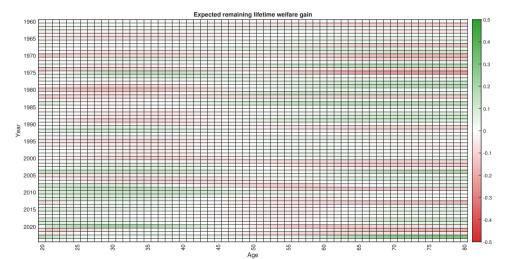
The redistributive power of business cycle fluctuations

Marcin Bielecki (University of Warsaw & National Bank of Poland)
Michał Brzoza-Brzezina (SGH Warsaw School of Economics & National Bank of Poland)
Marcin Kolasa (SGH Warsaw School of Economics & International Monetary Fund)

ASSA 2026 Annual Meeting January 2-5, 2026

Usual disclaimer applies

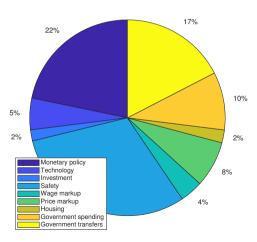
Motivation

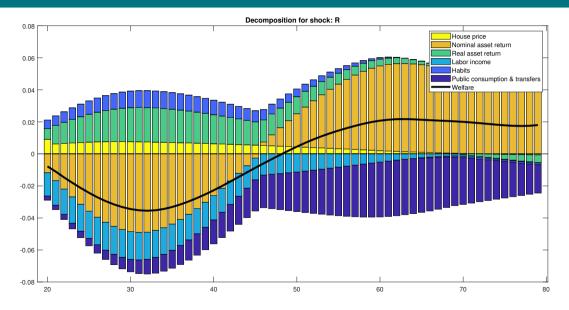

- · Growing interest in redistribution
- Missing: systematic view on redistribution due to business cycle fluctuations
- Questions:
 - · How do business cycle fluctuations redistribute across generations?
 - · How large is this redistribution?

Model

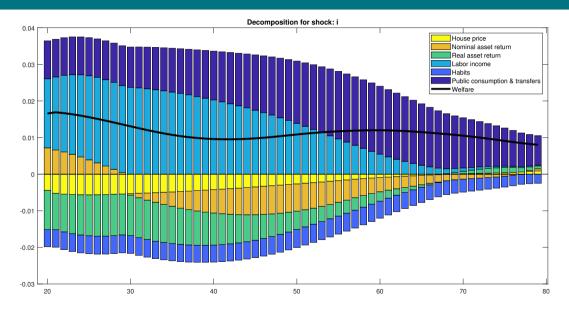
- Mix of life-cycle and business cycle model:
- 80 cohorts of overlapping generations...
- · ... plus sticky prices, sticky wages etc...
- · ... monetary & fiscal policy ...
- · ... and 9 standard business cycle shocks.
- Calibrated to match US demographic and asset holding statistics.
- Estimated on US business cycle data 1960-2024.

Welfare gains/losses over the business cycle

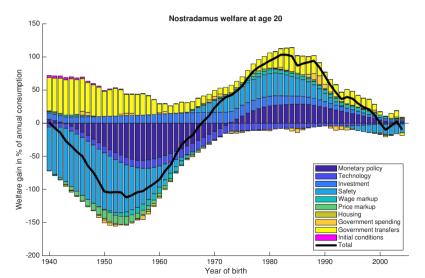

- 1. Most cycles redistribute
- 2. Annual gains/ losses are large


1. Where does redistribution come from?

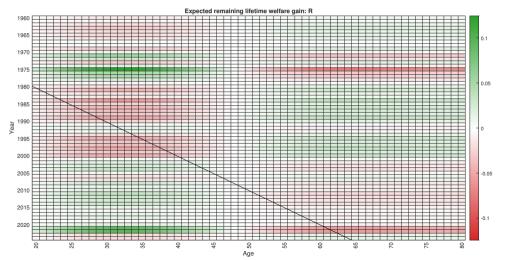
• Safety and monetary policy shocks are most important sources of redistribution


Average contribution of shocks to redistribution of welfare gain

Redistributive shock: monetary policy shock



Egalitarian shock: investment shock


2. Do gains/losses net out over lifetimes?

• "Nostradamus welfare" at 20: all future prices and aggregate allocations are known

Why not?

- Positive and negative shocks do not cancel out in finite sample
- Even 2 symmetric shocks may affect welfare!

Conclusions

- Business cycles redistribute welfare across generations (quite heavily)
- Effects do not cancel out over typical lifetime first order effects matter!
- Safety and monetary policy shocks are most important
- And much more in the paper...

Additional slides

Households

• A j-aged household ι maximizes

$$U_{j,t}(\iota) = \mathbb{E}_t \sum_{i=0}^{J-j} \beta^i \frac{N_{j+i,t+i}}{N_{j,t}} \begin{pmatrix} (1-\varrho) \log(c_{j+i,t+i}(\iota) - \varrho c_{j+i,t+i-1}) + \frac{g}{c_{j+i}} \log(g_{t+i}) \\ -\phi_{j+i} \frac{\ell_{j+i,t+i}(\iota)^{1+\varphi}}{1+\varphi} + \psi_{j+i} \varepsilon_{t+i}^{h} \log(h_{j+i+1,t+i+1}) \\ +\zeta_{j+i} \varepsilon_{t+i}^{b} \log(1+b_{j+i+1,t+i+1}) \end{pmatrix}$$

Subject to budget constraint

$$\begin{aligned} c_{j,t} + p_{h,t} \left[h_{j+1,t+1} - (1 - \delta_h) \, h_{j,t} \right] + p_{k,t} \left[k_{j+1,t+1} - (1 - \delta_k) \, k_{j,t} \right] + b_{j+1,t+1} \\ &= (1 - \tau) z_j w_t \ell_{j,t} + r_t^k k_{j,t} + f_{j,t} + \frac{R_{t-1} b_{j,t}}{\pi_t} + t_{j,t} + beq_t \end{aligned}$$

- Labor unions set nominal wages subject to Calvo friction and cost-push shocks $arepsilon_t^w$

Producers

Final goods aggregated from differentiated intermediate products

$$y_t = \left[\int y_t(f)^{\frac{1}{\mu_p}} \, \mathrm{d}f \right]^{\mu_p}$$

Intermediate goods firm f produces a differentiated product

$$y_t(f) = \exp(\varepsilon_t^z)k_t(f)^\alpha \ell_t(f)^{1-\alpha} - \Phi$$

Maximizes profits

$$p_t(f)y_t(f) - \exp(\varepsilon_t^p) \left(w_t \ell_t(f) + r_{k,t} k_t(f) \right) + t_t^f$$

- Staggered price setting (Calvo)
- Capital producers are subject to investment adjustment cost

$$(1+n)k_{t+1} = (1-\delta_k)k_t + \exp(\varepsilon_t^i) \left[1 - S\left(\frac{i_t}{i_{t-1}}\right)\right] i_t$$

Fiscal and monetary authority

• Collects labor income tax, issues debt, spends on transfers and public consumption

$$(1+n) b_{t+1}^g = \frac{R_{t-1}}{\pi_t} b_t^g + g_t + t_t - \tau w_t h_t$$

· Exogenous spending

$$g_t = g \exp(\varepsilon_t^g)$$

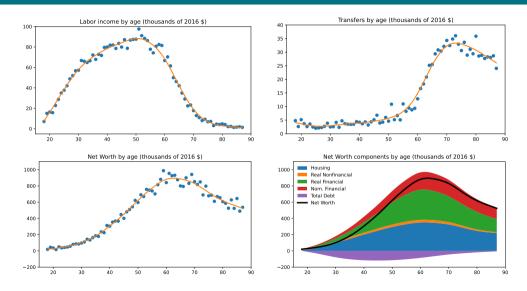
Fiscal rule

$$\frac{t_t}{t} = \left(\frac{t_{t-1}}{t}\right)^{\gamma_t} \left(\frac{b_t^g}{b^g}\right)^{-\eta} \exp(\varepsilon_t^t)$$

Taylor rule

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R}\right)^{\gamma_R} \left[\left(\frac{\pi_t}{\pi}\right)^{\gamma_\pi} \left(\frac{y_t}{y}\right)^{\gamma_y} \right]^{1-\gamma_R} \exp(\varepsilon_t^r)$$

Calibration and estimation


Calibration

- Life-cycle profiles calibrated to demographic and distributional data (SCF)
- Steady-state ratios calibrated to sample means

Estimation

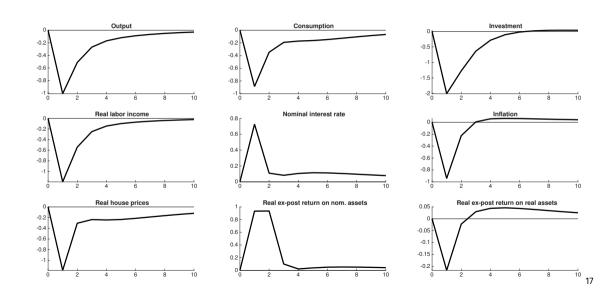
- US aggregate cyclical data (1960-2024):
 - GDP, consumption, investment, real hourly wage, hours worked, inflation, nominal interest rate, public debt to GDP, real house price
- Full-information Bayesian estimation with priors from DSGE literature

Life-cycle profiles

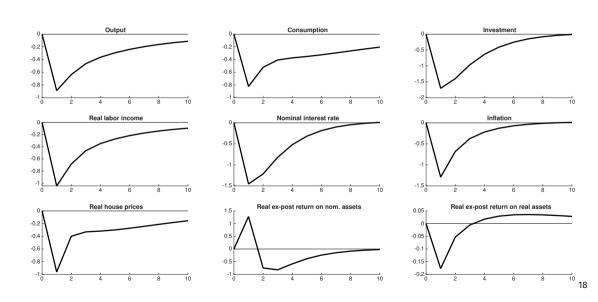
Welfare decomposition by channels

• Totally differentiate the indirect utility function wrt. all arguments (house prices, return on nominal assets, return on equity, etc.)

$$dWG_{j,0}(\iota) = \mathbb{E}_0 \sum_{s=0}^{J-j} \frac{\partial WG_{j,0}(\iota)}{\partial p_{h,s}} dp_{h,s} + \dots$$


For example, house price effect is (using envelope theorem)

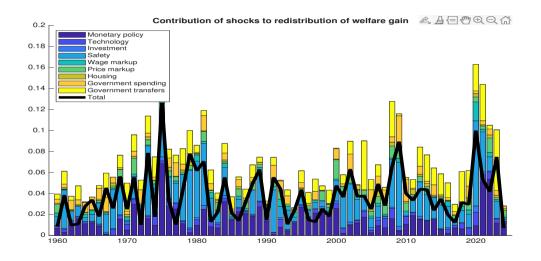
$$\sum_{s=0}^{J-j} \frac{\partial WG_{j,0}(\iota)}{\partial p_{h,s}} dp_{h,s} = u_j^c \sum_{s=0}^{J-j} (1+r)^{-s} [(1-\delta_h)h_{j+s-1} - h_{j+s}] dp_{h,s}$$


Variance decomposition

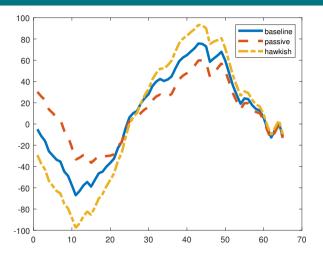
Variable	Contribution of shock (in %)								
	ε_z	ε_i	ε_p	ε_w	ε_h	ε_b	ε_r	ε_g	ε_t
Output	10	7	4	45	0	19	14	1	0
Private consumption	10	8	5	41	0	22	13	1	1
Investment	9	15	2	46	0	14	13	1	0
Real labor income	4	6	22	27	0	21	18	1	0
Real house price	7	4	4	26	36	11	12	1	0
Inflation	10	2	7	8	0	50	21	1	2
Nominal interest rate	5	3	4	8	0	67	9	1	3
Real return on nominal assets	12	3	10	7	0	45	23	1	1
Real return on real assets	28	7	8	43	0	6	8	0	0
Public debt	2	3	3	16	0	4	13	3	57
Consumption of 20 yo	10	7	5	43	0	14	19	1	1
Consumption of 40 yo	10	7	5	43	0	12	22	1	0
Consumption of 60 yo	9	7	4	41	0	24	12	1	1
Consumption of 80 yo	5	5	4	20	0	29	8	2	27

IRF: Monetary policy shock

IRF: safety shock

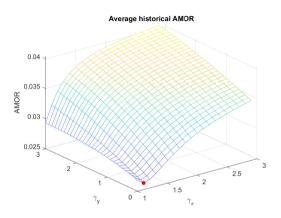


1. Why do business cycles redistribute?

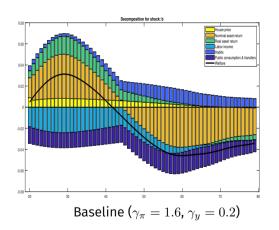

- Which shocks/channels are most important for redistribution?
- Amount of redistribution calculated as:

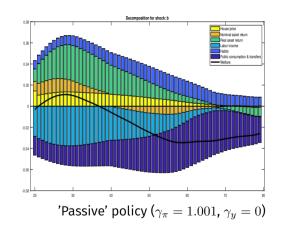
$$AMOR_t = \sum_{j} \frac{N_{j,t}}{N_t} \left\| WG_{j,t} - \sum_{j} \frac{N_{j,t}}{N_t} WG_{j,t} \right\|$$

Amount of redistribution over time



"Nostradamus welfare" and systematic monetary policy

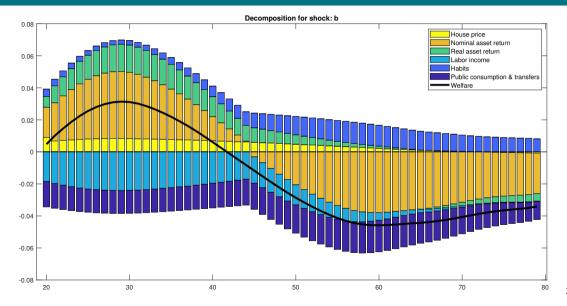

Note: no monetary shocks


Systematic monetary policy and redistribution

 Active response to major fluctuations => high volatility of return on nominal assets (despite lower volatility of inflation)

Redistribution via safety shock

How do channels contribute to redistribution?


Dominant role of nominal asset returns

2nd order effects

- Literature on costs of business cycle fluctuations following Lucas:
 - How much would an agent be willing to pay to avoid income risk?
 - Typically based on models with infinitely lived agents (1st order effects net out)
 - Concentrates on 2nd order (volatility) effects
 - Costs are typically found small
- Our model: how much would a 20-year old pay to avoid the income risk:
 - Our model: equivalent of 1.9% of lifetime consumption
 - 1.3% in comparable representative agent model

Redistributive shock: safety (bond preference) shock

