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OA.1 Equivalent Definition of JCE

We show that it would be equivalent to define JCE by setting Θ†(s, π) = {θ ∈ Θ :

D̃0
θ(s, π) 6⊆ ∪θ′ 6=θD̃θ′(s, π)}, rather than Θ†(s, π) = {θ ∈ Θ : D̃θ(s, π) ∪ D̃0

θ(s, π) 6⊆

∪θ′ 6=θD̃θ′(s, π)}.

For every s ∈ S and π ∈ Π1 × Π2, let

Θ†
′
(s, π) = {θ ∈ Θ : D̃0

θ(s, π) 6⊆ ∪θ′ 6=θD̃θ′(s, π)}

be the set of types θ where there is some mixed receiver action α ∈ ∆(BR(Θ, s)) that

makes θ indifferent between (s, α) and their outcome under π and makes no other type

θ′ strictly prefer (s, α) to their outcome under π. Additionally, let

Θ
′
(s, π) =

Θ†
′
(s, π) if Θ†

′
(s, π) 6= ∅

Θ if Θ†
′
(s, π) = ∅

.

Proposition OA 1. If π is a PBE-H, then Θ(s, π) = Θ
′
(s, π) for all s ∈ S.
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Proof. Fix PBE-H π. We will argue that Θ†
′
(s, π) = Θ†(s, π), which gives Θ

′
(s, π) =

Θ(s, π).

First, suppose that θ ∈ Θ†
′
(s, π). Then by definition, D̃0

θ(s, π) 6⊆ ∪θ′ 6=θD̃θ′(s, π).

Hence, D̃θ(s, π) ∪ D̃0
θ(s, π) 6⊆ ∪θ′ 6=θD̃θ′(s, π), so θ ∈ Θ†(s, π).

Now, suppose that θ ∈ Θ†(s, π). Then by definition, D̃θ(s, π)∪D̃0
θ(s, π) 6⊆ ∪θ′ 6=θD̃θ′(s, π).

Thus, there is some α ∈ ∆(BR(Θ, s)) such that u1(θ, s, α) ≥ u1(θ, π) and u1(θ, s, α) ≤

u1(θ′, π) for all θ′ 6= θ. Since π is a PBE-H, there is also some α′ ∈ ∆(BR(Θ, s)) such

that u1(θ′, s, α′) ≤ u1(θ, π) for all θ′ ∈ Θ. By continuity, there is some ν ∈ [0, 1] and

α′′ = να + (1 − ν)α′ such that u1(θ, s, α′′) = u1(θ, π), while u1(θ′, s, α′′) ≤ u1(θ′, π)

for all θ′ 6= θ. As α′′ ∈ ∆(BR(Θ, s)), it follows that D̃0
θ(s, π) 6⊆ ∪θ′ 6=θD̃θ′(s, π), so

θ ∈ Θ†
′
(s, π). �

OA.2 Omitted Analysis of Learning Model

OA.2.1 Continuity of Aggregate Response Mapping

We begin by formally defining the auxiliary maps L δ,γ1

1 : Π2 → (∆(H1))Θ and L γ2

2 :

Π1 → ∆(H2) introduced in Appendix D. For each θ ∈ Θ, let

L δ,γ1

θ (π2)[∅] = 1− γ1,

L δ,γ1

θ (π2)[(h1, (s,m, a))] = γ1L
δ,γ1

θ (π2)[h1]iδ,γ1

θ (h1, s,m)π2[a|s,m],

for all h1 ∈ H1, s ∈ S, m ∈M , and a ∈ A. To define L γ2

2 , let

L γ2

2 (π1)[∅] = 1− γ2,

L γ2

2 (π1)[(h2, (θ, s,m))] = γ2L
γ2

2 (π1)[h2]λ(θ)π1[s,m|θ],

for all h2 ∈ H2, θ ∈ Θ, s ∈ S, and m ∈M .

We now establish the continuity of various mappings involving distributions over

histories, which we endow with the sup-norm topology.

2



Claim OA 1. The aggregate strategy mapping σδ,γ1 : (∆(H1))Θ ×∆(H2) → Π1 × Π2

is continuous.

Proof. We prove that σδ,γ1

1 : (∆(H1))Θ → Π1 is continuous. An analogous argument

handles σ2 : ∆(H2)→ Π2.

To show that σδ,γ1

1 is continuous, we establish that limµ′1→µ1
σδ,γ1

1 (µ′1)[s,m|θ] =

σδ,γ1

1 (µ1)[s,m|θ] for all s ∈ S, m ∈M , θ ∈ Θ, and µ1 ∈ (∆(H1))Θ. Since
∑

s,m σ
δ,γ1

1 (µ′1)[s,m|θ] =

1 for all µ1 ∈ (∆(H1))Θ, it suffices to show that lim infµ′1→µ1
σδ,γ1

1 (µ′1)[s,m|θ] ≥ σδ,γ1

1 (µ1)[s,m|θ]

for all s, m, and θ. For any ε > 0, let H1,ε be a finite set of sender histories such that∑
h1∈H1,ε:x

δ,γ1
θ (h1)=(s,m)

µθ[h1] ≥ σδ,γ1

1 (µ1)[s,m|θ] − ε. By the nature of the sup-norm

topology, limµ′1→µ1

∑
h1∈H1,ε:x

δ,γ1
θ (h1)=(s,m)

µ′θ[h1] =
∑

h1∈H1,ε:x
δ,γ1
θ (h1)=(s,m)

µθ[h1]. Since

µ′θ[h1] ≥ 0 for all h1 ∈ H1 and µ′1 ∈ (∆(H1))Θ, it follows that lim infµ′1→µ1
σδ,γ1

1 (µ′1)[s,m|θ] =

lim infµ′1→µ1

∑
h1:x

δ,γ1
θ (h1)=(s,m)

µ′θ[h1] ≥ limµ′1→µ1

∑
h1∈H1,ε:x

δ,γ1
θ (h1)=(s,m)

µ′θ[h1] ≥ σδ,γ1

1 (µ1)[s,m|θ]−

ε. As this holds for arbitrary ε > 0, the desired conclusion follows. �

Claim OA 2. Both L δ,γ1

1 : Π2 → (∆(H1))Θ and L γ2

2 : Π1 → ∆(H2) are continuous.

Proof. We prove that L δ,γ1

1 : Π2 → (∆(H1))Θ is continuous. An analogous argument

handles L γ2

2 : Π1 → ∆(H2).

For all π2 ∈ Π2, L δ,γ1

1 (π2)[h1] ≤ (1 − γ1)γt1 for every history h1 of length t. Since

limt→∞(1−γ1)γt1 = 0, to establish that L δ,γ1

1 (π2) is a continuous function of π2, it thus

suffices to show that L δ,γ1

1 (π2)[h1] is continuous for every history h1 ∈ H1. We show

this inductively over sender histories. For the null sender history h1 = ∅, L δ,γ1

1 (π2)[∅]

for all π2 ∈ Π2 and is thus continuous. Assuming that L δ,γ1

1 (π2)[h1] is a continuous

function of π2, it follows that L δ,γ1

1 (π2)[(h1, (s,m, a))] is a continuous function of π2

for all s, m, and a, as can be seen from the expression for L δ,γ1

1 given earlier. This

completes the inductive argument. �

Corollary OA 1. The aggregate response mapping Rδ,γ1,γ2 : Π1 × Π2 → Π1 × Π2 is

continuous.
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Proof. By Claims OA 1 and OA 2, σδ,γ1

1 and L δ,γ1

1 are continuous. Thus Rδ,γ1

1 (π2) =

σδ,γ1

1 (L δ,γ1

1 (π2)) is a continuous function of π2. Likewise, since σ2 and L γ2

2 are contin-

uous, Rγ2

2 (π1) = σ2(L γ2

2 (π1)) is a continuous function of π1. �

OA.2.2 Characterization of Steady State Profiles

Proposition OA 2. Strategy profile π is a fixed point of Rδ,γ1,γ2 if and only if there

is some steady state µ such that σδ,γ1(µ) = π.

Proof. Suppose that µ is a steady state satisfying σδ,γ1(µ) = π. Since µ is a steady

state, the aggregate receiver play in every period is fixed at π2 = σ2(µ). By definition,

L δ,γ1

1 (π2) is the t→∞ limit of the distribution over histories in the sender population

when the aggregate receiver play is fixed at π2. Since µ is a steady state, it follows that

L δ,γ1

1 (π2) = µ1. From this, we obtain Rδ,γ1

1 (π2) = σδ,γ1

1 (L δ,γ1

1 (π2)) = σδ,γ1

1 (µ1) = π1.

An almost identical argument shows that Rγ2

2 (π1) = π2. We conclude that Rδ,γ1,γ2(π) =

π.

Conversely,suppose that π is a fixed point of Rδ,γ1,γ2 . Let µ be the state given

by µ1 = L δ,γ1

1 (π2) and µ2 = L γ2

2 (π1). Observe that σδ,γ1

1 (µ1) = σδ,γ1

1 (L δ,γ1

1 (π2)) =

Rδ,γ1

1 (π2) = π1 and σ2(µ2) = σ2(L γ2

2 (π1)) = Rγ2

2 (π1) = π2, so π = σδ,γ1(µ) is the aggre-

gate strategy profile for state µ. All that remains is to establish that µ is a steady state,

which amounts to showing that f δ,γ1

θ (L δ,γ1

1 (π2))[h1] = L δ,γ1

1 (π2)[h1] for all h1 ∈ H1 and

θ ∈ Θ and f δ,γ1,γ2

2 (L γ2

2 (π1))[h2] = L γ2

2 (π1)[h2] for all h2 ∈ H2. We argue inductively

over sender histories that f δ,γ1

θ (L δ,γ1

1 (π2))[h1] = L δ,γ1

1 (π2)[h1] for all h1 ∈ H1. (A simi-

lar inductive argument shows that f δ,γ1,γ2

2 (L γ2

2 (π1))[h2] = L γ2

2 (π1)[h2] for all h2 ∈ H2.)

For the null sender history h1 = ∅, the equality holds since f δ,γ1

θ (L δ,γ1

1 (π2))[∅] = 1−γ1 =

L δ,γ1

1 (π2)[∅]. Assuming that f δ,γ1

θ (L δ,γ1

1 (π2))[h1] = L δ,γ1

1 (π2)[h1] holds, it necessarily

follows that f δ,γ1

θ (L δ,γ1

1 (π2))[(h1, (s,m, a))] = L δ,γ1

1 (π2)[(h1, (s,m, a))] for all s, m, and

a since σ2(µ2) = π2. This completes the inductive argument. �
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OA.3 Comparison with RCE

In this section, we restrict attention to signaling games without communication, i.e.

M is singleton. We write Π•2 = ×s∈S∆(BR(Θ, s)) for the set of receiver strategies that

assign probability 0 to conditionally dominated responses.

Definition OA 1 (Fudenberg and He, 2020). Signal s ∈ S is more rationally-

compatible with θ′ than θ′′, written as θ′ %s θ′′,

u1(θ′′, s, π2(·|s)) ≥ max
s′ 6=s

u1(θ′′, s′, π2(·|s′)) implies that

u1(θ′, s, π2(·|s)) > max
s′ 6=s

u1(θ′, s′, π2(·|s′)).

In words, this says that type θ′ is more rationally-compatible with signal s than is θ′′

if any undominated receiver strategy that makes θ′′ willing to play s makes θ′ strictly

prefer to play it. Let Pθ′.θ′′ = {p ∈ ∆(Θ) : λ(θ′′)p(θ′) ≥ λ(θ′)p(θ′′)} be the set of

probability distributions over sender type where the odds ratio of θ′ to θ′′ exceed their

odds ratio under the prior distribution. For s ∈ S and π ∈ Π1×Π2, let P (s, π) ⊆ ∆(Θ)

be the set of beliefs over the sender type given by

P (s, π) =

∆(E(s, π)) ∩
(
∩(θ′,θ′′) s.t. θ′%sθ′′Pθ′.θ′′

)
if E(s, π) 6= ∅

∆(Θ) if E(s, π) = ∅
,

and let BR(P (s, π), s) = ∪p∈P (s,π)BR(p, s) be the set of receiver best responses to

signal s for some p ∈ P (s, π).

Definition OA 2 (Fudenberg and He, 2020). Strategy profile π is a rationality-

compatible equilibrium (RCE) if it is a PBE-H where, for every s ∈ S, π2(·|s) ∈

∆(BR(P (s, π), s)).

This definition requires that the receiver’s posterior likelihood ratio for types θ′ and
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θ′′ dominates the prior likelihood ratio whenever θ′ %s θ′′. It also requires that the

posterior assigns probability 0 to equilibrium-dominated types.

Proposition OA 3. If π is a justified communication equilibrium, then π is an RCE.

Intuitively, any response that makes a less compatible type weakly prefer to play

s makes more compatible types strictly prefer to play it, so less compatible types are

not justified.

Proof. Fix s ∈ S. We will argue that ∆(Θ(s, π)) ⊆ P (s, π). Thus any α ∈ ∆(BR(Θ(s, π), s))

also belongs to ∆(BR(P (s, π), s)). Consequently, the justified response criterion of

JCE along with the fact that every JCE is a PBE-H implies that π is an RCE.

Since ∆(Θ(s, π)) ⊆ ∆(Θ) = P (s, π) when E(s, π) = ∅, we need only handle the case

where E(s, π) 6= ∅. In this case by Lemma A1, Θ(s, π) = Θ†(s, π) and ∆(Θ(s, π)) ⊆

∆(E(s, π)). Suppose that θ′ and θ′′ are two types such that θ′ %s θ′′. Then Defi-

nition OA 2 implies that D̃θ′′(s, π) ∪ D̃0
θ′′(s, π) ⊆ D̃θ′(s, π), so θ′′ 6∈ Θ†(s, π). As a

result, ∆(Θ(s, π)) = ∆(Θ†(s, π)) ⊆ ∩(θ′,θ′′) s.t. θ′%sθ′′Pθ′.θ′′ . We conclude ∆(Θ(s, π)) ⊆

∆(E(s, π)) ∩ (∩(θ′,θ′′) s.t. θ′%sθ′′Pθ′.θ′′) = P (s, π). �

OA.4 Proof of Proposition C1

Proposition C1. If π is a uniformly justified JCE in a strictly monotonic signaling

game, it induces the same distribution over Θ × S × A as a stable profile for all non-

doctrinaire priors g1, g2, including those that do not satisfy initial trust.

Proof. Because π is a uniformly justified JCE in a strictly monotonic signaling game,

π2(·|s,m) = π2(·|s,m′) for all s ∈ S and m,m′ ∈ M such that (s,m), (s,m′) ∈ Xon.

Thus, for every s ∈ Son, there is some as ∈ A such that π2(as|s,m) = 1 for all

(s,m) ∈ Xon. For all s ∈ Soff, fix some as ∈ BR(Θ(s, π), s).

Our construction modifies the aggregate receiver response so that the response to

any s is as with high probability unless the aggregate sender play is such that each
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type θ ∈ Θ uses sθ with sufficiently high probability. We show that the fixed points

of this modified aggregate response mapping correspond to fixed points of the true

aggregate response mapping in the iterated limit where γ1 → 1 then δ → 1 then

γ2 → 1. Moreover, we show that the limit of these steady state profiles induce the

same distribution over Θ× S × A as π.

Because π is a uniformly justified JCE in a strictly monotonic signaling game, there

is an ε > 0 such that the following two properties hold. First, when π2(as|s,m) ≥ 1−ε

for all s, playing sθ paired with message m is strictly better for type θ than playing

any other s′ 6= sθ paired with any m′. Second, if π1(sθ,m|θ) ≥ 1− ε for every θ ∈ Θ, it

is strictly optimal for the receiver to respond to (s,m) with as for every s ∈ Son. Fix

such an ε.

Let κ : R → [0, 1] be a continuous function such that κ(z) = 0 for all z ≤ 0 and

κ(z) = 1 for all z ≥ 1. Also, let φ : Π1 × Π2 → Π2 be the mapping

φ(π1, π2)(·|s,m) =

(
1− κ

(
2

ε
(min
θ∈Θ

π1(sθ|θ)− 1 + ε)

))
1as(·)+κ

(
2

ε
(min
θ∈Θ

π1(sθ|θ)− 1 + ε)

)
π2(·|s,m)

for all s ∈ S and m ∈M . Note that φ is continuous. Additionally, φ(π1, π2)(as|s,m) =

1 when π1(sθ|θ) ≤ 1 − ε for some θ ∈ Θ, and φ(π1, π2) = π2 when π1(sθ|θ) ≥ 1 − ε/2

for all θ ∈ Θ.

Consider the correspondence R̃δ,γ1,γ2 : Π1 × Π2 → Π1 × Π2 given by R̃δ,γ1,γ2(π) =

(Rδ,γ1

1 (π2), φ(π1,R
γ2

2 (π1))). Since R̃δ,γ1,γ2 is continuous, Brouwer’s fixed point theorem

guarantees the existence of a fixed point (πδ,γ1,γ2

1 , πδ,γ1,γ2

2 ). We will establish that, in

the iterated limit where γ1 → 1 then δ → 1 then γ2 → 1, πδ,γ1,γ2 = (πδ,γ1,γ2

1 , πδ,γ1,γ2

2 )

induces the same distribution over Θ × S × A as π. Towards this end, consider a

sequence {γ2,j}j∈N, sequences {δj,k}j,k∈N, and sequences {γ1,j,k,l}j,k,l∈N such that (1)

limj→∞ γ2,j = 1, (2) limk→∞ δj,k = 1 for all j, (3) liml→∞ γ1,j,k,l = 1 for all j, k, and (4)

limj→∞ limk→∞ liml→∞ π
δj,k,γ1,j,k,l,γ2,j = π′ for some π′ = (π′1, π

′
2) ∈ Π1 × Π2.

We first establish that π′1(sθ|θ) ≥ 1 − ε for all θ ∈ Θ. If instead there were some

θ ∈ Θ such that π′(sθ|θ) < 1 − ε, then by construction, π′2(as|s,m) ≥ 1 − ε for all
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s ∈ S and m ∈ M . Lemma B1 thus requires that π′1(sθ|θ) = 1 for all θ ∈ Θ, which is

a contradiction.

Next we show that π′2(as|s,m) = 1 for all s ∈ Son and m ∈M such that π′1(s,m|θ) >

0 for some θ ∈ Θ. Fix s ∈ Son. Consider m,m′ ∈ M such that π′1(s,m|θ) > 0

and π′1(s,m′|θ′) > 0 for some θ, θ′ ∈ Θ. The construction of R̃δ,γ1,γ2 , along with an

argument almost identical to the proof of Lemma 2, implies that there exists some

ξ ∈ [0, 1] and α, α′ ∈ MBR(Θ, s) such that π′2(·|s,m) = (1 − ξ)1as(·) + ξα and

π′2(·|s,m′) = (1 − ξ)1as(·) + ξα′. In fact, α and α′ must be optimal responses to s

under the posterior distributions obtained by updating λ using {π′1(s,m|θ)}θ∈Θ and

{π′1(s,m′|θ)}θ∈Θ, respectively. Because the game is strictly monotonic, Lemma B1

implies that α = α′. Thus, for a given s, π′2(·|s,m) is the same for all m ∈ M for

which there is a θ′ ∈ Θ such that π′1(s,m|θ′) > 0. Combining this with the fact that

π′1(sθ|θ) ≥ 1 − ε for all θ, it follows that π′2(as|s,m) = 1 for all m ∈ M such that

π′1(s,m|θ) > 0 for some θ ∈ Θ.

Since π′2(as|s,m) = 1 for all s ∈ Son and m ∈M such that π′1(s,m|θ) > 0 for some

θ ∈ Θ, it follows from Lemma B1 that π′1(s|θ) = 0 whenever s ∈ Son and s 6= sθ.

We now show that for all θ ∈ Θ, π′1(s|θ) = 0 for all s ∈ Soff. Note that, because

π1(sθ|θ) > 0 for all θ ∈ Θ and π2(asθ |sθ,m) = 1 for all θ ∈ Θ and m ∈ M where

π1(sθ,m|θ) > 0, Lemma B1 implies that u1(θ, π′) = u1(θ, sθ, asθ) = u1(θ, π) for all

θ ∈ θ. Additionally, Lemma B1 requires that u1(θ, s, π′2(·|s,m)) ≤ u1(θ, π′) = u1(θ, π)

for all θ ∈ Θ, s ∈ S, and m ∈ M . Now, suppose that there is some s ∈ Soff and

m ∈ M such that π′1(s,m|θ) > 0 for some θ ∈ Θ. There are two possible cases: (1)

There is some θ 6∈ Θ(s, π) such that π′1(s,m|θ) > 0, and (2) All θ with π′1(s,m|θ) > 0

belong to Θ(s, π). In Case (1), because π′2(·|s,m) ∈ ∆(BR(Θ, s)), there must be some

θ′ ∈ Θ(s, π) such that u1(θ′, s, π′2(·|s,m)) > u1(θ′, π), which is a contradiction. In Case

(2), the construction of Rδ,γ1,γ2 , combined with an almost identical argument to the one

behind Lemma 2, implies that π′2(·|s,m) ∈ ∆(BR(Θ(s, π), s)). Since π is a uniformly

justified JCE, it follows that u1(θ, s, π′2(·|s,m)) < u1(θ, π) for all θ ∈ Θ, but this, along

with Lemma B1, implies that π′1(s,m|θ) = 0 for all θ ∈ Θ, a contradiction.
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It follows that π′1(sθ|θ) = 1 for all θ and π′2(as|s,m) = 1 for all s ∈ Son and

m ∈ M such that π′1(s,m|θ) > 0 for some θ ∈ Θ. Thus, πδ,γ1,γ2 induces the same

distribution over Θ×S×A as π in the iterated limit where first γ1 → 1 then δ → 1 then

γ2 → 1. Moreover, since π′1(sθ|θ) = 1 for all θ ∈ Θ, πδ,γ1,γ2

2 = φ(πδ,γ1,γ2

1 ,Rγ2

2 (πδ,γ1,γ2

1 )) =

Rγ2

2 (πδ,γ1,γ2

1 ) in the iterated limit. Thus, πδ,γ1,γ2 is a fixed point of Rδ,γ1,γ2 in the iterated

limit, which means that π′ is a stable profile. �

OA.5 Proof of Lemma A3

Lemma A3. If π is a PBE-H that satisfies NWBR, then, for every s ∈ S, either

1. Θ‡(s, π) 6= ∅, or

2. u1(θ, s, a) < u1(θ, π) for all θ ∈ Θ and a ∈ BR(Θ, s).

Proof. Let π be a PBE-H that satisfies NWBR. Fix s ∈ S and suppose that Θ‡(s, π) =

∅. Let A− = {α ∈ MBR(Θ, s) : u1(θ, s, α) < u1(θ, π) ∀θ ∈ Θ} be the set of receiver

mixed best responses that make playing s strictly worse for every type than their

outcome under π. Similarly, let A+ = {α ∈ MBR(Θ, s) : ∃θ ∈ Θ s.t. u1(θ, s, α) >

u1(θ, π)} be the set of receiver mixed best responses that make some type strictly

better off by playing s than receiving their outcome under π. A− and A+ are disjoint

open subsets of MBR(Θ, s), and A− ∪ A+ = MBR(Θ, s) since Θ‡(s, π) = ∅. As

MBR(Θ, s) is connected, either A− = MBR(Θ, s) or A+ = MBR(Θ, s). A+ =

MBR(Θ, s) is not possible when π is a PBE-H that satisfies NWBR since then, for

every α ∈MBR(Θ̂(s, π), s), there is some θ such that u1(θ, s, α) > u1(θ, π). Therefore,

A− = MBR(Θ, s), which gives u1(θ, s, a) < u1(θ, π) for all a ∈ BR(Θ, s). �
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OA.6 Omitted Analysis of Examples

OA.6.1 Analysis of Example 2

Proposition OA 4. The game in Example 2 has stable profiles where all types play

Pass with probability 1.

Proof. We specify that the worker prior g2 is a Dirichlet distribution. For m ∈

{mHire,θH ,mHire,{θH ,θM}}, it has initial weight 1 on (θH , Hire,m), 1/2 on (θM , Hire,m),

and 1/4 on (θL, Hire,m). For m = mHire,θM , it has initial weight 3/5 on (θH , Hire,m),

1 on (θM , Hire,m), and 1/4 on (θL, Hire,m). For all other messages m, it has initial

weight 1/4 on (θH , Hire,m), 1/4 on (θM , Hire,m), and 1 on (θL, Hire,m). Note that

initial trust is satisfied: For instance, when a worker first encounters a firm who plays

(Hire,mIn,θH ), the probability they place on the firm having type θH is 4/7, θM is 2/7,

and θL is 1/7, so eH = BR(θH , Hire) is optimal.

We observe that eL is the worker’s unique best response to Hire under any distri-

bution that puts probability strictly higher than 3/7 on θL. Additionally, if a worker

has encountered past play of (Hire,m) and all such plays have been by firms with type

θL, then the worker will respond to the next instance of (Hire,m) with eL. To see that

this holds for the case m = mHire,θH , note that the worker’s conditional distribution

over the firm’s type after (Hire,mHire,θH ) must put probability at least 5/11 on θL.

Analogous arguments handle the other cases.

We focus on steady state profiles in which, for every m ∈ M , the aggregate prob-

ability that a worker responds to (Hire,m) with eM is less than 1/4. Under such

responses, whenever it is weakly optimal for θH or θM to play Hire, it must be strictly

optimal for θL to do so. To see this, note that

u1(θH , Hire, α) = 21α[eH ] + 6α[eM ]− 5,

10



so α[eH ] ≥ 5/21− 6/21α[eM ] whenever u1(θH , Hire, α) ≥ 0, and

u1(θM , Hire, α) = 12α[eH ] + 10α[eM ]− 4,

so α[eH ] ≥ 1/3− 5/6α[eM ] whenever u1(θM , Hire, α) ≥ 0. Additionally,

u1(θL, Hire, α) = 5α[eH ] + 2α[eM ]− 1,

which is strictly positive whenever α[eH ] ≥ min{5/21 − 6/21α[eM ], 1/3 − 5/6α[eM ]}

and α[eM ] ≤ 1/4. We argue that such steady state profiles exist in the iterated limit

where γ1 → 1, then δ → 1, and then γ2 → 1, and that the corresponding aggregate

probability that any type plays Hire converges to 0.

Let χ : ∆(A)⇒ ∆(A) be the correspondence given by

χ(α) =

{α} if α[eM ] < 1
4

{α′ ∈ ∆(A) : α′[eM ] = 1
4
} if α[eM ] ≥ 1

4

,

and let ρ : Π2 ⇒ Π2 be the correspondence given by

ρ(π2) = {π′2 ∈ Π2 : π′2(·|Hire,m) ∈ χ(π2(·|Hire,m)) ∀m ∈M}.

Note that ρ is upper hemicontinuous, convex-valued, and coincides with the identity

correspondence whenever π2(eM |In,m) < 1/4 for all m. Let υ : Π1 ⇒ Π1 be the

correspondence given by

υ(π1) =

{
π′1 ∈ Π1 : (1) π′1[Hire,m|θ] = min

{
π1[Hire,m|θ], λ(θL)

2λ(θ)

}
∀m ∈M, θ ∈ {θH , θM},

(2) π′1[Pass,m|θ] = π1[Hire,m|θ] ∀m 6= mPass,θH , θ ∈ {θH , θM},

(3) π′1[s,m|θL] = π1[s,m|θL] ∀s ∈ {Hire, Pass}, m ∈M,

}
.

Note that υ is upper hemicontinuous, convex-valued, and coincides with the identity

11



correspondence whenever π1(Hire,m|θ) < λ(θL)/(2λ(θ)) for all m ∈ M and θ ∈

{θH , θM}.

Consider the correspondence R̃δ,γ1,γ2 : Π1×Π2 ⇒ Π1×Π2 given by R̃δ,γ1,γ2(π1, π2) =

{(π′1, π′2) ∈ Π1 × Π2 : π′1 = υ(Rδ,γ1

1 (π2)) and π′2 ∈ ρ(Rγ2

2 (π1))}. Since R̃δ,γ1,γ2 is

upper hemicontinuous and convex-valued, Kakutani’s fixed point theorem guarantees

the existence of a fixed point (πδ,γ1,γ2

1 , πδ,γ1,γ2

2 ).

We establish that limγ2→1 limδ→1 limγ1→1 π
δ,γ1,γ2

1 [Hire|θ] = 0 for θ ∈ {θH , θM}. Sup-

pose towards a contradiction that there is a sequence of worker continuation prob-

abilities {γ2,j}j∈N, a collection of sequences of firm discount factors {δj,k}j,k∈N, and

a collection of sequences of firm continuation probabilities {γ1,j,k,l}j,k,l∈N such that

(a) limj→∞ γ2,j = 1, (b) limk→∞ δj,k = 1 for all j, (c) liml→∞ γ1,j,k,l = 1 for all j, k,

(d) limj→∞ limk→∞ liml→∞ π
δj,k,γ1,j,k,l,γ2,j

1 [Hire,m|θ] exists for all θ ∈ Θ and m ∈ M ,

and (e) limj→∞ limk→∞ liml→∞ π
δj,k,γ1,j,k,l,γ2,j

1 [Hire|θ] > 0 for either θ = θH or θ =

θM . Then since πδ,γ1,γ2

2 (eM |Hire,m) ≤ 1/4 for all m ∈ M , Lemma B1 implies

that limj→∞ limk→∞ liml→∞ π
δj,k,γ1,j,k,l,γ2,j

1 [Hire|θL] = 1. Therefore, there exists some

m ∈M such that limj→∞ limk→∞ liml→∞ π
γ1,j,k,l,γ2,j

1 [Hire,m|θL] > 0 and

lim
j→∞

lim
k→∞

lim
l→∞

π
δj,k,γ1,j,k,l,γ2,j

1 [Hire|θL] ≥ λ(θL)

2λ(θ)
lim
j→∞

lim
k→∞

lim
l→∞

π
δj,k,γ1,j,k,l,γ2,j

1 [Hire|θ]

for both θ ∈ {θH , θM}. By Lemma 2 and the fact that the unique worker best response

to Hire is eL when the probability the type is θL is at least 1/2, this implies that

limj→∞ limk→∞ liml→∞R
γ2,j

2 (π
δj,k,γ1,j,k,l,γ2,j

1 )(eL|Hire,m) = 1. Since χ(π2(·|Hire,m)) =

{π2(·|Hire,m)} if π2(eM |Hire,m) < 1/4, it follows that

limj→∞ limk→∞ liml→∞ π
δj,k,γ1,j,k,l,γ2,j

2 (π1)(eL|Hire,m) = 1. However, by Lemma B1,

this requires that limj→∞ limk→∞ liml→∞ π
δj,k,γ1,j,k,l,γ2,j

1 [Hire,m] = 0 must hold, a con-

tradiction.

A similar argument establishes that limγ2→1 limδ→1 limγ1→1 π
δ,γ1,γ2

1 [Hire|θL] = 0, so

limγ2→1 limδ→1 limγ1→1 π
δ,γ1,γ2

1 [Hire] = 0. Since a worker will only play eM in response

to some (Hire,m) if they have previously encountered a firm playing (Hire,m), we

12



have that R
γ2,j

2 (π
γ1,k,l,γ2,k

1 )(eM |Hire,m) < 1/4 for all m ∈ M in the iterated limit.

Since ρ(π2) = {π2} if π2(eM |Hire,m) < 1/4 for all m, πδ,γ1,γ2

2 = ρ(Rγ2

2 (πδ,γ1,γ2

1 )) =

Rγ2

2 (πδ,γ1,γ2

1 ) for fixed, sufficiently high γ2 ∈ [0, 1) when δ is sufficiently close to 1 and,

given δ, γ1 is sufficiently close to 1. For similar reasons, πδ,γ1,γ2

1 = υ(Rδ,γ1

1 (πδ,γ1,γ2

2 )) =

Rγ2

2 (πδ,γ1,γ2

1 ) also holds in the iterated limit. Thus, (πδ,γ1,γ2

1 , πδ,γ1,γ2

2 ) is a fixed point of

Rδ,γ1,γ2 for fixed, sufficiently high γ2 ∈ [0, 1), when δ is sufficiently close to 1 and, given

δ, γ1 is sufficiently close to 1. We conclude that there are stable profiles in which every

type plays Pass. �

OA.6.2 Analysis of Example 3

Proposition OA 5. The game in Example 3 has stable profiles where both types play

Out with probability 1.

Proof. We specify that the receiver prior g2 is a Dirichlet distribution with initial

weight 1 on (θ1, In,mIn,θ1) and 1/2 on (θ2, In,mIn,θ1), and, for all other messages

m 6= mIn,θ1 , initial weight 1/2 on (θ1, In,m) and 1 on (θ2, In,m). This means that

initial trust is satisfied: When a receiver first encounters a sender who plays (In,mIn,θ),

the probability they place on the receiver having type θ is 2/3 so BR(θ, In) is optimal.

We claim first that if a receiver has encountered past plays of (In,m) and all such

plays have been by senders with the same type θ, then the receiver will respond to the

next instance of (In,m) with BR(θ, In). We demonstrate this for the case m = mθ1 ;

analogous arguments handle the other case. If this message has only ever been sent

by θ1, the receiver’s belief about the sender’s type after (In,mθ1) must put probability

at least (1 + 1)/(1 + 1 + .5) = 4/5 on θ1, which makes a1 the unique receiver best

response. When θ = θ2, the receiver’s conditional distribution over the sender’s type

after (In,mθ1) must put probability at least (1 + .5)/(1 + 1 + .5) = 3/5 on θ2, which

makes a2 the unique receiver best response.

We focus on steady state profiles in which, for every m ∈M , the aggregate proba-

bility that a receiver responds to (In,m) with a3 is less than 1/4. Under such responses,

13



it can never be weakly optimal for both types to play In with the same message. To

see this, note that

u1(θ1, In, α) + u2(θ2, In, α) = −α[a1]− α[a2] + 2α[a3] = −1 + 3α[a3],

which is strictly negative whenever α[a3] ≤ 1/4. We argue that such steady state

profiles exist in the iterated limit where γ1 → 1 then δ → 1 then γ2 → 1 and that the

corresponding aggregate probability that either sender type plays In converges to 0.

Let χ : ∆(A)⇒ ∆(A) be the correspondence given by

χ(α) =

{α} if α[a3] < 1
4

{α′ ∈ ∆(A) : α′[a3] = 1
4
} if α[a3] ≥ 1

4

,

and let ρ : Π2 ⇒ Π2 be the correspondence given by

ρ(π2) = {π′2 ∈ Π2 : π′2(·|In,m) ∈ χ(π2(·|In,m)) ∀m ∈M}.

Note that ρ is upper hemicontinuous, convex-valued, and coincides with the identity

correspondence whenever π2(a3|In,m) < 1/4 for all m.

Consider the correspondence R̃δ,γ1,γ2 : Π1×Π2 ⇒ Π1×Π2 given by R̃δ,γ1,γ2(π1, π2) =

{(π′1, π′2) ∈ Π1×Π2 : π′1 = Rδ,γ1

1 (π2) and π′2 ∈ ρ(Rγ2

2 (π1))}. Since R is upper hemicon-

tinuous and convex-valued, Kakutani’s fixed point theorem guarantees the existence of

a fixed point (πδ,γ1,γ2

1 , πδ,γ1,γ2

2 ). As πδ,γ1,γ2

2 (a3|s,m) ≤ 1/4 for all (s,m) by construction,

Lemma B1 implies that, for all γ2 ∈ [0, 1) and (s,m), either limγ1→1 π
δ,γ1,γ2

1 [In,m|θ1] =

0 or limγ1→1 π
δ,γ1,γ2

1 [In,m|θ2] = 0. This means that, as γ1 → 1 then δ → 1, the prob-

ability that a receiver encounters senders with both types that pair In with the same

message m approaches 0. Since a receiver would only ever play a3 in response to (In,m)

if they have previously encountered senders of both types play (In,m), this means

that limδ→1 limγ1→1 Rγ2

2 (πδ,γ1,γ2

1 )(a3|In,m) = 0 for all m ∈ M . Since ρ(π2) = {π2}

if π2(a3|In,m) < 1/4 for all m, πδ,γ1,γ2

2 = ρ(Rγ2

2 )(πδ,γ1,γ2

1 ) = Rγ2

2 (πδ,γ1,γ2

1 ) for fixed
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γ2 ∈ [0, 1) when δ is sufficiently close to 1 and, given δ, γ1 is sufficiently close to

1. Thus, for fixed γ2 ∈ [0, 1), (πδ,γ1,γ2

1 , πδ,γ1,γ2

2 ) is a fixed point of Rδ,γ1,γ2 when δ is

sufficiently close to 1 and, given δ, γ1 sufficiently close to 1.

To show that limγ2→1 limδ→1 limγ1→1 π
δ,γ1,γ2

1 [In] = 0, suppose towards a contradic-

tion that there is a sequence of receiver continuation probabilities {γ2,j}j∈N, a collec-

tion of sequences of sender discount factors {δj,k}j,k∈N, and a collection of sequences

of sender continuation probabilities {γ1,j,k,l}j,k,l∈N such that (a) limj→∞ γ2,j = 1, (b)

limk→∞ δj,k = 1 for all j, (c) liml→∞ γ1,j,k,l = 1 for all j, k, and

(d) limj→∞ limk→∞ liml→∞ π
δj,k,γ1,j,k,l,γ2,j

1 [In,m|θ] > 0 for some θ ∈ Θ and m ∈ M .

Without loss of generality, take θ = θ1. By what we have shown, it must be that

limk→∞ liml→∞ π
δj,k,γ1,j,k,l,γ2,j

1 [In,m|θ2] = 0 for all sufficiently large j. Combining this

with limj→∞ limk→∞ liml→∞ π
δj,k,γ1,j,k,l,γ2,j

1 [In,m|θ1] > 0 and limj→∞ γ2,j = 1 gives

limj→∞ limk→∞ liml→∞ π
δj,k,γ1,j,k,l,γ2,j

2 (a1|s,m) = 1, because with probability 1 every re-

ceiver encounters a type θ1 sender playing (In,m) but never encounters a type θ2 sender

playing (In,m). However, since u1(θ1, In, a1) < 0, limj→∞ limk→∞ liml→∞ π
δj,k,γ1,j,k,l,γ2,j

2 (a1|s,m) =

1 combined with Lemma B1 requires limj→∞ limk→∞ liml→∞ π
δj,k,γ1,j,k,l,γ2,j

1 [In,m|θ1] =

0, a contradiction. �

OA.6.3 Analysis of Example 4

Proposition OA 6. The least-cost separating equilibrium of the game in Example 4

has θ = 1 play (s∗1(1), s∗2(1)) = (1/2, 0), to which the receiver responds a∗(1) = 10,

θ = 2 play (s∗1(2), s∗2(2)) = (1/2, 5), to which the receiver responds a∗(2) = 20, and

θ = 3 play (s∗1(3), s∗2(3)) = (1/2, 15), to which the receiver responds a∗(3) = 30.

Proof. We first establish that this play is consistent with a separating PBE. Given an

arbitrary (s1, s2) and a belief λ̃ about the sender’s type, the receiver’s best responses

are the closest actions to 20s1Eλ̃[θ], as can be readily verified using the receiver’s utility

function. For s1 = 1/2 and the belief that the type is θ, the receiver’s best response is

10θ, so the prescribed receiver play following the on-path sender play is indeed optimal.

15



Fix the receiver’s response to any off-path signal-message pair (s1, s2,m) to be 20s1, i.e.

the best response under a belief putting probability 1 on θ = 1. All that remains is to

check that the incentives of the sender types are satisfied. We verify this for the θ = 3

sender type. (Similar arguments handle the other two types.) Under the prescribed

play, the payoff of the θ = 3 sender type is u1(3, 1/2, 15, 30) = 30. If the θ = 3 sender

were instead to mimic θ = 1 or θ = 3, their payoff would be 15 or 25, respectively.

Moreover, if the θ = 3 sender were to deviate to some off-path signal-message pair

(s1, s2,m), their payoff would be 60(1− s1)s1 − s2, which is strictly lower than 30 for

all s1 ∈ [0, 1] and s2 ≥ 0.

We now show that every other separating equilibrium results in (weakly) lower

payoffs to each of the sender types. The payoff of the θ = 1 sender from (s1, s2) when

the receiver responds with 20s1 is 20(1− s1)s1 − s2, which attains its maximum value

of 5 at (s∗1(1), s∗2(1)). The maximum possible payoff of the θ = 2 sender from playing

some (s1, s2) when the receiver responds with 40s1, subject to the constraint that θ = 1

would obtain a lower payoff than 5 by imitating θ = 2 is

max
(s1,s2)∈S

80(1− s1)s1 − s2 s.t. 40(1− s1)s1 − s2 ≤ 5.

The solution to this problem is (s∗1(2), s∗2(2)), and the resulting payoff to θ = 2 is 15.

Finally, the maximum possible payoff of the θ = 3 sender from playing some (s1, s2)

when the receiver responds with 60s1, subject to the constraint that θ = 2 would obtain

a lower payoff than 15 by imitating θ = 3 is

max
(s1,s2)∈S

120(1− s1)s1 − s2 s.t. 80(1− s1)s1 − s2 ≤ 15.

The solution to this problem is (s∗1(3), s∗2(3)). �

Proposition OA 7. If π is a JCE in the game in Example 4, then each θ plays

(s∗1(θ), s∗2(θ)) with strictly positive probability, and the receiver responds to all on-path

(s∗1(θ), s∗2(θ),m) with a∗(θ) as in the least-cost separating equilibrium.

16



Proof. We first establish that in a JCE π, for each signal-message pair (s1, s2,m) played

by θ = 3, the product of (1−s1) and the receiver’s response has expected value at least

44/3. Suppose otherwise that there is some signal-message pair (s1, s2,m) that θ = 3

plays which induces a receiver response with expected value ã such that (1 − s1)ã <

44/3. It must be that s2 < 44, as otherwise θ = 3 would obtain a strictly negative

payoff. Thus, s′2 = ds2 + 30− 2(1− s1)ãe ∈ S. Note that u1(3, π) = 3(1 − s1)ã − s2,

while u1(θ, π) ≤ θ(1 − s1)ã − s2 for θ ∈ {1, 2}. Since u1(3, 1/2, s′2, a) = 3a/2 − s′2, we

have that u1(3, 1/2, s′2, a) ≥ u1(3, π) if and only if a ≥ 2(1− s1)ã + 2(s′2 − s2)/3, with

the inequality strict for all a > 2(1− s1)ã+ 2(s′2 − s2)/3. Moreover, u1(θ, 1/2, s′2, a) ≥

u1(θ, π) for θ = 1 or θ = 2 only if u1(θ, 1/2, s′2, a) = θa/2 − s′2 ≥ θ(1 − s1)ã − s2,

which requires a ≥ 2(1 − s1)ã + s′2 − s2. Since s′2 > s2, 2(1 − s1)ã + s′2 − s2 >

2(1− s1)ã + 2(s′2 − s2)/3 which means that Θ(1/2, s′2, π) = {3} and the only justified

response to (1/2, s′2) is 30. As this is strictly greater than 2(1 − s1)ã + 2s′2/3 − 2s2/3

when (1− s1)ã < 44/3, the claim follows.

An immediate implication is that there must be some signal-message pair that θ = 2

sends with positive probability that θ = 3 does not send, because (1− s1)a ≤ 25/2 for

any signal (s1, s2) and receiver best response a to a belief where the relative weight on

θ = 2 versus θ = 3 is at least that of the prior.

We now show that, for each signal-message pair (s1, s2,m) played by θ = 2 but not

by θ = 3, the product of 1 − s1 and the receiver’s response must have an expected

value between 19/2 and 10. Whenever the probability of θ = 3 is 0, the product of

(1 − s1) and any undominated receiver response is no more than 10, so we need only

show that the expected value of the product must exceed 19/2. Suppose otherwise

that there is some signal-message pair (s1, s2,m) that θ = 2 plays but θ = 3 does not

play for which the expected value of the receiver response ã satisfies (1− s1)ã < 19/2.

It must be that s2 < 19, so s′2 = ds2 + 10− (1− s1)ae ∈ S. Note that u1(2, π) =

2(1 − s1)ã − s2, while u1(1, π) ≤ (1 − s1)ã − s. Since u1(2, 1/2, s′2, a) = a − s′2, we

have that u1(2, 1/2, s′2, a) ≥ u1(2, π) if and only if a ≥ 2(1 − s1)ã + s′2 − s2, with the

inequality strict for all a > 2(1− s1)ã + s′2 − s2. Moreover, u1(1, 1/2, s′2, a) ≥ u1(1, π)
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only if a/2−s′2 ≥ (1−s1)ã−s, which requires a ≥ 2(1−s1)ã+2(s′2−s2). Since s′2 > s2,

2(1−s1)ã+2(s′2−s2) > 2(1−s1)ã+s′2−s2, which means that Θ(s+10, π) ⊆ {2, 3} so

justified responses to (1/2, s′2) must weakly exceed 20. As this is strictly greater than

2(1− s1)ã+ s′2 − s2 when (1− s1)ã < 19/2, the claim follows.

There must be some signal-message pair that only θ = 1 plays. To see this, first

observe that there can be no signal-message pair played by both θ = 1 and θ = 3. If

there were some signal-message pair (s1, s2,m) played by both θ = 1 and θ = 3, the

product of 1− s1 and the expected value of the receiver response ã must be less than

25/2, because increasing differences in θ and (1 − s1)a in the sender utility function

implies that every signal-message pair played by θ = 2 must induce the same expected

value (1− s1)ã. This contradicts the fact that, for every signal-message pair played by

θ = 3, the product of 1 − s1 and the expected value of the receiver response must be

weakly greater than 44/3. Additionally, θ = 1 cannot only play signal-message pairs

that are also played by θ = 2. Otherwise, there would be some signal-message pair

(s1, s2,m) played by θ = 2, for which the product of 1 − s1 and the receiver response

would have expected value weakly less than 15/2 since (1−s1)a ≤ 15/2 for any receiver

best response a to a belief where the weight on θ = 3 is 0 and the weight on θ = 1 is

at least that of the prior.

For every signal-message pair that only θ = 1 plays, s1 = 1/2, s2 = 0, and the

receiver responds with a = 10. The reason is the payoff θ = 1 obtains from a signal-

message pair (s1, s2,m) that only θ = 1 plays is 20(1− s1)s1− s2, which is strictly less

than 5 if s1 6= 1/2 or s2 > 0. However, θ = 1 can secure a payoff of 5 by simply playing

(s1, s2) = (1/2, 0), since every a < 10 is a strictly dominated response for the receiver.

We now argue that, for every signal-message pair played by θ = 2 but not by θ = 3,

s1 = 1/2, s2 = 5, and the receiver responds with a = 20. We have previously established

that the product of 1− s1 and the expected value of the receiver’s response ã must be

between 19/2 and 10. For (1− s1)ã < 10 to hold, it must be that θ = 1 also plays this

signal-message pair. This requires u1(1, s, ã) = (1− s1)ã− s2 = u1(1, π). As previously

established, u1(1, π) = 5, so it must be that s2 = (1−s1)ã−5. However, there is no ã ∈
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[19/2, 10) such that ã−5 ∈ S. Therefore, (1−s1)ã = 10. Since (1−s1)ã ≤ 40(1−s1)s1

and 40(1− s1)s1 < 10 for all s1 6= 1/2, it follows that s1 = 1/2 and thus ã = 20. From

u1(1, 1/2, s2, 20) = 10− s2 ≤ 5 = u1(1, π), we obtain s2 ≥ 5. All that remains is to rule

out s2 > 5. If s2 > 5, u1(1, 1/2, s2 − 1, a) = a/2− s2 + 1 ≥ 5 = u1(1, π) only if a ≥ 20.

On the other hand, u1(2, 1/2, s2 − 1, a) = a − s2 + 1 ≥ 20 − s2 = u1(2, π) if and only

if a ≥ 19, with the inequality strict for all a > 19. Thus, Θ(1/2, s2 − 1, π) ⊆ {2, 3}, so

justified responses to (1/2, s2 − 1) must weakly exceed 20. It follows that s2 = 5.

Finally, we show that, for every signal-message pair played by θ = 3, s1 = 1/2,

s2 = 15, and the receiver responds with a = 40. We have previously established that

the product of 1 − s1 and the expected value of the receiver’s response ã must be

between 44/3 and 15. For (1 − s1)ã < 15 to hold, it must be that θ = 2 also plays

this signal-message pair. This requires u1(2, s1, s2, ã) = 2(1− s1)ã− s2 = u1(2, π). As

previously established, u1(2, π) = 15, so it must be that s2 = 2(1−s1)ã−15. However,

there is no (1−s1)ã ∈ [44/3, 15) such that 2(1−s1)ã−15 ∈ S. Therefore, (1−s1)ã = 15.

Since (1 − s1)ã ≤ 60(1 − s1)s1 and 60(1 − s1)s1 < 15 for all s1 6= 1/2, it follows that

s1 = 1/2 and thus ã = 30. From u1(2, 1/2, s2, 30) = 30− s2 ≤ 15 = u1(2, π), we obtain

s2 ≥ 15. All that remains is to rule out s > 15. If s > 15, u1(θ, 1/2, s2 − 1, a) =

θa/2 − s + 1 ≥ u1(θ, π) for either θ = 1 or θ = 2 requires that a ≥ 40. On the other

hand, u1(3, 1/2, s2 − 1, a) = 3a/2− s2 + 1 ≥ 45− s2 = u1(3, π) if and only if a ≥ 29/3,

with the inequality strict for all a > 29/3. Thus, Θ(1/2, s2 − 1, π) = {3}, so the only

justified response to (1/2, s2 − 1) is 30. It follows that s2 = 15. �

OA.7 Other Examples

OA.7.1 Stability without Initially Trusting Receivers

Example OA 1. The sender’s type space is Θ = {θ1, θ2}, signal space is S = {In,Out},

and the receiver’s action space is A = {a1, a2}. The payoffs to the sender and receiver

are given below.
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θ1 a1 a2

In 1, 1 −1,−1

Out 0, 0 0, 0

θ2 a1 a2

In −1,−1 −1, 1

Out 0, 0 0, 0

Out strictly dominates In for type θ2, so θ2 plays Out in every equilibrium of this

game. However, there are equilibria in which θ1 plays In and equilibria in which θ1

plays Out. The equilibria where θ1 plays Out do not survive the Intuitive Criterion

since a1 is the receiver’s unique best response to In when the sender’s type is θ1, and

θ1 obtains a strictly higher payoff from (In1, a1) than from playing Out.

We show that, when g2 is such that a receiver plays a2 when they first encounter a

sender playing (In,m) for every message m ∈ M , there are stable profiles in which θ1

plays Out.

We focus on steady state profiles in which the aggregate probability that a receiver

responds to (In,m) with a1 is less than 1/3 for every message m ∈M , which makes it

strictly optimal for type θ1 senders to play Out. We show that, for fixed γ2 ∈ [0, 1), such

steady state profiles exist, and, moreover, that the corresponding aggregate probability

that a type θ1 sender plays In approaches 0 as γ1 → 1 and then δ → 1.

Let ψ : Π2 → Π2 be the mapping given by

ψ(π2)(a1|In,m) = min

{
π2(a1|In,m),

1

3

}
∀m ∈M.

Note that ψ is continuous and coincides with the identity mapping whenever π2(a1|In,m) ≤

1/3 for all m.

Consider the mapping R̃δ,γ1,γ2 : Π1 × Π2 → Π1 × Π2 given by R̃δ,γ1,γ2(π1, π2) =

(Rδ,γ1

1 (π2), ψ(Rγ2

2 (π1))). Since R̃δ,γ1,γ2 is continuous, Brouwer’s fixed point theorem

guarantees the existence of a fixed point (πδ,γ1,γ2

1 , πδ,γ1,γ2

2 ). As πδ,γ1,γ2

2 (a1|In,m) ≤ 1/3

for all m by construction, Lemma B1 implies that limδ→1 limγ1→1 π
δ,γ1,γ2

1 [In] = 0 for all

γ2 ∈ [0, 1). Furthermore, because g2 is such that every receiver would play a2 at a first
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encounter with a sender playing (In,m), limδ→1 limγ1→1 Rγ2

2 (πδ,γ1,γ2

1 )(a1|In,m) = 0

for all m, γ2 ∈ [0, 1), so the π2(a1|In,m) ≤ 1/3 constraint does not bind when δ

is sufficiently close to 1 and, given δ, γ1 is sufficiently close to 1. Formally, since

πδ,γ1,γ2

2 6= Rγ2

2 (πδ,γ1,γ2

1 ) only if Rγ2

2 (πδ,γ1,γ2

1 )(a1|In,m) > 1/3 for some m, we have that,

for fixed γ2 ∈ [0, 1), πδ,γ1,γ2

2 = Rγ2

2 (πδ,γ1,γ2

1 ) for δ sufficiently close to 1 and, given δ,

γ1 sufficiently close to 1. Combining this with the fact that πδ,γ1,γ2

1 = Rδ,γ1

1 (πδ,γ1,γ2

2 )

for all γ1, γ2 ∈ [0, 1), it follows that, for fixed γ2 ∈ [0, 1), (πδ,γ1,γ2

1 , πδ,γ1,γ2

2 ) is a fixed

point of Rδ,γ1,γ2 for δ sufficiently close to 1 and, given δ, γ1 sufficiently close to 1.

Since limγ2→1 limδ→1 limγ1→1 π
δ,γ1,γ2

1 [In] = 0, we conclude that there are stable profiles

in which both types plays Out. �

In this example, In is strictly dominated for type θ2. If the priors of the receiver

agents put 0 probability on sender types for whom a given signal is strictly dominated

after an observation of that signal, the receivers would respond to In with a1, which

would preclude the “All Out” equilibria. Depending on the context, such belief re-

strictions might be plausible, though they do rely on the receivers knowing the sender

payoff function. However, even with such restrictions, stability can still allow implau-

sible outcomes when initial trust is not satisfied. For example, we could modify the

payoffs above so that In is no longer strictly dominated for θ2, but rather conditionally

dominated when the receiver response to Out uses a particular action, say a2, with

high probability. When the receiver priors are non-degenerate, we could choose the

receiver payoffs so that both types playing Out is stable.1

OA.7.2 Alternate Example Where D1 Does Not Imply JCE

Example OA 2. Here we analyze a simple example that is related to the idea of cor-

porate culture as a way of telling workers what to do in unforeseen contingencies (see

e.g. Camerer and Vepsalainen (1988) and Kreps (1990)). The sender is a firm, and the

1We could further restrict the receiver priors to assign probability 0 to sender types for whom a given
signal is equilibrium dominated, but such restrictions are not consistent with a learning foundation for
equilibrium, since they require that the receivers know the equilibrium being played in the population.
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receiver is a recently hired worker. The firm’s signal s ∈ {Creative, Standard} is its

choice of job assignment for the worker: The firm can either assign the worker to one

of its “standard” jobs or to a “creative” job. Standard jobs carry out the firm’s oper-

ation as currently designed, and let the firm effectively control the actions of workers

through a combination of monitoring and provision of incentives. Creative jobs are

intended to lead to innovations which the firm can then incorporate into its main oper-

ations, and the firm has relatively little direct control over the work these workers carry

out. The worker’s choice of action a ∈ {a1, a2, a3} represents the focus and intensity

of their costly effort when assigned a creative job: a1 and a2 both represent intense

effort directed at productive innovation but with focuses in different sectors, while a3

represents a lack of productive effort.

The firm has three possible types, Θ = {θ1, θ2, θ3}. Type θ1 and θ2 firms obtain

higher payoffs than the relatively unproductive type θ3 firms. Moreover, type θ1 firms

are particularly well suited to exploit innovations that workers with creative jobs choos-

ing action a1 may create, and type θ2 firms have an advantage with innovations from

a2. Due to their high payoffs from standard jobs, type θ1 gains relatively less from a

worker with a creative job working on a2 than type θ3 does. (Likewise for type θ2 and

a1.) A worker with a creative job is incentivized by rewards that come from successful

innovation, so such a worker would like to take action a1 if the firm has type θ1, a2 if

the firm has type a2, and a3 if the firm has type θ3.

The payoffs are given below.2

2The table indicates the worker can take any action in {a1, a2, a3} when assigned a standard job.
However, we think of the firm as controlling the actual effort of a worker with a standard job, which
is why the payoffs are independent of the formal action of a worker assigned a standard job.
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θ1 a1 a2 a3

Creative 4, 1 2, 0 0,−1

Standard 2, 0 2, 0 2, 0

θ2 a1 a2 a3

Creative 2, 0 4, 1 0,−1

Standard 2, 0 2, 0 2, 0

θ3 a1 a2 a3

Creative 1, 0 1, 0 −1, 1

Standard 0, 0 0, 0 0, 0

In every JCE, there is a positive probability of the worker being assigned a creative

job. The reason is that the worker must, with positive probability, respond to Creative

with a3 in order to deter the firm from playing Creative, but there is no justified

response to Creative that uses a3, because a3 is an optimal response to Creative only

when the worker assigns a positive probability to the firm being type θ3. However,

either θ1 or θ2 strictly prefers to play Creative whenever θ3 weakly prefers Creative,

so θ3 is not a justified type for Creative.

Every stable profile has a positive probability of the worker being assigned a creative

job because, for every firm type to learn that Standard is weakly optimal, the aggregate

worker response must use a3 with positive probability whenever Creative is played.

Since responding to Creative with a3 is optimal only for beliefs with positive probability

on θ3, Initial Trust implies that some θ3 firms must be learning to play Creative while

claiming to be either type θ1 or θ2. But if θ3 firms learn that it is weakly optimal to

play Creative, then either the θ1 or θ2 firms learn that it is strictly optimal to do so.

Unlike JCE, many existing refinements allow equilibria in which all types play

Standard. We discuss why this is the case for D1, which is typically thought of as a

strong refinement. D1 allows the worker to respond to Creative with a3, because there

is no type which strictly prefers to play Creative whenever θ3 weakly prefers to do

so. In particular, θ3 strictly prefers to play Creative whenever the worker plays either

a1 or a2 with probability 1. For the other two types, there are some mixtures over a1
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and a2 at which Creative is strictly preferred to Standard and others where Standard

is strictly preferred to Creative. In contrast, θ3 is not a justified type for Creative

because whenever θ3 weakly prefers to play Creative, there is some type that strictly

prefers to do so, but this type need not be the same across worker responses. �

OA.8 Stability Under Alternative Assumptions

OA.8.1 Weakening Initial Trust

Here we discuss a refinement satisfied by all stable profiles under an alternative as-

sumption to initial trust. Suppose that receivers know the payoff functions of the

senders, as in Fudenberg and He (2020). Then receivers who are long-lived may feel

that they have acquired a good sense of each sender type’s equilibrium payoff. Suppose

that such a receiver encounters a sender playing a pair (s,ms,Θ̃) that the receiver has

not previously seen types outside of Θ̃ play. If the receiver believes that only types in

Θ̃ could improve their outcome by deviating to s when the receiver’s response is con-

tained in BR(s, Θ̃), we assume the receiver finds such a message credible and respond

accordingly.3

As before, any stable profile must be a PBE-H. Moreover, stability also imposes

additional conditions for profiles π that are on-path strict for the receiver or are such

that the sender types’ payoffs would not be changed if the receiver deviated.4 For such

a profile to be stable, it must be that, for every signal s where u1(θ, s, a) < u1(θ, π) for

all a ∈ BR(Θ(s, π), s) and θ 6∈ Θ(s, π), there is some m ∈ M such that π2(·|s,m) ∈

∆(BR(Θ(s, π), s)). Aside from the qualifying condition u1(θ, s, a) < u1(θ, π) for all

a ∈ BR(Θ(s, π), s) and θ 6∈ Θ(s, π), this requirement is the same as Condition 2 of

Definition 3. Combined, these conditions are weaker than JCE, so they are satisfied

3The receiver responding to “credible” statements in this way is similar to the motivation underlying
“credible robust neologisms” in Clark (2020).

4These restrictions on π guarantee that a typical receiver agent will learn the equilibrium payoffs of
the sender types with high probability.
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by the equilibria we focus on in Examples 3 and 2. The conditions coincide with JCE

in Example 4 provided that the game is altered to have sufficiently fine action spaces.

Unlike JCE, the conditions are satisfied by the D1 equilibrium in Example 1, but there

are other games in which the conditions rule out D1 equilibria.

OA.8.2 Strengthening Initial Trust

Suppose that we strengthen initial trust to require that for any s ∈ S and Θ̃, Θ̃′ ⊆ Θ, if

the receiver has never seen a type outside of Θ̃∪ Θ̃′ play (s,ms,Θ̃), then their response

to a first instance of (s,ms,Θ̃) will belong to BR(Θ̃∪ Θ̃′, s). This means that a receiver

who has only observed types in Θ̃′ deceitfully play (s,ms,Θ̃) puts high probability on

the sender type being in either Θ̃ or Θ̃′ after observing this signal-message pair. This

seems plausible; however, we focus on initial trust because of JCE is simpler and easier

to apply than its iterated version.

The stable profiles then satisfy an iterated version of JCE, which itself is stronger

than the Iterated Intuitive Criterion (Cho and Kreps, 1987) and co-divinity (Sobel,

Stole and Zapater, 1990). Moreover, it is not nested with NWBR, but it is weaker

than the refinement obtained by iteratively applying NWBR.

Fix s ∈ S and π ∈ Π1 × Π2. Consider the following iterated version of the JCE

procedure for computing the set of justified types. Initialize Θ
0
(s, π) = Θ(s, π). For

n ∈ {1, 2, 3, ...}, let

D̃n
θ (s, π) = {α ∈ ∆(BR(Θ

n−1
(s, π), s)) : u1(θ, s, α) > u1(θ, π)},

D̃0,n
θ (s, π) = {α ∈ ∆(BR(Θ

n−1
(s, π), s)) : u1(θ, s, α) = u1(θ, π)},

Θ†,n(s, π) = {θ ∈ Θ : D̃n
θ (s, π) ∪ D̃0,n

θ (s, π) 6⊆ ∪θ′ 6=θD̃θ′(s, π)},

Θ
n
(s, π) =

Θ†,n(s, π) if Θ†,n(s, π) 6= ∅

Θ
n−1

(s, π) if Θ†,n(s, π) = ∅
.

Set Θ
∞

(s, π) = ∩n∈NΘ
n
(s, π). Note that Θ

n+1
(s, π) ⊆ Θ

n
(s, π) for all n and that
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Θ
∞

(s, π) ⊆ Θ
0
(s, π) = Θ(s, π).

Under this strengthening of initial trust, every stable profile π must satisfy the

following requirement: For every signal s, there is some m ∈M such that π2(·|s,m) ∈

∆(BR(Θ
∞

(s, π), s)). We refer to PBE-H that satisfy this requirement as strongly

justified communication equilibria.

The proof proceeds by using similar arguments to the proof of Theorem 1 to induc-

tively establish that π2(·|s,ms,Θ
∞

(s,π)) ∈ ∆(BR(Θ
n
(s, π), s)) for all n ∈ N.

OA.8.3 Costs of Lying

Suppose that we allow the sender’s utility function u1 : Θ×S×M ×A→ R to depend

on the sender’s message m in the following way: For all θ ∈ Θ and Θ′,Θ′′ ⊆ Θ such

that θ ∈ Θ′∩Θ′′, and Θ′′′ ⊆ Θ such that θ 6∈ Θ′′′, u1(θ, s,ms,Θ′ , a) = u1(θ, s,ms,Θ′′ , a) ≥

u1(θ, s,ms,Θ′′′ , a) for all s ∈ S and a ∈ A. Here lying is weakly costly for the sender in

that, for a given s and a, the sender gets a lower payoff from a message that represents

a set of types to which they do not belong. For simplicity, we assume that all messages

that represent a set containing the true type give the sender the same payoff.

For each signal s, message m, and profile π, we will define a set of types Θ(s,m, π)

that is analogous to the set of justified types in our main setting where m does not

impact payoffs. To do this, first set

D̃θ(s,m, π) = {α ∈ ∆(BR(Θ, s)) : u1(θ, s,m, α) > u1(θ, π)},

D̃0
θ(s,m, π) = {α ∈ ∆(BR(Θ, s)) : u1(θ, s,m, α) = u1(θ, π)},

and

Θ†(s,m, π) = {θ ∈ Θ : D̃θ(s,m, π) ∪ D̃0
θ(s,m, π) 6⊆ ∪θ′ 6=θD̃θ′(s,m, π)}
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Then let

Θ(s,m, π) =

Θ†(s,m, π) if Θ†(s,m, π) 6= ∅

Θ if Θ†(s,m, π) = ∅
.

Under initial trust, a similar proof to that of Theorem 1 shows that any stable profile

π must satisfy the following requirement: π2(·|s,ms,Θ(s,Θ,π)) ∈ ∆(BR(Θ(s,Θ, π), s))

for all s ∈ S. When the sender’s message is payoff irrelevant, Θ(s,m, π) = Θ(s, π), so

this requirement implies Condition 2 of Definition 3. While lying costs make it less

appealing for a non-justified type to falsely represent themself as justified, they can

change the set of equilibria, so it is hard to give a precise summary of their effect in

general games.

OA.9 Stability Under a More General Limit

In this section, we study steady state aggregate play in the more general limit where first

γ1 tends to 1, and then δ and γ2 tend to 1, without any restrictions on the relative speed

with which δ and γ2 converge. Formally, we consider lim(δ,γ2)→(1,1) limγ1→1 Π∗(g, δ, γ1, γ2).

We will call these the stable* profiles.

Definition OA 3. Strategy profile π is stable* if there is a sequence {δj}j∈N → 1,

sequence {γ2,j}j∈N → 1, and sequences {γ1,j,k}j,k∈N with limk→∞ γ1,j,k = 1 for all j,

such that π = limj→∞ limk→∞ πj,k for some sequence πj,k ∈ Π∗(g, δ1,j, γ1,j,k, γ2,j).

Since every stable profile is also stable*, it follows that stable* profiles exist.

Corollary OA 2. Stable* strategy profiles exist.

As with stability, there is a strong relationship between the stable* profiles and the

set of JCE.

Definition OA 4. Strategy profile π has strong incentives if, for every off-path s and

θ 6∈ Θ(s, π), there is some on-path (s′,m′) such that u1(θ, s′, a) > u1(θ, s, π2(·|s,ms,Θ(s,π)))
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for all a ∈ BR(p(s′,m′), s
′), where p(s′,m′) is the posterior belief given (s′,m′) obtained

from π1 and Bayes’ rule.

A strategy profile has strong incentives if for every off-path s, every type would obtain

a strictly lower payoff from playing (s,ms,Θ(s,π)) than they would from playing some

on-path signal-message pair when the receiver responds with any best response to the

corresponding posterior.

Theorem OA 1. Suppose that the density of the prior of the sender agents is every-

where positive. If π is stable* and has strong incentives, then it is a JCE.

Theorem OA 1 says that a profile with strong incentives can be stable* only if it

is a JCE. The assumption of strong incentives is vacuous if all signals are played with

positive probability in π. Also, note that u1(θ, π) > u1(θ, s,ms,θ(s,π)) for an arbitrary

signal s and profile π whenever θ 6∈ Θ(s, π). Thus, every profile that is on-path strict

for the receiver has strong incentives.5

The remainder of this section is devoted to the proof of Theorem OA 1. The

argument that every stable* profile is a PBE-H proceeds very similarly to that for the

stable profiles. The following lemma affirms the optimality of the aggregate sender

play given the aggregate receiver play.

Lemma OA 1. Suppose that π is stable*. Then for each θ ∈ Θ, π1(·|θ) puts support

only on those sender signal-message pairs that are optimal for type θ under the receiver

behavior strategy π2.

The next lemma shows that aggregate receiver play is a best response to (on-path)

aggregate play by the senders in a stable* profile.

Lemma OA 2. Suppose that π is stable*. Then for any sender signal-message pair

(s,m) ∈ S ×M that occurs with positive probability under π, π2(·|s,m) puts support

only on receiver actions that are best-responses to s and the posterior belief induced by

λ and {π1(s,m|θ)}θ∈Θ.

5Another sufficient condition is that no sender type would be hurt if the receiver were to change their
response to some on-path signal-message pair, as is the case when all types choose an “exit” option.
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We omit the proofs of Lemma OA 1 and Lemma OA 2, which are quite similar to the

proofs of Lemma 1 and Lemma 2, respectively.

Lemma OA 3 below shows that when π is a stable profile that has strong in-

centives, the aggregate receiver response to any (s,ms,Θ(s,π)) must be supported on

BR(Θ(s, π), s).

Lemma OA 3. Suppose that π is stable* and has strong incentives. Then π2(·|s,ms,Θ(s,π)) ∈

∆(BR(Θ(s, π), s)) for all s ∈ S.

We prove Lemma OA 3 in the following subsection, but first we use Lemmas OA

1, OA 2, and OA 3 to prove Theorem OA 1.

Proof of Theorem OA 1. Lemma OA 1 implies Condition 1 of the definition of PBE-

H, and Lemma OA 2 implies Condition 2. As before, Condition 3 of Definition 1

follows from the fact that the receivers in our model myopically optimize. Finally, the

additional condition in Definition 3 follows from Lemma OA 3 and the assumption that

π has strong incentives. �

OA.9.1 Proof of Lemma OA 3

The following lemma relates the receiver’s continuation parameter to the probabil-

ity the aggregate receiver response to any on-path signal-message pair places on the

corresponding receiver best responses.

Lemma OA 4. Fix a strategy profile π. Let Xon be the set of sender signal-message

pairs that are on-path under π1, and let p(s,m) be the posterior belief given (s,m) ∈ Xon

that is obtained from π1 and Bayes’ rule. There are ν, η > 0 such that, for every π′1 ∈ Π1

satisfying max(θ,s,m)∈Θ×S×M |π′1(s,m|θ)− π1(s,m|θ)| < ν and all δ, γ1, γ2 ∈ [0, 1),

Rγ2

2 (π′1)(BR(p(s,m), s)|(s,m)) ≥ 1− η(1− γ2)

for all (s,m) ∈ Xon.
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Proof. Let q(θ, s,m) = λ(θ)π1(s,m|θ) be the distribution over sender types, signals,

and messages induced by λ and π1. For ε > 0, let Qε = {q′ ∈ ∆(Θ × S × M) :

max(θ,s,m)∈Θ×S×M |q′(θ, s,m)−q(θ, s,m)| ≤ ε}. Because best responses are upper hemi-

continous, there exists ε > 0 such that every receiver whose belief g̃2 ∈ ∆(∆(Θ×S×M))

puts probability at least 1 − ε on Qε will respond to every (s,m) ∈ Xon with some

action belonging to BR(p(s,m), s).

Given the non-doctrinaire prior g2, Theorem 4.2 of Diaconis and Freedman (1990)

implies that there is some T > 0 such that a receiver who has lived more than T periods

assigns posterior probability of at least 1− ε to probability distributions q′ within ε/3

distance (in the sup-norm metric) of the empirical distribution they have observed.

We provide a lower bound on the share of receivers who have lived more than T

periods and who have observed an empirical distribution within ε/3 distance of the

true distribution q′ ∈ ∆(Θ × S ×M). By Hoeffding’s inequality, the probability that

the fraction of (θ, s,m) observations is outside of [q′(θ, s,m)− ε/3, q′(θ, s,m) + ε/3] for

a receiver with t observations is less than 2e−
2ε2

9
t, so the probability that the empirical

distribution of a receiver with t observations is greater than ε/3 distance from q′ is no

more than 2|S||M |e− 2ε2

9
t. Thus, the share of receivers who have lived longer than T

periods and who have observed an empirical distribution within ε/3 distance of q′ is

at least

∞∑
t=T

(1− γ2)γt2

(
1− 2|S||M |e−

2ε2

9
t
)

= γT2 −
2|S||M |(1− γ2)γT2 e

− 2ε2

9
T

1− γ2e
− 2ε2

9

,

= 1−

(
1− γT2
1− γ2

+
2|S||M |γT2 e−

2ε2

9
T

1− γ2e
− 2ε2

9

)
(1− γ2),

≥ 1−
(
T +

2|S||M |
1− e− 2ε2

9

)
(1− γ2),

where the inequality follows from the facts that (1−γT2 )/(1−γ2) < T and γT2 e
− 2ε2T

9 /(1−

γ2e
− 2ε2

9 ) < 1/(1− e− 2ε2

9 ) for all γ2 ∈ [0, 1).

Let η = T + 2|S||M |/(1− e− 2ε2

9 ), and let ν > 0 be such that, for every π′1 ∈ Π1 sat-
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isfying max(θ,s,m)∈Θ×S×M |π′1(s,m|θ) − π1(s,m|θ)| < ν, the corresponding distribution

over sender types, signals, and messages belongs to Qε/3. It follows from the arguments

above that, for all π′1 within ν distance (in the sup-norm metric) of π1, the steady-state

share of receivers who respond to each (s,m) ∈ Xon with some element of BR(p(s,m), s)

is at least 1− η(1− γ2). �

The next lemma builds on Lemma OA 4 to show that, in a sequence of steady

states converging to a stable* profile with strong incentives, the ratio of the aggregate

probability of a non-justified type playing (s,ms,Θ(s,π)) to the expected lifetime of a

receiver agent approaches 0.

Lemma OA 5. Fix a stable* strategy profile π with strong incentives. Let {πj,k ∈

Π∗(g, δj, γ1,j,k, γ2,j)}j,k∈N be a sequence of steady state profiles such that limj→∞ limk→∞ πj,k =

π, where limj→∞ δj = 1, limj→∞ γ2,j = 1, and limk→∞ δj,k = 1 for all j. For every ε > 0,

there exists some J ∈ N and function K : N→ N such that

π1,j,k(s,ms,Θ(s,π)|θ) ≤ ε(1− γ2,j)

for all s, θ 6∈ Θ(s, π), j > J , and k > K(j).

Proof. By Lemma OA 4 and the fact that limj→∞ limk→∞ πj,k = π, there exists some

η > 0, J ′ ∈ N, and function K ′ : N→ N such that

π2,j,k(BR(p(s,m), s)|(s,m)) ≥ 1− η(1− γ2,j) (1)

for all (s,m) on-path under π1, j > J ′, and k > K ′(j).

Fix a signal s and type θ such that θ 6∈ Θ(s, π). Since π has strong incentives, there

is some (s′,m′) that is on-path under π1 such that u1(θ, s′, a) > u1(θ, s, π2(·|s,ms,Θ(s,π)))

for all a ∈ BR(p(s′,m′), s
′). For any α ∈ ∆(A) and z > 0, let A(α,z) = {α′ ∈ ∆(A) :

maxa∈A |α′[a] − α[a]| ≤ z} be the set of mixtures over A that are no greater than z
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away from α in the sup-norm metric. Let ν > 0 be such that

(1− ν)u1(θ, s′, a) + ν min
a′∈A

u1(θ, s′, a′) > u1(θ, s, α) + ν (2)

for all a ∈ BR(p(s′,m′), s
′) and α ∈ A(π2(·|s,ms,Θ(s,π)),ν).

Suppose that a sender has played (s′,m′) at least N > 0 times. Combining Equation

1 with Lemma A.1 of Fudenberg and Levine (2006) implies that the probability that the

fraction of times the sender observed a receiver play something outside of BR(p(s′,m′), s
′)

in response to (s′,m′) exceeds ν/2 is no more than 211η(1− γ2,j)/(3ν
4N). For a fixed

ε > 0, let N(s′,m′) be such that 211η/(3ν4N(s′,m′)) < ε/4. For such an N(s′,m′), it follows

that 211η(1− γ2,j)/(3ν
4N(s′,m′)) < ε(1− γ2,j)/4.

By the assumption that the sender’s prior has a density g1(π2) that is everywhere

positive and continuous in π2 ∈ Π2, we can find a lower bound on the probability that

certain senders put on the receiver aggregate response to (s′,m′) playing an element

of BR(p(s′,m′), s
′) with probability at least 1− ν. In particular, we will show there is a

lower bound ζ > 0 on the probability that the aggregate receiver response to (s′,m′)

puts probability at least 1−ν on BR(p(s′,m′), s
′) as determined by two classes of sender

agents: (1) a sender agent who has played (s′,m′) fewer than N(s′,m′) times, and (2) a

sender agent who has played (s′,m′) more than N(s′,m′) times and observed a response

in BR(p(s′,m′), s
′) greater than a fraction 1 − ν/2 of the times. From the preceding

paragraph, the share of sender agents who fall into either of these two classes exceeds

1− ε(1− γ2,j)/4.

Consider a sender who, for each a ∈ A, has na observations of a receiver responding

to (s′,m′) with a. Then such a sender puts probability at least

minπ2∈Π2 g1(π2)
∫
{α∈∆(A):α[BR(p(s′,m′),s

′)]≥1−ν}Πa∈Aα[a]na

maxπ2∈Π2 g1(π2)
∫

∆(A)
Πa∈Aα[a]na

on the set of aggregate receiver responses to (s′,m′) that have probability weakly

greater than 1− ν on BR(p(s′,m′), s
′). This expression is uniformly bounded away from
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0 when there are fewer than N(s′,m′) observations. Moreover, Theorem 4.2 of Diaconis

and Freedman (1990) implies that this expression is uniformly bounded away from 0

when there are more than N(s′,m′) observations and the fraction of these observations

where the receiver responding with some element of BR(p(s′,m′), s
′) exceeds 1− ν/2.

By similar arguments, there is some N ′s ∈ N such that, for a sender who has played

(s,ms,Θ(s,π)) at least N ′s times, the sender’s expectation of the aggregate receiver re-

sponse to (s,ms,Θ(s,π)) is within ν/3 (in the sup-norm metric) of the empirical response

the sender has observed. Moreover, by the law of large numbers, for any j ∈ N, we

can choose some N ′s,j > N ′s to be such that there is a probability no greater than

ε(1 − γ2,j)/4 that the empirical response to (s,ms,Θ(s,π)) observed by a sender who

has played (s,ms,Θ(s,π)) at least N ′s,j times is more than ν/3 away from the aggre-

gate receiver response π2,j,k(·|s,ms,Θ(s,π)). Let J ′′ ∈ N and K ′′ : N → N be such that

maxa∈A |π2,j,k(a|s,ms,Θ(s,π))− π2(a|s,ms,Θ(s,π))| < ν/3 for all j > J ′′ and k > K ′′(j). It

follows that, for all such j and k, the probability that A(π2(·|s,ms,Θ(s,π)),ν) contains the

expectation of the aggregate receiver response to (s,ms,Θ(s,π)), as evaluated by a sender

who has played (s,ms,Θ(s,π)) at least N ′s,j times, exceeds 1− ε(1− γ2,j)/4.

Consider a sender belief g̃1 ∈ ∆(Π2) that satisfies

g̃1(π2(BR(p(s′,m′), s
′)|s′,m′) ≥ 1− ν) ≥ ζ,

g̃1(π2(·|s,ms,θ(s,π)) ∈ A(π2(·|s,ms,Θ(s,π)),ν)) ≥ 1− 1

2
ζ.

(3)

The first inequality says that the belief puts probability at least ζ on aggregate receiver

responses to (s′,m′) that play an element of BR(p(s′,m′), s
′) with probability weakly

greater than 1− ν. The second inequality says that the belief puts probability at least

1−ζ/2 on the aggregate receiver response to (s,ms,Θ(s,π)) belonging toA(π2(·|s,ms,Θ(s,π)),ν).

By Equation 2, all beliefs satisfying the conditions in (3) must put probability at least

ζ/2 on aggregate receiver behavior strategies where playing (s′,m′) gives a type θ

sender an expected payoff at least ν greater than that from playing (s,ms,Θ(s,π)).

For a type θ sender with any belief that satisfies (3), the expected total lifetime
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payoff from the optimal policy exceeds the expected total lifetime payoff from only

playing (s,ms,Θ(s,π)) by an amount bounded away from 0 when δ and γ1 are sufficiently

high. In particular, for δ and γ1 sufficiently close to 1, the difference in the expected

payoff from the optimal policy and that from repeatedly playing (s,ms,Θ(s,π)) exceeds

c = ζν/4 > 0. Let J ′′′ ∈ N and K ′′′ : N → N be such that, whenever j > J ′′′ and

k > K ′′′(j), δj and γ1,j,k are sufficiently close to 1 so that this gap in the expected payoffs

holds. Then, the version of Corollary 5.5 of Fudenberg and Levine (1993) presented in

Fudenberg and He (2018) implies that, for every j > J ′′′, there is some N ′′s,j such that

the share of type θ sender agents who have a belief satisfying the conditions in (3),

have played (s,ms,Θ(s,π)) more than N ′′s,j times, and are set to play (s,ms,Θ(s,π)) in the

current period is less than ε(1− γ2,j)/4 for all k > K ′′′(j).

Let J = max{J ′, J ′′, J ′′′}, K(j) = max{K ′(j), K ′′(j), K ′′′(j)} for all j > J , and

Ns,j = max{N ′s,j, N ′′s,j} for all j > J . Combining the preceding results shows that, when

j > J and k > K(j), the share of type θ sender agents who have played (s,ms,Θ(s,π))

more than Ns,j times and are set to play (s,ms,Θ(s,π)) in the current period is no more

than 3ε(1 − γ2,j)/4. Additionally, using the version of Lemma 5.7 of Fudenberg and

Levine (1993) presented in Fudenberg and He (2018), it follows that, for all j > J , K(j)

can also be chosen so that π1,j,k(s,ms,Θ(s,π)|θ) exceeds the share of type θ sender agents

who have played (s,ms,Θ(s,π)) more than N ′′s,j times and are set to play (s,ms,Θ(s,π)) in

the current period by no more than ε(1 − γ2,j)/4 when k > K(j). Thus, we conclude

that π1,j,k(s,ms,Θ(s,π)|θ) ≤ ε(1− γ2) for all j > J and k > K(j). �

The proof of Lemma OA 3 uses Lemma OA 5 to show that, in a sequence of

steady states converging to a stable* profile with strong incentives, the probability

that a receiver encounters a non-justified sender type playing some (s,ms,Θ(s,π)) over

the course of their lifetime converges to 0. Initial trust then ensures that the aggregate

receiver response to each (s,ms,Θ(s,π)) is justified.

Proof of Lemma OA 3. Let {πj,k ∈ Π∗(g, δj, γ1,j,k, γ2,j)}j,k∈N be a sequence of steady

state profiles such that limj→∞ limk→∞ πj,k = π, where limj→∞ δj = 1, limj→∞ γ2,j = 1,
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and limk→∞ δj,k = 1 for all j. By Lemma OA 5, for any ε > 0, there exists some J ∈ N

and some function K : N → N such that π1,j,k(s,ms,Θ(s,π)|θ) ≤ ε(1 − γ2)/λ(θ) for all

θ 6∈ Θ(s, π), j > J , and k > K(j). Thus, when j > J and k > K(j), the probability

that a receiver agent in a given period encounters a sender type outside of Θ(s, π)

playing (s,ms,Θ(s,π)) is no greater than ε(1 − γ2,j). It follows that, when j > J and

k > K(j), the probability that a receiver agent never encounters a sender type outside

of Θ(s, π) playing (s,ms,Θ(s,π)) over the course of their lifetime is at least

∞∑
t=0

(1− γ2,j)γ
t
2,j(1− ε(1− γ2,j))

t =
1

1 + γ2,jε
.

Receivers who have never observed the signal-message pair (s,ms,Θ(s,π)) played by

a type outside of Θ(s, π) would respond to this pair with an action belonging to

BR(Θ(s, π), s). Thus,

π2(BR(Θ(s, π), s)|s,ms,Θ(s,π)) = lim
j→∞

lim
k→∞

π2,j,k(BR(Θ(s, π), s)|s,ms,Θ(s,π)) ≥ 1/(1+ε).

Since this holds for all ε > 0, we have that π2(BR(Θ(s, π), s)|s,ms,Θ(s,π)) = 1. �

OA.10 Details of Alternate Model

Consider a steady-state population of receivers who have geometric lifetimes with con-

tinuation probability γ, and are matched with a sender each period with i.i.d. proba-

bility p. We show that, when the receivers have expected lifespan T = 1/(1 − γ) and

are expected to have N2 = pT matches over the course of their lifetime, the distribu-

tion of match experience in the receiver population is geometric with hit probability

γ̃2 = (1 − 1/T )N2/(1 + (1 − 1/T )N2). Because the aggregate play of receivers only

depends on their experience, it follows that for every steady state in our main learning

model given parameters γ1, δ, and γ2, there is a steady state in this alternate model

given parameters γ = γ1, δ, and γ̃2 with the same aggregate strategy profile.
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Lemma OA 6. If receivers have geometric lifetimes with expected lifespan T and are

expected to have N2 matches over the course of their lifetime, then the steady-state

share of receivers who have previously been matched n ∈ N times is (1− γ̃2)γ̃n2 , where

γ̃2 =

(
1− 1

T

)
N2

1 +
(
1− 1

T

)
N2

.

Proof. Denote the steady-state share of receivers who have previously had n matches

by µ̃2[n]. We first derive µ̃2[0]. Since 1 − γ is the share of newborn receivers and

γ(1 − p)µ̃2[0] is the share of non-newborn receivers who have never been matched, it

follows that µ̃2[0] = (1− γ) + γ(1− p)µ̃2[0]. Solving this gives

µ̃2[0] =
1− γ

1− γ + γp
. (OA 1)

Now we derive a recursive expression relating µ̃2[n] to µ̃2[n − 1] for n > 0. Since

γpµ̃2[n−1] is the share of receivers who in the previous period were matched for the nth

time and γ(1−p)µ̃2[0] is the share of receivers who have been matched n times but were

unmatched in the previous period, it follows that µ̃2[n] = γpµ̃2[n− 1] + γ(1− p)µ̃2[n].

Solving this gives

µ̃2[n] =
γp

1− γ + γp
µ̃2[n− 1]. (OA 2)

Combining Equations OA 1 and OA 2 gives

µ̃2[n] =

(
1− γp

1− γ + γp

)(
γp

1− γ + γp

)n
.
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Substituting γ = 1− 1/T and p = N/T renders

µ̃2[n] =

(
1−

(
1− 1

T

)
N2

1 +
(
1− 1

T

)
N2

)( (
1− 1

T

)
N2

1 +
(
1− 1

T

)
N2

)n

as desired. �
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