443 | 
| Autocorrel: Durbin-Watson Statistic =   1.50037,   Rho =       .24982 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
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|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant     .6268382353       2.7094095     .231   .8262 
 PRE          1.362132353       .13647334    9.981   .0002     19.571429 
 
--> Calc    ; SS2 = Sumsqdev $ 
--> Sample; 13-18$ 
--> Regress ; Lhs =post; Rhs =one, pre$ 
 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = POST     Mean=   25.66666667    , S.D.=   5.278888772     | 
| Model size: Observations =       6, Parameters =   2, Deg.Fr.=      4 | 
| Residuals:  Sum of squares= 8.081250000    , Std.Dev.=        1.42138 | 
| Fit:        R-squared=  .942001, Adjusted R-squared =          .92750 | 
| Model test: F[  1,      4] =   64.97,    Prob value =          .00129 | 
| Diagnostic: Log-L =     -9.4070, Restricted(b=0) Log-L =     -17.9490 | 
|             LogAmemiyaPrCrt.=     .991, Akaike Info. Crt.=      3.802 | 
| Autocorrel: Durbin-Watson Statistic =   1.51997,   Rho =       .24001 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant    -1.525000000       3.4231291    -.445   .6790 
 PRE          1.568750000       .19463006    8.060   .0013     17.333333 
 
--> Calc    ; SS3 = Sumsqdev $ 
--> Sample; 19-23$ 
--> Regress ; Lhs =post; Rhs =one, pre$ 
 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = POST     Mean=   21.60000000    , S.D.=   5.549774770     | 
| Model size: Observations =       5, Parameters =   2, Deg.Fr.=      3 | 
| Residuals:  Sum of squares= 8.924731183    , Std.Dev.=        1.72479 | 
| Fit:        R-squared=  .927559, Adjusted R-squared =          .90341 | 
| Model test: F[  1,      3] =   38.41,    Prob value =          .00846 | 
| Diagnostic: Log-L =     -8.5432, Restricted(b=0) Log-L =     -15.1056 | 
|             LogAmemiyaPrCrt.=    1.427, Akaike Info. Crt.=      4.217 | 
| Autocorrel: Durbin-Watson Statistic =    .82070,   Rho =       .58965 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant    -7.494623656       4.7572798   -1.575   .2132 
 PRE          1.752688172       .28279093    6.198   .0085     16.600000 
 
--> Calc    ; SS4 = Sumsqdev $ 
--> Calc;List ;F=((SSall-(SS1+SS2+SS3+SS4))/(3*2)) / ((SS1+SS2+SS3+SS4)/(23-4*2))$ 
    F       =  .29282633057790450D+01 
 

The structural test across all classes is   
 
        0 4: and : ' are not equalaH H s= = =1 2β β . . . β β
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Because the calculated F = 2.92, and the critical F (Prob of Type I error =0.05, df1=6, df2=15) = 
2.79, we reject the null hypothesis and conclude that at least one class is significantly different 
from another, allowing the slope on pre-course test score to vary from one class to another.  That 
is, the class in which a student is enrolled is important because of a change in slope and/or the 
intercept.  

 

HETEROSCEDASTICITY 

To adjust for either heteroscedasticity across individual observations or a common error term 
within groups but not across groups the “hetro” and “cluster” command can be added to the 
standard “regress” command in LIMDEP in the following manner: 

Skip 
 
Regress; Lhs= post; Rhs= one, pre, class1, class2, class3$ 
 
Regress; Lhs= post; Rhs= one, pre, class1, class2, class3 
;hetro $ 
 
Create; Class = class1+2*class2+3*class3+4*class4$ 
Regress ; Lhs= post; Rhs= one, pre, class1, class2, class3 
;cluster=class $ 
 
where the “class” variable is created to name the classes 1, 2, 3 and 4 to enable their 
identification in the “cluster” command.  
 
 
The resulting LIMDEP output shows a marked increase in the significance of the individual 
group effects, as reflected in their respective p-values.  

--> RESET 
--> READ;FILE="C:\Documents and Settings\beckerw\My Documents\WKPAPERS\NCEE -... 
--> skip 
--> Regress; Lhs= post; Rhs= one, pre, class1, class2, class3$ 
 
 ************************************************************************ 
 * NOTE: Deleted      1 observations with missing data. N is now     23 * 
 ************************************************************************ 
 
le One\post-pre.xls 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = POST     Mean=   26.21739130    , S.D.=   5.384797808     | 
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| Model size: Observations =      23, Parameters =   5, Deg.Fr.=     18 | 
| Residuals:  Sum of squares= 28.59332986    , Std.Dev.=        1.26036 | 
| Fit:        R-squared=  .955177, Adjusted R-squared =          .94522 | 
| Model test: F[  4,     18] =   95.89,    Prob value =          .00000 | 
| Diagnostic: Log-L =    -35.1389, Restricted(b=0) Log-L =     -70.8467 | 
|             LogAmemiyaPrCrt.=     .660, Akaike Info. Crt.=      3.490 | 
| Autocorrel: Durbin-Watson Statistic =   1.72443,   Rho =       .13779 | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant    -3.585879292       1.6459223   -2.179   .0429 le One\post-pre.xl 
 PRE          1.517221644   .93156695E-01   16.287   .0000     18.695652 
 CLASS1       1.420780437       .90500685    1.570   .1338     .21739130 
 CLASS2       1.177398543       .78819907    1.494   .1526     .30434783 
 CLASS3       2.954037461       .76623994    3.855   .0012     .26086957 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
le One\post-pre.xls 
 
 
--> Regress; Lhs= post; Rhs= one, pre, class1, class2, class3 
    ;hetro $ 
 
 ************************************************************************ 
 * NOTE: Deleted      1 observations with missing data. N is now     23 * 
 ************************************************************************ 
 
le One\post-pre.xls 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = POST     Mean=   26.21739130    , S.D.=   5.384797808     | 
| Model size: Observations =      23, Parameters =   5, Deg.Fr.=     18 | 
| Residuals:  Sum of squares= 28.59332986    , Std.Dev.=        1.26036 | 
| Fit:        R-squared=  .955177, Adjusted R-squared =          .94522 | 
| Model test: F[  4,     18] =   95.89,    Prob value =          .00000 | 
| Diagnostic: Log-L =    -35.1389, Restricted(b=0) Log-L =     -70.8467 | 
|             LogAmemiyaPrCrt.=     .660, Akaike Info. Crt.=      3.490 | 
| Autocorrel: Durbin-Watson Statistic =   1.72443,   Rho =       .13779 | 
| Results Corrected for heteroskedasticity                              | 
| Breusch - Pagan chi-squared =     4.0352, with   4 degrees of freedom | 
+-----------------------------------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant    -3.585879292       1.5096560   -2.375   .0289 le One\post-pre.xl 
 PRE          1.517221644   .72981808E-01   20.789   .0000     18.695652 
 CLASS1       1.420780437       .67752835    2.097   .0504     .21739130 
 CLASS2       1.177398543       .72249740    1.630   .1206     .30434783 
 CLASS3       2.954037461       .80582075    3.666   .0018     .26086957 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
le One\post-pre.xls 
 
--> Create; Class = class1+2*class2+3*class3+4*class4$ 
--> Regress ; Lhs= post; Rhs= one, pre, class1, class2, class3 
    ;cluster=class $ 
 
 ************************************************************************ 
 * NOTE: Deleted      1 observations with missing data. N is now     23 * 
 ************************************************************************ 
 
le One\post-pre.xls 
+-----------------------------------------------------------------------+ 
| Ordinary    least squares regression    Weighting variable = none     | 
| Dep. var. = POST     Mean=   26.21739130    , S.D.=   5.384797808     | 
| Model size: Observations =      23, Parameters =   5, Deg.Fr.=     18 | 
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| Residuals:  Sum of squares= 28.59332986    , Std.Dev.=        1.26036 | 
| Fit:        R-squared=  .955177, Adjusted R-squared =          .94522 | 
| Model test: F[  4,     18] =   95.89,    Prob value =          .00000 | 
| Diagnostic: Log-L =    -35.1389, Restricted(b=0) Log-L =     -70.8467 | 
|             LogAmemiyaPrCrt.=     .660, Akaike Info. Crt.=      3.490 | 
| Autocorrel: Durbin-Watson Statistic =   1.72443,   Rho =       .13779 | 
+-----------------------------------------------------------------------+ 
+-----------------------------------------------------------------------+ 
| Covariance matrix for the model is adjusted for data clustering.      | 
| Sample of     23 observations contained      4 clusters defined by    | 
| variable CLASS    which identifies by a value a cluster ID.           | 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |t-ratio |P[|T|>t] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
 Constant    -3.585879292       1.5875538   -2.259   .0365 le One\post-pre.xl 
 PRE          1.517221644   .95635769E-01   15.865   .0000     18.695652 
 CLASS1       1.420780437       .43992454    3.230   .0046     .21739130 
 CLASS2       1.177398543       .28417486    4.143   .0006     .30434783 
 CLASS3       2.954037461   .70132897E-01   42.121   .0000     .26086957 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
le One\post-pre.xls 
 

 

ESTIMATING PROBIT MODELS IN LIMDEP 

Often variables need to be transformed or created within a computer program to perform the 
desired analysis.  To demonstrate the process and commands in LIMDEP, start with the Becker 
and Power’s data that have been or can be read into LIMDEP as shown earlier.    After reading 
the data into LIMDEP the first task is to recode the qualitative data into appropriate dummies. 

A2 contains a range of values representing various classes of institutions.  These are recoded via 
the “recode” command, where A2 is set equal to 1 for doctoral institutions (100/199), 2 for  
comprehensive or master’s degree granting institutions (200/299), 3 for liberal arts colleges 
(300/399) and 4 for two-year colleges  (400/499) .  The “create” command is then used to create 
1 and 0 bivariate variables for each of these institutions of post-secondary education:  
 

recode; a2; 100/199 = 1; 200/299 = 2; 300/399 = 3; 400/499 =4$ 
create; doc=a2=1; comp=a2=2; lib=a2=3; twoyr=a2=4$  

 
As should be apparent, this syntax says if a2 has a value between 100 and 199 recode it to be 1.  
If a2 has a value between 200 and 299 recode it to be 2 and so on.  Next, create a variable called 
“doc” and if a2=1, then set doc=1 and for any other value of a2 let doc=0.   Create a variable 
called “comp” and if a2=2, then set comp=1 and for any other value of a2 let comp=0, and so on.    
 
Next 1 - 0 bivariates are created to show whether the instructor had a PhD degree and where the 
student got a positive score on the postTUCE:  
 

create; phd=dj=3; final=cc>0$ 
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To allow for quadratic forms in teacher experiences and class size the following variables are 
created:   
 

create; dmsq=dm^2; hbsq=hb^2$  
 
In this data set, as can be seen in the descriptive statistics (DSTAT), all missing values were 
coded −9.   Thus, adding together some of the responses to the student evaluations gives 
information on whether a student actually completed an evaluation.  For example, if the sum of 
ge, gh, gm,  and gq equals −36, we know that the student did not complete a student evaluation 
in a meaningful way.  A dummy variable to reflect this fact is then created by:   
 

create; evalsum=ge+gh+gm+gq; noeval=evalsum=−36$ 
 
Finally, from the TUCE developer it is known that student number 2216 was counted in term 2 
but was in term 1 but no postTUCE was taken.  This error is corrected with the following 
command: 
 

recode; hb; 90=89$  #2216 counted in term 2, but in term 1 with no posttest  
 
These “create” and “recode” commands can be entered into LIMDEP as a block, highlighted and 
run with the “Go” button.  Notice, also, that descriptive statements can be written after the “$” as 
a reminder or for later justification or reference as to why the command was included. 
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One of the things of interest to Becker and Powers was whether class size at the beginning or end 
of the term influenced whether a student completed the postTUCE. This can be assessed by 
fitting a probit model to the 1 – 0 discrete dependent variable “final.”  To do this, however, we 
must make sure that there are no missing data on the variables to be included as regressors.  In 
this data set, all missing values were coded −9.  LIMDEP’s “reject” command can be employed 
to remove all records with a −9 value.  The “probit” command is used to invoke a maximum 
likelihood estimation with the following syntax: 
 
 Probit; Lhs=???; rhs=one, ???; marginaleffect$ 
  
where the addition of the “marginaleffect” tells LIMDEP to calculate marginal effects regardless 
of whether the explanatory variable is or is not continuous.  The commands to be entered into the 
Text/Command Document are then 
 
Reject; AN=-9$  
Reject; HB=-9$ 
Reject;  ci=-9$ 
Reject;  ck=-9$ 
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Reject;  cs=0$ 
Reject;  cs=-9$ 
Reject;  a2=-9$ 
Reject;  phd=-9$ 
reject; hc=-9$ 
probit;lhs=final; 
rhs=one,an,hb,doc,comp,lib,ci,ck,phd,noeval;marginaleffect$ 
probit;lhs=final; 
rhs=one,an,hc,doc,comp,lib,ci,ck,phd,noeval;marginaleffect$ 
 
which upon highlighting and pressing the Go button yields the output for these two probit 
models. 
 

 
 

--> probit;lhs=final; 
    rhs=one,an,hb,doc,comp,lib,ci,ck,phd,noeval;marginaleffect$ 
Normal exit from iterations. Exit status=0. 
 
+---------------------------------------------+ 
| Binomial Probit Model                       | 
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| Maximum Likelihood Estimates                | 
| Model estimated: May 05, 2008 at 04:07:02PM.| 
| Dependent variable                FINAL     | 
| Weighting variable                 None     | 
| Number of observations             2587     | 
| Iterations completed                  6     | 
| Log likelihood function       -822.7411     | 
| Restricted log likelihood     -1284.216     | 
| Chi squared                    922.9501     | 
| Degrees of freedom                    9     | 
| Prob[ChiSqd > value] =         .0000000     | 
| Hosmer-Lemeshow chi-squared =  26.06658     | 
| P-value=  .00102 with deg.fr. =       8     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Index function for probability 
 Constant     .9953497702       .24326247    4.092   .0000 
 AN        .2203899720E-01  .94751772E-02    2.326   .0200     10.596830 
 HB       -.4882560519E-02  .19241005E-02   -2.538   .0112     55.558949 
 DOC          .9757147902       .14636173    6.666   .0000     .31774256 
 COMP         .4064945318       .13926507    2.919   .0035     .41785852 
 LIB          .5214436028       .17664590    2.952   .0032     .13567839 
 CI           .1987315042   .91686501E-01    2.168   .0302     1.2311558 
 CK        .8778999306E-01      .13428742     .654   .5133     .91998454 
 PHD         -.1335050091       .10303166   -1.296   .1951     .68612292 
 NOEVAL      -1.930522400   .72391102E-01  -26.668   .0000     .29068419 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
 
 
+-------------------------------------------+ 
| Partial derivatives of E[y] = F[*]   with | 
| respect to the vector of characteristics. | 
| They are computed at the means of the Xs. | 
| Observations used for means are All Obs.  | 
+-------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Index function for probability 
 Constant     .1977242134   .48193408E-01    4.103   .0000 
 AN        .4378002101E-02  .18769275E-02    2.333   .0197     10.596830 
 HB       -.9699107460E-03  .38243741E-03   -2.536   .0112     55.558949 
          Marginal effect for dummy variable is P|1 - P|0. 
 DOC          .1595047130   .20392136E-01    7.822   .0000     .31774256 
          Marginal effect for dummy variable is P|1 - P|0. 
 COMP      .7783344522E-01  .25881201E-01    3.007   .0026     .41785852 
          Marginal effect for dummy variable is P|1 - P|0. 
 LIB       .8208261358E-01  .21451464E-01    3.826   .0001     .13567839 
 CI        .3947761030E-01  .18186048E-01    2.171   .0299     1.2311558 
          Marginal effect for dummy variable is P|1 - P|0. 
 CK        .1820482750E-01  .29016989E-01     .627   .5304     .91998454 
          Marginal effect for dummy variable is P|1 - P|0. 
 PHD      -.2575430653E-01  .19325466E-01   -1.333   .1826     .68612292 
          Marginal effect for dummy variable is P|1 - P|0. 
 NOEVAL      -.5339850032   .19586185E-01  -27.263   .0000     .29068419 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Probit   model for variable FINAL      | 
+----------------------------------------+ 
| Proportions P0= .197140   P1= .802860  | 
| N =    2587 N0=     510   N1=    2077  | 
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| LogL =  -822.74107 LogL0 = -1284.2161  | 
| Estrella = 1-(L/L0)^(-2L0/n) = .35729  | 
+----------------------------------------+ 
|     Efron |  McFadden  |  Ben./Lerman  | 
|    .39635 |    .35934  |       .80562  | 
|    Cramer | Veall/Zim. |     Rsqrd_ML  | 
|    .38789 |    .52781  |       .30006  | 
+----------------------------------------+ 
| Information  Akaike I.C. Schwarz I.C.  | 
| Criteria         .64379    1724.06468  | 
+----------------------------------------+ 
Frequencies of actual & predicted outcomes 
Predicted outcome has maximum probability. 
Threshold value for predicting Y=1 = .5000 
            Predicted 
------  ----------  +  ----- 
Actual      0    1  |  Total 
------  ----------  +  ----- 
  0       342  168  |    510 
  1       197 1880  |   2077 
------  ----------  +  ----- 
Total     539 2048  |   2587 
 
--> probit;lhs=final; 
    rhs=one,an,hc,doc,comp,lib,ci,ck,phd,noeval;marginaleffect$ 
Normal exit from iterations. Exit status=0. 
 
+---------------------------------------------+ 
| Binomial Probit Model                       | 
| Maximum Likelihood Estimates                | 
| Model estimated: May 05, 2008 at 04:07:03PM.| 
| Dependent variable                FINAL     | 
| Weighting variable                 None     | 
| Number of observations             2587     | 
| Iterations completed                  6     | 
| Log likelihood function       -825.9472     | 
| Restricted log likelihood     -1284.216     | 
| Chi squared                    916.5379     | 
| Degrees of freedom                    9     | 
| Prob[ChiSqd > value] =         .0000000     | 
| Hosmer-Lemeshow chi-squared =  22.57308     | 
| P-value=  .00396 with deg.fr. =       8     | 
+---------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Index function for probability 
 Constant     .8712666323       .24117408    3.613   .0003 
 AN        .2259549490E-01  .94553383E-02    2.390   .0169     10.596830 
 HC        .1585898886E-03  .21039762E-02     .075   .9399     49.974874 
 DOC          .8804040395       .14866411    5.922   .0000     .31774256 
 COMP         .4596088640       .13798168    3.331   .0009     .41785852 
 LIB          .5585267697       .17568141    3.179   .0015     .13567839 
 CI           .1797199200   .90808055E-01    1.979   .0478     1.2311558 
 CK        .1415663447E-01      .13332671     .106   .9154     .91998454 
 PHD         -.2351326125       .10107423   -2.326   .0200     .68612292 
 NOEVAL      -1.928215642   .72363621E-01  -26.646   .0000     .29068419 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
 
 
+-------------------------------------------+ 
| Partial derivatives of E[y] = F[*]   with | 
| respect to the vector of characteristics. | 
| They are computed at the means of the Xs. | 
| Observations used for means are All Obs.  | 
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+-------------------------------------------+ 
+---------+--------------+----------------+--------+---------+----------+ 
|Variable | Coefficient  | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| 
+---------+--------------+----------------+--------+---------+----------+ 
          Index function for probability 
 Constant     .1735365132   .47945637E-01    3.619   .0003 
 AN        .4500509092E-02  .18776909E-02    2.397   .0165     10.596830 
 HC        .3158750180E-04  .41902052E-03     .075   .9399     49.974874 
          Marginal effect for dummy variable is P|1 - P|0. 
 DOC          .1467543687   .21319420E-01    6.884   .0000     .31774256 
          Marginal effect for dummy variable is P|1 - P|0. 
 COMP      .8785901674E-01  .25536388E-01    3.441   .0006     .41785852 
          Marginal effect for dummy variable is P|1 - P|0. 
 LIB       .8672357482E-01  .20661637E-01    4.197   .0000     .13567839 
 CI        .3579612385E-01  .18068050E-01    1.981   .0476     1.2311558 
          Marginal effect for dummy variable is P|1 - P|0. 
 CK        .2839467767E-02  .26927626E-01     .105   .9160     .91998454 
          Marginal effect for dummy variable is P|1 - P|0. 
 PHD      -.4448632109E-01  .18193388E-01   -2.445   .0145     .68612292 
          Marginal effect for dummy variable is P|1 - P|0. 
 NOEVAL      -.5339710749   .19569243E-01  -27.286   .0000     .29068419 
 (Note: E+nn or E-nn means multiply by 10 to + or -nn power.) 
 
+----------------------------------------+ 
| Fit Measures for Binomial Choice Model | 
| Probit   model for variable FINAL      | 
+----------------------------------------+ 
| Proportions P0= .197140   P1= .802860  | 
| N =    2587 N0=     510   N1=    2077  | 
| LogL =  -825.94717 LogL0 = -1284.2161  | 
| Estrella = 1-(L/L0)^(-2L0/n) = .35481  | 
+----------------------------------------+ 
|     Efron |  McFadden  |  Ben./Lerman  | 
|    .39186 |    .35685  |       .80450  | 
|    Cramer | Veall/Zim. |     Rsqrd_ML  | 
|    .38436 |    .52510  |       .29833  | 
+----------------------------------------+ 
| Information  Akaike I.C. Schwarz I.C.  | 
| Criteria         .64627    1730.47688  | 
+----------------------------------------+ 
Frequencies of actual & predicted outcomes 
Predicted outcome has maximum probability. 
Threshold value for predicting Y=1 = .5000 
            Predicted 
------  ----------  +  ----- 
Actual      0    1  |  Total 
------  ----------  +  ----- 
  0       337  173  |    510 
  1       192 1885  |   2077 
------  ----------  +  ----- 
Total     529 2058  |   2587 

 

For each of these two probits, the first block of coefficients are for the latent variable 
probit equation.  The second block provides the marginal effects.   The initial class size (hb) 
probit coefficient −0.004883, however, is highly significant with a two-tail p-value of 0.0112.  
On the other hand, the end-of-term class size (hc) probit coefficient (0.000159) is insignificant 
with a two-tail p-value of 0.9399.  
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The overall goodness of fit can be assessed in several ways.  The easiest is the proportion 
of correct 0 and 1 predictions:  For the first probit, using initial class size (hb) as an explanatory 
variable, the proportion of correct prediction is 0.859 = (342+1880)/2587.  For the second probit, 
using end-of-term class size (hc) as an explanatory variable, the proportion of correct prediction 
is also 0.859 = (337+1885)/2587.  The Chi-square (922.95, df =9) for the probit employing the 
initial class size is slightly higher than that for the end-of-term probit  (916.5379, df =9) but they 
are both highly significant.   

Finally, worth noting when using the “reject” command is that the record is not removed.  
It can be reactivated with the “include” command.  Active and inactive status can be observed in 
LIMDEP’s editor by the presence or lack of presence of chevrons (>>) next to the row number 
down the left-hand side of the display.  

If you wish to save you work in LIMDEP you must make sure to save each of the files 
you want separately.  Your Text/Command Document, data file, and output files must be saved 
individually in LIMDEP.  There is no global saving of all three files.   

  

CONCLUDING REMARKS    

The goal of this hands-on component of this first of four modules was to enable users to get data 
into LIMDEP, create variables and run regressions on continuous and discrete variables; it was 
not to explain all of the statistics produced by computer output.  For this an intermediate level 
econometrics textbook (such as Jeffrey Wooldridge, Introductory Econometrics) or advanced 
econometrics textbook such as (William Greene, Econometric Analysis) must be consulted.  
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MODULE ONE, PART THREE:  READING DATA INTO STATA, CREATING AND 
RECODING VARIABLES, AND ESTIMATING AND TESTING MODELS IN STATA 

 

 

 

This Part Three of Module One provides a cookbook-type demonstration of the steps required to 
read or import data into STATA.  The reading of both small and large text and Excel files are 
shown though real data examples.  The procedures to recode and create variables within STATA 
are demonstrated.  Commands for least-squares regression estimation and maximum likelihood 
estimation of probit and logit models are provided. Consideration is given to analysis of variance 
and the testing of linear restrictions and structural differences, as outlined in Part One.  (Parts 
Two and Four provide the LIMDEP and SAS commands for the same operations undertaken 
here in Part Three with STATA. For a review of STATA, version 7, see Kolenikov (2001).) 

 

IMPORTING EXCEL FILES INTO STATA 

STATA can read data from many different formats. As an example of how to read data created in 
an Excel spreadsheet, consider the data from the Excel file “post-pre.xls,” which consists of test 
scores for 24 students in four classes.  The column titled “Student” identifies the 24 students by 
number, “post” provides each student’s post-course test score, “pre” is each student’s pre-course 
test score, and “class” identifies to which one of the four classes the students was assigned, e.g., 
class4 = 1 if student was in the fourth class and class4 = 0 if not.  The “.” in the post column for 
student 24 indicates that the student is missing a post-course test score. 

To start, the file “post-pre.xls” must be downloaded and copied to your computer’s hard drive. 
Unfortunately, STATA does not work with “.xls” data by default (i.e., there is no default 
“import” function or command to get “.xls” data into STATA’s data editor); however, we can 
still transfer data from an Excel spreadsheet into STATA by copy and paste.* First, open the 
“post-pre.xls” file in Excel. The raw data are given below:  

 

 

                                                            
* See Appendix A for a description of Stat/Transfer, a program to convert data from one format to 
another. 
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student   post    pre   class1   class2   class3   class4 
1     31   22   1   0   0    0  
2     30   21   1   0   0    0  
3     33   23   1   0   0    0  
4     31   22   1   0   0    0  
5     25   18   1   0   0    0  
6     32   24   0   1   0    0  
7     32   23   0   1   0    0  
8     30   20   0   1   0    0  
9     31   22   0   1   0    0  
10     23   17   0   1   0    0  
11     22   16   0   1   0    0  
12     21   15   0   1   0    0  
13     30   19   0   0   1    0  
14    21  14  0  0  1   0  
15    19  13  0  0  1   0  
16    23  17  0  0  1   0  
17    30  20  0  0  1   0  
18    31  21  0  0  1   0  
19    20  15  0  0  0   1  
20    26  18  0  0  0   1  
21    20  16  0  0  0   1  
22    14  13  0  0  0   1  
23    28  21  0  0  0   1  
24     .  12  0  0  0   1  
 
 

In Excel, highlight the appropriate cells, right-click on the highlighted area and click “copy”. 
Your screen should look something like: 
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Then open STATA. Go to “Data”, and click on “Data Editor”: 
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Clicking on “Data Editor” will yield the following screen: 

 

From here, right-click on the highlighted cell and click “paste”: 
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Your data is now in the STATA data editor, which yields the following screen: 
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Note that STATA, unlike LIMDEP, records missing observations with a period, rather than a 
blank space. Closing the data editor, we see that our variables are now added to the variable list 
in STATA, and we are correctly told that our data consist of 7 variables and 24 observations. 

 

Any time you wish to see your current data, you can go back to the data editor. We can also view 
the data by typing in “browse” in the command window. As the terms suggest, “browse” only 
allows you to see the data, while you can manually alter data in the “data editor”. 

 

READING SPACE, TAB, OR COMMA DELINEATED FILES INTO STATA 

Next we consider externally created text files that are typically accompanied by the “.txt” or 
“.prn” extensions. As an example, we use the previous dataset with 24 observations on the 7 
variables (“student,”  “post,”  “pre,” “class1,” “class2,”  “class3,” and “class4”) and saved it as a 
space delineated text file “post-pre.txt.”  To read the data into STATA, we need to utilize the 
“insheet” command. In the command window, type  

insheet using “F:\NCEE (Becker)\post-pre.txt”, delimiter(“ “) 

The “insheet” tells STATA to read in text data and “using” directs STATA to a particular file 
name. In this case, the file is saved in the location “F:\NCEE (Becker)\post-pre.txt”, but this will 
vary by user. Finally, the “delimiter(“ “)” option tells STATA that the data points in this file are 
separated by a space. If your data were tab delimited, you could type 
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insheet using “F:\NCEE (Becker)\post-pre.txt”, tab 

and if you were using a “.csv” file, you could type 

inshee

iter (e.g., a 
colon, semicolon, et

ield the following screen: 

t using “F:\NCEE (Becker)\post-pre.csv”, comma 

In general, the “delimiter( )” option is used when your data have a less standard delim
c.).  

Once you’ve typed the appropriate command into the command window, press enter to run that 
line of text. This should y

 

Just as before, STATA tells us that it has read a data set consisting of 7 variables and 24 
observations, and we can access our variable list in the lower-left window pane. We can also see 
previously written lines from the “review” window in the upper-left window pane. Again, we can 

emory allocation is different depending on the version of STATA you are using. 
emory is allocated by default. From the 

previous screenshot, for instance, STATA indicates that 1.00mb is set aside for STATA’s use. 

view our data by typing “browse” in the command window and pressing enter. 

 

READING LARGE DATA FILES INTO STATA 

The default m
When STATA first opens, it will indicate how much m
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This is shown in the note directly above the entered command, which appears every time we sta
STATA. The 1.00mb memory is the standard for Intercooled STATA, which is the version used
for this module. For a slightly more detailed look at the current memory allocation, you can typ
into the command window, “memory” and press enter. This provides the following: 

rt 
 

e 

 

A more useful (and detailed) description of STATA’s memory usage (among other things) can 
be obtained by typing “creturn list” into the command window. This provides: 
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You may have to click on the “-more-“ link (bottom left of the STATA output window) to see 
this output. You can also press spacebar in the command window (or any key) to advance 
screens whenever you see “-more-“ at the bottom. Two things to notice from this screen are: (1) 
c(max_N_theory) tells us the maximum possible number of records our version of STATA will 
allow, while c(max_N_current) tells us the maximum possible number of records we have 
currently allocated to STATA based on our memory allocation, and (2) c(max_k_theory) tells us 
the maximum possible number of variables, while c(max_k_current) tells us the maximum 
number of variables based on our current memory allocation.  

To work with large datasets (in this case, anything larger than 1mb), we can type “set memory 
10m” into the command window and press enter. This increases the memory allocation to 10 mb, 
and you can increase by more or less to your preference. You can also increase STATA’s 
memory allocation permanently by typing, “set memory 10m, permanently” into the command 
line. To check that our memory has actually increased, again type “memory” into the command 
window and press enter. We get the following screen: 
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The maximum amount of memory you can allocate to STATA varies based on your computer’s 
performance. If we try to allocate more memory that our RAM can allow, we get an error: 
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Note that the total amount of memory allowed depends on the computer’s performance; 
however, the total number of variables allowed may be restricted by your version of STATA. (If 
you’re using Small STATA, then the memory allocation is also limited.) For Intercooled 
STATA, for instance, we cannot have more than 2048 variables in our data set.  

For the Becker and Powers data set, the 1mb allocation is sufficient, so we need only follow the 
process to import a “.csv” file described above. Note, however, that this data set does not contain 
variable names in the top row. You can assign names yourself with a slight addition to the 
insheet command: 

    insheet var1 var2 var3 … using “filename.csv”, comma 

Where, var1 var2 var3 …, are the variable names for each of the 64 variables in the data set. Of 
course, manually adding all 64 variable names can be irritating. For more details on how to 
import data sets with data dictionaries (i.e., variable names and definitions in external files), try 
typing “help infile” into the command window. If you do not assign variable names, then 
STATA will provide default variable names of “v1, v2, v3, etc.”. 

 

LEAST-SQUARES ESTIMATION AND LINEAR RESTRICTIONS IN STATA 

As in the previous section using LIMDEP, we now demonstrate various regression tools in 
STATA using the “post-pre” data set. Recall the model being estimated is 

1 2 ( )post pre f classesβ β ε= + + + . 

STATA automatically drops any missing observations from our analysis, so we need not restrict 
the data in any of our commands. In general, the syntax for a basic OLS regression in STATA is 

regress y-variable x-variables, 

where y-variable is just the independent variable name and x-variables are the dependent 
variable names. Now is a good time to mention STATA’s very useful help menu. Typing “help 
regress” into the command window and pressing enter will open a thorough description of the 
regress command and all of its options, and similarly with any command in STATA. 

Once you have your data read into STATA, let’s estimate the model 

1 2 3 4 51 2 3post pre class class classβ β β β β= + + + + + ε  

by typing: 

regress post pre class1 class2 class3 
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into the command window and pressing enter. We get the following output: 

 

To see the predicted post-test scores (with confidence intervals) from our regression, we type: 

predict posthat 
predict se_f, stdf 
generate upper_f = posthat + invttail(e(df_r),0.025)*se_f 
generate lower_f = posthat + invttail(e(df_r),0.025)*se_f 

 
You can either copy and paste these commands directly into the command window and press 
enter, or you can enter each one directly into the command window and press enter one at a time. 
Notice the use of the “predict” and “generate” keywords in the previous set of commands. After 
running a regression, STATA has lots of data stored away, some of which is shown in the output 
and some that is not. By typing “predict posthat”, STATA applies the estimated regression 
equation to the 24 observations in the sample to get predicted y-values. These predicted y-values 
are the default prediction for the “predict” command, and if we want the standard error of these 
predictions, we need to use “predict” again but this time specify the option “stdf”. This stands for 
the standard deviation of the forecast. Both posthat and se_f are new variables that STATA has 
created for us. Now, to get the upper and lower bounds of a 95% confidence interval, we apply 
the usual formula taking the predicted value plus/minus the margin of error. Typing “generate 
upper_f=…” and “generate lower_f=…” creates two new variables named “upper_f” and 
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“lower_f”, respectively. To see our predictions, we can type “browse” into the command window 
and press enter. This yields: 

 

Just as with LIMDEP, our 95% confidence interval for the 24th student’s predicted post-test score 
is [11.5836, 17.6579]. For more information on the “predict” command, try typing “help predict” 
into the command window. 

To test the linear restriction of all class coefficients being zero, we type: 

test class1 class2 class3 

into the command window and press enter. STATA automatically forms the correct test statistic, 
and we see  

F(3, 18) = 5.16 
Prob > F = 0.0095 

The second line gives us the p-value, where we see that we can reject the null that all class 
coefficients are zero at any probability of Type I error greater than 0.0095. 

 

TEST FOR A STRUCTURAL BREAK (CHOW TEST) 
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The above test of the linear restriction β3 = β4 = β5 = 0 (no difference among classes), assumed 
that the pretest slope coefficient was constant, fixed and unaffected by the class to which a 
student belonged.  A full structural test can be performed in two possible ways. One, we can run 
each restricted regression and the unrestricted regression, take note of the residual sums of 
squares from each regression, and explicitly calculate the F-statistic. This requires the fitting of 
four separate regressions to obtain the four residual sum of squares that are added to obtain the 
unrestricted sum of squares.  The restricted sum of squares is obtained from a regression of 
posttest on pretest with no dummies for the classes; that is, the class to which a student belongs 
is irrelevant in the manner in which pretests determine the posttest score. 

For this, we can type: 

regress post pre if class1==1 

into the command window and press enter. The resulting output is as follows: 

. regress post pre if class1==1 
 
      Source |       SS       df       MS              Number of obs =       5 
-------------+------------------------------           F(  1,     3) =  417.63 
       Model |  35.7432432     1  35.7432432           Prob > F      =  0.0003 
    Residual |  .256756757     3  .085585586           R-squared     =  0.9929 
-------------+------------------------------           Adj R-squared =  0.9905 
       Total |          36     4           9           Root MSE      =  .29255 
 
------------------------------------------------------------------------------ 
        post |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         pre |   1.554054   .0760448    20.44   0.000     1.312046    1.796063 
       _cons |  -2.945946    1.61745    -1.82   0.166    -8.093392    2.201501 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

We see in the upper-left portion of this output that the residual sum of squares from this 
restricted regression is 0.2568. We can similarly run a restricted regression for only students in 
class 2 by specifying the option “if class2==1”, and so forth for classes 3 and 4.  

The second way to test for a structural break is to create several interaction terms and test 
whether the dummy and interaction terms are jointly significantly different from zero. To 
perform the Chow test this way, we first generate interaction terms between all dummy variables 
and independent variables. To do this in STATA, type the following into the command window 
and press enter: 

generate pre_c1=pre*class1 
generate pre_c2=pre*class2 
generate pre_c3=pre*class3 

With our new variables created, we now run a regression with all dummy and interaction terms 
included, as well as the original independent variable. In STATA, we need to type: 
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regress post pre class1 class2 class3 pre_c1 pre_c2 pre_c3 

into the command window and press enter. The output for this regression is not meaningful, as it 
is only the test that we’re interested in. To run the test, we can then type: 

    test class1 class2 class3 pre_c1 pre_c2 pre_c3 

into the command window and press enter. The resulting output is: 

. test class1 class2 class3 pre_c1 pre_c2 pre_c3 
 
 ( 1)  class1 = 0 
 ( 2)  class2 = 0 
 ( 3)  class3 = 0 
 ( 4)  pre_c1 = 0 
 ( 5)  pre_c2 = 0 
 ( 6)  pre_c3 = 0 
 
       F(  6,    15) =    2.93 
            Prob > F =    0.0427 

Just as we saw in LIMDEP, our F-statistic is 2.93, with a p-value of 0.0427. We again reject the 
null (at a probability of Type I error=0.05) and conclude that class is important either through the 
slope or intercept coefficients. This type of test will always yield results identical to the restricted 
regression approach. 

 

HETEROSCEDASTICITY 

You can control for heteroscedasticity across observations or within specific groups (in this 
class, within a given class, but not across classes) by specifying the “robust” or “cluster” option, 
respectively, at the end of your regression command. 

To account for a common error term within groups, but not across groups, we first create a class 
variable that identifies each student into one of the 4 classes. This is used to specify which group 
(or cluster) a student is in. To generate this variable, type: 

    generate class=class1 + 2*class2 + 3*class3 + 4*class4 

into the command window and press enter. Then to allow for clustered error terms, our 
regression command is: 

    regress post pre class1 class2 class3, cluster(class) 

This gives us the following output: 

. regress post pre class1 class2 class3, cluster(class) 
 
Linear regression                                      Number of obs =      23 
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                                                       F(  0,     3) =       . 
                                                       Prob > F      =       . 
                                                       R-squared     =  0.9552 
Number of clusters (class) = 4                         Root MSE      =  1.2604 
 
------------------------------------------------------------------------------ 
             |               Robust 
        post |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         pre |   1.517222   .1057293    14.35   0.001     1.180744      1.8537 
      class1 |    1.42078   .4863549     2.92   0.061    -.1270178    2.968579 
      class2 |   1.177399   .3141671     3.75   0.033     .1775785    2.177219 
      class3 |   2.954037   .0775348    38.10   0.000     2.707287    3.200788 
       _cons |  -3.585879   1.755107    -2.04   0.134    -9.171412    1.999654 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

Similarly, to account for general heteroscedasticity across individual observations, our regression 
command is: 

    regress post pre class1 class2 class3, robust 

and we get the following output: 

. regress post pre class1 class2 class3, robust 
 
Linear regression                                      Number of obs =      23 
                                                       F(  4,    18) =  165.74 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.9552 
                                                       Root MSE      =  1.2604 
 
------------------------------------------------------------------------------ 
             |               Robust 
        post |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         pre |   1.517222   .0824978    18.39   0.000       1.3439    1.690543 
      class1 |    1.42078   .7658701     1.86   0.080     -.188253    3.029814 
      class2 |   1.177399   .8167026     1.44   0.167      -.53843    2.893227 
      class3 |   2.954037   .9108904     3.24   0.005     1.040328    4.867747 
       _cons |  -3.585879   1.706498    -2.10   0.050    -7.171098   -.0006609 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

 

ESTIMATING PROBIT MODELS IN STATA 

We now want to estimate a probit model using the Becker and Powers data set. First, read in the 
“.csv” file:i 

. insheet a1 a2 x3 c al am an ca cb cc ch ci cj ck cl cm cn co cs ct cu  /// 
> cv cw db dd di dj dk dl dm dn dq dr ds dy dz ea eb ee ef               /// 
> ei ej ep eq er et ey ez ff fn fx fy fz ge gh gm gn gq gr hb            /// 
> hc hd he hf using "F:\NCEE (Becker)\BECK8WO2.csv", comma                  
(64 vars, 2849 obs) 
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Notice the “///” at the end of each line. Because STATA by default reads the end of the line as 
the end of a command, you have to tell it when the command actually goes on to the next line. 
The “///” tells STATA to continue reading this command through the next line. 

As always, we should look at our data before we start doing any work. Typing “browse” into the 
command window and pressing enter, it looks as if several variables have been read as character 
strings rather than numeric values. We can see this by typing “describe” into the command 
window or simply by noting that string variables appear in red in the browsing window. This is a 
somewhat common problem when using STATA with Excel, usually because of variable names 
in the Excel files or because of spaces placed in front or after numeric values. If there are spaces 
in any cell that contains an otherwise numeric value, STATA will read the entire column as a 
character string. Since we know all variables should be numeric, we can fix this problem by 
typing: 

    destring, replace 

into the command window and pressing enter. This automatically codes all variables as numeric 
variables. 

Also note that the original Excel .csv file has several “extra” observations at the end of the data 
set. These are essentially extra rows that have been left blank but were somehow utilized in the 
original Excel file (for instance, just pressing enter at last cell will generate a new record with all 
missing variables). STATA correctly reads these 12 observations as missing values, but because 
we know these are not real observations, we can just drop these with the command “drop if 
a1==.”. This works because a1 is not missing for any of the other observations. 

Now we recode the variable a2 as a categorical variable, where a2=1 for doctorate institutions 
(between 100 and 199), a2=2 for comprehensive master’s degree granting institutions (between 
200 and 299), a2=3 for liberal arts colleges (between 300 and 399), and a2=4 for two-year 
colleges (between 400 and 499). To do this, type the following command into the command 
window: 

    recode a2 (100/199=1) (200/299=2) (300/399=3) (400/499=4) 

Once we’ve recoded the variable, we can generate the 4 dummy variables as follows:ii 

generate doc=(a2==1) if a2!=. 
generate comp=(a2==2) if a2!=. 
generate lib=(a2==3) if a2!=. 
generate twoyr=(a2==4) if a2!=. 

The more lengthy way to generate these variables would be to first generate new variables equal 
to zero, and then replace each one if the relevant condition holds. But the above commands are a 
more concise way. 
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Next 1 - 0 bivariates are created to show whether the instructor had a PhD degree and where the 
student got a positive score on the postTUCE. We also create new variables, dmsq and hbsq, to 
allow for quadratic forms in teacher experiences and class size:  

generate phd=(dj==3)  if dj!=. 
generate final=(cc>0) if cc!=. 
generate dmsq=dm^2 
generate hbsq=hb^2 
 

In this data set, all missing values are coded −9. Thus, adding together some of the responses to 
the student evaluations provides information as to whether a student actually completed an 
evaluation. For example, if the sum of ge, gh, gm,  and gq equals −36, we know that the student 
did not complete a student evaluation in a meaningful way.  A dummy variable to reflect this fact 
is then created by:iii   

 
generate noeval=(ge + gh + gm + gq == -36) 

Finally, from the TUCE developer it is known that student number 2216 was counted in term 2 
but was in term 1 but no postTUCE was taken.  This error is corrected with the following 
command: 

    recode hb (90=89) 

We are now ready to estimate the probit model with final as our dependent variable. Because 
missing values are coded as -9 in this data set, we need to avoid these observations in our 
analysis. The quickest way to avoid this problem is just to recode all of the variables, setting 
every variable equal to “.” if it equals “-9”. Because there are 64 variables, we do not want to do 
this one at a time, so instead we type: 

foreach x of varlist * { 
replace `x’=. if `x’==-9 
} 

You should type this command exactly as is for it to work correctly, including pressing enter 
after the first open bracket. Also note that the single quotes surrounding each x in the replace 
statement are two different characters. The first single quote is the key directly underneath the 
escape key (for most keyboards) while the closing single quote is the standard single quote 
keystroke by the enter key. For more help on this, type “help foreach” into the command 
window. 

Finally, we drop all observations where an=. and where cs=0 and run the probit model by typing 

    drop if an==. 
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    drop if cs==0 
probit final an hb doc comp lib ci ck phd noeval  

into the command window and pressing enter. We can then retrieve the marginal effects by 
typing “mfx” into the command window and pressing enter. This yields the following output: 

. drop if cs==0  
(1 observation deleted) 
 
. drop if an==. 
(249 observations deleted) 
 
. probit final an hb doc comp lib ci ck phd noeval 
 
Iteration 0:   log likelihood = -1284.2161 
Iteration 1:   log likelihood = -840.66421 
Iteration 2:   log likelihood = -823.09278 
Iteration 3:   log likelihood = -822.74126 
Iteration 4:   log likelihood = -822.74107 
 
Probit regression                                 Number of obs   =       2587 
                                                  LR chi2(9)      =     922.95 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -822.74107                       Pseudo R2       =     0.3593 
 
------------------------------------------------------------------------------ 
       final |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          an |    .022039   .0094752     2.33   0.020      .003468      .04061 
          hb |  -.0048826   .0019241    -2.54   0.011    -.0086537   -.0011114 
         doc |   .9757148   .1463617     6.67   0.000     .6888511    1.262578 
        comp |   .4064945   .1392651     2.92   0.004       .13354     .679449 
         lib |   .5214436   .1766459     2.95   0.003      .175224    .8676632 
          ci |   .1987315   .0916865     2.17   0.030     .0190293    .3784337 
          ck |     .08779   .1342874     0.65   0.513    -.1754085    .3509885 
         phd |   -.133505   .1030316    -1.30   0.195    -.3354433    .0684333 
      noeval |  -1.930522   .0723911   -26.67   0.000    -2.072406   -1.788638 
       _cons |   .9953498   .2432624     4.09   0.000     .5185642    1.472135 
------------------------------------------------------------------------------ 
 
. mfx 
 
Marginal effects after probit 
      y  = Pr(final) (predict) 
         =  .88118215 
------------------------------------------------------------------------------ 
variable |      dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X 
---------+-------------------------------------------------------------------- 
      an |    .004378      .00188    2.33   0.020   .000699  .008057   10.5968 
      hb |  -.0009699      .00038   -2.54   0.011  -.001719  -.00022   55.5589 
     doc*|   .1595047      .02039    7.82   0.000   .119537  .199473   .317743 
    comp*|   .0778334      .02588    3.01   0.003   .027107   .12856   .417859 
     lib*|   .0820826      .02145    3.83   0.000   .040039  .124127   .135678 
      ci |   .0394776      .01819    2.17   0.030   .003834  .075122   1.23116 
      ck*|   .0182048      .02902    0.63   0.530  -.038667  .075077   .919985 
     phd*|  -.0257543      .01933   -1.33   0.183  -.063632  .012123   .686123 
  noeval*|   -.533985      .01959  -27.26   0.000  -.572373 -.495597   .290684 
------------------------------------------------------------------------------ 
(*) dy/dx is for discrete change of dummy variable from 0 to 1 
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For the other probit model (using hc rather than hb), we get: 

. probit final an hc doc comp lib ci ck phd noeval 
 
Iteration 0:   log likelihood = -1284.2161 
Iteration 1:   log likelihood = -843.39917 
Iteration 2:   log likelihood = -826.28953 
Iteration 3:   log likelihood = -825.94736 
Iteration 4:   log likelihood = -825.94717 
 
Probit regression                                 Number of obs   =       2587 
                                                  LR chi2(9)      =     916.54 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -825.94717                       Pseudo R2       =     0.3568 
 
------------------------------------------------------------------------------ 
       final |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          an |   .0225955   .0094553     2.39   0.017     .0040634    .0411276 
          hc |   .0001586    .002104     0.08   0.940    -.0039651    .0042823 
         doc |    .880404   .1486641     5.92   0.000     .5890278     1.17178 
        comp |   .4596089   .1379817     3.33   0.001     .1891698     .730048 
         lib |   .5585268   .1756814     3.18   0.001     .2141976     .902856 
          ci |   .1797199    .090808     1.98   0.048     .0017394    .3577004 
          ck |   .0141566   .1333267     0.11   0.915    -.2471589    .2754722 
         phd |  -.2351326   .1010742    -2.33   0.020    -.4332344   -.0370308 
      noeval |  -1.928216   .0723636   -26.65   0.000    -2.070046   -1.786386 
       _cons |   .8712666   .2411741     3.61   0.000     .3985742    1.343959 
------------------------------------------------------------------------------ 
 
. mfx 
 
Marginal effects after probit 
      y  = Pr(final) (predict) 
         =  .88073351 
------------------------------------------------------------------------------ 
variable |      dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X 
---------+-------------------------------------------------------------------- 
      an |   .0045005      .00188    2.40   0.017    .00082  .008181   10.5968 
      hc |   .0000316      .00042    0.08   0.940   -.00079  .000853   49.9749 
     doc*|   .1467544      .02132    6.88   0.000   .104969   .18854   .317743 
    comp*|    .087859      .02554    3.44   0.001   .037809  .137909   .417859 
     lib*|   .0867236      .02066    4.20   0.000   .046228   .12722   .135678 
      ci |   .0357961      .01807    1.98   0.048   .000383  .071209   1.23116 
      ck*|   .0028395      .02693    0.11   0.916  -.049938  .055617   .919985 
     phd*|  -.0444863      .01819   -2.45   0.014  -.080145 -.008828   .686123 
  noeval*|  -.5339711      .01957  -27.29   0.000  -.572326 -.495616   .290684 
------------------------------------------------------------------------------ 
(*) dy/dx is for discrete change of dummy variable from 0 to 1 

 

Results from each model are equivalent to those of LIMDEP, where we see that the estimated 
coefficient on hb is -0.005 with a p-value of 0.01, and the estimated coefficient on hc is 0.00007 
with a p-value of 0.974. These results imply that initial class size is strongly significant while 
final class size is insignificant. 
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To assess model fit, we can form the predicted 0 or 1 values by first taking the predicted 
probabilities and then transforming these into 0 or 1 depending on whether the predicted 
probability is greater than .5. Then we can look at a tabulation to see how many correct 0s and 1s 
our probit model predicts. Because we have already run the models, we are not interested in the 
output, so to look only at these predictions, type the following into the command window: 

quietly probit final an hb doc comp lib ci ck phd noeval  
predict prob1 
generate finalhat1=(prob1>.5) 

this yields: 

 

. quietly probit final an hb doc comp lib ci ck phd noeval 
 
. predict prob1 
(option p assumed; Pr(final)) 
 
. generate finalhat1=(prob1>.5) 
 
. tab finalhat1 final 
 
           |         final 
 finalhat1 |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |       342        197 |       539  
         1 |       168      1,880 |     2,048  
-----------+----------------------+---------- 
     Total |       510      2,077 |     2,587  

 

These results are exactly the same as with LIMDEP. For the second model, we get 

. quietly probit final an hc doc comp lib ci ck phd noeval 
 
. predict prob2 
(option p assumed; Pr(final)) 
 
. generate finalhat2=(prob2>.5) 
 
. tab finalhat2 final 
 
           |         final 
 finalhat2 |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |       337        192 |       529  
         1 |       173      1,885 |     2,058  
-----------+----------------------+---------- 
     Total |       510      2,077 |     2,587  

 

Again, these results are identical to those of LIMDEP.  
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We can also use the built-in processes to do these calculations. To do so, type “estat class” after 
the model you’ve run. Part of the resulting output will be the tabulation of predicted versus 
actual values. Furthermore, to perform a Pearson goodness of fit test, type “estat gof” into the 
command window after you have run your model. This will provide a Chi-square value. All of 
these postestimation tools conclude that both models do a sufficient job of prediction. 
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APPENDIX A : Using Stat/Transfer 

Stat/Transfer is a convenient program used to convert data from one format to another. Although 
this program is not free, there is a free trial version available at www.stattransfer.com. Note that 
the trial program will not convert the entire data set—it will drop one observation.  

Nonetheless, Stat/Transfer is very user friendly. If you install and open the trial program, your 
screen should look something like: 

 

We want to convert the “.xls” file into a STATA format (“.dta”). To do this, we need to first 
specify the original file type (e.g., Excel), then specify the location of the file. We then specify 
the format that we want (in this case, a STATA “.dta” file). Then click on Transfer, and 
Stat/Transfer automatically converts the data into the format you’ve asked.  

To open this new “.dta” file in STATA, simply type  

   use “filename.dta” 

into the command window and press enter. 
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ENDNOTES 

 
i When using the “insheet” command, STATA automatically converts A1 to a1, A2 to a2 and so 
forth. STATA is, however, case sensitive. Therefore, whether users specify “insheet A1 A2 …” 
or  “insheet a1 a2 …,” we must still call the variables in lower case. For instance, the following 
insheet command will work the exact same as that provided in the main text: 
. insheet A1 A2 X3 C AL AM AN CA CB CC CH CI CJ CK CL CM CN CO CS CT CU  /// 
> CV CW DB DD DI DJ DK DL DM DN DQ DR DS DY DZ EA EB EE EF               /// 
> EI EJ EP EQ ER ET EY EZ FF FN FX FY FZ GE GH GM GN GQ GR HB            /// 
> HC HD HE HF using "F:\NCEE (Becker)\BECK8WO2.csv", comma     
              
ii The conditions “if a2!=.” tell STATA to run the command only if a2 is not missing. Although 
this particular dataset does not contain any missing values, it is generally good practice to always 
use this type of condition when creating dummy variables the way we have done here. For 
example, if there were a missing observation, the command “gen doc=(a2==1)” would set doc=0 
even if a2 is missing. 

iii An alternative procedure is to first set all variables to missing if they equal -9 and then 
generate the dummy variable using: 

generate noeval=(ge==.&gh==.&gm==.&gq==.) 

 



MODULE ONE, PART FOUR:  READING DATA INTO SAS, CREATING AND 
RECODING VARIABLES, AND ESTIMATING AND TESTING MODELS IN SAS 

 
 

 

This Part Four of Module One provides a cookbook-type demonstration of the steps required to 
read or import data into SAS.  The reading of both small and large text and Excel files are shown 
though real data examples.  The procedures to recode and create variables within SAS are 
demonstrated.  Commands for least-squares regression estimation and maximum likelihood 
estimation of probit and logit models are provided. Consideration is given to analysis of variance 
and the testing of linear restrictions and structural differences, as outlined in Part One.  Parts 
Two and Three provide the LIMDEP and STATA commands for the same operations undertaken 
here in Part Four with SAS.  For a thorough review of SAS, see Delwiche and Slaughter’s The 
Little SAS Book: A Primer (2003). 

 

IMPORTING EXCEL FILES INTO SAS  

SAS can read or import data in several ways.  The most commonly imported files by students are 
those created in Microsoft Excel with the “.xls” file name extension. Researchers tend to use flat 
files that compactly store data. In what follows, we focus on importing data using Excel files. To 
see how this is done, consider the data set in the Excel file “post-pre.xls,” which consists of test 
scores for 24 students in four classes.   The column title “Student” identifies the 24 students by 
number, “post” provides each student’s post-course test score, “pre” is each student’s pre-course 
test score, and “class” identifies to which one of the four classes the student was assigned, e.g., 
class4 = 1 if student was in the fourth class and class4 = 0 if not.  The “.” in the post column for 
student 24 indicates that the student is missing a post-course test score.  

student   post   pre  class1  class2  class3  class4 
1    31  22  1  0  0   0  
2    30  21  1  0  0   0  
3    33  23  1  0  0   0  
4    31  22  1  0  0   0  
5    25  18  1  0  0   0  
6    32  24  0  1  0   0  
7    32  23  0  1  0   0  
8    30  20  0  1  0   0  
9    31  22  0  1  0   0  
10    23  17  0  1  0   0  
11    22  16  0  1  0   0  
12    21  15  0  1  0   0  
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13    30  19  0  0  1   0  
14    21  14  0  0  1   0  
15    19  13  0  0  1   0  
16    23  17  0  0  1   0  
17    30  20  0  0  1   0  
18    31  21  0  0  1   0  
19    20  15  0  0  0   1  
20    26  18  0  0  0   1  
21    20  16  0  0  0   1  
22    14  13  0  0  0   1  
23    28  21  0  0  0   1  
24     .  12  0  0  0   1  
 

To start, the file “post-pre.xls” must be downloaded and copied to your computer’s hard drive.  
Once this is done open SAS. Click on “File,” “Import Data…,” and “Standard data source”. 
Selecting “Microsoft Excel 97, 2000 or 2002 Workbook” from the pull down menu yields the 
following screen display: 
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Clicking “Next” gives a pop-up screen window in which you can locate and specify the file 
containing the Excel file.  Using the “Browse…” function is the simplest way to locate your file 
and is identical to opening any Microsoft file in MS Word or Excel. 
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After you have located the file, click “Open”. SAS automatically fills in the path location on the 
“Connect to MS Excel” pop-up window (The path to “post-pre.xls” will obviously depend on 
where you placed it on your computer’s hard drive).  
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By clicking “OK” in the “Connect to MS Excel”, SAS now has the location of  the data you wish 
to import. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before the data is successfully imported, the table in your Excel file must be correctly specified. 
By default, SAS assumes that you want to import the first table (Excel labels this table 
“Sheet1”). If the data you are importing is on a different sheet, simply use the pull-down menu 
and click on the correct table name. After you have specified the table from your Excel file, click 
“Next”. 
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The last step required to import data is to name the file. In the “Member” field, enter the name 
you want to call your SAS data file. This can be different than the name of the Excel file which 
contains the data. There are some rules in naming files and SAS will promptly communicate to 
you if your naming is unacceptable and why. Note that SAS is not case specific. For 
demonstrative purposes, I have called the SAS dataset “prepost”. It is best to leave the “Library” 
set to the default “WORK”. Clicking “Finish” imports the file into SAS.  
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In SAS, the screen is broken up into three main sections: Program Editor, Log, and 
Explorer/Results. Each time SAS is told to do a command, SAS displays in the log what you 
requested and how it completed the task. To make sure the data has been correctly imported into 
SAS, we simply can read the log and verify SAS was able to successfully create the new dataset. 
The Log in the screen below indicates that WORK.PREPOST was successfully created where 
WORK indicates the Library and PREPOST is the name chosen. Libraries are the directories to 
where data sets are located. 

The Work Library is a temporary location in the computer’s RAM memory, which is 
permanently deleted once the user exits SAS. To retain your newly created SAS data set, you 
must place the dataset into a permanent Library. 

To view the dataset, click on the “Work” library located in the Explorer section and then on the 
dataset “Prepost”. Note that SAS, unlike LIMDEP, records missing observations with a period, 
rather than a blank space. The sequencing of these steps and the two associated screens follow: 
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READING SPACE, TAB, OR COMMA DELINEATED FILES INTO SAS 

Next we consider externally created text files that are typically accompanied by the “.txt” and 
“csv” extensions. For demonstration purposes, the data set just employed with 24 observations 
on the 7 variables  (“student,”   “post,”  “pre,” “class1,” “class2,”  “class3,” and “class4”) was 
saved as the space delimited text file “post-pre.txt.”   After downloading this file to your hard 
drive, open SAS to its first screen: 
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To read the data into SAS, we need to utilize the “proc import” command. In the Editor window, 
type 

proc import datafile = "F:\NCEE (Becker)\post-pre.txt" 

out = prepost dbms = dlm replace; 

getnames=yes; run; 

and then clicking the “run man” submit button. “proc import” tells SAS to read in text data and 
“datafile” directs SAS to a particular file name. In this case, the file is saved in the location 
“F:\NCEE (Becker)\post-pre.txt”, but this will vary by user. Finally, the “dbms=dlm” option tells 
SAS that the data points in this file are separated by a space. 

If your data is tab delimited, change the “dbms” function to dbms = tab and if you were using a 
“.csv” file, change the “dbms” function to dbms=csv. In general, the “dlm” option is used when 
your data have a less standard delimiter (e.g., a colon, semicolon, etc.). 

Once you’ve typed the appropriate command into the command window, press the submit button 
to run that line of text. This should yield the following screen: 
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Just as before, the SAS log tells us that it has read a data set consisting of 7 variables and 24 
observations, and we can access the dataset from the explorer window.  We can view our data by 
typing 

proc print data = prepost; run; 

in the editor window, highlight it, and click the submit “Running man” button. The sequencing 
of these steps and the associated screen is as follows: 
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Some files contain multiple delimiters that can cause some difficulty in importing data. One way 
to address this is to use the “User-defined formats” option while using the import wizard. For 
demonstration purposes, we will import our “pre-post.txt” file using the user defined formats. 

 

 

 

 

 

 

 

 

 

Click “File”, “Import Data”, “User-defined formats” and then “Next” After specifing the location 
of the file, click “Next” and name the dataset whatever you want to call it. We will use “prepost” 
as our SAS dataset name and then click “Next” and then “Finish”. This activates the user defined 
format list where the variables can be properly identified and named. Below is a screen shot of 
the “Import: List”. 
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In the user defined format wizard, click “Options...”. This will allow us to specify the type of 
data which we are dealing. As shown below, we define the style of input as “column” and allow 
automatic variable creation. Automatic variables inputted are numeric and starting record is row 
2 (row one is the variable names). Specify the number of records as 24 and the number of 
working rows as 25. Click “Okay”. SAS prompts you to inspect the data in the “To: 
Work.Prepost” window for accuracy of importing the data. Also, under our current specification, 
variable names have been omitted. We can manually update the variable names now by clicking 
on the variable names in “To: Work.Prepost” and entering in the new name and then “Update” or 
later during a data step once we have finished importing the data. In this case because the 
number of variables is small, we manually enter the variable names. To finish importing the data, 
simply click the red box in the upper right-hand corner and then “save”. Your screens should 
look something like this: 
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READING LARGE FILES INTO SAS 

SAS is extremely powerful in handling large datasets. There are few default restrictions on 
importing raw data files. The most common restriction is line length. When importing data one 
can specify the physical line length of the file using the LRECL command (see syntax below). 
As an example, consider the data set employed by Becker and Powers (2001), which initially had 
2,837 records. The default restrictions are sufficient, so we need only follow the process of 
import a “.csv” file described above. Note, however, that this data set does not contain variable 
names in the top row. You can assign names yourself with a simple, but lengthy, addition to the 
importing command. Also note that we have specified what type of input variables the data 
contains and what type of variables we want them to be. “best32.” corresponds to a numeric 
variable list of length 32. 

 

data BECPOW; 

infile 'C:\Users\Greg\Desktop\BeckerWork\BECK8WO.CSV' delimiter = ',' 
MISSOVER DSD lrecl=32767 ; 

informat A1 best32.; informat A2 best32.; informat X3 best32.; 

informat C best32. ; informat AL best32.; informat AM best32.; 

informat AN best32.; informat CA best32.; informat CB best32.; 

informat CC best32.; informat CH best32.; informat CI best32.; 

informat CJ best32.; informat CK best32.; informat CL best32.; 
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informat CM best32.; informat CN best32.; informat CO best32.; 

informat CS best32.; informat CT best32.; informat CU best32.; 

informat CV best32.; informat CW best32.; informat DB best32.; 

informat DD best32.; informat DI best32.; informat DJ best32.; 

informat DK best32.; informat DL best32.; informat DM best32.; 

informat DN best32.; informat DQ best32.; informat DR best32.; 

informat DS best32.; informat DY best32.; informat DZ best32.; 

informat EA best32.; informat EB best32.; informat EE best32.; 

informat EF best32.; informat EI best32.; informat EJ best32.; 

informat EP best32.; informat EQ best32.; informat ER best32.; 

informat ET best32.; informat EY best32.; informat EZ best32.; 

informat FF best32.; informat FN best32.; informat FX best32.; 

informat FY best32.; informat FZ best32.; informat GE best32.; 

informat GH best32.; informat GM best32.; informat GN best32.; 

informat GQ best32.; informat GR best32.; informat HB best32.; 

informat HC best32.; informat HD best32.; informat HE best32.; 

informat HF best32.; 

 

format A1 best12.; format A2 best12.; format X3 best12.; 

format C best12. ; format AL best12.; format AM best12.; 

format AN best12.; format CA best12.; format CB best12.; 

format CC best12.; format CH best12.; format CI best12.; 

format CJ best12.; format CK best12.; format CL best12.; 

format CM best12.; format CN best12.; format CO best12.; 

format CS best12.; format CT best12.; format CU best12.; 
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format CV best12.; format CW best12.; format DB best12.; 

format DD best12.; format DI best12.; format DJ best12.; 

format DK best12.; format DL best12.; format DM best12.; 

format DN best12.; format DQ best12.; format DR best12.; 

format DS best12.; format DY best12.; format DZ best12.; 

format EA best12.; format EB best12.; format EE best12.; 

format EF best12.; format EI best12.; format EJ best12.; 

format EP best12.; format EQ best12.; format ER best12.; 

format ET best12.; format EY best12.; format EZ best12.; 

format FF best12.; format FN best12.; format FX best12.; 

format FY best12.; format FZ best12.; format GE best12.; 

format GH best12.; format GM best12.; format GN best12.; 

format GQ best12.; format GR best12.; format HB best12.; 

format HC best12.; format HD best12.; format HE best12.; 

format HF best12.; 

input 

A1 A2 X3 C AL AM AN CA CB CC CH CI CJ CK CL CM CN CO CS CT CU 

CV CW DB DD DI DJ DK DL DM DN DQ DR DS DY DZ EA EB EE EF 

EI EJ EP EQ ER ET EY EZ FF FN FX FY FZ GE GH GM GN GQ GR HB 

HC HD HE HF; run; 

 

For more details on how to import data sets with data dictionaries (i.e., variable names and 
definitions in external files), try typing “infile” into the “SAS Help and Documentation” under 
the Help tab. If you do not assign variable names, then SAS will provide default variable names 
of “var1, var2, var3, etc.”. 
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LEAST-SQUARES ESTIMATION AND LINEAR RESTRICTIONS IN SAS 

As in the previous Module One, Part Two using LIMDEP, we now demonstrate some various 
regression tools in SAS using the “post-pre” data set. Recall the model being estimated is 

1 2 ( )post pre f classesβ β ε= + + + . 

SAS automatically drops any missing observations from our analysis, so we need not restrict the 
data in any of our commands. In general, the syntax for a basic OLS regression in SAS is 

  proc reg data = FILENAME; model y-variable = x-variables; run; 

where y-variable is just the independent variable name and x-variables are the dependent 
variable names.  

Once you have your data read into SAS, we estimate the model 

1 2 3 4 51 2 3post pre class class classβ β β β β= + + + + + ε  

by typing: 

proc reg data = prepost; model post = pre class1 class2 class3 / p cli clm; run; 

 

into the editor window and pressing submit. Typing “/ p cli clm” after specifying the model 
outputs predicted value and a 95% confidence interval. From the output the predicted posttest 
score is 14.621, with 95 percent confidence interval equal to  11.5836< E(y|X24)< 17.6579. 

We get the following output: 
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A researcher might be interested to test whether the class in which a student is enrolled affects 
his/her post-course test score, assuming fixed effects only.  This linear restriction is done 
automatically in SAS by adding the following “test” command to the regression statement in the 
Editor Text. 
 

proc reg data = prepost; model post = pre class1 class2 class3; 
 b1:    test class1=0, class2=0, class3=0; 

  run; 
 
 
In this case we have named the test “b1”. Upon highlighting and pressing the submit button, SAS 
automatically forms the correct test statistic, and we see  

F(3, 18) = 5.16 
Prob > F = 0.0095 

The first line gives us the value of the F statistic and the associated P-value, where we see that 
we can reject the null that all class coefficients are zero at any probability of Type I error greater 
than 0.0095. 

The following results will appear in the output: 
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TEST FOR A STRUCTURAL BREAK (CHOW TEST) 

The above test of the linear restriction  β3= β4= β5=0 (no difference among classes), assumed 
that the pretest slope coefficient was constant, fixed and unaffected by the class to which a 
student belonged.  A full structural test requires the fitting of four separate regressions to obtain 
the four residual sum of squares that are added to obtain the unrestricted sum of squares.  The 
restricted sum of squares is obtained from a regression of posttest on pretest with no dummies for 
the classes; that is, the class to which a student belongs is irrelevant in the manner in which 
pretests determined the posttest score. 
 

We can perform this test one of two ways. One, we can run each restricted regression and the 
unrestricted regression, take note of the residual sums of squares from each regression, and 
explicitly calculate the F statistic. We already know how to run basic regressions in SAS, so the 
new part is how to run a restricted regression. For this, we create a new variable that identifies 
the restricted observations; we want to run the regression separately and then we can run all the 
restrictions simultaneously. We first create the restriction variable “class” by typing into the 
editor window: 

 

data prepost; set prepost; if class1 = 1 then class = 1; if class2 = 1 then class = 2; 

 if class3 = 1 then class = 3; if class4 = 1 then class = 4; run; 

 

Highlight the command and click on the submit button. We now run all four restricted 
regressions simultaneously by typing: 

 

proc reg data = prepost; model post = pre; by class; run; 

 

into the editor window, highlighting the text and press submit. The resulting output is as follows: 
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We see in the Analysis of Variance of this output that the residual sum of squares from this 
restricted regression is 0.2568. We can similarly obtain from the output the other residual sums 
of squares. 

The structural test across all classes is   
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Because the calculated F = 2.92, and the critical F (Prob of Type I error =0.05, df1=6, df2=15) = 
2.79, we reject the null hypothesis and conclude that at least one class is significantly difference 
from another, allowing for the slope on pre-course test score to vary is from one class to another.  
That is, the class in which a student is enrolled is important because of a change in slope and or 
intercept. 

The second way to test for a structural break is to create several interaction terms and test 
whether the dummy and interaction terms are jointly significantly different from zero. To 
perform the Chow test this way, we first generate interaction terms between all dummy variables 
and independent variables. To do this in SAS, type the following into the editor window, 
highlight it and press submit: 

 

data prepost; set prepost; pre_c1=pre*class1; pre_c2=pre*class2; pre_c3=pre*class3; run; 
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With our new variables created, we now run a regression with all dummy and interaction terms 
included, as well as the original independent variable and run the F test. In SAS, we need to type 

 

proc reg data = prepost; model post = pre class1 class2 class3 pre_c1 pre_c2 pre_c3; 

 b3: test class1, class2, class3, pre_c1, pre_c2, pre_c3; run; 

into the editor window, highlight it, and press enter. The output for this regression is not 
meaningful, as it is only the test that we’re interested in. The resulting output is: 

 
       F(  6,    15) =    2.93 
            Prob > F =    0.0427 

Just as we could see in LIMDEP, our F statistic is 2.93, with a P-value of 0.0427. We again 
reject the null (at a probability of Type I error=0.05) and conclude that class is important either 
through the slope or intercept coefficients. This type of test will always yield results identical to 
the restricted regression approach. 

 

HETEROSCEDASTICITY 

You can control for heteroscedasticity across observations or within specific groups (in this case, 
within a given class, but not across classes) by specifying the “robust” or “cluster” option, 
respectively, at the end of your regression command. 

To account for a common error term within groups, but not across groups, we create a class 
variable that identifies each student into one of the 4 classes. This is used to specify which group 
(or cluster) a student is in. To generate this variable, type: 

data prepost; set prepost; if class1 = 1 then class = 1; if class2 = 1 then class = 2; 

 if class3 = 1 then class = 3; if class4 = 1 then class = 4; run; 

 

Highlight the command and click on the submit button. 

Then to allow for clustered error terms, our regression command is: 

 

proc surveyreg data=prepost; cluster class; 

      model post = pre class1 class2 class3; run; 
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This gives us the following output: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, to account for general heteroscedasticity across individual observations, our regression 
command is: 

 

proc model data=prepost; parms const p c1 c2 c3; 

post = const + p*pre + c1*class1 + c2*class2 + c3*class3; 

fit post / white; run; quit;     

 

and we get the following output: 
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ESTIMATING PROBIT MODELS IN SAS 

As seen in the Becker and Powers’ (2001) study, often variables need to be transformed or 
created within a computer programs to perform the desired analysis.  To demonstrate the process 
and commands in SAS, start with the Becker and Powers data that have been or can be read into 
SAS as shown earlier. 

As always, we should look at our log file and data before we start doing any work. Viewing the 
log file, the data set BECPOW has 2849 observations and 64 variables. Upon viewing the 
dataset, we should notice there are several “extra” observations at the end of the data set. These 
are essentially extra rows that have been left blank but were somehow utilized in the original 
Excel file (for instance, just pressing enter at last cell will generate a new record with all missing 
variables). SAS correctly reads these 12 observations as missing values, but because we know 
these are not real observations, we can just drop these with the command 

 

  data becpow; set becpow; if a1 = . then delete; run; 

 

This works because a1 is not missing for any of the other observations. 
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After reading the data into SAS the first task is to recode the qualitative data into appropriate 
dummies. A2 contains a range of values representing various classes of institutions.  SAS does 
not have a recode command, so we will use a series of if-then/else commands in a data step to do 
the job. We need to create variables for doctorate institutions (100/199), for comprehensive or 
master’s degree granting institutions (200/299), for liberal arts colleges (300/399) and for two-
year colleges (400/499). The following code creates these variables:  
 

data becpow;  set becpow; doc = 0; comp = 0; lib = 0; twoyr = 0; 

  if  99 < A2 < 200 then doc = 1; 

  if 199 < A2 < 300 then comp = 1; 

  if 299 < A2 < 400 then lib = 1; 

  if 399 < A2 < 500 then twoyr = 1; run; 

 

Next 1 - 0 bivariates, “phd” and “final” are created to show whether the instructor had a PhD 
degree and where the student got a positive score on the postTUCE . To allow for quadratic 
forms in teacher experiences and class size the variables “dmsq” and “hbsq” are created. In this 
data set, all missing values were coded −9. Thus, adding together some of the responses to the 
student evaluations gives information on whether a student actually completed an evaluation. For 
example, if the sum of “ge”, “gh”, “gm”, and “gq” equals −36, we know that the student did not 
complete a student evaluation in a meaningful way.  A dummy variable “noeval” is created to 
reflect this fact. Finally, from the TUCE developer it is known that student number 2216 was 
counted in term 2 but was in term 1 but no postTUCE was taken (see “hb” line in syntax). The 
following are the commands: 
 

data becpow; set becpow; 
phd = 0; 
final = 0; 
noeval = 0; 
if dj=3 then phd = 1;  
if cc>0 then final = 1; 
dmsq = dm*dm; 
hbsq = hb*hb; 
evalsum=ge+gh+gm+gq; 
if evalsum = -36 then noeval = 1; 
if hb = 90 then hb = 89;   

run; 
 
These commands can be entered into SAS as a block, highlighted and run with the “Submit” 
button. 
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One of the things of interest to Becker and Powers was whether class size at the beginning or end 
of the term influenced whether a student completed the postTUCE. This can be assessed by 
fitting a probit model to the 1 – 0 discrete dependent variable “final.”  Because missing values 
are coded as −9 in this data set, we need to avoid these observations in our analysis. The quickest 
way to avoid this problem is just to create a new dataset and delete those observations that have 
−9 included in them. This is done by typing: 
 

data becpowp; set becpow; 

if an = -9 then delete; 

if hb = -9 then delete; 

if doc  = -9 then delete; 

if comp = -9 then delete; 

if lib = -9 then delete; 

if ci = -9 then delete; 

if phd  = -9 then delete; 

if noeval = -9 then delete; 

if an = . then delete; 

if cs = 0 then delete; 
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run; 

Finally, we run the probit model by typing: 

 

proc logistic data= becpowp descending; 

model final = an hb doc comp lib ci ck phd noeval  / link=probit tech= newton; 

ods output parameterestimates=prbparms; 

output out = outprb xbeta = xb prob = probpr; 

run; 

 

into the editor window, highlighting it, and pressing enter. The SAS “probit” procedure by 
default uses a smaller value in the dependent variable as success. Thus, the magnitudes of the 
coefficients remain the same, but the signs are opposite to those of the STATA, and LIMDEP. 
The “descending” option forces SAS to use a larger value as success. Alternatively, you may 
explicitly specify the category of successful “final” using the “event” option. The option 
“link=probit” tells SAS that instead of running a logistic regression, we would like to do a probit 
regression. We can then retrieve the marginal effects by typing: 

 proc transpose data=prbparms out=tprb  (rename=(an = tan hb = thb doc = tdoc 
 comp=tcomp lib=tlib ci = tci ck = tck phd =tphd noeval = tnoeval)); 

   var estimate; id variable; run; 

 data outprb; if _n_=1 then set tprb; set outprb; 

  MEffan = pdf('NORMAL',xb)*tan; MEffhb = pdf('NORMAL',xb)*thb; 

  MEffdoc = pdf('NORMAL',xb)*tdoc; MEffcomp= pdf('NORMAL',xb)*tcomp; 

  MEfflib = pdf('NORMAL',xb)*tlib; MEffci = pdf('NORMAL',xb)*tci;  

  MEffck = pdf('NORMAL',xb)*tck; MEffphd = pdf('NORMAL',xb)*tphd; 

  MEffeval = pdf('NORMAL',xb)*tnoeval; run; 

 proc means data=outprb; run; 
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into the editor window, highlighting it and pressing enter. This yields the following coefficient 
estimates: 

 

 

 

 

 

 

 

 

 

 

and marginal effects: 
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For the other probit model (using hc rather than hb), we get coefficient estimates of: 

 

 

 

 

 

 

 

 

 

 

and marginal effects of: 

 

 

 

 

 

 

 

Results from each model are equivalent to those of LIMDEP and STATA, where we see the 
initial class size (hb) probit coefficient is −0.004883 with a P-value of 0.0112, and the estimated 
coefficient of “hc” is 0.0000159 with a P-value of 0.9399. These results imply that initial class 
size is strongly significant however final class size is insignificant. 

The overall goodness of fit can be assessed in several ways.  A straight forward way is using the 
Chi-square statistic found in the “Fit Statistics” output. The Chi-squared is (922.95, df =9) for 
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the probit employing the initial class size is slightly higher than that for the end-of-term probit 
(916.5379, df =9) but they are both highly significant. 

 

CONCLUDING REMARKS    

The goal of this hands-on component of Module One, Part Four was to enable users to get data 
into SAS, create variables and run regressions on continuous and discrete variables; it was not to 
explain all of the statistics produced by computer output.  For this an intermediate level 
econometrics textbook (such as Jeffrey Wooldridge, introductory Econometrics) or advanced 
econometrics textbook such as William Greene, Econometric Analysis must be consulted.  
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