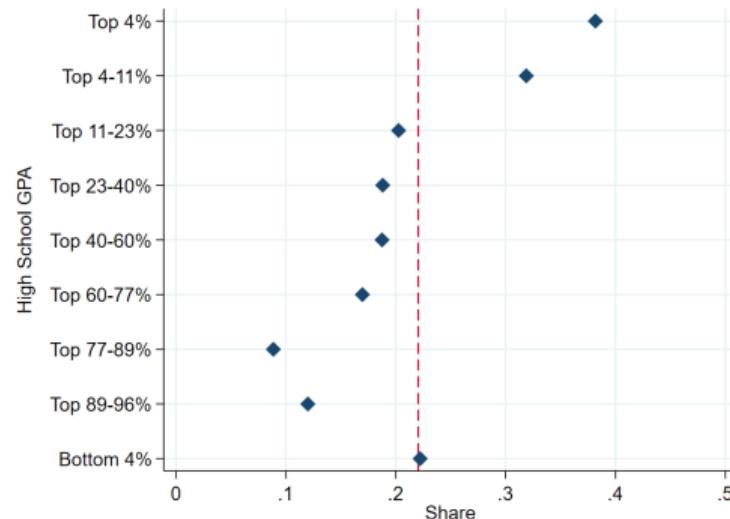


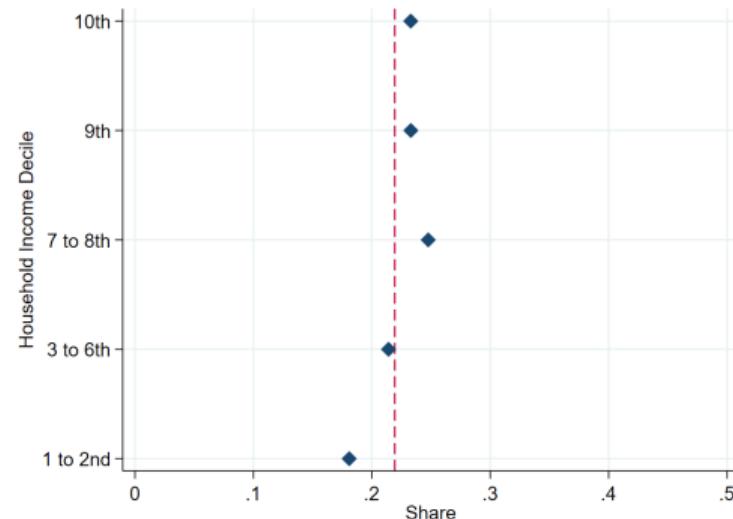
Cap-and-Apply: Unintended Consequences of College Application Policy in South Korea

Taekyu Eom

University at Buffalo, SUNY


ASSA 2026 Annual Meeting
January 3, 2026

Policy Overview: The Cap


Since 2013, South Korea has limited students to six applications in early decision.

- To reduce costs from excessive applications and this was achieved.
 - Students, household, high school teachers, and college committees
 - consulting, \$138/session; prep for college-specific exams, \$259/month; fees, \$60/app

Motivation

(a) Share of 6+ apps by High School GPA

(b) Share of 6+ apps by Income Decile

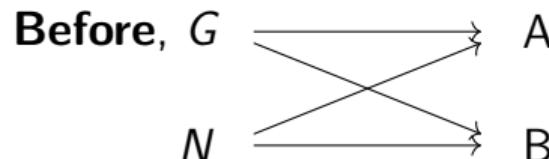
Source: The Korean Educational Longitudinal Survey (KELS) 2005.

This Paper

Research Question

- Does the application cap affect student-college allocation?
 - Match quality: alignment between high performing stu. and college prestige
 - Socioeconomic equity: access to prestigious colleges across different SES

Findings: matching model + empirical analysis

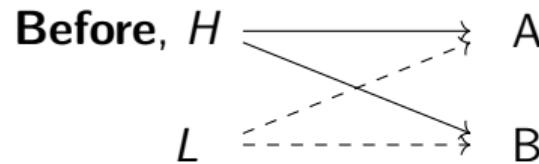

- ↘ high-performing and ↗ low SES students in top-tier colleges
 - Failure risks from ability noise increase preference for safety colleges.
 - Limiting opportunities narrows socioeconomic disparities in college access.

Contributions

- I extend an existing matching model to incorporate application constraints that vary by SES. (*Chen and Kao, 2023*)
- I construct a new college-year panel data and test the predictions.

Match Quality

Zero application costs, and outcome is the number of Good students enrolled.


- Before the Cap: outcome depends on the prestige difference.
- After the Cap: Risk makes G adjust e_g s.t.

$$\underline{p_A^g(e_g, e_n)(a - e_g)} = \underline{p_B^g(e_g, e_n)(b + e_g)}.$$

- **Match quality decreases.**

Socioeconomic Equity

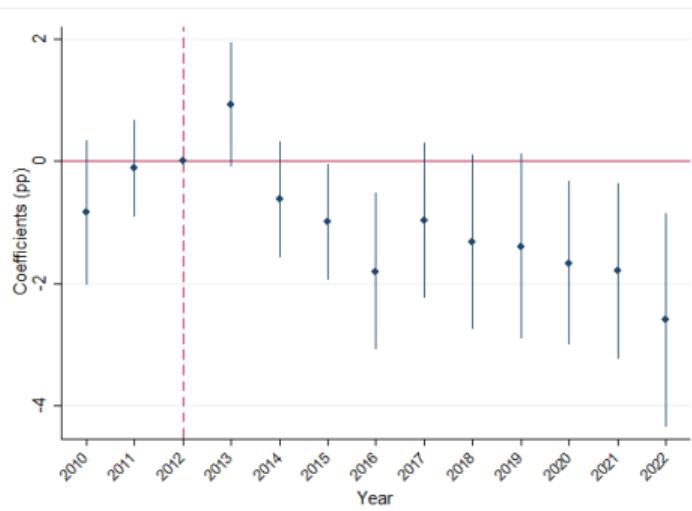
Now, students are 4 types: $(G, N) \times (H, L)$ by application constraints.
The outcome of interest is the number of low-SES students enrolled.

- Before the Cap: Only the L is constrained.
- After the Cap: Gap in application opportunities reduces.
- **Socioeconomic equity improves.**

Event Study

$$Y_{it} = \alpha + \sum_{\tau=2010, \tau \neq 2012}^{2022} \beta_{\tau} (TopTier_i \times D_{\tau}) + X'_{it} \gamma + \theta_i + \delta_t + \varepsilon_{it},$$

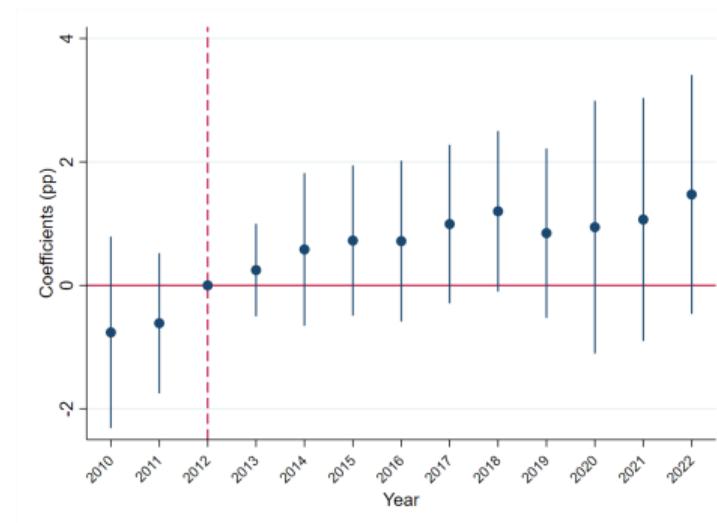
- College-year panel data from the Korean Council for University Education (KCUE)
 - 2010 to 2022, Top 45 colleges, excluding the very top
 - Ranking data from JoongAng (2010), which is correlated with CSAT cut-off score from Daesung (2012).
- Sample selection
 - Available ranking and cut-off data
 - Competitive institutions where the cap is binding


Event Study

$$Y_{it} = \alpha + \sum_{\tau=2010, \tau \neq 2012}^{2022} \beta_{\tau} (TopTier_i \times D_{\tau}) + X'_{it} \gamma + \theta_i + \delta_t + \varepsilon_{it},$$

- Y_{it}
 - Share of freshmen from special-purpose high schools
 - High performing in terms of CSAT score and enrollment in very top college.
 - Share of government student loan borrowers
 - High-SES students typically receive financial support from their parents.
- $TopTier_i = 1$ for top 22 colleges, 0 for the remaining in the top 45.
- Controls: faculty size, the number of departments, admission quota, tuition, public, and Seoul metropolitan area.

Match Quality: % Freshmen from Special-Purpose HS


↙ 9.56% of Good students in the top-tier colleges

In 2013, special-purpose HS have advantages in information and network (Cattan *et al.*, 2025). Then, information diffuses to general HS, and outcome converges to equilibrium.

Socioeconomic Equity: % Student Loan Borrowers

↗ 12.04% of Low-SES students in the top-tier colleges

Summary

The cap policy creates a tradeoff between efficiency and equity.

- *9.6% decrease in match quality, 12% increase in socioeconomic equity*
- Model predictions support the empirical findings.
 - Uncertainty of true type leads Good students to choose safety options.
 - The cap narrows opportunity gap across SES.

Policymakers should weigh costs and benefits when restricting competition in matching markets.

Robustness and Heterogeneity

Robustness Check

- Including the top college Top
- Spillover effects of Science and Technology focused colleges Spillover
- Weighting by Student Size Weight
- Adjusting Tier cutoff Tier

Heterogeneous Effects

- Ownership Public
- College Location SMA

Thank You!

taekyueo@buffalo.edu

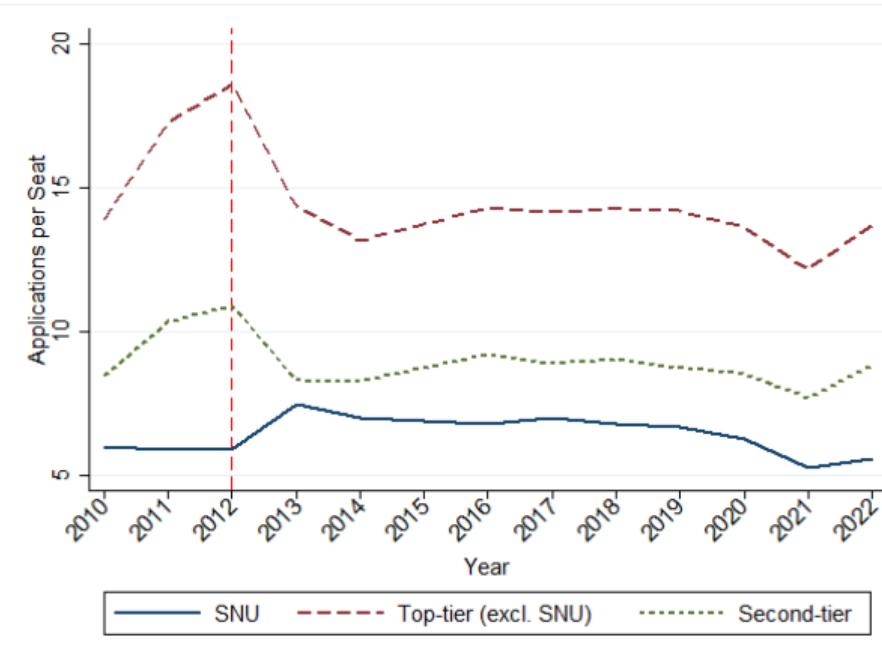
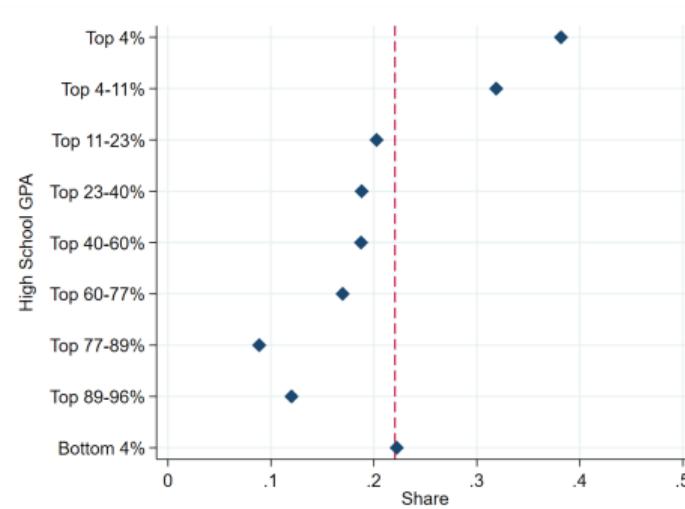
The sets of backup slides start from this page.

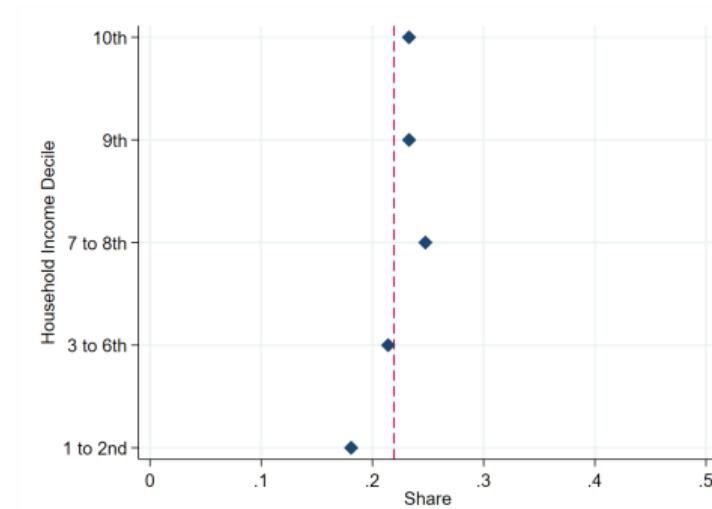
Potential Alternative Explanations

- Interaction with regular decision
- Introduction of wait list in early decision
- Change in admission policy for special-purpose high school graduates
- Anticipatory effects

The Application Cap was Effective.

◀ Return

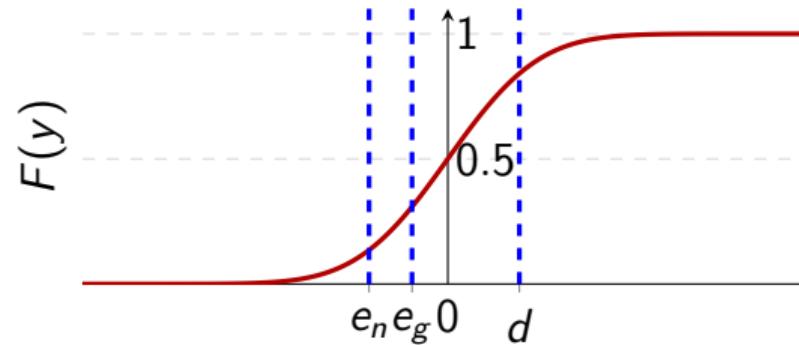




Figure: Time trend of applications per seat

The Better or Wealthier, the Tougher the Competition.

◀ Return

(a) Share of 6+ apps by HS GPA



(b) Share of 6+ apps by HH Income

Explicit Formulas for the Acceptance Rates

The equilibrium strategy profile, (e_g, e_n) , implies a pair of cutoff values.

- d changes into the cutoff value e_g or e_n depending on the signal.

- e_g where applicants with $s_i = g$ are indifferent between A and B.
- If $e_i > e_g$, then i prefers to B.
- Given e_g , there exists an interior solution for e_n such that $p_A^n(e_g, e_n)(a - e_n) = p_B^n(e_g, e_n)(b + e_n)$ with ... (cont.)

Explicit Formulas for the Acceptance Rates, cont'd

◀ Return

- $$p_A^n(e_g, e_n) = \min \left[\max \left[0, \frac{k_A - \mu F(e_g)}{(1-\mu)(pF(e_g) + (1-p)F(e_n))} \right], 1 \right]$$

$$p_B^n(e_g, e_n) = \min \left[\max \left[0, \frac{k_B - \mu(1-F(e_g))}{(1-\mu)(p(1-F(e_g)) + (1-p)(1-F(e_n)))} \right], 1 \right]$$
- $$p_A^h(e_g, e_n) = \pi \min \left[\frac{k_A}{\mu F(e_g)}, 1 \right] + (1 - \pi) p_A^n(e_g, e_n)$$

$$p_B^h(e_g, e_n) = \pi \min \left[\frac{k_B}{\mu(1-F(e_g))}, 1 \right] + (1 - \pi) p_B^n(e_g, e_n)$$

Details for Socioeconomic Equity ◀ Return

◀ Return

$$w_A = \frac{w_A^L}{w_A^L + w_A^H} = \frac{(1-\eta)\mu F(e_g)p_A^g(e_g, e_n)}{(1-\eta)\mu F(e_g)p_A^g(e_g, e_n) + \eta\mu(F(e_g)p_A^g(e_g, e_n)p_B^g(e_g, e_n) + (1-p_B^g(e_g, e_n)))} < 1 - \eta.$$

$$v_A = \frac{v_A^L}{v_A^L + v_A^H} = \frac{(1-\eta)\mu F(e_g)p_A^g(e_g, e_n)}{(1-\eta)\mu F(e_g)p_A^g(e_g, e_n) + \eta\mu F(e_g)p_A^g(e_g, e_n)} = 1 - \eta.$$

$$\Rightarrow v_A > w_A$$

Explicit Formulas for the Acceptance Rates-Equity

 [Return](#)

Before the Cap

- $p_A^g(e_g, e_n) = \pi \min \left[\frac{k_A}{\eta\mu + (1-\eta)\mu F(e_g)}, 1 \right] + (1-\pi)p_A^n(e_g, e_n),$
 $p_A^n(e_g, e_n) = \min \left[\max \left[0, \frac{k_A - (\eta\mu + (1-\eta)\mu F(e_g))}{(1-\mu)(\eta + (1-\eta)(\rho F(e_g) + (1-\rho)F(e_n)))} \right], 1 \right]$

After the Cap

- $p_A^g(e_g, e_n) = \pi \min \left[\frac{k_A}{\mu F(e_g)}, 1 \right] + (1 - \pi) p_A^n(e_g, e_n),$

$$p_A^n(e_g, e_n) = \min \left[\max \left[0, \frac{k_A - \mu F(e_g)}{(1 - \mu)(\mu F(e_g) + (1 - \mu)F(e_n))} \right], 1 \right]$$

Descriptive Statistics

◀ Return

	Pre		Post		N	
	Mean	SD	Mean	SD		
Freshmen from Selective HS	5.48	6.99	135	4.89	5.98	450
Student Loan Debtor	12.46	3.90	135	7.62	4.36	450
Pr(Grad. in 6 yrs)	52.83	8.68	220	55.99	7.28	132
Pr(Grad. in 6 yrs), male	35.96	8.46	210	35.41	7.21	126
Pr(Grad. in 4 yrs), female	24.26	9.54	220	25.01	9.27	132
Average Duration	5.69	0.26	220	5.61	0.24	132
Average Duration, male	6.30	0.23	210	6.23	0.21	126
Average Duration, female	5.05	0.27	220	5.00	0.25	132
Seoul Capital Area	0.58	0.50	135	0.58	0.49	450
Public	0.31	0.46	135	0.31	0.46	450
Faculties	700	407	135	784	435	450
Departments	113	62	135	69	34	450
Number of Slots (Early)	1,756	726	135	2,131	866	449
Number of Slots (Regular)	1,706	648	135	1,191	536	449
Applications per Slot	13.09	7.30	135	11.09	5.38	449
Enrollment Rate (Early)	75.34	13.29	135	89.96	7.85	449
Enrollment Rate (Regular)	99.94	6.75	135	97.03	5.60	449
Attendance	13,387	5,063	135	13,713	5,240	450

Rankings: Daesung (2012) and JoongAng (2010)

◀ Return

Table: Daesung (2012), and JoongAng (2010)

Daesung (2012)		JoongAng (2010)		
CSAT Score	Rank	Rank	Tier	College
384.21	1	1	(1)	Seoul National University
380.96	2	4	1	Yonsei University
377.03	4	5	1	Korea University
373.04	6	6	1	Sungkyunkwan University
364.76	12	7	1	Kyung Hee University
376.00	5	8	1	Sogang University
369.42	7	9	1	Hanyang University
367.30	9	13	1	Ewha Women's University
351.80	26	14	1	Inha University
363.20	14	15	1	Chung-Ang University
...

All the educational and science and technology-focused colleges are excluded.

- $\rho=.77$, Wilcoxon test reveals no significant difference ($Z = -.83$, $p = .41$)

DD results: Dropout rates

	(1)	(2)
	%From Special Purpose	High School
TopTier \times Post	-1.059** (0.508)	-0.878* (0.506)
Controls		X
College FE	X	X
Year FE	X	X
R sq.	0.135	0.145
Obs.	572	572

Standard errors in parentheses are clustered at the college level.

* $P < 0.1$, ** $P < 0.05$, *** $P < 0.01$

Why There Exists a Decreasing Trend?

[◀ Return](#)

Government Scholarship for Low-SES Students expand.

- Still, there is a need for loans among the income decile 4th and above.
- Lower household income correlates with higher student loan usage rates.
(Krivet, 2011)

Income Decile	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
% Median Income	30	70	90	110	130	155	180	220	290	-
% Supporting Tuition	100	100	75	55	32	23	13	13	0	0

Source: Ahn and Kim (2017)

Government Student Loan [Return](#)

◀ Return

1. General Student Loan for Tuition
2. General Student Loan for Tuition and Living Costs
1&2: repay right after graduation. for everyone.
3. After Employment Student Loan for Tuition
4. After Employment Student Loan for Tuition and Living Costs
3&4: repay after being employed. bottom 90% available for tuition loan, bottom 80% available for living cost loan

- Type I: 1&3
- Type II: 2&4

Information Structure

[◀ Return](#)

- Compared to perfectly screening colleges, students with ability noise incompletely know their type before taking the CSAT.
- Students get signal $s_i \in \{g, n\}$ for their ability type.
 - Good type, $s_i = g$ always

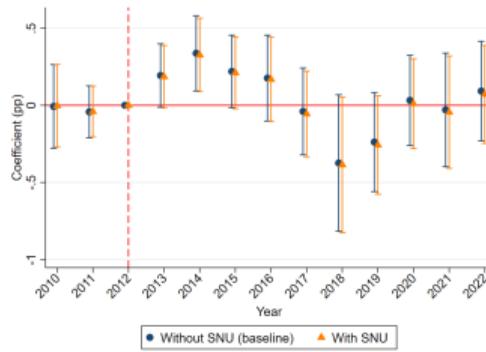
Normal type
$$\begin{cases} s_i = g, & \text{with } p \\ s_i = n, & \text{with } (1 - p) \end{cases}$$

- Posterior probability
 - $s_i = g$
$$\begin{cases} \text{Good type,} & \text{with } \pi = \frac{\mu}{\mu + (1 - \mu)p} \\ \text{Normal type,} & \text{with } (1 - \pi) \end{cases}$$
 - $s_i = n$, Normal type, always

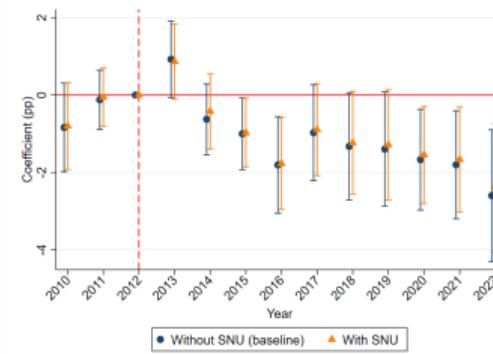
Before the Cap

- Noise makes some L with $s_i = h$ but normal type and $s_i = l$ have risk to fail.
- Then some L apply B even if they slightly prefer A
 - This is because $p_B^g(e_g, e_n) > p_A^g(e_g, e_n)$ from $k_B > k_A$. explicit
 - $V_h(A) \geq V_h(B) \Leftrightarrow d > e_g$.
- For A, outcome is $\frac{L}{H+L} = \frac{F(e_g)}{F(d)+F(e_g)} < \frac{1}{2}$ for signal h and $\frac{F(e_n)}{F(d)+F(e_n)} < \frac{1}{2}$ for signal l . Then $v_A < w_A = \frac{1}{2}k_A$. ■
- For B, outcome is $\frac{L}{H+L} = \frac{1-F(e_g)}{(1-F(d))+(1-F(e_g))} > \frac{1}{2}$ for signal h and $\frac{1-F(e_n)}{(1-F(d))+(1-F(e_n))} > 1/2$ for signal l . Then $v_B > w_B = \frac{1}{2}k_B$

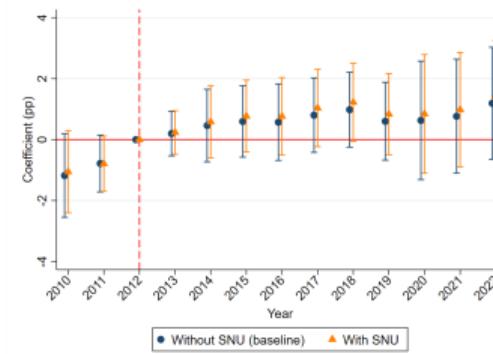
After the cap, L-SES students increase in more prestigious college (A) because of ability noise.


Heterogeneous effect across Region and Public

- Impact size increases among colleges out of SCA because of pref. to SCA.
- Impact size decreases among private colleges because of pref. to public.


	(1)	(1)	(2)
	%From Selective High School		
Rank × Post	-0.061*** (0.021)	-0.063*** (0.022)	-0.056** (0.021)
× Seoul Capital Area (SCA)		-0.006 (0.009)	
× Public			0.015* (0.008)
Obs.	584	584	584

Including Top College (Seoul National University)

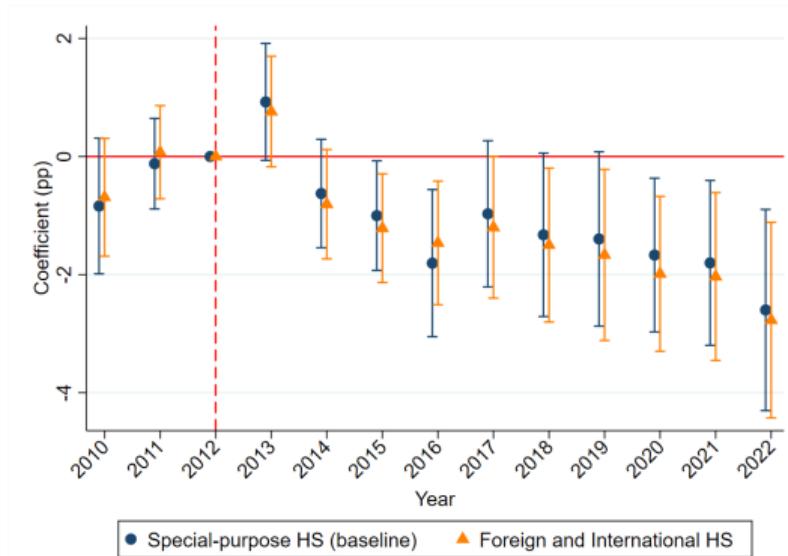
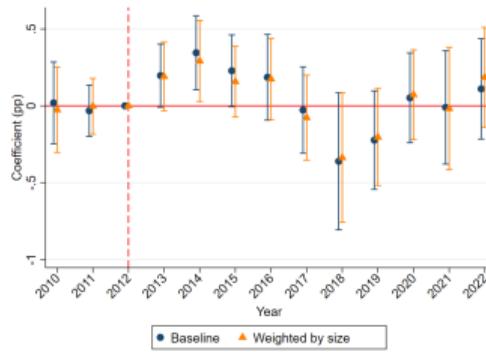

◀ Return

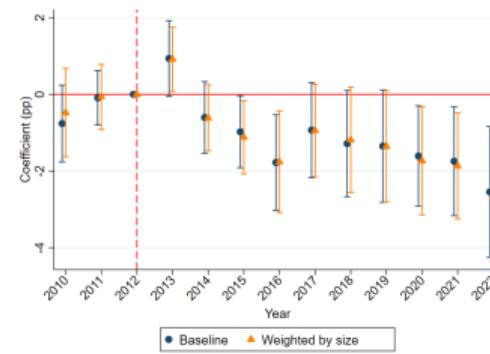
(a) Dropout Rate

(b) % Special-Purpose HS

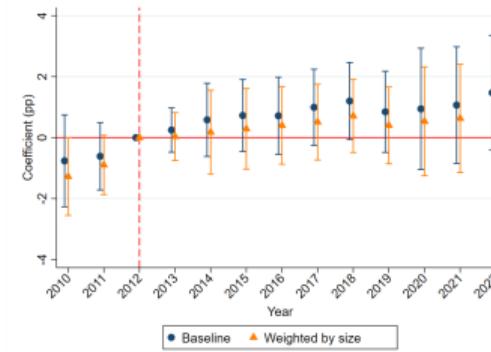
(c) Loan Borrower Rate

Spillover Effects of Sci-Tech. Focused Colleges

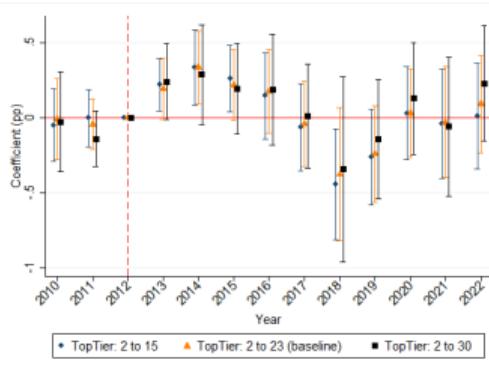


[◀ Return](#)

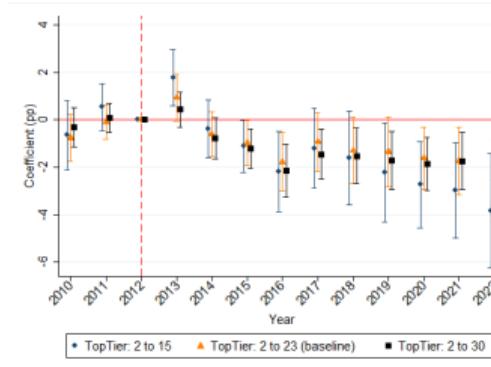

Figure: % Freshmen from Foreign Language and International HS

Weighting by Student Size

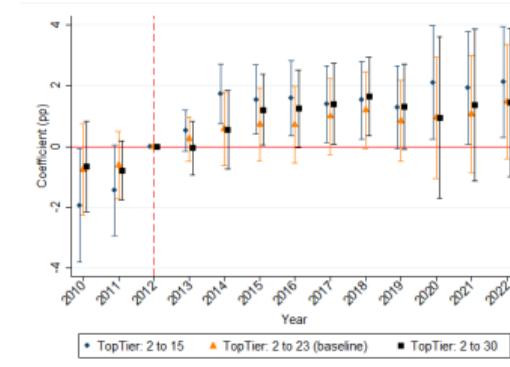

◀ Return

(a) Dropout Rate

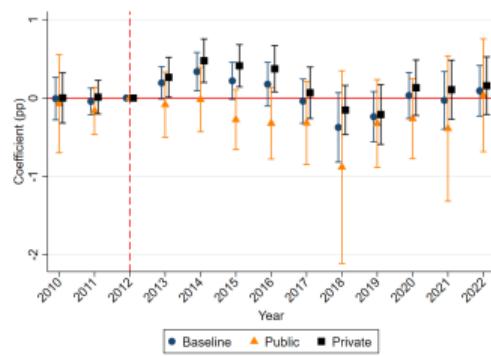

(b) % Special-Purpose HS

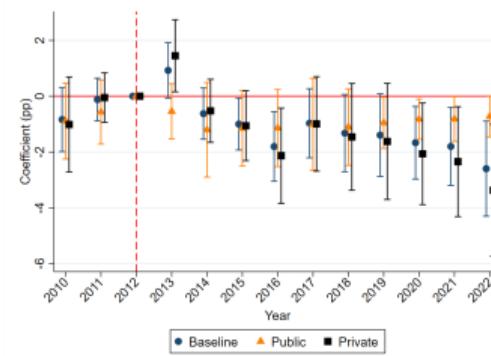

(c) Loan Borrower Rate

Adjusting Tier Cutoff

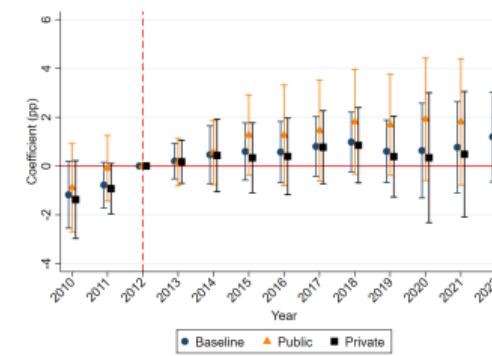

◀ Return

(a) Dropout Rate

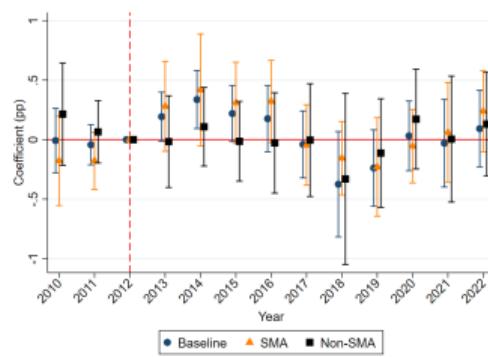

(b) % Special-Purpose HS

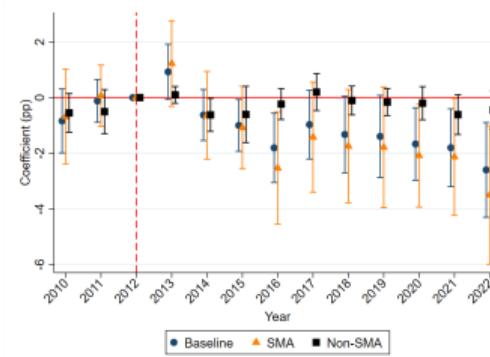

(c) Loan Borrower Rate

Heterogeneous Effects by Ownership

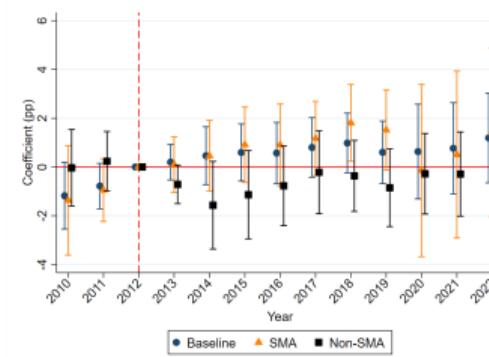

[◀ Return](#)

(a) Dropout Rate


(b) % Special-Purpose HS


(c) Loan Borrower Rate

Heterogeneous Effects by College Location


◀ Return

(a) Dropout Rate

(b) % Special-Purpose HS

(c) Loan Borrower Rate

Alternative Explanations

- Interaction between the ED and RD? Requirements are quite different.
 - Two-thirds of seats are for the Early Decision, decreasing RD.
- Balloon effect from Science-focused colleges?
 - Findings little change with Foreign Language and International HS students, who rarely go to the science colleges.
- Other admission policies changes discriminating students from selective HS.
 - No incentive to do that. Can't find any evidence.