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The credibility revolution in economics has promoted causal iden-
tification using randomized control trials (RCT), difference-in-
differences (DID), instrumental variables (IV) and regression dis-
continuity design (RDD). Applying multiple approaches to over
21,000 hypothesis tests published in 25 leading economics journals
we find that the extent of p-hacking and publication bias varies
greatly by method. IV (and to a lesser extent DID) are particu-
larly problematic. We find no evidence that: (1) Papers published
in the ‘Top 5’ journals are different to others; (2) The journal ‘re-
vise and resubmit’ process mitigates the problem; (3) Things are
improving through time.
JEL: A11, B41, C13, C40, I23
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The credibility revolution in empirical economics has been marked by a shift
towards using methods explicitly focused on causal inference (Angrist and Pis-
chke, 2010). Experimental and quasi-experimental methods, namely randomized
control trials (RCT), difference-in-differences (DID), instrumental variables (IV)
and regression discontinuity design (RDD), have become the norm in applied
microeconomics (Biddle and Hamermesh (2017); Panhans and Singleton (2017)).

In this paper we explore the relationship between inference method and statis-
tical significance. Evidence of selective publication and specification searching in
economics and other disciplines is by now voluminous (Ashenfelter et al. (1999);
Bruns et al. (2019); Casey et al. (2012); De Long and Lang (1992); Havránek
(2015); Henry (2009); Ioannidis (2005); Ioannidis et al. (2017); Leamer (1983);
Leamer and Leonard (1983); Lenz and Sahn (forthcoming); McCloskey (1985);
Simmons et al. (2011); Stanley (2008)). Publication bias, whereby the statis-
tical significance of a result determines the probability of publication, is likely
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a reflection of the peer review process. The term p-hacking refers to a vari-
ety of practices that a researcher might (consciously or unconsciously) use to
generate ‘better’ p-values, perhaps (but not necessarily) in response to the diffi-
culty of publishing statistically insignificant results (Abadie (2020); Blanco-Perez
and Brodeur (forthcoming); Doucouliagos and Stanley (2013); Furukawa (2019);
Havránek et al. (2018); Stanley (2005)).1 The link between method and statisti-
cal significance could be of interest to policymakers or others who use empirical
evidence to inform decisions and policies, as publication bias and p-hacking will
create literatures with an artificially high percentage of false positives.

The central questions in this paper are: (1) What is the extent of p-hacking
and publication bias in leading economics journals? (2) Does it depend upon the
method of inference used, or other author and article characteristics? (3) Does the
review process exacerbate or attenuate the problem? (4) Is there improvement
over time?

To answer these and a number of secondary questions we harvest the universe of
hypothesis tests reported in papers using these four methods in 25 top economics
journals for the years 2015 and 2018.

Taken as a whole, the distribution of published test statistics exhibits a two-
humped or camel shape, with ‘missing’ tests just before conventional significance
thresholds, i.e., z = 1.65, and a ‘surplus’ just after (Brodeur et al., 2016). The
pattern is similar across Top 5 and non-Top 5 journals, and there is no discernible
change in pattern over time. We also find much less p-hacking in our sample
of tests from economic journals than has been found in other disciplines such
as political science and sociology (Gerber and Malhotra (2008a); Gerber and
Malhotra (2008b)).

We use three approaches to document the differences in p-hacking, all of which
compare the quasi-experimental methods against the benchmark of RCTs. Raval-
lion et al. (2018) observes how the RCT, randomization by the researcher, has
come to be widely regarded as the gold standard against which to compare obser-
vational results. Imbens (2010) asserts that “(R)andomized experiments occupy
a special place in the hierarchy of evidence, namely at the very top.”2

First, we test for discontinuities in the probability of a test statistic appear-
ing just above or below a conventional statistical threshold. If the underlying
distribution of test statistics (for any method) is continuous and infinitely differ-
entiable, any surplus of outcomes just above a threshold is taken as evidence of
publication bias or p-hacking. We find that IV and DID test statistics are not
distributed equally around the one- and two-star significance thresholds. Within
10% of the threshold (1.76 < z < 2.16), there are 18% more significant than

1Such practices might include continuing to collect data, strategically selecting covariates, or imposing
sample restrictions until a significance threshold is met.

2It is worth noting that there have been thoughtful critiques of RCT as gold standard, see for
example Deaton and Cartwright (2018). As far as the propensity for the published literature using a
particular method to exhibit p-hacking and publication bias, our results indicate RCT outperforms the
other methods.
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insignificant IV test statistics. For DID, there are 25% more. In contrast, RDD
has only 3% more while RCT has less statistically significant than insignificant
tests.

Second, we apply a caliper test as in Gerber and Malhotra (2008a). Caliper tests
also focus on the distribution of p-values close to arbitrary significance thresholds.
We find that the proportion of tests that are marginally significant in IV articles
is about 10 percentage points higher than the 47% for RCTs. In contrast, we
find no evidence that the portion of tests that are marginally significant in RDD
articles is significantly higher than for RCTs.

A potential explanation is that different authors or fields might be more or
less prone to p-hacking or may be more or less likely to rely on one of the four
methods. For instance, Brodeur et al. (2016) provide suggestive evidence that less
experienced researchers, on average, p-hack more. We show that controlling for
author characteristics (e.g., experience and institution ranking) has no impact,
suggesting that selection of authors into the use of particular methods is unlikely
to drive our results. The inclusion of field and journal fixed effects decreases
the gap between IV and RCT estimates, but they remain large, positive, and
statistically significant. However, the inclusion of field and journal fixed effects
reduces the size of the DID estimate and makes it not significantly different than
RCT at conventional levels.

Third, we extend the methodology in Brodeur et al. (2016) to quantify the
excess (or dearth) of z-values over significance regions by comparing the observed
distribution of test statistics for each method to a counterfactual distribution
that we expect to emerge absent p-hacking and publication bias. The results
are consistent with our previous findings; the extent of misallocated tests differs
substantially between methods. About 16% of statistically insignificant IV re-
sults are ‘missing’, later to be found as statistically significant. In comparison,
misallocation for RCTs is one tenth the size of IV, at 1.5%.

Considering each method’s body of published research as a distinct literature,
our results suggest that the IV and, to a lesser extent, DID research bodies have
substantially more p-hacking and/or selective publication than those based on
RCT and RDD. This leads naturally to the question of why we find differences
across methods. While we show that author and article characteristics do not
appear important, another potential explanation is that some methods offer re-
searchers different degrees of freedom than others. For instance, when using a
non-experimental method like IV there are many points at which a researcher
exercises discretion in ways that could affect statistical significance. With re-
gard to the first stage of IV, we document a sizable over-representation of first
stage F-statistics just over the conventional threshold of 10. Interestingly, the
degree of p-hacking in the second stage is related to strength in the first stage.
Second stage results from relatively weak IVs have a much higher proportion of
z-statistics around conventional thresholds. We also provide evidence that IV
results in RCTs with partial compliance display less p-hacking than IV results in
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observational studies.3

Another potential explanation for our main observations is that the attitudes
of editors and/or referees towards null results vary systematically with method.
For example, there may be more tolerance of a null result if it is the result of an
RCT. We investigate the role of the review process by comparing the distributions
of test statistics in the published version of each article with those from earlier
working paper versions, and find no meaningful difference.

Our paper contributes to a discussion of the trustworthiness of empirical claims
made by economics researchers (see Christensen and Miguel (2018) for a recent
literature review). Using test statistics from three prestigious economics journals,
Brodeur et al. (2016) evidence that 10 to 20 percent of marginally rejected tests
are false-positives. We extend this in several ways by, for example, comparing the
top 5 with other top journals and investigating the role of the review process. Our
findings suggest that p-hacking is not related to researcher ‘pedigree’. Another
important study, Vivalt (2019), investigates the extent of p-hacking for a large
set of impact evaluations. Vivalt (2019) and Brodeur et al. (2016) both point
to p-hacking being smaller for RCT than for other methods. We complement
these studies by partitioning p-hacking for quasi-experimental methods; the most
commonly used identification strategies in many social sciences.

We also contribute to a growing literature on transparency (Miguel et al., 2014)4

and editorial choice (e.g., Card and DellaVigna (2020) and Ellison (2011)). To
some extent, our findings suggest that improved research design may itself par-
tially constrain p-hacking and that RCTs and RDDs appear to have another
potential scientific benefit, i.e., beyond improving internal validity they also ap-
pear to reduce tendentious reporting. Our results point to the importance of
identifying and correcting publication bias (Andrews and Kasy (2019)) and that
the appropriate correction is sensitive to method. They may also explain diver-
gences documented in meta-analyses in the size and precision of estimates within
a given literature (e.g., Havránek and Sokolova (2020)).

Section I details data collection. Section II shows the distribution of tests
for the whole sample, over time, and by method. We present between-method
comparisons in section III. Section IV explores the role of authors and the review
process. Section V concludes.

I. Data Collection

We collect the universe of articles published by 25 top journals in economics
during 2015 and 2018. Table 1 provides the complete list of journals. We selected
the top journals as ranked using RePEc’s Simple Impact Factor excluding any

3Our findings are broadly consistent with a growing literature discussing model misspecification for
IV regressions (see, for instance, Andrews et al. (2019) for a discussion on weak instruments). Using
1,359 instrumental variables regressions from 31 published studies, Young (2020) show that more than
half of the statistically significant IV results depend on either one or two outlier observations or clusters.

4See Blanco-Perez and Brodeur (2019) for a survey of editorial policies such as data and code avail-
ability policies.
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journal that did not publish at least one paper using one of the methods of
interest.5

In selecting our samples we followed a rule-based exclusion procedure. For each
method we began by searching the entire body of published articles for keywords
related to that method.6 These keywords provide four bodies of papers, one for
each method.7 We manually removed articles if they employed a sub-method that
alters researcher freedoms. We thus removed papers that use matching (DID) and
papers that use instruments as part of a fuzzy RDD, focusing on two stage least
squares (IV). We also removed papers using a Structural Equation Model. See
Appendix Table A1 for an example of our data collection, the American Economic
Journal: Applied Economics for 2015. Ultimately, we collected statistics from 684
articles.

From the included articles, we collected estimates only from results tables.
Our goal was to collect only coefficients of interest, or main results, excluding
regression controls, constant terms, balance and robustness checks, heterogeneity
of effects, and placebo tests. Coefficients drawn from multiple specifications of
the same hypothesis were collected. All reported decimal places were collected.
For DID, we collected only the main interaction term, unless the non-interacted
terms are described by the author(s) as coefficients of interest. For IV, we only
collected the coefficient(s) of the instrumented variable(s) presented in the second
stage. For RDD, we only collected estimates for the preferred bandwidth. We
identify the preferred bandwidth by reading the text where the estimates are
described. In case of ambiguity, we chose the optimal bandwidth (Imbens and
Kalyanaraman (2012)). We also excluded specification checks such as controlling
for third or higher-degree polynomials of the forcing variable. Last, for papers
that use more than one method, we collect estimates from each, e.g., if a paper
uses both DID and IV, we collect estimates for both.8

Each article was independently coded by two of the three authors. This allowed
us to reproduce the work of one another and to make sure we only selected
coefficients of interest. Note that we collected the same test statistics for the vast
majority of the articles and revisited test statistics for which there was initial
disagreement. In the end, we collected the same tests or easily reached agreement
for 98.5% of collected test statistics.

All of the test statistics in our sample relate to two-tailed tests. Most (91%) are
reported as coefficients and standard errors, others as t statistics (4%) or p-values

5RePEc’s 2018 Simple Impact Factor, calculated over the last 10 years. This measure uses a citation
count and scales it by the number of articles in each journal. Within-journal citations are not included.
Accessible at https://ideas.repec.org/top/top.journals.simple10.html.

6For DID: “difference-in-difference*”, “differences-in-difference*”, “difference in difference*” and “dif-
ferences in difference*”. For IV: “instrumental variable*”. For RCT: “randomized”. For RDD: “regres-
sion discontinuity”. Where * represents a wildcard in the text search, allowing for plurals to be captured
with the same search string.

7We manually excluded articles that contained the search term - for example in contextual discussion
- but did not apply one of the four methods.

8For field experiments with partial compliance, we add the Intention-to-Treat estimates to the RCT
sample and the IV estimates to the IV sample. Only five studies used both IV and RCT.

https://ideas.repec.org/top/top.journals.simple10.html
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(5%). Because degrees of freedom are not always reported, we treat coefficient
and standard error ratios as if they follow an asymptotically standard normal
distribution. When articles report t statistics or p-values, we transform them
into equivalent z-statistics.

For each article, we also collected information about the authors and their affil-
iations. A manual search for curriculum vitae allowed us to collect the following
information for 96.7% of authors (98% of test statistics): gender, year and insti-
tution of PhD, and whether the author was an editor of an economics journal.

We also revisited articles and test statistics from Brodeur et al. (2016) using the
same rule-based exclusion procedure, categorizing articles by method and keeping
only coefficients of interest. This results in 17,518 test statistics from 266 articles
published in three of the ‘Top 5’ journals from 2005 to 2011. This additional data
is used to explore p-hacking over time beyond our 2015 & 2018 sample.

A. Descriptive statistics

Following the above procedure we collected 21,740 test statistics. On average,
there are 24 estimates from each DID, 18 per IV article, 52 per RCT article and
37 per RDD article. Including article weights to prevent articles with more tests
from having a disproportionate effect has no effect on our main conclusions. Table
1 provides summary statistics. DID, IV, RCT and RDD respectively contribute
27%, 24%, 35% and 14% of the sample.

Appendix Figure 1 illustrates the proportion of articles by method over the time
period 2005–2011, 2015 and 2018 for the American Economic Review, Journal
of Political Economy and the Quarterly Journal of Economics. (See Appendix
Figure 2 for top 25 for 2015 and 2018.) There is a sizable increase in the use of
RDDs, with about 5% of articles (among those using one of the four methods)
using RDD in 2005–2006 rising to 12% in 2015 and 2018. In contrast, the share
of IV articles decreased from about 50% to 40% over this period. The share of
DID and RCT articles is more stable over time.

Table 2 and Appendix Table A2 provide descriptive statistics for article and
author characteristics. The unit of observation is test statistic in Table 2 and ar-
ticle in Appendix Table A2. In our sample, the mean academic year of graduation
is 2005–2006. A rough categorization of institutions into top and non-top reveals
that more almost 30% of authors are from a top institution.9 This increases to
40% for the proportion of authors who gained their PhD from a top institution.
Last, 20% are solo-authored and 71% of authors are males.

A decomposition by method reveals that authors working in (or who graduated
from) top institutions are disproportionately more likely to use RCT. Authors
using RDD earned their PhD relatively more recently and are more likely to

9We define ‘top’ for this purpose using the highest rated 20 in RePec’s ranking of top institutions at
the time of writing (https://ideas.repec.org/top/top.econdept.html). The following 20 institutions
are coded as top: Barcelona GSE, Boston U, Brown, Chicago, Columbia, Dartmouth, Harvard, MIT,
Northwestern, NYU, Princeton, PSE, TSE, UC Berkeley, UCL, UCSD, UPenn, Stanford and Yale.

https://ideas.repec.org/top/top.econdept.html
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be solo-authored. We include in our model author and article characteristics to
control for these compositional differences. Last, female authors are more likely
to use RCT, and less likely to use DID.10

II. Plotting Test Statistics

Figure 1 presents the raw distribution of z-statistics in our sample.11 Each
bar has a width of 0.10 and the interval z ∈ [0, 10] was chosen to create 100 bins.
Reference lines are provided at the conventional two-tailed significance levels. The
distribution exhibits a two-humped or camel shape with a first hump with low
z-statistics and a second hump between 1.65 and 2.5. The distribution exhibits
a local minimum around 1.35, suggesting misallocated z-statistics. About 56,
48 and 34% of test statistics are significant at the 10, 5 and 1 percent levels
respectively, consistent with Brodeur et al. (2016) who documented that 54% of
tests were significant at the 5 percent level in three top economics journals.

A. Test statistic plots by journal ranking

Figure 1 splits the full sample of z-statistics by journal rank. In particular,
the left panel restricts the sample to the “Top 5”,12 while the right panel shows
the distribution of tests for the remaining journals. Both distributions feature
a similar two-humped shape. This finding suggests that journal ranking is not
related to the extent of p-hacking in our sample of top 25 journals. We formalize
this in section III.

B. Test statistic plots by method

Figure 2 displays the distribution of z-statistics for each of the four methods.
(See Appendix Figure A3 for the weighted distributions.) We create Z-curves by
imposing an Epanechnikov kernel density (also of width 0.10). A kernel smooths
the distribution, softening both valleys and peaks. In Appendix Figure A4, we
plot the same Z-curves into a single panel.

The shapes (and their differences) are striking. The distributions for IV and
DID present a global and local maximum around 2 (where a p-value of 0.05 is
achieved). DID and IV seem to exhibit a mass shift away from the marginally
statistically insignificant interval (just left of z = 1.65) into regions conventionally
accepted as statistically significant. The extent of misallocation seems to be the

10Journal articles published in top 5 journals were significantly more likely to have been written by
authors affiliated with (and to have graduated from) a top institution. In contrast, solo-authorship and
experience were not significantly related to the Top 5 status of a journal.

11Appendix Figure A5 illustrates weighted distribution of tests. The weighting schemes either put
equal weight on each article or on each table. The shape of the distribution remains similar to the
unweighted distribution.

12Top 5 journals in economics are American Economic Review, Econometrica, Journal of Political
Economy, Quarterly Journal of Economics and Review of Economic Studies.
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highest for IV with a sizable spike and maximum density around 1.96. The
distributions for IV and DID are increasing over the interval [1.5− 2].

In stark contrast, RDD presents an almost monotonically falling curve with
maximum density close to 0. The distribution for RCT is similar, but also features
a much smaller local maximum near 2. This suggests the extent of misallocated
tests in RCT and RDD articles is much more limited than those using IV and
DID.

Visual inspection of the patterns suggests two important differences between
these two groups of methods. First, looking at the whole of the distributions we
can see that many (around half) of RCT and RDD studies report null results
with large p-values as their main estimates, whereas IV and DID studies typi-
cally reject the null. Second, DID and IV are more likely to report marginally
significant estimates than RCT and RDD. We confirm this visual analysis using
the Kolmogorov-Smirnov test (KS) which confirms that the IV distribution sta-
tistically differs from the RCT distribution over the whole interval as well as in
the marginally significant interval (z = [1.65, 1.96]).

We check whether these patterns are visible for different subsamples. Appendix
Figures A6-A12 display decompositions by methods and the following character-
istics: top 5, number of authors, institution rank, PhD institution rank, years
of experience since PhD, editor of an economic journal and gender, respectively.
For these decompositions we offer some observations. The spike at about z = 2
is particularly striking for solo-authored RCT and IV studies. There are also
many tests with high p-values (low z-statistics) and virtually no bunching around
z = 2 for RCTs with at least one author at a top institution (or that graduated
from a top institution). RDD articles from authors with greater experience have
relatively more tests with high p-values and no apparent spike at about z = 2.
Similarly, RDD articles in top 5 journals have relatively more tests with high
p-values than those in other journals.

C. Test statistic plots over time

It is unclear a priori whether we should expect the extent of p-hacking to have
changed over time. On one hand, new tools such as pre-analysis plans and data
availability policies might have decreased its extent through increased awareness
of the issue among reviewers and editors. On the other hand, there is growing
evidence that it is increasingly difficult to publish in top journals (Card and
DellaVigna (2013)) which could have increased the incentives to p-hack.

Figure 3 (top left) and Figure 3 (top right) split the sample of z-statistics by
year of publication. Figure 3 (top left) are tests from the years 2005–2011 and
2015 and 2018 (top right) for three top journals, whereas the Figure 3 bottom
panels provide a comparison for the years 2015 and 2018 using the top 25 journals.
Comparison of the samples from different time periods point to no discernible
change over time in either journal group.

We also explore whether the pattern by method documented above was already
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visible in 2005–2011 in Appendix Figure A13. We find that the pattern is the
same for RCT articles in 2005-2011 as in 2015 and 2018. In contrast, the extent
of p-hacking appears larger for more recent IV articles. There are not enough
sharp RDD studies in the early period to allow for meaningful comparison.

In this regard our findings differ from Vivalt (2019), which studies only develop-
ment programmes. She finds that RCTs have exhibited less p-hacking over time
(pre- vs. post-2010), but not much difference for non-RCT studies.

III. Further Analysis

To investigate the variations of p-hacking by method, we report three com-
plementary analyses. First, using randomization tests to identify discontinuities
in the probability of a test statistic appearing just above or below a statistical
threshold. Second, we apply caliper methods to compare test statistics within
narrow bands around thresholds. Third, we compare each distribution to its own
calibrated counterfactual.

A. Randomization tests

We first rely on what we call randomization tests. The aim of this approach is
to confirm the visually obvious discontinuities around the conventional statistical
thresholds. We compare whether the mass of test statistics just above versus
just below the conventional statistical significance thresholds differ significantly
by underlying identification method. The benefit of this method is its minimal
assumption; in a sufficiently small window the probability of being just above
versus just below any threshold should be equal.

Method

We assume that the underlying distribution of z-statistics (for any research
method) is continuous and infinitely differentiable following Andrews and Kasy
(2019). From this assumption, any discontinuity in observed z-statistics must
arise from p-hacking or publication bias.13 We do this by testing if the observed
test statistics are binomial-distributed around a threshold with equal probability,
as in Andrews and Kasy (2019).

Let N be the number of tests observed for a method in a window of half-width
h around the statistical threshold. Further, let kobs be the observed number of
successes (significant test statistics) and let p = 0.5 be the hypothesized proba-
bility of success on a trial. Then the probability of observing the same or greater
proportion of significant tests kobs is

13Bugni and Canay (forthcoming) apply a similar methodology to check for jumps in the density in
regression discontinuity settings.



10 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

(1) Pr(k ≥ kobs) =
N∑

m=kobs

(
N

m

)
pm(1− p)N−m.

As an added note, publication bias is likely to only work in a single direction
(towards significance) as too many successes is more indicative of publication bias
than too few. This makes it appropriate to consider one-sided p-value for our
tests.14 In Appendix Tables A3, A4, and A5 we account for sampling uncertainty
by estimating the proportion of successes p directly. The point estimates are
unchanged, and standard errors are very small.

Results

The results are reported in Table 3 for the 5% threshold. In the top panel,
we examine a window of half-width h = 0.5 around the two-star significance
threshold. Here, 1,412 IV test statistics can be found with 53.9% statistically
significant. In comparison, 1,719 RCT test statistics can be found in the same
region with 46.7% statistically significant. We then test whether each method
is equally likely to be significant and nonsignificant. i.e., is the random variable
zmethod ∼ Binomial(p = 0.5)? The probability of observing 53.9% or greater
statistically significant IV tests is 0.015. Both DID and IV test statistics have
a statistically significant discontinuity in the distribution around the threshold.
Greatly reducing the window width in successive panels does not alter this finding.

Interestingly, all methods have a statistically significant discontinuity when
the analysis window becomes small enough, even with the reduced sample size.
This confirms the earlier visual inspection - even RCTs seem to suffer from some
publication bias.

In Appendix Tables A6 and A7 we use the 10% and 1% significance thresholds,
respectively. (See Appendix Tables A8-A10 for weighted estimates.) For the
10% threshold, we find that regardless of window width IV test statistics are
statistically more likely to be ‘successes’, whereas DID test statistics are only
more likely to be successful in large windows. RDD test statistics, in almost all
cases, are not statistically differently distributed around z = 1.65. For the 1%
significance threshold, we find that no method is ever meaningfully more likely to
be successful than chance at this high significance level. This is consistent with
a reduction in the incentive to p-hack above the arguably more critical two-star
threshold.

14Note that the binomial test is most appropriate when each of the realizations of a random variable
are independent. In the Online Appendix we repeat the exercise with only one randomly selected test
statistic from each table in every article, finding that results are unchanged.
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Comparison to other disciplines

We can compare our randomization test results for the economics literature to
those previously conducted on test statistics in political science and sociology.
Tests for political science are from Gerber and Malhotra (2008a), while tests for
sociology are from Gerber and Malhotra (2008b).15 Appendix Table A11 provides
a break down of the number of tests that fell within the range 1.76 < z < 2.16
for our sample and the non-economics journals. We find that the ratio of tests
just above and below 1.96 is only 1.10 in economics in comparison to over 2
for political science and sociology. This result provides strong evidence that
the extent of p-hacking is much smaller in economics (at least when using these
inference methods) than in other disciplines.16

B. Caliper test

The caliper test compares the number of estimates in a narrow range above and
below a statistical significance threshold. An advantage of this approach over the
previous is that this allows us to control for author and article characteristics.

Method

We estimate the following equation:

(2) Pr(Significantij = 1) = Φ(α+ βj +X ′ijδ + γDIDij + λIVij + φRDDij)

where Significantij is an indicator variable that test i is statistically significant
in journal j for a given threshold. We include journal indicators and report
marginal effects of a probit model throughout.17 Standard errors are clustered at
article level.

Challenges to our claim that our approach identifies p-hacking as opposed to
publication bias is that editor and referee preferences for null results may differ by
method, or that the extent of p-hacking by method could be related to the types
of authors that tend to use that method. We tackle these issues by including
the term Xit in our model. In addition to indicator variables for how results
are reported (i.e., whether an article reports p-values or t statistics) this vector
includes author characteristics. We also include field and journal fixed effects in
some models.

A criticism of caliper methods is that bunching near statistical thresholds may
reflect prior knowledge about the sample size necessary to obtain a marginally

15Test statistics are from the American Political Science Review and the American Journal of Political
Science for the time period 1995–2007, and from journal articles published in the American Sociological
Review, the American Journal of Sociology, and the Sociological Quarterly for 2003–2005.

16Restricting the sample to top 5 outlets or to the sample of top journals in Brodeur et al. (2016) for
the years 2005–2011 yield similar conclusions.

17Using logit yields similar results, see Appendix Table A12.
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significant estimate.18 We think it unlikely a problem here for two reasons. First,
it is in RCTs that researchers are most able to choose their sample size based on
power calculations. Second, sample size for articles in our sample is much smaller
for RCTs than for the other methods, especially DID. If bunching reflects good
priors and power calculations, then the bunching should be most pronounced in
the RCT sample, against which the comparisons are made.

Results

Table 4 presents estimates of Equation 2 where the dependent variable indi-
cates whether a test statistic is statistically significant at the 5 percent level. In
columns 1–4, we restrict the sample to z ∈ [1.46, 2.46]. Our sample size consists
of 5,202 observations. The coefficients presented are increases in the probabil-
ity of statistical significance relative to the baseline category (RCT). We report
standard errors adjusted for clustering by article in parentheses. We also present
bootstrapped errors, clustered by article in Appendix Table A13. We use the
inverse of the number of tests presented in the same article to weight observa-
tions.19 This weighting scheme is used to prevent tables with many test statistics
to be overweighted.

In the most parsimonious specification, we find that DID and IV estimates are
about 10 percentage points more likely to be statistically significant than a RCT
estimate. The estimates are statistically significant at the 1 percent level. In
contrast, RDD estimates are not statistically more likely than RCT estimates to
be statistically significant.

One potential explanation for our findings is that authors who are more/less
prone to p-hacking may select into methods more/less amenable to it. We provide
suggestive evidence that this is not the case by enriching our specifications with
authors’ and articles’ characteristics. In column 2, we control for the average years
of experience since PhD (and its square), the share of authors at top institutions,
the share of female authors, the share of authors who graduated from a top
institution, and an indicator for whether at least one of the authors was an editor
of an economic journal at the time of publication. We also add dummy variables
for top 5 journals, the year 2018, and for reporting a t statistic or p-value instead
of the most common coefficient and standard error. The estimates for DID, IV
and RDD remain unchanged.

The estimate for the dummy variable ‘Top 5’ is statistically insignificant even
at the 20% level, suggesting that p-hacking is not meaningfully related to the
Top 5 status of the journal.20 Similarly, we find no evidence that the extent of

18See Ioannidis et al. (2017) for an investigation of statistical power and bias in economics. They
document that many research areas in economics have nearly 90% of their results under-powered.

19See Appendix Table A14 for the unweighted estimates.
20We also do not find much evidence that the extent of p-hacking varies by field. The estimates

reported in Appendix Table A15 suggest that the likelihood to report marginally significant estimates
is not significantly different for ‘Top 5’, other general interest journals, macroeconomics, development,
labor, public and urban economics than for international trade (the omitted category). The only fields
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p-hacking differs across years.
Some covariates are significantly related to the likelihood the null hypothesis

be rejected. For instance, we document a U-shaped relationship in experience. In
contrast, the estimates for the share of authors at top institutions and the share
who graduated from top institutions are very small and insignificant.21

Another potential explanation is that certain types of method are more/less
likely to be used in fields where rejection rates are high/low. We explore this
by including eight field fixed effects (column 3) and journal fixed effects (column
4). Our IV estimates remain statistically significant at the 5 percent level across
specifications and range from 7 to 8 percentage points. In contrast, our DID
estimates lose much of their statistical significance at conventional levels and fall
to about 5 percentage points. The RDD estimates are very small and statistically
insignificant.

In columns 5 and 6, we show that our caliper findings for the 1.96 cut-off
are robust to alternative windows: 1.96 ±0.35 and ±0.20.22 IV estimates are
about 9 percentage points more likely to be statistically significant than a RCT
estimate, and estimates remain significant. The estimates for DID are positive
but statistically insignificant.

Appendix Tables A16, A17, A18 and A19 replicate Table 4 for the two other
common significance thresholds (with and without weights). IV articles remain
significantly more likely to report marginally significant tests at the 10 percent
level than RCTs. The estimates are all significant and range from 7 to 9 percent-
age points. RDD estimates are negative, but small and not signficiantly different
to RCT articles. There is no significant differences between DID and the other
methods. Last, we do not find evidence of differential bunching by method for
the 1 percent significance threshold. Once this very high level of significance is
reached, differences between methods become small.

We report reports several robustness checks in the Online Appendix such as
excluding papers for which there was initial disagreement between authors in
data collection, papers using multiple methods, or excluding subsets of journals
based on field or type. Appendix Table A22 tackles another potential issue. While
we exclude robustness checks and heterogeneity analyses from our sample of tests
collected, it is plausible that studies using some methods may be more likely to
include tables of results that are either low-power estimates of the effect or with
smaller/larger samples. We explore this by restricting the sample to test statistics
from the first results table in each article. This exercise decreases our sample to
1,566 test statistics. Nonetheless, our main findings by method are robust. In

for which there is some evidence of more (less) p-hacking is finance (experimental).
21We report estimates for the other control variables in Appendix Table A15.
22A potential issue of applying caliper methods in our setting is that each method may have a different

underlying distribution. We show our results are robust to increasingly smaller windows which reduces
the assumption of distributional equivalence in Appendix Tables A20 and A21 . We display estimates for
the following windows: 1.96 ±0.60, ±0.50, ±0.40, ±0.30, ±0.20 and ±0.10. The point estimates for IV
are all positive, statistically significant at conventional levels, and range from 7 to 10 percentage points
(with our full set of controls and journal fixed effects).
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fact, the size of the estimates for IV is now much larger, ranging from 15 to 20
percentage points in comparison to RCT. Our estimates for DID are insignificant
and range from six to nine percentage points.

C. Excess test statistics

Third, we compare each observed distribution of test statistics to a counterfac-
tual distribution. This requires additional assumptions about what the observed
distribution would look like absent publication bias or p-hacking. A counter-
factual distribution allows us to examine the absolute level of publication bias,
expanding on the previous results which have been constrained to be relative to
RCTs. We expand on the framework introduced in Brodeur et al. (2016), who
hypothesized that the underlying distribution of test statistics follows a t distribu-
tion with 1 degree of freedom. Here, we make the same distributional assumption
but relax it by flexibly calibrating a different counterfactual t distribution to each
method, endogenizing the potential differences between methods that would affect
its shape, location, and scale.

Method

This exercise is meant to determine the location and extent of excess test statis-
tics. The challenge is to define an appropriate counterfactual distribution, what
should be observed in the absence of publication bias or p-hacking. Here, we
formalize Brodeur et al. (2016)’s methodology by calibrating a non-central input
distribution by method. We assume that the observed test statistic distribution
above z = 5 should be free of p-hacking or publication bias - the incentives to
p-hack in a range so far above the traditional significance thresholds are plausibly
zero. We then produce a non-central t distribution for each method that closely
fits the observed distribution in the range z > 5 by calibrating the degrees of
freedom and non-centrality parameter. Note that while the degrees of freedom
parameter is defined over real values, we focus only on positive integers. As the
degrees of freedom increase, the tail of the t distribution becomes thinner. We
optimize in steps of 1. The non-centrality parameter of the t distribution is pos-
itive and real valued. We optimize in steps of 0.01. Increasing the non-centrality
parameter in our case makes the distribution’s tail thicker (since we take the
absolute function of the test statistics earlier in the process.)

This presents us with an optimization problem with countervailing forces. Our
approach is the following. For 0 to 10 degrees of freedom, we calculate the non-
centrality parameter that minimizes the difference in the z > 5 mass of the
observed distribution and the expected distribution. We then choose the ‘best’ of
the 10 optimized t distributions by degree of freedom. In this manner we explore
the entire region of 0 < df < 10 and 0 < np < 4.

Figure 4 presents the calibrated input distributions with the observed distribu-
tions. Our formalization yields very precise fitting curves. For the distribution of
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DID test statistics which has 15.2% of its mass in the tail, our algorithm produces
a t distribution with a mass of 15.1% in its tail, choosing 2 degrees of freedom and
a non-centrality parameter of 1.81. The remaining methods also optimize at 2
degrees of freedom, the optimal non-centrality parameter varies across methods.

To calculate the excess test statistics in a particular region, we use the CDF of
observed t statistics F̂ (upper)−F̂ (lower) and from this subtract Ft(2,1.81)(upper)−
Ft(2,1.81)(lower). In this way we calculate the excess mass of test statistics as the
difference between the mass observed and the mass expected, given that our ex-
pectations are calibrated only by information contained in the tail.

Another approach to measuring excess test statistics is to compare each method’s
excess masses to the excesses of a common baseline - in our case RCT. Making
this comparison additionally assumes homogeneous effect distributions and that
p-hacking and publication bias similarly distort test statistics across methods.
The conclusions using this approach are similar, and are presented in Appendix
Table A23.23

Results

In Figure 4 we present the observed and calibrated t distributions (for table form
see Appendix Table A24). We first remark that our tail fitting has succeeded visu-
ally. For each method, the calibrated t closely matches the observed distribution
in [5 < z < ∞). This is confirmed in Appendix Table A24, where the difference
in mass between calibrated and observed is at most 0.001 in [5 < z <∞).

For the [0 < z < 1.65) region, the mass difference between expected and ob-
served is small with the exception of IV, which has a dearth equal to 6.3% of its
total mass. Compared to the expected IV mass, approximately 16% of insignifi-
cant IV test statistics are missing.

For the [1.65 < z < 1.96) region, the mass difference between expected and
observed is small for every method (although IV is the only method with excess
mass).

The most striking result comes from the [1.96 < z < 2.58) region, where IV
has an excess of 4.1% of its total mass, or 30% more statistically significant test
statistics than expected. The size of the IV excess is more than 5 times as large as
the excess for DID and RCT. DID and RCT both exhibit a degree of distortion,
each having 0.8% too much mass (6.0% and 6.5% more significant test statistics
than expected in this region) respectively. RDD performs well, consistently having
less statistically significant test statistics than expected.

For the [2.58 < z < 5) region, IV has an excess total mass of 1.9%, or 7.8% too

23Another approach would be to use maximum likelihood to fit a (non-central or even generalized) t
distribution to the tail of each method’s observed distribution. The entire observed distribution is then
compared to the fitted t distribution. The results of this maximum likelihood exercise are presented in
Appendix Figure A14. There we present results using both information from the tail of z > 5, a less
stringent tail of z > 3, and the inclusion of the t distribution’s scale parameter. Our conclusions remain
unchanged as this approach generates curves similar to those in Figure 4 and generally larger estimates
of publication bias.
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many statistically significant test statistics. The remaining methods have too few;
DID has 3.7%, RDD has 10.4%, and RCT has 15.3% less statistically significant
test statistics than expected.

Comparison with RCT

In order to benchmark the size of our results, we apply a similar approach
in Appendix Table A23 which uses the observed RCT distribution in place of
the calibrated t distributions. We take the mass of test statistics observed (e.g.

F̂IV (2.58)− F̂IV (1.96)) and subtract the RCT mass (F̂RCT (2.58)− F̂RCT (1.96)).
While relaxing the assumption that the underlying tests are t distributed, this ap-
proach no longer endogenizes method differences in how test statistics are treated
by researchers or reviewers.

The results are similar. The first panel examines the statistically insignificant
region. DID and IV have too few insignificant test statistics, each dearth more
than double that of RDD. In the just-significant region, there is very little differ-
ence between the quasi-experimental and RCT distributions (although IV is the
only method with excess mass). In the two-star significance region, we estimate
that 5.4% of all IV estimates are misallocated, or that 43.3% of two star IV results
should instead be found in the insignificant region (the only region with too little
mass). The estimate for IV is twice that of DID and eleven times that of RDD.
The weakness of this simpler approach becomes apparent in the [2.58 < z < 5)
range, where all methods are considered to have far ‘too many’ significant results.
This is due to the implicit assumption that effect sizes are homogeneous between
literatures. For this reason we favor our calibrated input distribution approach.

D. Estimating the amount of distortion

Our setting is well suited to applying the Andrews and Kasy (2019) mea-
surement of publication bias. Recall that publication bias is present when the
probability a result is published is a function of its statistical significance. This
measurement makes distributional assumptions for the sample’s effect sizes and
assumes effect size estimates with smaller standard errors do not relate to different
estimands. The measure of publication bias is the relative publication probability
of a statistically significant result compared to a statistically insignificant result.
If a significant result is just as likely as an insignificant result to be published,
publication bias must be low.

The measurement involves applying a step function at significance thresholds
to the conditional probability of publication. The results are presented in Table
5. For ease of exposition we begin by comparing results that are insignificant at
the 5% level to results that are significant at the 5% level. In the IV literature, a
result that is statistically insignificant is only 21.4% as likely to be published as
a significant one. Said differently, a significant IV result is almost 5 times more
likely to be published than an insignificant IV result. In the DID literature, a
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statistically significant result is 4.2 times more likely to be published. For RCTs,
a significant result is only 1.9 times more likely to be published. For RDDs, a
significant result is 2.8 times more likely to be published. All of these estimates are
statistically significant at the 1% level. We have also presented the generalized
t distribution parameters the model fits for the underlying effect distribution.
Reassuringly, the estimates are similar to those in previous sections.

When we apply the model which differentiates between test statistics at the one,
two and three star significance levels, a similar pattern emerges. Most notably,
a stark difference between statistically insignificant and significant (at any level)
results. For DID, a result statistically significant at the 10%, 5%, and 1% level
is 2.6, 4.0, and 5.5 times more likely to be published than an insignificant result,
respectively. For IV those multiples are 3.5, 5.2, and 6.3 times more likely to be
published than an insignificant result, respectively. RDD is less stark, at 2.2, 2.9,
and 3.3. RCT behaves uniquely and arguably the best as the publication prob-
ability step between insignificant and significant results is reduced substantially.
We find that an RCT result statistically significant at the 10%, 5%, and 1% level
is 1.7, 2.2, and 2.0 times more likely to be published than an insignificant result,
respectively.

IV. Exploring Channels

We now turn to possible channels through which the different methods might
produce differing patterns of test statistics in the published literature.

A. Instrumental variables: F-statistics

For non-experimental methods (like IV) there are many stages in the research
process when researchers exercise discretion. This is in contrast to RCTs where
there are fewer researcher degrees of freedom (and where pre-registration is more
likely to be expected).24 We can use the first stage estimates reported in IV studies
to probe, in a different part of the analysis, researcher responses to conventional
cut-offs. More concretely, we document the distribution of F-statistics for IV
articles in our sample. The first stage F-statistic is typically used in IV papers
to test if an instrumental variable is weak; if its correlation with the endogenous
regressor is low.25

Interestingly, F-statistics were reported in only two-thirds of IV papers in our

24We also investigate whether it is easier to manipulate p-values when there is not an event-study graph
in DID articles. It is arguably harder to convince referees and editors that a policy has a statistically
significant impact when the raw data suggest otherwise. Appendix Figure A16 directly compares the
distribution of test statistics for DID articles without and with an event-study graph, whereas Appendix
Table A26 shows caliper tests for the 5 percent significance level. In our sample, about three-quarter of
DID articles have such a graph. Our estimates suggest that DID articles with an event-study graph are
not significantly more likely to reject the null hypothesis than the other DID studies.

25Many studies in our sample mentioned Stock and Watson’s recommendation (or more generally the
problem of weak instruments) that first-stage F-statistic(s) should be larger than 10. This suggests that
authors are aware of and use this threshold.
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sample. On average, there were 10 F-statistics (standard deviation of 11) per
paper.

Figure 5 (top panel) shows the distribution of F-statistics reported in speci-
fications over the interval [0, 50]. (See Appendix Figure A15 for F ∈ [0, 100].)
Our sample includes 2,175 F-statistics, of which about 12% are smaller than 10.
This result is in line with Andrews et al. (2019), who find that weak instruments
are frequently encountered and that virtually all published papers in their sam-
ple (17 papers published in the American Economic Review) reported at least
one such first-stage F-statistic. We are interested in whether there is bunching
at 10 and find that the distribution has a maximum density near to but above
10 and that approximately 52% are in the interval [10, 50]. There is a sizable
under-representation of weak instruments relatively to F-statistics just over the
threshold of 10 but also to (very) large F-statistics.

Appendix Table A25 formally tests for discontinuities using randomization
tests. In this table, we present the results of binomial proportion tests where
a success is defined as a first stage F-statistic above 10. Reported p-values are
the probability of the observed (or greater) proportion given a hypothesized equal
probability of being just above and below the threshold. There is a statistically
significant difference in the proportion around ten using windows as small as
5 < F < 15. Acknowledging that we can expect the proportion of tests between
0 < F < 10 and 10 < F < 35 to be very different due to the sheer width differ-
ences in the interval, we prefer the results from randomization tests using widths
of 10 and smaller.

Overall, the results indicate that both the first and second stages of IV studies
display an excess of marginally significant test statistics. We then check whether
the degree of p-hacking in the second stage is related to the strength of the first
stage. Figure 5 (bottom panels) shows that second stage results from compara-
tively ‘weak’ instruments have a much higher proportion of z-statistics centered
around conventional thresholds, suggesting that the weaker the IV, the greater
the extent of p-hacking.

We also find evidence that IV results in RCT studies with partial compliance
display a markedly smaller degree of p-hacking than IV in purely observational
studies (Appendix Figure A17). This points us to suspect that the reception of
IV - rather than the methodology itself - is generating this distinctive curve.26

See the Online Appendix for additional results and discussion on IV.

B. Role of the journal review process

We now explore the role of journal editors and referees, and test whether the
editorial process exacerbates or attenuates p-hacking. To do this, we compare the

26We also present a related exercise in which we compare IV test statistics in RCT papers to RCT
test statistics. Admittedly this is an unbalanced sample - many RCT studies do not report IV estimates
to cope with partial compliance. Appendix Figure A18 shows that the distribution of test statistics is
quite similar in these two subsamples.
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distribution of test statistics in published journal articles to that in the antecedent
working papers. Arguably, observed differences between the working paper ver-
sion and the published version can be thought to capture the direct impact of the
review process.

We proceed as follows. First, we collected all working papers of the articles
in our sample. Second, we kept only working papers released before the date of
submission to the journal. Unfortunately, the date of submission was not available
for 11 journals and for those we kept only working papers released at least 2 years
prior to publication. We managed to obtain at least one (valid) working paper for
279 articles (41% of sample).27 Third, for journal articles with multiple (valid)
working papers, we chose that closest to the date of submission (or the two year
threshold), with a preference for CEPR, IZA or NBER discussion/working papers
when multiple working papers have similar dates. For papers that came out in
2015, for example, it likely means a working paper in 2012 or 2013 given editorial
delays.

We then collect test statistics in the working papers using the same methodology
as for the published version. For some papers, tables were added or removed,
or test statistics have different p-values, e.g., by having a different clustering
technique.

Figure 6 compares the distribution of test statistics in the working paper versus
published version. Panel A is restricted to the published papers with a working
paper, whose test statistics are presented in Panel B. (see Appendix Figure A19 for
the unbalanced comparison between all working papers and all journal articles.)
The distributions are strikingly similar with a two-humped shape, suggesting that
conditional on an article being published, the editorial process has little impact
on the extent of p-hacking.

Appendix Figure A20 repeats this exercise but for each method separately. We
do not find much evidence that the distribution of tests differs from the working
paper and published version for any of the four methods.

We formalize this analysis in Appendix Table A28 which reports caliper tests
where the dependent variable indicates whether a test statistic is statistically
significant at the 5 percent level. The sample is 4,305 tests from working papers
and their subsequent published version. The variable of interest is a dummy
for whether a test comes from the working paper or the published version. We
include fixed effects for each paper in our model, estimating within article changes
to significance. In column 1 the estimated effect of the publication process is
very small, negative, and statistically insignificant. This leads us to believe the
editorial process does not change the extent of p-hacking. Columns 2–5 restrict
the sample to DID, IV, RCT, and RDD articles. Results are similar in each
case.28

27We were significantly more successful at finding working papers for RCT articles than for the other
methods. See Appendix Table A27 for details.

28Appendix Figure A21 presents histograms of test statistics in working papers by method and journal
ranking (i.e., top 5 and non-top 5). Appendix Figure A22 presents the same for subsequent published
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V. Conclusion

The credibility revolution in empirical economics has promoted causal identi-
fication using experimental (RCT) and natural-experimental methods (IV, DID
and RDD) (Angrist and Pischke, 2010). The associated change in the focus of
empirical economics towards explicit causal inference is arguably the most impor-
tant re-orientation in the discipline of the past two decades. Such design-based
research methods deliver many well documented benefits. They may also bring
opportunities for questionable research practices (of the sort that have collectively
come to be known as p-hacking) and be differently subject to publication bias.

The primary aim of this study is to investigate the extent of the p-hacking
and publication bias problems both in aggregate and by method. Our analysis
points to significant between-method differences, with papers using IV and DID
identified as particularly problematic. We believe this to be roughly consistent
with an unspoken hierarchy in the profession, which typically regards the RCT
as gold standard and IV with skepticism.

Our secondary results find no discernible difference between papers published in
the ‘Top 5’ compared to those in other leading economics journals. The p-hacking
or publication bias pattern also appears common across author characteristics
(with the exception of experience). Comparing the published version with an
antecedent working paper provides little evidence of mitigation by the peer-review
process. Despite recent awareness to the issues of p-hacking and publication bias
in economics, we find little evidence of a change over time. Last, we find that the
extent of p-hacking in economics is much smaller than in other social sciences.

Several limitations and caveats of this study are worth discussing. First, our
analysis does not indicate that individual researchers or reviewers are acting ‘dis-
honestly’ or without integrity, and we do not use the terms p-hacking or publi-
cation bias in an individually-pejorative way. Research, often involving a team
of contributors, evolves via a sequence of decisions over a period of months or
even years. The set of conscious and unconscious biases that could lead to the
patterns that we see in the overall published record is not something to which
we speak directly. Instead, our results suggest that taken as a body those papers
that report results based on the IV method for example, appear less ‘trustworthy’
than results based on other methods.

Second, the test statistics in our sample come from papers published in excellent
general and top field journals. As such, our results document what is happening
at the ‘top end’ of publishing in the profession, and casts no light on the greater
literature. It may be that marginally insignificant results from IV and DID-
based research find homes at journals of lower rank, such that a sufficiently broad
reading of a literature reduces the possibility that a reader might be misled by
the issues identified here.

versions. The figures are strikingly similar, confirming that the editorial process appears to not change
the extent of p-hacking by method or at top 5 and other top outlets.
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Third, the results do not necessarily point to flaws inherent in the methods
themselves, but rather the way in which they are collectively executed by re-
searchers and received by reviewers in leading journals. In terms of future solu-
tions this is a potentially important distinction, implying that improved publica-
tion practices may eventually mitigate the problem. From the point of view of
the research consumer who is interested in knowing to what extent they should
be skeptical about the published literature of a topic, the distinction is less im-
portant.

Finally, while the published literature may have embedded p-hacking and pub-
lication bias, it still delivers valuable insights. We suggest only that a nuanced
reading of research should account for the underlying method’s proclivity to sta-
tistical significance. The recent progress in research transparency in the forms of
data availability, pre-registrations, pre-analysis plans, and the declared openness
to publishing null results may serve to meaningfully mitigate these problems.
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Figure 1. z-Statistics in 25 Top Economics Journals

Note: The top panel displays histograms of test statistics for z ∈ [0, 10]. Bins are 0.1 wide. Refer-
ence lines are displayed at the conventional two-tailed significance levels. We have also superimposed
an Epanechnikov kernel. The bottom left panel presents test statistics from the “Top 5” (American
Economic Review, Econometrica, Journal of Political Economy, Quarterly Journal of Economics and
Review of Economic Studies). The bottom right panel presents test statistics from the remainder of the
sample. We do not weight articles.
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Figure 2. z -Statistics by Method

Note: This figure displays histograms of test statistics for z ∈ [0, 10] by method: difference-in-differences
(DID), instrumental variables (IV), randomized control trial (RCT), and regression discontinuity design
(RDD). Histogram bins are 0.1 wide. Reference lines are displayed at conventional two-tailed significance
levels. We have also superimposed an Epanechnikov kernel. We do not weight articles.
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Figure 3. z -Statistics Over Time

Note: This figure displays histograms of test statistics for z ∈ [0, 10] over time. The top panels are from
the American Economic Review, Journal of Political Economy and the Quarterly Journal of Economics.
The top left panel uses data from Brodeur et al. (2016) and the top right uses the top 3 journals during
our sample period. The bottom left panel is top 25 journals in 2015 and the bottom right is top 25
journals in 2018. Histogram bins are 0.1 wide. Reference lines are displayed at conventional two-tailed
significance levels. We have also superimposed an Epanechnikov kernel. We do not weight articles.
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Figure 4. Excess Test Statistics by Method

Note: This figure presents the calibrated input distributions with the observed distributions. We optimize
for each method at student t distribution with 2 degrees of freedom. The optimal non-centrality parameter
varies across methods. See Section 3.3.1 for more details.
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Figure 5. Instrumental Variables: First Stage F-Statistics and Associated z -Statistics

Note: This figure displays a histogram of First Stage F-Statistics of instrumental variables for F ∈ [0, 50].
This is the raw distribution. Bins have a width of 2. A reference line is provided at the standard ‘weak’
instrument threshold of 10. The bottom left panel displays the distribution of test statistics for IVs with
a relatively low F-statistic (below median), while the bottom right panel displays the distribution of tests
for IVs with a relatively high F-statistic (above median). The median F-statistic in our sample is just
over 30. Because not all IV statistics have an associated F-statistic, a total of 1,414 statistics are used
in this analysis. The bottom left panel contains 681 tests, while the bottom right contains 733 tests.
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Table 1—Summary Statistics

(1) (2) (3) (4) (5) (6)

Journal DID IV RCT RDD Articles Tests

American Economic Journal: Applied Economics 12 13 23 4 46 2,242
American Economic Journal: Economic Policy 25 9 5 8 42 1,263

American Economic Journal: Macroeconomics - 5 - - 5 54

American Economic Review 21 23 14 3 55 1,740
Econometrica 2 4 1 4 10 307

Economic Policy 2 4 - - 6 80

Experimental Economics - 2 4 - 6 79
Journal of Applied Econometrics - 4 - 1 5 86

Journal of Development Economics 13 25 30 3 64 2,818

Journal of Economic Growth 2 7 - - 8 100
Journal of Financial Economics 25 16 - 3 40 635

Journal of Financial Intermediation 7 6 - 3 16 285

Journal of Human Resources 4 10 5 3 21 752
Journal of International Economics 7 13 - 1 19 510

Journal of Labor Economics 5 4 8 4 20 653
Journal of Political Economy 4 8 5 2 18 761

Journal of Public Economics 28 18 18 15 74 2,605

Journal of Urban Economics 10 16 - 3 26 660
Journal of the European Economic Association 8 7 6 2 20 491

Review of Financial Studies 25 16 - 7 39 963

The Economic Journal 13 22 1 4 38 891
The Journal of Finance 7 15 5 2 27 1,135

The Quarterly Journal of Economics 5 9 8 6 23 840

The Review of Economic Studies 2 3 2 - 7 306
The Review of Economics and Statistics 14 22 10 7 49 1,484

Total Articles 241 281 145 85 684

Total Tests 5,853 5,170 7,569 3,148 21,740

Note: This table alphabetically presents our sample of “Top 25” journals identified using RePEc’s Simple
Impact Factor: "https://ideas.repec.org/top/top.journals.simple10.html". Some top journals did
not have any eligible articles in the first data collection period: Journal of Economic Literature, Journal
of Economic Perspectives, Journal of Monetary Economics, Review of Economic Dynamics, Annals of
Economics and Finance and the Annual Review of Economics. We also excluded Brookings Papers
on Economic Activity from the sample. In some research articles, multiple methods were used. This
explains why the sum of articles for the four methods is greater than 684.

"https://ideas.repec.org/top/top.journals.simple10.html"
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Table 2—Article and Author Characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9)

DID IV RCT RDD 2015 2018 Top 5 Non Total

Top 5

Top 5 0.16 0.15 0.22 0.18 0.19 0.18 1.00 0.00 0.18

(0.37) (0.36) (0.41) (0.38) (0.39) (0.38) (0.00) (0.00) (0.39)

Editor Present 0.63 0.60 0.73 0.52 0.66 0.63 0.81 0.61 0.64

(0.48) (0.49) (0.45) (0.50) (0.47) (0.48) (0.39) (0.49) (0.48)

Solo-Authored 0.19 0.22 0.12 0.37 0.22 0.18 0.13 0.22 0.20

(0.39) (0.41) (0.33) (0.48) (0.42) (0.38) (0.34) (0.41) (0.40)

Average Experience 9.92 10.75 12.28 8.49 10.97 10.47 11.43 10.57 10.73

(5.07) (6.26) (5.86) (5.20) (6.10) (5.48) (6.57) (5.62) (5.82)

Female Authors 0.22 0.27 0.38 0.26 0.28 0.31 0.27 0.30 0.29

(0.30) (0.37) (0.32) (0.35) (0.33) (0.35) (0.32) (0.34) (0.34)

Top Institutions 0.23 0.31 0.34 0.26 0.33 0.25 0.55 0.23 0.29

(0.33) (0.37) (0.36) (0.38) (0.38) (0.33) (0.36) (0.33) (0.36)

Top PhD Institutions 0.36 0.36 0.51 0.28 0.33 0.48 0.55 0.37 0.40

(0.39) (0.40) (0.37) (0.37) (0.38) (0.39) (0.37) (0.39) (0.39)

Test Statistics 5853 5170 7569 3148 11211 10529 3954 17786 21740

Note: Each observation is a test. The Top 5 journals in economics are the American Economic Review,
Econometrica, Journal of Political Economy, Quarterly Journal of Economics and Review of Economic
Studies. Average experience is the mean of years since PhD for an article’s authors. Share of female
authors, share of authors affiliated with top institutions, and share of authors who completed a PhD at
a top institution.
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Table 3—Randomization Tests, 5% Significance Threshold

(1) (2) (3) (4)

DID IV RCT RDD

Proportion Significant in 1.96±0.5 0.530 0.539 0.467 0.472
One Sided p-value 0.015 0.002 0.997 0.939

Number of Tests in 1.96±0.5 1365 1412 1719 706

Proportion Significant in 1.96±0.4 0.532 0.533 0.479 0.488

One Sided p-value 0.016 0.012 0.948 0.733
Number of Tests in 1.96±0.4 1137 1166 1416 582

Proportion Significant in 1.96±0.3 0.532 0.526 0.485 0.494
One Sided p-value 0.030 0.064 0.840 0.611

Number of Tests in 1.96±0.3 881 917 1098 453

Proportion Significant in 1.96±0.2 0.556 0.541 0.493 0.508

One Sided p-value 0.003 0.022 0.669 0.408
Number of Tests in 1.96±0.2 606 619 755 295

Proportion Significant in 1.96±0.1 0.631 0.575 0.547 0.542

One Sided p-value 0.000 0.005 0.035 0.178

Number of Tests in 1.96±0.1 352 315 393 142

Proportion Significant in 1.96±0.075 0.684 0.597 0.560 0.565

One Sided p-value 0.000 0.002 0.021 0.096
Number of Tests in 1.96±0.075 269 238 298 115

Proportion Significant in 1.96±0.05 0.707 0.601 0.641 0.614

One Sided p-value 0.000 0.005 0.000 0.024

Number of Tests in 1.96±0.05 208 168 209 83

Note: In this table we present the results of binomial proportion tests where a success is defined as a
statistically significant observation at the threshold level. In the first panel we use observations where
(1.46 < z < 2.46). The other panels use observations for smaller windows. In the first panel, 53.9%
of the 1,412 IV tests within this window are significant. We then test if this proportion is statistically
greater than 0.5. The associated p-values are then reported. We do not weight articles.
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Table 4—Caliper Test, Significant at the 5% Level

(1) (2) (3) (4) (5) (6)

DID 0.095 0.088 0.055 0.051 0.052 0.027
(0.034) (0.033) (0.032) (0.033) (0.037) (0.047)

IV 0.102 0.097 0.073 0.080 0.091 0.089
(0.034) (0.034) (0.033) (0.033) (0.037) (0.045)

RDD 0.058 0.057 0.026 0.016 0.025 0.012

(0.047) (0.048) (0.045) (0.046) (0.049) (0.055)
Top 5 -0.051 -0.010

(0.045) (0.084)

Year=2018 0.021 0.030 0.024 0.010 0.043
(0.028) (0.027) (0.027) (0.030) (0.035)

Experience -0.002 -0.006 -0.005 -0.006 0.009

(0.007) (0.007) (0.007) (0.008) (0.009)
Experience2 -0.005 0.005 0.006 0.014 -0.028

(0.018) (0.018) (0.019) (0.020) (0.025)

Top Institution 0.019 0.026 0.025 -0.001 -0.005
(0.050) (0.044) (0.043) (0.046) (0.055)

PhD Top Institution -0.011 -0.030 -0.023 0.023 0.067
(0.039) (0.037) (0.038) (0.040) (0.048)

Reporting Method Y Y Y Y Y

Solo Authored Y Y Y Y Y
Share Female Authors Y Y Y Y Y

Editor Y Y Y Y Y

Field FE Y
Journal FE Y Y Y

Observations 5,202 5,202 5,202 5,202 3,798 2,273

Window [1.96±0.50] [1.96±0.50] [1.96±0.50] [1.96±0.50] [1.96±0.35] [1.96±0.20]

RCT Sig Rate 0.47 0.47 0.47 0.47 0.48 0.49

Note: This table reports marginal effects from probit regressions (Equation (2)). The dependent variable
is a dummy for whether the test statistic is significant at the 5 percent level. In columns 1–4, we restrict
the sample to z ∈ [1.46, 2.46]. Column 5 restricts the sample to z ∈ [1.61, 2.31], while columns 6 restricts
the sample to z ∈ [1.76, 2.16]. Robust standard errors are in parentheses, clustered by article. We use
the inverse of the number of tests presented in the same article to weight observations.
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Table 5—Relative Publication Probabilities

(1) (2) (3) (4)

Panel A DID IV RCT RDD

β[0<Z<1.96] 0.237 0.214 0.522 0.355

(0.010) (0.010) (0.024) (0.020)

Location 0.006 0.021 0.020 0.004

(0.001) (0.003) (0.002) (0.001)
Scale 0.004 0.013 0.013 0.002

(0.000) (0.002) (0.001) (0.000)

Degrees of Freedom 2.249 2.464 2.335 2.100
(0.010) (0.060) (0.051) (0.080)

Panel B DID IV RCT RDD

β[0<Z<1.65] 0.181 0.159 0.493 0.301

(0.009) (0.008) (0.029) (0.021)

β[1.65<Z<1.96] 0.465 0.559 0.835 0.660

(0.028) (0.034) (0.051) (0.057)

β[1.96<2.58] 0.732 0.834 1.079 0.863

(0.039) (0.046) (0.062) (0.070)

Location 0.006 0.018 0.019 0.003

(0.001) (0.003) (0.002) (0.001)

Scale 0.003 0.011 0.012 0.002
(0.001) (0.002) (0.002) (0.000)

Degrees of Freedom 2.408 2.589 2.329 2.193
(0.050) ( 0.063) (0.053) (0.095)

Note: In Panel A, β[0<Z<1.96] is the relative publication probability of a statistically insignificant test.

For example, if a statistically significant IV test has a 50% chance of being published, then a statistically
insignificant one has a 50% × 21.4% = 10.7% chance of being published. Panel B presents the relative
publication probability of statistical significance regions as compared to the most significant test statistics
(Z > 2.58). The table presents the results of applying the publication bias model presented in Andrews
and Kasy (2019). The model assumes that the underlying effect sizes follow a generalized t distribution,
as elsewhere in this manuscript. We report the fitted location and scale parameters, as well as the degrees
of freedom.
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Figure 6. Histogram by Publication Status - Balanced Sample

Note: This figure displays histograms of test statistics for z ∈ [0, 10]. Panel A restricts the sample to
journal articles. Panel B restricts the sample to working papers. For the published version, the sample
is restricted to journal articles for which we could find a working paper. Bins are 0.1 wide. Reference
lines are displayed at the conventional two-tailed significance levels. We have also superimposed an
Epanechnikov kernel. We do not weight articles.


