Lemma 2. Every unbounded finite-expectation impact variable has screening biases.

Proof. Assume that V is unbounded from above. Without loss of generality, fix $E[V] = 0$ and take some large $n > 0$. Consider a noise variable N where $N \in \{0, n, -n\}$ with equal probabilities. Clearly,

$$E[V|V + N \geq b] = \frac{E[V1_{V \geq b+n}] + E[V1_{V \geq b}]}{Pr(V \geq b + n) + Pr(V \geq b) + Pr(V \geq b - n)}.$$

If $b = \sqrt{n}$ and n tends to infinity, then $E[V|V + N \geq \sqrt{n}] \rightarrow E[V]$. However, if $b = 0$ and n tends to infinity, we get

$$E[V|V + N \geq 0] \rightarrow \frac{E[V1_{V \geq 0}] + E[V]}{Pr(V \geq 0) + 1} > E[V].$$

Thus, the result holds for a sufficiently large n.

In case V is bounded from above, we can combine the proof of the previous case with the proof of Theorem 1. Consider, w.l.o.g., a tight upper bound of 1 and a noise variable N where $N \in \{0, n, -n\}$ with equal probabilities. Fix $b_1 = 1 - \delta < 1 + \delta = b_2$ where $0 < \delta < 1$. If n is sufficiently large and δ is sufficiently small, we get

$$E[V|V + N \geq b_1] \approx \frac{E[V1_{V \geq 1-\delta}] + E[V]}{Pr(V \geq 1 - \delta) + 1} > E[V] \approx E[V|V + N \geq b_2],$$

which concludes the proof.