Macro and Micro Dynamics of Productivity: From Devilish Details to Insights

G. Jacob Blackwood, Lucia S. Foster, Cheryl A. Grim, John Haltiwanger, Zoltan Wolf

A Online Appendix

A.1 \(\log TFPR_{is}^{rr} \) and fundamentals

We derive the properties of \(\log TFPR_{is}^{rr} \) under the more general specification of demand given by

\[
P_{is}Q_{is} = P_{s}Q_{s}^{1-\rho_{s}}Q_{is}^{\rho_{s}} = P_{s}Q_{s}^{1-\rho_{s}}Q_{is}^{\rho_{s}}\xi_{is}, \quad \text{where } \rho_{s} = \frac{s-1}{s} \text{ as in section I.}
\]

In this case, log plant level revenues can be written as

\[
\log P_{is} + \log Q_{is} = \rho_{s} \log Q_{is} + (1 - \rho_{s}) \log Q_{s} + \log P_{s} + \rho_{s} \ln \xi_{is}
\]

which says that \(\log TFPR_{is}^{rr} \) is a function of \(\log TFPQ_{is} \) (log \(A_{is} \)), demand shocks (log \(\xi_{is} \)), and sectoral variables (\(Q_{s}, P_{s}, \) and \(\rho_{s} \)). In the main text, we abstract from idiosyncratic demand shocks and sectoral variables for transparency. We estimate the \(\beta_{js} \) using a control function approach. In some robustness analysis, we also use the Klette and Griliches (1996) approach to jointly estimate \(\beta_{js} \) and \(\rho_{s} \) by including a measure of industry-level output as a regressor. This permits us to back out \(\alpha_{js} \) from the combined estimates and provides an alternative method to cost shares for estimating \(\alpha_{js} \).

The advantage of this approach is that it does not impose CRS. The disadvantage of this approach is that, in the absence of data on plant level prices and quantities, this is pushing the data quite hard. Foster et al. (2016) discuss the latter limitations in more depth.

A.2 AE under NCRS

A.2.1 Industry-level prices

Defining \(\tau_{is} = \prod_{j} (1 + \tau_{is}^{j})^{\frac{\alpha_{js}}{\gamma_{s}}} \), we have:

\[
P_{s} = Q_{s}^{\frac{1-\gamma_{s}}{\gamma_{s}}} \frac{1}{\kappa_{s}} \left(\sum_{i} \left(\frac{A_{is}}{\tau_{is}^{j}} \right)^{\frac{\rho_{s}}{1-\rho_{s}\gamma_{s}}} \right)^{\frac{\rho_{s}\gamma_{s}-1}{\rho_{s}\gamma_{s}}}
\]

(A.3)
where $\kappa_s = \left(\rho_s \prod_j \left(\frac{\alpha_{js}}{w_{js}}\right)^{\alpha_{js}/\gamma_s}\right)^{-1}$ is a function of input prices and parameters.

A.2.2 Industry-level distortions

It can be shown that industry-level distortions can be written as a function of $TFPR_s$ and a constant:

\begin{equation}
\tilde{\tau}_s = \kappa_s TFPR_s = \kappa_s P_s Q_s \prod_j \frac{\alpha_{js}}{\gamma_s}. \tag{A.4}
\end{equation}

As noted in Bils, Klenow and Ruane (2020) (hereafter BKR), this can be expressed as a product of sectoral input distortions, which are in turn revenue-weighted harmonic means of plant-level input distortions. Note that $\tilde{\tau}_s$ can be written as a function of idiosyncratic physical productivities and distortions using $TFPR_{cs} = \sum_i \frac{I_{is}}{\sum_i I_{is}} TFPR_{is}$, where I_{is} denotes the plant’s cost-share based input index.

\begin{equation}
\tilde{\tau}_s = \frac{\sum_i A_{is}^{1-\rho_s \gamma_s} (\tau_{is})^{1-\rho_s \gamma_s}}{\sum_i A_{is}^{1-\rho_s \gamma_s}} = \frac{S_1}{S_2}. \tag{A.5}
\end{equation}

A.2.3 Industry-level TFP

We define the industry-productivity measure consistent with Hsieh and Klenow (2009) and BKR, where the denominator is the input index weighted by cost shares

\begin{equation}
TFP_s = \left(\prod_j X_{js}^{\alpha_{js}/\gamma_s}\right)^{-1} Q_s. \tag{A.6}
\end{equation}

Multiplying and dividing by $P_s^{\gamma_s}$ yields:

\begin{equation}
TFP_s = \left(\prod_j X_{js}^{\alpha_{js}/\gamma_s}\right)^{-1} \left(\sum_i (A_{is})^{1-\rho_s \gamma_s} (\tau_{is})^{1-\rho_s \gamma_s}\right)^{-1} \tilde{\tau}_s. \tag{A.7}
\end{equation}

This is analogous to the expression obtained in Appendix 1 of HK.

1The formula can be obtained by writing $TFPR_s$ as a geometric average of sectoral marginal revenue product where the weights are based on the cost shares of respective inputs.

2Note $\sum_i \frac{I_{is}}{\sum_i I_{is}} TFPR_{is} = \sum_i \frac{I_{is}}{\sum_i I_{is}} R_{is} = \sum_i \frac{R_{is}}{\sum_i I_{is}} = TFPR_{cs}$.

Online Appendix
A.2.4 Maximum of TFP

This section outlines the solution to the constrained optimization that yields AE_s under NCRS. Using the notation in (A.5), the Lagrangean of the problem is given by:

$\mathcal{L}(\tau_{is}) = \left(\sum_i A_{is}^{r_s} \gamma_s \left(\frac{\tau_{is}}{r_{is}} \right)^{-1} \right) \left(1 - \frac{2\gamma_s}{\rho_s} \right) + \lambda \left(\tilde{\tau}_s - \sum_i \theta_i \tau_{is} \right) = \tilde{\tau}_s S_1^{1 - \frac{2\gamma_s}{\rho_s}} + \lambda \left(\tilde{\tau}_s - S_1 S_2 \right),$

where $S_1 = \sum_i A_{is}^{r_s} \gamma_s \left(\frac{\tau_{is}}{r_{is}} \right)^{-1}$ and $S_2 = \sum_i A_{is}^{r_s} \gamma_s \left(\frac{\tau_{is}}{r_{is}} \right)^{-1}$. The first derivative of $\mathcal{L}(\tau_{is})$ is shown below:

$\frac{\partial \mathcal{L}}{\partial \tau_{is}} = -\gamma_s \tilde{\tau}_s S_1^{1 - \frac{2\gamma_s}{\rho_s}} A_{is}^{r_s} \gamma_s \left(\frac{\tau_{is}}{r_{is}} \right)^{-1} + \lambda \rho_s \gamma_s A_{is}^{r_s} \gamma_s \left(\frac{\tau_{is}}{r_{is}} \right)^{-1} S_2 - S_1 A_{is}^{r_s} \gamma_s \left(\frac{\tau_{is}}{r_{is}} \right)^{-1}.$

Summing (A.9) over i yields a condition that can be solved for λ. Plugging the resulting expression back to (A.9) and rearranging implies $\tau_{is} = \tilde{\tau}_s$. Differentiating (A.9) with respect to τ_{is} yields $-2\gamma_s (1 - \rho_s \gamma_s)^{-1} S_2^{-2} S_1 A_{is}^{r_s} \gamma_s \left(\frac{\tau_{is}}{r_{is}} \right)^{-1} A_{is}^{r_s} \gamma_s \left(\frac{\tau_{is}}{r_{is}} \right)^{-1} S_2 - S_1 A_{is}^{r_s} \gamma_s \left(\frac{\tau_{is}}{r_{is}} \right)^{-1}$. Since $0 < A_{is}, \tau_{is}, \rho_s, \gamma_s$, the sign of the second derivative depends on the sign of $(1 - \rho_s \gamma_s)$. If $\rho_s \gamma_s < 1$ then $\frac{\partial^2 \text{TFP}}{\partial \tau_{is}^2} \bigg|_{\tilde{\tau}_s} < 0$, and therefore $\tau_{is} = \tilde{\tau}_s$ is a maximum point. However, if $1 < \rho_s \gamma_s$ then $0 < \frac{\partial^2 \text{TFP}}{\partial \tau_{is}^2} \bigg|_{\tilde{\tau}_s}$, and $\tau_{is} = \tilde{\tau}_s$ cannot be a maximum point.

A.2.5 Aggregate and sectoral production

Aggregate output is assumed to be a Cobb Douglas CRS aggregate of sectoral output. This implies:

$Q = \prod_s Q_s^{\theta_s} = \prod_s \left(A_s \prod_j X_{js}^{\frac{\alpha_{js}}{\gamma_s}} \right)^{\theta_s}$

It can then be shown that aggregate output Q can be written as a product of the geometric averages of industry-level technical efficiencies, revenue shares, cost shares, distortions and inputs:

$Q = \prod_s A_s^{\delta s_1} \times \sum_s \theta_s \delta s_1 \times \prod_s \left[\prod_j \left(\frac{\alpha_{js}}{\gamma_s} \right)^{\alpha_{js}} \right]^{\delta s_1} \times \prod_s \tau_s^{\delta s_2} \times (1 + \tau)^{\delta s_3}$

(A.11)

where $\delta s_1 = \sum_s \theta_s \left(1 - \frac{\alpha_{js}}{\gamma_s} \right), \delta s_2 = \sum_s \theta_s \frac{\alpha_{js}}{\gamma_s} \left(1 + \frac{\tau}{\delta s_3} \right), \delta s_3 = \sum_s \theta_s \alpha_{js} \left(1 + \frac{\alpha_{js}}{\gamma_s} \right)$ Defining $\tilde{\alpha}_{js} = \sum_s \theta_s \frac{\alpha_{js}}{\gamma_s}$ and aggregate consumption or value added as output less intermediate input $C = Q - M$, the expression for aggregate TFP is given by $TFP = C / \prod_{j \neq M} X_{js}^{\tilde{\alpha}_{js}}$. Let T denote the part of the expression that depends only on sectoral distortions and parameters. In addition, adjust equation (A.11) for inter-
mediate input use. Then the following expression can be obtained for aggregate TFP:

\[(A.12) \quad TFP = \mathcal{T} \times \prod_{s} TFP_{s}^{\frac{\theta_{s}}{\sum_s \frac{\theta_s \gamma_s}{\rho_s \gamma_s}}}. \]

A.2.6 Accounting for input demand

It can be shown that if sectoral level inputs with inelastic aggregate supply, so long as average sectoral distortions are the same under a new distribution of distortions, sectoral capital and labor are unchanged in the “undistorted” counterfactual. For our analysis, we ignore between sector distortions and assume that average sectoral distortions are the same. Since aggregate labor and capital supply is assumed to be inelastic, AE_s is given by:

\[(A.13) \quad AE_s = \frac{A_s}{A_s^*} = \left(\sum_i \left(\frac{A_{is}}{A_s} \right)^{\frac{\rho_s}{1-\rho_s \gamma_s}} \left(\frac{T_{is}}{T_s} \right)^{\frac{\rho_s \gamma_s}{1-\rho_s \gamma_s}} \right)^{-\frac{1-\rho_s \gamma_s}{\rho_s}} \left(\frac{M_s}{M_s^*} \right)^{\frac{\alpha_M(1-\gamma_s)}{\gamma_s}}. \]

In addition, sectoral intermediate input demand is proportional to total output: $M_s = \theta_s Q \rho_s \gamma_s (1 - \gamma_s) \frac{1}{1+\tau_s M_s}$. So long as sectoral average intermediate distortions are held constant, the ratio of undis-torted inputs to distorted inputs in industry s can be expressed as:

\[(A.14) \quad M_s^*/M_s = Q_s^*/Q_s, \]

where Q_s^* is the aggregate output under the regime where distortions in sector s are equalized, holding average distortions constant. Thus, the ratio of aggregate “s-undistorted” output to realized output is equivalent to the ratio of intermediates. Using equation (A.11), we can obtain an expression for Q_s^*. On th condition that average distortions are held constant between the actual and counterfactual cases, the only change relative to (A.11) is that the leading term of Q_s^* is given by

\[(A.15) \quad \frac{Q_s^*}{Q_s} = \frac{A_s^*/A_s}{\sum_k \theta_k \left(1 - \frac{\alpha_{M_k}}{\gamma_k} \right)} = \left(AE_s \right) \frac{\alpha_M(1-\gamma_s)}{\gamma_s}. \]

Substituting (A.15) into (A.13), we see that allocative efficiency is a function of AE_k^{COV} and itself:

\[(A.16) \quad AE_s = \left[\sum_i \left(\frac{A_{is}}{A_s} \right)^{\frac{\rho_s}{1-\rho_s \gamma_s}} \left(\frac{T_{is}}{T_s} \right)^{\frac{\rho_s \gamma_s}{1-\rho_s \gamma_s}} \right] \times AE_s \frac{\alpha_M(1-\gamma_s)}{\gamma_s}.

which means we can solve for AE_s:
As in BKR, the contribution of sectoral TFP to aggregate TFP can be written as:

$$TFP \propto \prod_s AE_s^{\theta_s (1 - \frac{\alpha M_s}{\gamma_s})} \prod_s \left(A_s^* \right)^{\theta_s (1 - \frac{\alpha M_s}{\gamma_s})}$$

Thus, we can separate the “undistorted” effect of sectoral TFP (which incorporates the influence of returns to scale) on aggregate TFP from the allocative efficiency effect on TFP. To relate to the variance-covariance term, we would need to aggregate expand the exponent, yielding:

(A.17) $$TFP \propto \prod_s \left(AE_s^{COV} \right)^{\theta_s (1 - \frac{\alpha M_s}{\gamma_s}) + \theta_s \frac{\alpha M_s}{\gamma_s} (1 - \gamma_s)}$$

A.2.7 Impacts of ρ_s and γ_s

To understand why ρ_s and γ_s enter asymmetrically into sectoral TFP given the following CES aggregator, note we can write plant level output as follows:

(A.18) $$Q_{is} = (\rho_s \gamma_s P_s Q_s^{1-\rho_s})^{\frac{\gamma_s}{1-\rho_s \gamma_s}} \left(\frac{A_{is}}{\gamma_s} \right)^{\frac{1}{1-\rho_s \gamma_s}} \left[\prod_j \left(\frac{\alpha_{js}}{w_{js}} \right)^{\alpha_{js}} \right]^{\frac{\gamma_s}{1-\rho_s \gamma_s}}$$

Note here that if the plant does not account for the impact of its decisions on aggregate output and prices (which by assumption it does not), then the elasticity of production with respect to a change in A_{is} is $1/(1 - \rho_s \gamma_s)$. Here we see that both returns to scale γ_s and downward-sloping demand ρ_s play a role in the impact of shocks on output. Demand parameter ρ_s impacts output through prices. As TFP increases, the plant can produce more output, but prices fall in response, dampening the effect of TFP shocks on output. In the CRS case, with a lower ρ_s (higher markups), the lower the elasticity. Now consider returns to scale: if $\gamma_s < 1$, i.e. DRS, then the elasticity of output with respect to changes in technical efficiency is smaller than the CRS case, and vice versa for increasing returns.

Now consider the aggregator for output in the sector again:

(A.19) $$Q_s = \left(\sum_{i=1}^{N_s} Q_{is}^{\rho_s} \right)^{\frac{1}{\rho_s}}$$

Here note that the elasticity of total Q_s with respect to plant-level output is the following:

(A.20) $$\epsilon_{Q_s, Q_{is}} = \left(\frac{Q_s}{Q_{is}} \right)^{1-\rho_s}$$

Note that this is independent of any returns to scale at the plant-level. We see ρ_s impacts output in two ways. First, ρ_s impacts output through the impact on firm-level decisions, as firms take into account the impact of their choice of output on prices. This effect can be amplified or mitigated by returns to scale $\neq 1$. Second, given an increase in output of a plant, ρ_s dampens the effect of a single plant on sectoral output.
A.3 Implementing the AE decomposition

In order to assess the overall effect of the two revenue productivity measures on AE_s^{COV}, we implement equation (12) empirically. This is exercise is useful because it helps gauge the relative importance of the mean and dispersion of within-industry distribution. Figures A1(a)-A1(b) show the contributions of the two terms of the right hand side of equation (12), which suggest that the second term contributes more to overall allocative efficiency (see figure A1(c)). The dynamics of $\log TFPQ_{is}$ and $\log TFPR_{is}$ moments are useful interpreting the findings in the main text: the increasing dispersion and increasing positive correlation yield a negative contribution for the second term in equation (12), which accounts for the majority of the decrease in AE.

A.4 Full Industry Sample

For the full industry analysis, we compute cost shares for materials, energy, capital, and labor using the full (450) industry sample. For the time invariant estimates, we compute the averages for the SIC and NAICS sample periods separately (i.e., 1972-96 for SIC and 1997-2010 for NAICS). Therefore, we do not need to use concordances between the two classification systems. In addition, unreported results suggest the change in the distribution of the cost shares between the SIC and NAICS periods is small. We find that the location and shape of the cost shares under the full sample are very similar to those of the 50-industry sample (results available upon request). We also implement the DW methodology for ρ_s for the full industry sample.

A.5 Sensitivity Analysis of Aggregation and Time Varying Parameters for 50 industry sample

In this appendix, we consider industry-specific changes in ρ_{st} using the DW method, and combine those changes with CS (which imposes CRS throughout the time period but we allow cost shares to vary over time) and with OPH (where we permit the revenue curvature parameters to change over time).\(^3\) For this analysis, we consider the original 50-industry sample with two 15-year subperiods: 1972-1986 and 1996-2010. We omit 1987-1995 to highlight potential changes in the parameter distributions. We recognize that combining OPH estimates of revenue elasticities with DW estimates of ρ_{st} that require CRS is inconsistent with the specification test of CRS under OPH reported above for most industries. However, as discussed in the main text, we think it is instructive to consider the sensitivity of estimates of AE across the range of parameter estimates.

We begin by exploring evidence of changing markups and returns to scale over time for the 50-industry sample. Figure A2(a) shows both the unweighted and revenue-weighted average ρ_{st} decline from the first sub-period to the second sub-period with the weighted mean indicating a steeper decline. These patterns are broadly consistent with the results reported in the main text for the full

\(^3\)As in section IV.C, if the estimated 4-digit curvature implied by OPH is not below one we use the 2-digit estimate in a sub-period. We do not pursue OPHD in this case since it exploits within industry variation over time and is not well suited to estimate ρ_{st} in shorter panels.
Online Appendix

Figure A.1: AE decomposition.

Note: In industries where $1 < \rho_s \gamma_s$ at the 4-digit level, 2-digit estimates are used. ρ^{DW}_s denotes industry-specific time series averages calculated as in De Loecker and Warzynski (2012).
sample. Figure A2(b) shows the changes in the average overall revenue curvature ($\rho_{st}\gamma_{st}$). We find evidence that $\rho_{st}\gamma_{st}$ has declined modestly across the two sub-periods. The decline is only about 0.02 on an unweighted basis and is less than 0.01 using revenue weights. For the rise in markups to be consistent with only modest declines in revenue elasticities, returns to scale might be rising. To show this, we combine the ρ_{st} from A2(a) with $\rho_{st}\gamma_{st}$ from A2(b) to show the implied rising γ_{st} in Figure A2(c). This is admittedly speculative but highlights both the potentially offsetting effects of rising markups and returns to scale along with the challenges of estimating time varying markups and returns to scale simultaneously.

Figure A.2: Means of time-varying parameters for 1972-86 and 1996-2010

Note: “Unweighted” denotes averages where industries have equal weight. “Weighted” denotes averages where industries are weighted by revenue.

Figures A3(a), A3(b), and A3(c) show the implications for average sectoral AE, fixed-supply-based AE, and roundabout-production-based AE, respectively. In order to illustrate the effect of time-

\[^{4}\text{See equations (14) and (16).}\]
varying parameters, we present pairs of AE estimates under each estimator and assumption, where the first element of the pair repeats results under time invariant parameters as a point of reference. The second element of the pair shows AE under time-varying parameters. It is useful to start with CS-based sectoral average AE. Figure A3(a) shows that the modest decline in the unweighted average ρ_{st} from A2(a) has little impact on the decline in AE compared to using time-invariant parameters. In contrast, the two bounds in A3(b) and A3(c) for aggregate AE show that the more pronounced decline in weighted average ρ_{st} has a larger impact. Figure A3(b) shows the fixed-supply assumption yields aggregate AE that mimics the patterns of average AE under CS but yields lower AE levels and declines relative to the time-invariant case. Specifically, the declining average weighted ρ_{st} mitigates the decline in AE. Decreasing ρ_{st} in the CS case reduces the decline in AE from 23% to 16% in the fixed supply aggregation and from 30% to 20% in the roundabout production case. These patterns are consistent with the insight from the main text that a decrease in ρ_s tends to raise AE if returns to scale is held constant. In contrast, OPH implies a different pattern of changes in AE with time varying parameters. Here the decline in average ρ_{st} is (potentially) accompanied by an increase in γ_{st}, and therefore the mitigating effect on the decline in AE is smaller when using time varying parameters.
(a) Unweighted average, $N_s^{-1} \sum_s \hat{AE}_s^{COV}$

(b) Fix input supply: $AE_s = \prod_s \left(\hat{AE}_s^{COV} \right)^{\theta_s}$

(c) Roundabout production:

$$\Pi_s \left(\hat{AE}_s^{COV} \right) \frac{\sum_{k=1}^{S} \theta_k \left(1 - \frac{M_s}{M_k} \right) + \theta_s \frac{M_s}{M_k} (1 - \gamma_s)}{\theta_s}$$

Figure A.3: AE: Aggregation and time-varying parameters
A.6 Additional Tables

Table A.1: Sample size (number of plant-year observations in thousands) for the specifications shown in Table 3

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>CS</th>
<th>OPH</th>
<th>OPHD</th>
</tr>
</thead>
<tbody>
<tr>
<td>overall growth</td>
<td>424</td>
<td>424</td>
<td>405</td>
<td>405</td>
</tr>
<tr>
<td>exit</td>
<td>424</td>
<td>424</td>
<td>405</td>
<td>405</td>
</tr>
<tr>
<td>conditional growth</td>
<td>407</td>
<td>407</td>
<td>388</td>
<td>388</td>
</tr>
</tbody>
</table>

References

