Supplemental Online Appendix for

A Century of the American Woman Voter: Sex Gaps in Political Participation, Preferences, and Partisanship Since Women’s Enfranchisement

By Elizabeth U. Cascio and Na’ama Shenhav

February 2020
Administrative Data

Historical Voting Records

For the numerator of the administrative voter turnout rate, we calculate national (Figure 1) and regional (Appendix Figure 2) vote tallies using data from David Leip’s Atlas of U.S. Presidential Elections (Leip, no year). The original unit of analysis is the state, and we aggregate to the national and (Census) region levels. We purchased an individual license ($92) for the 1900-2012 data (US President - State-Level All-Time Vote Data Spreadsheet, version 1.3). We hand entered key variables for 2016 election from an online table at this website.1

Voting-Age Population

For the denominator of the administrative voter turnout rate, we estimate national (Figure 1) and regional (Appendix Figure 2) voting-age population by multiplying published total Census population counts by estimated population shares ages 21+ (1900-68) or ages 18+ (1972-2016). The original unit of analysis for the published Census counts is the state, and we limit attention to states with presidential election returns before aggregating up to the state or regional level.2 We estimate voting-age population shares using Census and American Community Survey (ACS) microdata (Ruggles et al., 2019), linearly interpolating in intercensal years. Voting-age is defined as ages 21 and over through the 1968 presidential election and ages 18 and over for all elections from 1972 forward.

Survey Data

Gallup Polling Data

Our main source for sex-specific voter turnout and preferences over hypothetical presidential candidates prior to 1972, and for information on party identification throughout the period of interest, is polling data from the Roper Center. Until the 1990s, almost all of the relevant polls available through the Roper Center were conducted by the Gallup Organization (Gallup Organization, various years). We therefore focus on Gallup polls in our own data collection. However, the Roper data file provided in the replication archive of Gillion, Ladd, and Meredith (2018), which provides the core data for our analysis of trends in party identification, includes polls conducted by other organizations.3

1 <https://uselectionatlas.org/RESULTS/data.php?year=2016&datatype=national&def=1&f=1&off=0&elect=0> Our replication files provide the national and regional aggregate turnout figures and the code that we applied to the state panel data to generate them. To run the code, you will need to purchase the 1900-2012 data from http://uselectionatlas.org.

3 However, unlike Gillion et al., who rely on Gallup-provided sampling weights, we use data from the Census and ACS to weight Gallup demographics to the region x sex x education x race x cohort level. We describe this weighting process below.
Gillion, Ladd, and Meredith (2018) include polls from 1953 to 2012, including some not fielded by the Gallup Organization, which become more prevalent in the 1990s. To maintain sufficiently large sample sizes, we also include these other polls in our estimation sample. We extend this series backwards to 1948 using earlier Gallup polls not included in Gillion, Ladd, and Meredith (2018). Gallup sporadically asked about party affiliation after the 1940 and 1944 elections, but the data are too sparse to be included in the present analysis. We also extended forward to include polls from 2013 and the first quarter of 2014 (to correspond to the 2012 election). We used a larger scale Gallup-Knight Foundation survey on Trust, Media, and Democracy, fielded in 2017 (John S. and James L. Knight Foundation, 2017), to gain insight into party affiliation following the 2016 election, though this particular survey lacks sufficient detail on age to be included in our later, more detailed look at time and cohort effects on trends in the sex gap in Democratic party identification.

For voter turnout and partisanship, we assign polls conducted within two years after a presidential election to that particular election year. The number of available polls varies from election to election. Following Kuziemko and Washington (2018), in our own read-in of the data, we focus on polls for which data were not transferred by the Roper Center from binary to ASCII format, as such data can contain stray characters. This data format arises as late as 1964 but is relatively common for earlier polls that could in principle be assigned to presidential elections through 1960. To ensure sufficiently large sample sizes for the earliest presidential elections, we use the Berinsky-Schickler Stata code to read in binary-to-ASCII files (Berinsky and Schickler, 2011). In addition, we use all polls included in Gillion, Ladd, and Meredith (2018) (which includes a variable on party identification but not voter turnout), regardless of the original format. All elections have information from at least 8 polls, with the lowest number of observations being for voter turnout in the 1952 election.4

A particular challenge of using the Gallup data for our purposes is that the earliest polls were collected using a “quota-controlled” sampling strategy. This approach targeted certain numbers of individuals within strata defined by observable characteristics, such as region of residence, sex, and race, with the goal of producing samples representative of the likely-voter population, not the population overall (see Berinsky (2006) and Berinsky et al. (2011)). Reflecting Gallup’s views on the demographic make-up of likely voters, the earliest polls under-represented the South, the non-white population, the less-educated population, and women, as shown in Appendix Figure 1. Moreover, within strata, canvassers had significant discretion in who they interviewed. These polls are thus not random samples. Starting in 1950, Gallup moved to a national probability-based sampling scheme (see Appendix C of Farber, et al. (2018) for a full description), but weights are not consistently provided in the microdata.5

To produce statistics that are more representative of the population, we pursue a cell-based reweighting strategy like that described in Berinsky (2006), Berinsky, et al. (2011), Kuziemko

4 In later years, we do not use all available polls for expediency. Our microdata files contain a variable giving the relevant survey number. The vast list of citations is provided in the References section of this Online Data Appendix.

5 We also drop duplicate observations, which were used as an implicit form of weighting in some Gallup polls.
and Washington (2018), and Farber, et al. (2018). In particular, we adjust Gallup demographics using population weights matched to cells defined by year, respondent sex (female, male), race (nonwhite, white), region of residence (South, non-South, where South is the southern census region), high school completion (yes or no), and birth cohort (matching the nine roughly 16-year birth cohorts described in the text).

We do this across a number of steps:

1. We estimate population counts and high school graduation rates by year, sex (female, male), race (nonwhite, white), region (South, non-South, where South is the southern census region), and single year of age using microdata from the Census (1940 through 2000) and American Community Survey (2005 through 2016) (Ruggles et al., 2019).
2. We linearly interpolate total population and high school graduation rates in intercensal years in the sex, race, region, age cells described in step 1.
3. We multiply (interpolated) high school graduation rates by (interpolated) total population in the cell to obtain predicted numbers of high school graduates and non-graduates in each year, sex, race, region, age cell.
4. We reshape the data so that the unit of observation is the year, sex, race, region, age, and high school completion status (yes or no).
5. We restrict attention to individuals in the target age range (ages 18-80 for 1972+ and ages 21-80 in earlier years.)
6. We sum up population in the desired cells, defined by year, sex, race, region of residence, high school completion, and birth cohort (matching the nine roughly 16-year birth cohorts described in the text). We approximate year of birth as year minus age minus 1, given the April 1 timing of the Census).
7. We calculate the share of the voting-age population (through age 80) in each cell c, separately by year t, σ^P_{ct}.
8. We calculate the share of the voting-age sample (through age 80) in each cell c, separately by year t and survey s, σ^M_{cts}, treating each individual Gallup survey as distinct.
9. We calculate the weight by normalizing the ratio of these shares, $\tilde{w}_{icts} = \sigma^P_{ct} / \sigma^M_{cts}$, with i representing the individual respondent, so as to average to one within each survey-year.

That is, the weight for respondent i in cell c in survey s in year t is given by $w_{icts} = \left(\tilde{w}_{icts} / \sum_{i=1}^{N_{ts}} \tilde{w}_{icts} \right) \times N_{ts}$, where N_{ts} is the number of observations in survey s in year t.

As shown in Appendix Figure 1 Panel B, which corresponds to the partisanship series where we use our Gallup weighting strategy throughout, the weights do a very good job of reproducing the trends in population shares residing in the South, nonwhite, female, with a high school degree, and with some college (despite not including this variable in the weights) that are observed in the Census/ACS. They also do a fairly good job capturing fluctuations in the average age of the population.

6 The weights described in Berinsky (2006) and Berinsky, et al. (2011) for Gallup polls spanning 1936 to 1945 are available at the Roper Center through Berinsky and Schickler (2011).
7 Interview timing in the ACS is not provided in the public-use data.
November Current Population Survey

The Voter Supplement of the November Current Population Survey (CPS) asks about whether an individual voted in the prior November election. While the supplement was fielded as early as 1964, we were not able to locate microdata for 1964 and 1968, and personal correspondence with Census statisticians suggests that they may have been lost. The 1972 microdata include a question on voting in the 1968 presidential election, but we exclude information about this election so as to be consistent in how questions about voter behavior are timed relative to elections (within two years).

We thus use the November CPS Voter Supplements to estimate voter turnout in the elections from 1972 forward. The 1972 data are available through ICPSR Study No. 60 (U.S. Bureau of the Census, 1992). Data for the years 1976 through 2016 are available through IPUMS CPS (Flood et al., 2018). State of residence is grouped into 27 categories in 1976 (only), precluding a regression analysis at the state level. The universe of the data always includes those ages 18 and over but otherwise changes over time. Through the 1988 election, the supplement was administered only to those eligible to vote; likewise, for 2012 and 2016, the supplement was restricted to citizens. For the 1992 through 2008 elections, there were no additional restrictions. The rate of non-response to the voting question rises over time, but to a similar extent across sex.

We use the supplement weights for the November CPS, renormalizing them to average to one within year as with the Gallup demographic weights. An interesting feature of these weights is that they do not replicate the trends in population share nonwhite that we observe in the Census/ACS, as suggested by Appendix Figure 1 Panel A, which corresponds to the voter turnout series where the November CPS dominates in years 1972 and later.

American National Election Studies

The American National Election Studies (ANES) provide rich information on voting, other measures of political participation, and public opinion for elections dating back to 1952. We use data from the ANES Time Series Cumulative Data File (1948-2016), available at https://electionstudies.org/data-center/, as an additional source of information on both voter turnout and party identification (American National Election Studies, no year). The survey also allows us to calculate statistics related to other measures of political participation (Table 1) and issue preferences (Appendix Table 2).

We use the weights provided in the ANES Time Series Cumulative Data File, renormalizing them to average to one within a year as with the Gallup demographic weights. Data for 1952, 1956, 1964, 1968, 1972, 1980, 1984, and 1988 are self-weighting.

General Social Survey

The General Social Survey (GSS) provide rich information on voting, other measures of political participation, and public opinion for elections dating back to 1968. We use data from the GSS

8 There are a limited number of variables available for the 1948 presidential election. We focus on the 1952 through 2016 elections, where a more complete set of variables is available.
1972-2018 Cross-Sectional Cumulative Data file (Release 1), available at http://gss.norc.org/get-the-data/stata, as an additional source of information on both voter turnout and party identification for 1972 forward (Smith et al., 2019). The survey also allows us to calculate statistics related to other measures of issue preferences (Tables 2 and 3) and to continue the Gallup series on preferences over hypothetical presidential candidates (Figure 4).

The GSS asks questions about voting in given presidential election typically across the three to four years that followed. To be consistent about how questions about voting are timed relative to the election, we restrict attention to the responses given within two years of an election (e.g., we use 1973 and 1974 responses about the 1972 election, but not 1975 and 1976 responses). Because the GSS began in 1972, we exclude responses about the 1968 election for the same reason.

We use the weights provided in the GSS, renormalizing them to average to one within year as with the Gallup demographic weights.

Appendix Table 1 summarizes the availability of each of our main voting and preference measures in the GSS during our two sets of focal years in Tables 2 and 3 (1977-1986 and 2007-2016). Although many of the questions were not included in each survey (particularly between 1978 and 1984), all of the questions were fielded at least three times during each of the periods we analyze. This ensures that we have reasonable balance in the composition of questions represented in the summary indices in each period.

Regressions

In the section, “Drivers of the Sex Gaps and the Growing Political Influence of Women,” we explore the extent to which generational replacement, or cohort effects, can explain time trends in the sex gap in voter turnout and identification with the Democratic party. We also consider the extent to which inter-cohort trends in educational attainment by age 25 (estimated from Census/ACS data) can explain the cohort effects.

Specifically, we initially estimate a model of the form:

\[
 V_{scrtd} = \alpha + yF_s + \sum_{\tau \neq \tau_0} \theta_\tau D^*_d \times F_s + \delta_d + \sum_{\rho \neq \rho_0} \phi_\rho R^\rho_r \times F_s + \varphi_r + \epsilon_{scrtd},
\]

where \(V_{scrt} \) represents the voter turnout or Democratic party identification rate for individuals of sex \(s \) in cohort \(c \) residing in CPS state group \(r \) in election year \(t \) in decade \(d \); \(F_s \) is a female dummy variable and \(D^*_d \) is a decade indicator; \(\delta_d \) represents a vector of decade fixed effects, or coefficients on the vector of decade indicators; and \(R^\rho_r \) represents state group indicators and \(\varphi_r \) state group fixed effects.\(^9\) The interactions between the initial decade indicator for a given variable, \(\tau_0 \), and \(F_s \) is omitted, so that the \(\theta_\tau \) represent changes in the sex gap between \(\tau \) and \(\tau_0 \). The solid lines in each panel of Appendix Figure 7 show baseline trends in the sex gap, i.e., estimates of the \(\theta_\tau \).

\(^9\) We work with “state groups,” rather than individual states since the 1976 November Current Population Survey does not report individual state, but rather groups of small states that are close geographically.
We first examined how estimates of the θ_t changed with inclusion of cohort indicators and their interaction with θ_s. Estimates of the θ_t with cohort effects included are represented by the dashed lines in Appendix Figure 7. As shown in Panel A, the unadjusted, or baseline, sex gap in voter turnout is increasing across decades, but the adjusted gap in much flatter. This implies that the relative rise in women’s turnout over time largely reflect generational replacement of older cohorts with younger cohorts. In contrast, the results in Panel B show that the unadjusted and the adjusted sex gap in Democratic identification are quite similar, with both increasing across decades. This implies that generational replacement cannot explain women’s relative rise in Democratic identification; rather, these effects were present across all cohorts.

The solid lines in Figure 7 of the paper show the baseline cohort effects (coefficients on the interactions between θ_s and the cohort indicators) that correspond to the adjusted year effects represented by the dashed lines in Appendix Figure 7. Consistent with the Appendix Figure 7 findings, the inter-cohort changes in the sex gap are much more striking for voter turnout than for Democratic party identification. The remaining lines show what happens to the estimated cohort effects as cohort educational attainment, by level (high school and some college, both by age 25) and without and with sex-specific coefficients, are then added to the model. Sex-specific effects of high school completion explain the substantial cohort effects for voter turnout, and controls for college attendance generate cohort effects. The corresponding regression coefficients on the education variables are given in Appendix Table 3.
References

http://www.electionstudies.org/ (accessed March 19, 2019). These materials are based on work supported by the National Science Foundation under grant numbers SES 1444721, 2014-2017, the University of Michigan, and Stanford University.

Appendix Table 1

<table>
<thead>
<tr>
<th>Measure</th>
<th>77</th>
<th>78</th>
<th>80</th>
<th>82</th>
<th>83</th>
<th>84</th>
<th>85</th>
<th>86</th>
<th>08</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voted in Last Presidential Election</td>
<td>X</td>
</tr>
<tr>
<td>Voted for Democrat in Last Presidential Election</td>
<td>X</td>
</tr>
<tr>
<td>Sexuality Attitudes Index</td>
<td>X</td>
</tr>
<tr>
<td>Homosexual Relations Not Wrong</td>
<td>X</td>
</tr>
<tr>
<td>Okay to have Sex Before Marriage</td>
<td>X</td>
</tr>
<tr>
<td>Criminal Justice Index</td>
<td>X</td>
</tr>
<tr>
<td>Courts too Harsh</td>
<td>X</td>
</tr>
<tr>
<td>Should need Gun Permit</td>
<td>X</td>
</tr>
<tr>
<td>Oppose Death Penalty for Murder</td>
<td>X</td>
</tr>
<tr>
<td>Abortion Attitude Index</td>
<td>X</td>
</tr>
<tr>
<td>Abortion if Serious Defect</td>
<td>X</td>
</tr>
<tr>
<td>Abortion if Married + Don't Want More</td>
<td>X</td>
</tr>
<tr>
<td>Abortion if Mom Health at Risk</td>
<td>X</td>
</tr>
<tr>
<td>Abortion if Very Poor</td>
<td>X</td>
</tr>
<tr>
<td>Abortion if Pregnant from Rape</td>
<td>X</td>
</tr>
<tr>
<td>Abortion if Single + Don't Want to Marry</td>
<td>X</td>
</tr>
<tr>
<td>Women's Public Roles Index</td>
<td>X</td>
</tr>
<tr>
<td>Disagree Women not Suited to Politics</td>
<td>X</td>
</tr>
<tr>
<td>Vote Woman President</td>
<td>X</td>
</tr>
<tr>
<td>Family Gender Roles Index</td>
<td>X</td>
</tr>
<tr>
<td>Disagree Woman Should Stay Home</td>
<td>X</td>
</tr>
<tr>
<td>Agree Mom Working Doesn't Hurt Kids</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disagree Pre-K Kids Suffer if Mom Works</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Progressive Government Index

<table>
<thead>
<tr>
<th>Govt. Should Help Poor</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Govt. Should Help Sick</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Govt. Should Help Blacks</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Govt. Should Equalize Wealth</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Race Equality Index

<table>
<thead>
<tr>
<th>Race Gap not due to Ability</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race Gap due to Access</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Race Gap not due to Motivation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Race Gap due to Discrimination</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Appendix Table 2
Trends in the Sex Gap in Issue Preferences: Measures from the American National Election Studies

<table>
<thead>
<tr>
<th></th>
<th>Earliest Decade</th>
<th>Latest Decade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Sex Gap</td>
</tr>
<tr>
<td>A. Party Preferences and Ideology (Share)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifies as a Democrat</td>
<td>0.471</td>
<td>-0.003</td>
</tr>
<tr>
<td>Voted for the Democrat in Last Presidential Election</td>
<td>0.410</td>
<td>-0.040</td>
</tr>
<tr>
<td>Slightly to Extremely Liberal†</td>
<td>0.249</td>
<td>-0.041</td>
</tr>
<tr>
<td>Slightly to Extremely Conservative†</td>
<td>0.375</td>
<td>-0.046</td>
</tr>
<tr>
<td>B. Group Thermometers (scale of 0-97)‡</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blacks</td>
<td>63.8</td>
<td>3.5</td>
</tr>
<tr>
<td>Poor People†</td>
<td>72.1</td>
<td>3.4</td>
</tr>
<tr>
<td>Big Business</td>
<td>59.8</td>
<td>-1.3</td>
</tr>
<tr>
<td>Labor Unions</td>
<td>56.9</td>
<td>-2.6</td>
</tr>
<tr>
<td>Liberals</td>
<td>52.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Conservatives</td>
<td>56.8</td>
<td>-1.2</td>
</tr>
<tr>
<td>C. Issues (Share in At Top 3 Points on 7-Point Scale)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government Should Help Minority Groups/Blacks†,**</td>
<td>0.345</td>
<td>0.016</td>
</tr>
<tr>
<td>Government Should Provide Many More Services ○</td>
<td>0.368</td>
<td>0.070</td>
</tr>
<tr>
<td>Women and Men Should Have An Equal Role†,*</td>
<td>0.519</td>
<td>-0.054</td>
</tr>
</tbody>
</table>

Appendix Table 3
Association between Cohort Educational Attainment and Voter Turnout and Party Identification

<table>
<thead>
<tr>
<th></th>
<th>Voter Turnout</th>
<th>Democratic Party Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>High School Graduation</td>
<td>0.186 (0.031)</td>
<td>0.051 (0.042)</td>
</tr>
<tr>
<td>High School x Female</td>
<td>0.248 (0.061)</td>
<td>0.271 (0.063)</td>
</tr>
<tr>
<td>Some College Attendance</td>
<td>0.059 (0.071)</td>
<td>0.521</td>
</tr>
<tr>
<td>Some College x Female</td>
<td>-0.103 (0.103)</td>
<td>0.205</td>
</tr>
<tr>
<td>Number of observations (cells)</td>
<td>5072</td>
<td>5072</td>
</tr>
</tbody>
</table>

Notes: The unit of analysis is a sex x Census region x birth cohort x election decade cell. The underlying regression includes sex fixed effects, sex x decade fixed effects, sex x cohort fixed effects, sex x region fixed effects. Regressions are weighted by cell size, and standard errors (in parentheses) are clustered on state group. All observed correlates are shares ranging from 0 to 1.
Appendix Figure 1
Comparison of Characteristics in Unweighted and Weighted Data

Data sources: We compile Gallup microdata from polls conducted from 1940-70 by the Gallup Organization and November CPS Voter Supplement microdata from ICPSR Study #60 (for 1972) and IPUMS CPS (Flood et al., 2018) (for 1976-2016). GSS data are drawn from the GSS 1972-2018 Cross-Sectional Cumulative Data file (Release 1) and ANES data from the ANES Time Series Cumulative Data File (1948-2016). See Data Appendix.

Notes: Graphs show trends in average demographic characteristics in the raw voter turnout series (“unweighted”); the voter turnout series weighted using sampling weights that we construct from the Census/ACS, which adjust Gallup demographics to the year x region x education x race x sex x birth cohort level and use survey-provided weights for the November CPS, GSS, and ANES (“weighted”); and average demographic characteristics as calculated from Census and ACS microdata (Ruggles et al., 2019).
Appendix Figure 1 (continued)

Comparison of Characteristics in Unweighted and Weighted Data

Data sources: Microdata on Democratic party identification are from the replication archive of Gillion, Ladd, and Meredith (2018) (for 1953-2012), Gallup polls spanning 1948-52 and 2013-17 that we collected from the Roper Center, the ANES Time Series Cumulative Data File (1948-2016), and the GSS Cross-Sectional Cumulative Data 1972-2018 (Release 1). See Data Appendix.

Notes: Graphs show trends in average demographic characteristics in the raw party identification series (“unweighted”); the party identification series weighted using sampling weights that we construct from the Census/ACS, which adjust Gallup demographics to the year x region x education x race x sex x birth cohort level and use survey-provided weights for the GSS and ANES (“weighted”); and average demographic characteristics as calculated from Census and ACS microdata (Ruggles et al., 2019).
Notes: The numerator of the series represented by the solid black line is the regional presidential vote count, constructed by the authors from state-level vote tallies available at http://uselectionsatlas.org. The denominator of this series is regional voting-age population (ages 18 and up for 1972 forward+ and ages 21 and up in all earlier years), estimated from Decennial Census (1900-2000) and American Community Survey (ACS) (2005-16) Public Use Microdata Samples (Ruggles et al., 2019) for the subsample of states in a region with election returns. See Data Appendix. Regions are based on Census definitions.
Appendix Figure 3
Gaps in Voter Turnout by Race and Sex: Pooled Survey Data, 1940-2016

Notes: Survey data pool the Gallup, November CPS, GSS, and ANES series described in the notes to Figure 1. Statistics are weighted by survey-provided weights (for the CPS, GSS, and ANES) or author-constructed weights (for Gallup), with all weights re-normed to average to one within each survey-year. The figure plots the race gap in voter turnout (non-white-white), separately by region, and the sex gap in voter turnout (female-male) in the South, by race. South is the southern Census region.
Appendix Figure 4
Trends in Share of Votes for Democratic Candidate: Survey and Administrative Data, 1940-2016

Data Sources: The numerator and denominator of the series represented by the solid black line are the national presidential vote count for the Democratic candidate and the national total presidential vote count, respectively, constructed by the authors from state-level vote tallies available at http://uselectionsatlas.org. The series represented by the dashed line is constructed from pooled survey data from Gallup (1940-68), the ANES (1952-2012), and the GSS (1972-2012). See Data Appendix.

Notes: We weight statistics from the Gallup microdata using weights that we construct from the Census, which adjust Gallup demographics to the year x region x education x race x sex x birth cohort level. (Birth cohorts are defined as described in the paper.) We weight statistics from the ANES and GSS using survey-provided weights.
Appendix Figure 5
The Sex Gap in Republican Partisanship: Pooled Survey Data, 1940-2016

Data sources: Microdata on Republican party identification are from the replication archive of Gillion, Ladd, and Meredith (2018) (for 1953-2012), Gallup polls spanning 1948-52 and 2013-17 that we collected from the Roper Center, the ANES Time Series Cumulative Data File (1948-2016), and the GSS Cross-Sectional Cumulative Data 1972-2018 (Release 1). Microdata on voting for the Republican presidential candidate are from Gallup polls spanning 1940-70, the ANES Time Series Cumulative Data File (1948-2016), and the GSS Cross-Sectional Cumulative Data 1972-2018 (Release 1).

Notes: Statistics are weighted by survey-provided weights (for the GSS and ANES) or author-constructed weights (for Gallup), with all weights re-normed to average to one within each survey-year.
Appendix Figure 6
The Sex Gap in Democratic Partisanship, by Region: Pooled Survey Data, 1948-2016

Data sources: Microdata on Democratic party identification are from the replication archive of Gillion, Ladd, and Meredith (2018) (for 1953-2012), Gallup polls spanning 1948-52 and 2013-17 that we collected from the Roper Center, the ANES Time Series Cumulative Data File (1948-2016), and the GSS Cross-Sectional Cumulative Data 1972-2018 (Release 1).

Notes: Statistics are weighted by survey-provided weights (for the GSS and ANES) or author-constructed weights (for Gallup), with all weights re-normed to average to one within each survey-year.
Appendix Figure 7
Trends in the Sex Gaps in Voter Turnout, Without and With Adjustment for Cohort Effects

Data sources: Survey data pool the Gallup, November CPS, GSS, and ANES as described in the notes to Figures 1 and 3, for panels A and B respectively. The geographic unit to which we collapse are the single states and groups of states (27 total) identified in the 1976 November CPS.

Notes: The solid line in each panel plots change in the sex gap in the outcome from the base decade when we regression-adjust for state-group-by-sex effects (“unadjusted”), while the dashed line shows the change in the sex gap when we additionally include cohort-by-sex effects (“adjusted”). The sex gap is the female – male difference in the outcome. All regressions are weighted by the number of observations used to construct the dependent variable.