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Motivation

o Global supply chains have drawn renewed attention from COVID-19 disruptions to the Red Sea crisis

and rising geopolitical fragmentation.
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Motivation

o What are the causal effects of supply chain disruptions?
o How can we measure the state of the global supply chain?
» Shipping prices, NY Fed’s GSCPI, etc.
o How do supply chain shocks differ from other shocks in theory?

> Aggregate demand, productive capacity, etc.

o Can we quantify their contribution to inflation before, during, and after COVID-197
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Contributions

o A new spatial clustering algorithm that transforms satellite data on container ships into a

high-frequency measure of port congestion applicable to major ports worldwide.
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Contributions

o A new spatial clustering algorithm that transforms satellite data on container ships into a

high-frequency measure of port congestion applicable to major ports worldwide.

o A novel and simple analytical framework for studying supply chain disruptions, capturing the

coexistence of upstream economic slack and downstream supply scarcity.

©

A causality assessment using SVARs and LPs that integrates our congestion indices with

theory-predicted sign restrictions and domain-knowledge-based zero restrictions on structural shocks.

©

A state-dependence analysis examining the interaction between supply chain disruptions and the

effectiveness of monetary policy in controlling inflation and output —Not today.
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Road Map

@ Measuring the State of the Global Supply Chain



Why Containerized Trade?

o We measure the state of the global supply chain by estimating congestion at container ports.
» Containerized trade ~ 46% of world trade;

» For the U.S., container shipping accounts for > 50% of trade by weight and ~ 30% by value;
» Computer chips (by air) + motherboards/hard drives (by sea) = computers.

Sign Restrictions Zero Restrictions

Bai, Ferndndez-Villaverde, Li, Zanetti

5/50



Why Containerized Trade?

o Containerized shipping features two short-run frictions that work in our favor:

» Economic: service contracts fix invoiced freight rates for at least a one-month horizon, keeping the
“reservation” transportation cost rigid when profitability is unchanged;
» Operational: fixed rotations, berth windows, and alliance schedules make arrivals rigid, with adjustments

only every 3—-6 months.

Sign Restrictions Zero Restrictions
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Anchorage vs. Berth

o In containerized trade, seaports serve as international hubs for freight collection and distribution.

o Port congestion: a container ship must first moor in an anchorage within the port (random areas to

lower anchors) before docking at a berth (designated spots to load/unload cargo).

Figure: Anchorage. Figure: Berth.
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Why Port Congestion?

@ Before the pandemic, port waits lasted only a few hours, but COVID-19 disruptions extended them to
2—3 days at major ports.

@ = 80% of world trade is shipped indirectly, and the average shipment stops at 5 additional ports

before reaching its destination.
® The industry is surprisingly concentrated, with only 5,589 container ships worldwide, of which roughly

500 belong to the larger size classes.

MSC Loreto
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Why Port Congestion?

@ Before the pandemic, port waits lasted only a few hours, but COVID-19 disruptions extended them to
2—3 days at major ports.

@ = 80% of world trade is shipped indirectly, and the average shipment stops at 5 additional ports

before reaching its destination.

® The industry is surprisingly concentrated, with only 5,589 container ships worldwide, of which roughly

500 belong to the larger size classes.

= Even mild congestion has tremendous financial and logistical consequences.

MSC Loreto
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Estimating Port Congestion

o We use movement data from container ships via the Automatic Identification System (AIS).

» A real-time satellite tracking system with virtually no measurement error, mandated by the International
Maritime Organization (IMO), ensuring compliance across the global shipping industry;

» Each data entry includes the vessel’s IMO number, timestamp, current draft, speed, heading, and
geographical coordinates;

» The AIS updates information as frequently as every two seconds.

o Machine learning allows us to process spatial-temporal data from container ships at the top 50

container ports worldwide from January 2016 to March 2025.

AIS Transceiver
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Sample AIS Data

Dongji

Figure: First 50,000 AIS Records in the Port of Ningbo-Zhoushan Since January 1, 2020.
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A Machine Learning Spatial Clustering Algorithm

@ Data preprocessing and mooring area
identification:
» Noise elimination;
» Frequency reduction.
@ Anchorage and berth identification:
> Iterative approach for generalized and suitable
parameter setting;
» Inclusion of multiple attributes: geographical

coordinates, headings, and timestamps.
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Granular Information in the AIS Data

Figure: Headings at an Anchorage. Figure: Headings at a Berth.
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Ningbo-Zhoushan

Zhenhai

/

Figure: Anchorages. Figure: Berths.
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From Identification to Aggregation

Identifying Anchorages & Berths

@ Map the geographical boundaries of anchorages and berths for the top 50 container ports ().
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From Identification to Aggregation

Counting Delayed Ships

@ Count the number of ships at each port p that first moor in an anchorage before docking at a berth

at a monthly frequency (Delayed,, ;).
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From Identification to Aggregation

Normalization

@ Calculate the congestion rate for each port p by dividing the number of delayed ship visits by the total
number of ship visits (Delayed, , + Undelayed, ,),
Delayed,, ;

Congestion,, , = Vp € P.

- Delayed,, , + Undelayed,, ,’
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From Identification to Aggregation

Aggregation

@ Calculate the Average Congestion Rate (ACR:), weighted by the relative number of ship visits,

ACR, — Z Delayed,, ; + Undelayed,, ,

- Congestion
Zpé@ (Delayedw + Undelayedpyt> g Pt

PEP
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Congestion at Individual Ports
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Figure: Congestion Rates at Major Global and U.S. Container Ports.
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Average Congestion Rate

Bai,

Declined before 2018 and bottomed near 25% by

mid-2020 after global port upgrades.
Surged to 37% in June 2021 amid COVID-19.

Stayed high through 2022, then normalized
around 30% by mid-2023.

Rose again in 2024 due to Red Sea and Panama
Canal disruptions, before dropping below 25% in
early 2025.
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Why the ACR Index?

o Identification of supply chain shocks = SVARs or LPs with macro aggregates

Operational Rigidity ACR & MP Shock ACR & Oil Price Back
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Why the ACR Index?

o Identification of supply chain shocks = SVARs or LPs with macro aggregates

o The ACR index provides a measure that tracks the flow of tradable goods worldwide with virtually

no measurement error.

Operational Rigidity ACR & MP Shock ACR & Oil Price Back
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Why the ACR Index?

o Identification of supply chain shocks = SVARs or LPs with macro aggregates

+ ACR

o However, ACR captures a broad range of factors affecting the global supply chain beyond disruptions

in goods transportation (e.g., demand shifts, capacity constraints).

Operational Rigidity ACR & MP Shock ACR & Oil Price Back
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Why the ACR Index?

o Identification of supply chain shocks = SVARs or LPs with macro aggregates
+ ACR

+ theory-predicted sign restrictions
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Why the ACR Index?

o Identification of supply chain shocks = SVARs or LPs with macro aggregates
+ ACR

+ theory-predicted sign restrictions

o Short-run operational rigidities in container shipping = ACR will not immediately respond to demand
or capacity shocks within the first month.
Operational Rigidity ACR & MP Shock ACR & Oil Price Back
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Why the ACR Index?

o Identification of supply chain shocks = SVARs or LPs with macro aggregates
+ ACR
+ theory-predicted sign restrictions

+ domain-knowledge-based zero restrictions.

Operational Rigidity ACR & MP Shock ACR & Oil Price Back
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Road Map

@ A Model of the Global Supply Chain



A Model of the Global Supply Chain

o Producers:

» Exogenous unit mass;

» Produce goods with capacity determined by a fixed-factor endowment [;

» Ship goods subject to idiosyncratic transportation costs z;

» Supply goods to retailers at a wholesale price r, but matching frictions prevent full capacity utilization.
o Retailers:

» Endogenous measure;

» Purchase goods by visiting producers at a fixed cost p, but not all visits result in a match;

» Resell goods to the representative household at price p.
o Representative household:

» Consumes goods and holds money m;

» Moves goods and owns firms.
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Matching Process

o The matching function determines the number of meetings 7z between producers and retailers:
_ e 1
m = (ng +ZU€) s,
where zy and iy: numbers of unmatched producers and retailers, respectively; & > 0: elasticity of
substitution between them.

o Product market tightness 6 is defined as:

o Tightness 6 determines the matching probabilities for producers and retailers:

O =2 =409 E, g0 =" =0t
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Transportation Cost

o Producers pay an idiosyncratic per-unit transportation cost to ship goods to retailers.
o Households receive these payments for transporting goods.

o Each period, producers draw a transportation cost z from a log-normal distribution G(z):

G(z) = (I)<1nz7—'y) ,

o
where ®(-): standard normal CDF.
o A reservation transportation cost z exists, above which matches are unprofitable.

o Matches with z > z are severed, while those with z < z continue.
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Producers

o The value of a matched producer, Xs(z), is given by:
Xum(z)=(r(z) —2) 1+ BE, [max (XM(Z')7 XU)] ,

where r(z): endogenous wholesale price; z: transportation cost; 3: discount factor; z’: next period’s

transportation-cost draw.

o The value of an unmatched producer, Xy, satisfies:
Xy = BF(0)E.: [max (Xar(), Xu)] + B[1 - £(6)] Xu,

where f(0): probability that a producer meets a retailer.
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Retailers

o The value of a matched retailer, Ia(z), is given by:
In(2) = (p—r(2))l+ BE, [max (IM(Z')7 IU)] ,

where p: endogenous retail price.

o The value of an unmatched retailer, I/, satisfies:
Iy = —pl + Bq(0)E. [max (In (), Iv) | + B[1 - q(0)] v,

where p: per-unit fixed cost paid during each visit; ¢(6): probability that a retailer meets a producer.

o Free entry drives the value of an unmatched retailer to zero in equilibrium:

Iy =0.
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Nash Bargaining

o Nash bargaining divides the total surplus from a match between the producer and the retailer.

©

The total surplus is:
S(Z) = X]u(z) — Xv + IM(Z) —Iy.
o The producer receives a constant share n of the surplus, while the retailer receives the remaining share

1 — 7, implying:
nlIm(z) = Iv] = (1 —n) [Xm(z) — Xv].

o The wholesale price that splits the surplus according to Nash bargaining is:

r(z) =n(p+pf) + (1 —n)z.
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Match Separation and Creation

o Because X (2) + In(2) is strictly decreasing in z € (0, +00), there exists a cutoff transportation cost z

such that matches with z > z are severed and those with z < Z continue. At Z, total surplus satisfies:
S(z) =0.

o The match separation condition links price p, reservation cost z, and market tightness 0:

/

F(p,z,0) = (p— 2)l + (1 — nf(0))BE., [S(z)] =0,

where E ./ [S(z/)] :/ S(2")dG(2).
0
o Using the free-entry condition Iy = 0, the match creation condition is:

pl

e [51)] =0

H(z,0) =
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Aggregate Supply

©

Aggregate supply equals the quantity of goods traded by producers and retailers that survive

separation, given productive capacity .

o The law of motion for matched producers:
xlj\/[ = G(E)l‘]\{ + f(@)G(E)IU
o Using zar + zuy = 1, this becomes:

2h = FO)G(2) + [G(2) - FO)G()] aur.

©

Aggregate supply is the output of matched producers for a given capacity:

CS(E, 9) = .TM(E, 9) l.
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Representative Household

o The representative household derives utility from consuming goods and holding real money balances:

e—1
m X &=t 1 m\ °
ule,— | =—c¢ +——| — s
( p> 1+x 1+x<p>

where x > 0: taste for consumption over money; £ > 1: elasticity of substitution between ¢ and m/p.

o Budget constraint:

z z
pc+m < I +pes(z,0) — pliv —/ 2'cs(2,0) dG(2) +/ 2'cs(2,0)dG(2") .
~— o o
Money Endowment Profits of Producers & Retailers Transportation Income

o Optimality condition:
1

X i_ 1 (m)
1+ T 14x\p

o=
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Aggregate Demand

o Aggregate demand is the level of consumption that maximizes utility at a given price when the money

market clears.
o Substituting m = p in the household’s optimality condition gives:

w
calp) =x"~,
p

which is strictly decreasing and convex in p for p > 0.
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General Equilibrium

o General equilibrium requires that both the upstream (producer—retailer) and downstream

(retailer—household) markets clear simultaneously.

Definition 1

General equilibrium is characterized by a price p, a reservation transportation cost z, and a product

market tightness 0 such that the match separation and creation conditions hold simultaneously:

F(p,z,0) =H(z,0) =0,

and the retailer—household market clears:

¢s(2,0) = ca(p),

where aggregate supply cs(Z,0) evolves according to the law of motion for matched producers.
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Steady State: Core Relationships

o We focus on the steady state where the number of matched producers is constant, 7, = .

o The steady-state share of matched producers:

z1(2,0) =

(4]

Steady-state aggregate supply:

f(0)G(2)

(2,0) = 251 (2,0) 1 = 1— G + f(0)GE)

©

Comparative statics of the steady state identify the effects of structural shocks in our empirical analysis.
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Steady State: Definition and Existence

Definition 2
The steady state of the economy consists of a price p, a reservation transportation cost z, and a
product market tightness 6 that jointly satisfy the match separation condition, the match creation

condition, and the retailer—household market-clearing condition:

F(p,z,0) = (p— 2)l + (1 — nf(0))BE.. [S(z')] =0,

H(z,0) = % — (1—n)BE.s [S(z)] =0,
S8 (= _ f(e)G(Z) _ E[L _
¢ (2,0) = -GG 1 )G l=x b ca(p).
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29/50



Graphical Representation of the Steady State
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Figure: Aggregate Supply—Demand and Match Separation—Creation.

Analytical Properties of Aggregate Supply
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Comparative Statics

o We study how macro aggregates respond to (unanticipated) adverse shocks when the economy is
initially at the steady state:
> Aggregate demand: lower money supply (u) or weaker consumption preference (x);
» Productive capacity: smaller fixed-factor endowment (1);
» Supply chain: higher transportation costs (v in G(+)).
o Numerical exercises show that the transition dynamics are consistent with the identification
restrictions:
» Convergence to the new steady state occurs within a one-month horizon;

» The adjustment is monotonic.
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Aggregate Demand Shock

l
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/ - T
0 ¢ c* l 0 Zmin 2’ Z*

Figure: Money Supply | or Taste for Consumption J.
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Productive Capacity Shock

—* =/

0 Zmin z Zz

Figure: Productive Capacity |.
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Supply Chain Shock

0 5min lenin zZ \=Z )
Figure: Transportation Costs 7.

Bound on Upstream Slackening
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Theory-Predicted Sign Restrictions

Effects On:

Consumption  Price Reservation Product ~ Wholesale Spare

Adverse Shock To: (or Output) Transportation Market Price Capacity
Cost Tightness
¢ P z 0 r l—c

Aggregate Demand (u | or x |) - — - - — +
Productive Capacity (I ) — + + + + _
Assuming sticky z in short-run,
Supply Chain (v 1) - + 0 _ + +
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A SVAR Model with Sign and Zero Restrictions

o We examine the causal effects of global supply chain disruptions using an SVAR framework following

Rubio-Ramirez et al. (2010) and Arias et al. (2018):

Yy Ao =z Ay +e, 1<t<T.

o The model includes six endogenous variables:
@ U.S. real PCE;
@ U.S. PCE chain-type price index;
@ Spare capacity;
@ Product market tightness;
® U.S. import price;
©® ACR.

o All series are seasonally adjusted. The sample spans January 2016 to March 2025.
Setting Up the SVAR

Bai, Ferndndez-Villaverde, Li, Zanetti 36/50



Spare Capacity and Product Market Tightness

o We compute the average spare capacity rate of the top five exporters to the U.S., weighted by U.S.
goods imports from each country in 2016:

Import,
42016 . (1 - CapacityUtilizationi’t) ,

SpareCapacityRate, = Z [Z

pyd ImportL2016

i€%
where € = {Mexico, Canada, China, Germany, Japan}.

o We measure product market tightness as the ratio of total U.S. manufacturers’ new orders to the

import-weighted average spare capacity of the same trading partners:

ManufactureNewOrder;

Tightness, =
1ghiness, SpareCapacityDollar,
Import; 1P;
SpareCapacityDollar, = E [ PO 2016 . (C - UZ:I' - — IPM)] .
pyd Zie%, Import; 5916 apacity Utilization, ,
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Identification Restrictions

o An adverse aggregate demand shock leads to a negative response of real PCE, the PCE price
index, product market tightness, and the import price index, as well as a positive response of spare

capacity at k = 1. The ACR index does not respond at k = 1.

o An adverse productive capacity shock leads to a negative response of real PCE and spare
capacity, and a positive response of the PCE price index, product market tightness, and the import

price index at k = 1. The ACR index does not respond at k = 1.

o An adverse supply chain shock leads to a negative response of real PCE and product market

tightness, and a positive response of the PCE price index, spare capacity, and the ACR index at k = 1.

Theory-Predicted Sign Restrictions Domain-Knowledge-Based Zero Restrictions
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Estimation Details

©

We use two lags in the baseline specification; results are robust to longer lag lengths.

©

Real PCE, the PCE price index, product market tightness, and the import price index enter the SVAR

in log points, while spare capacity and the ACR index enter in percentages.

o Estimation is Bayesian, with a Normal-Generalized-Normal (NGN) prior distribution over { Ao, A }.

©

We verify robustness along several dimensions, including the use of monthly inflation instead of price

levels, checks for invertibility, variable substitutions, and estimation using the prior robust approach.
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Response to an Aggregate Demand Shock

Real PCE: Aggregate 0 PCE Price: Aggregate Spare Capacity
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Figure: IRFs of U.S. Variables to a One-S.D. Adverse Demand Shock.
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Response to a Productive Capacity Shock
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Figure: IRFs of U.S. Variables to a One-S.D. Adverse Capacity Shock.
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Response to a Supply Chain Shock
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Figure: IRFs of U.S. Variables to a One-S.D. Adverse Supply Chain Shock.
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Which Shock Matters?
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Figure: Forecast Error Variance Decompositions from the SVAR.
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What Drove U.S. Inflation?
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Figure: Historical Decomposition of U.S. Half-on-Half Headline PCE Inflation.
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Comparing Price IRFs Across Proxies
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Comparing Price FEVDs Across Proxies
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Conclusion

o We estimate the causal effects of global supply chain disruptions —stagflationary, generating

upstream spare capacity while slackening the downstream market.

o This is achieved by constructing a new index, developing a novel theory, and integrating them with

state-of-the-art methods for assessing causality in time series.

o Far from being just a postmortem of what happened during the COVID-19 pandemic, our analysis

distills important lessons for both the present and the future.
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Public Goods and Extensions

o We are happy to share the following datasets upon request:
» Average Congestion Rate (ACR);
» Average Congestion Time (ACT);
» Individual port congestion indices.
o We are currently working on two extensions:
» “Shipping to America”;

» “Dynamic Prioritization Failures in Maritime Logistics: Evidence from the Panama Canal”.
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Bypassing the Suez Canal
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Figure: 26/10/2023 — 26/12/2023. Figure: 27/12/2023 — 27/02/2024.
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Taking the Cape Route Instead

Cape Cape
of Good Hope of Good Hope
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Figure: 26/10/2023 — 26/12/2023. Figure: 27/12/2023 — 27/02/2024.
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The World’s Largest Container Ship

Figure: MSC Loreto.

Back
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AIS Transceiver

Bai, Ferndndez-Villaverde, Li, Z

Raymarine AIS 4000 Class A AIS
Transceiver

RAYMARINE AIS 4000 Class A AIS - Designed for commercial
vessels, luxury yachts, and SOLAS high-seas shipping, the AIS4000
Automatic Identification System (AIS) transceiver delivers robust
Class A AlS network capability and is engineered to withstand the
harsh weather, shock, and vibration of any vessel class. Power
supply: 12 to 24 VDC. Frequency: 156.025 MHz to 162.025

MHz. E70601 Free US Shipping.

Reference: E70601 In Stock: 1

Reg Price: $2,799.99

What is Citimarine Plus Membership?
Click here for details

Figure: Example of an AIS Transceiver.
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Los Angeles and Long Beach

el ] LONG BEACH
Figure: Sample AIS Data. Figure: Anchorages. Figure: Berths.
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Rotterdam

Figure: Sample AIS Data. Figure: Anchorages. Figure: Berths.
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Singapore
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Figure: Sample AIS Data. Figure: Anchorages. Figure: Berths.
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Testing Short-Run Rigidity in Container Shipping: Setup

o We formally test whether the ACR index responds immediately to monetary policy shocks.

Estimation uses LPs:

©

ACRiyr = ag + B MPy + ug i1, 0< k<K,
where MP;: monthly orthogonalized Bauer-Swanson monetary policy surprise (FRB San Francisco).

o To smooth noisy estimates, we apply Smooth Local Projections (Barnichon and Brownlees, 2019) using

B-spline basis functions.

©

Standard errors are Newey—West adjusted to allow for serial correlation.

Bai, Ferndndez-Villaverde, Li, Zanetti 7/21



Testing Short-Run Rigidity in Container Shipping: Results

o On-impact response of ACR is near zero
= short-run rigidity.

o Medium-run decline = monetary tightening

gradually reduces port congestion.

o Confirms that policy effects on global shipping

are delayed, not immediate.

Bai, Ferndndez-Villaverde, Li, Zanetti
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Figure: IRF of ACR to a Monetary Policy Shock.
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Oil Price, Vessel Speed, and Port Congestion

o Fuel costs make up 50-60% of liner shipping expenses, and fuel use rises roughly with the cube

of vessel speed.

» A 1% rise in Brent price = vessel speed | by 0.022% (p = 0.004).
o Yet, port congestion shows no significant link to oil prices (p = 0.313, R* = 0.021).

o Interpretation: oil prices drive cost-based speed adjustments, not congestion, which is shaped by
scheduling rigidities and the “hurry up and wait” nature of port operations.
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Steady-State Aggregate Supply Schedule

Proposition 1

For any Z > Zmin satisfying / G(2")d2' = p/ (1 —n)B], define
0

p(2)=5—(1—nf(5))5/ G d, 2= (1-a@)"", a@ =0/ [ (1-mn) ﬂ/ >dz’].
0

Then the steady-state aggregate supply schedule p — c5°(p), represented by (p(z),cs®(Z)), satisfies:
@ p(z) is continuously differentiable and strictly increasing, implying a unique, smooth c3°(p);
@ lim c¢°(p) =0 and lim c;°(p) =1, where pmin = Zmin — p/(1 — 1n);

P—Pmin p—00

@ c2%(p) is strictly increasing and convergent as p — 0o;

@ Near pmin: convez if £ € (0,1), linear if £ > 1, concave for large p.

Back
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Bound on Upstream Slackening

o To ensure that the price increase does not overturn the immediate slackening in the upstream market
caused by a supply chain disturbance, we impose a bound on the response of product market tightness
0 to the cost parameter ~:
F
0, € [——”, 0) ,
Y FQ
where F, and Fy: partial derivatives of F(p, z,0;~) = 0 with respect to v and 6.

o This restriction limits the extent of upstream slack so that the price-feedback effect on match

separation does not dominate the direct effect of the shock.

o It guarantees the coexistence of a decline in upstream market tightness and a rise in the downstream
retail price.

Back
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Setting Up the SVAR

o The SVAR model can be written compactly as:
yéAO :.’.U;A++€;, Vte [lvT}v

where y;: an n x 1 vector of endogenous variables; x} = [yé,l T 1t]; e an n X 1 vector of
structural shocks; Ag: an n X n invertible matrix of parameters; Ay: an (nL 4 2) X n matrix of

parameters; L: lag length; T': sample size.
o Conditional on past information and initial conditions {yo,...,y1-1}, & ~ #(0, I,,).

o The matrices { Ao, A+} constitute the structural parameters of the model.

Back
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Extended U.S. SVAR: Sectoral Substitution and Energy

o We estimate an augmented eleven-variable SVAR, including:
» Real PCE and PCE prices for goods and services;
» Spare capacity, product market tightness, import price index, and ACR;
» WTI spot price, effective federal funds rate, and average hourly earnings.
o The model identifies three shocks:

» Sectoral substitution shock;
» Adverse oil price shock;

» Adverse supply chain shock.

o We keep the sample, lag length, deterministic terms, and priors the same as in the baseline specification.
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Identification Restrictions

o A sectoral substitution shock leads to a positive response of real PCE of goods, the PCE goods
price index, product market tightness, and the import price index, and a negative response of real PCE
of services, the PCE services price index, and spare capacity at k = 1. The WTI spot price and ACR
do not respond at k = 1.

o An adverse oil price shock leads to a negative response of real PCE of goods and spare capacity,

and a positive response of the PCE goods price index, product market tightness, the import price

index, and the WTI spot price at £k = 1. The ACR index does not respond at k = 1.

o An adverse supply chain shock leads to a negative response of real PCE of goods and product
market tightness, and a positive response of the PCE goods price index, spare capacity, and the ACR
index at K = 1. The WTI spot price does not respond at k = 1.
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What Drove U.S. Goods Inflation?
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Figure: Historical Decomposition of U.S. Half-on-Half PCE Goods Inflation.
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What Drove U.S. Services Inflation?
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Figure: Historical Decomposition of U.S. Half-on-Half PCE Services Inflation.
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Euro Area SVAR: Goods Demand and Energy

o Monthly sample: January 2016—-June 2024.
o Variables:
» Industrial production and HICP goods price index;
» Import-weighted spare capacity of China and U.S. (top 2 EA trading partners), product market tightness,
import price index, and ACR;
» Brent crude oil price and ECB deposit facility rate.
o The model identifies three shocks:
» Positive goods demand shock;
» Adverse oil price shock;
» Adverse supply chain shock.
o Identification uses the same lag length, deterministic terms, and priors as the U.S. model.
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Identification Restrictions

o A positive goods demand shock leads to a positive response of industrial production, the HICP
goods price index, product market tightness, and the import price index, and to a negative response of

spare capacity at k = 1. The Brent crude oil price and ACR do not respond at k = 1.

o An adverse oil price shock leads to a negative response of industrial production and spare capacity,
and to a positive response of the HICP goods price index, product market tightness, the import price

index, and the Brent crude oil price at kK = 1. The ACR index does not respond at k = 1.

o An adverse supply chain shock leads to a negative response of industrial production and product
market tightness, and to a positive response of the HICP goods price index, spare capacity, and the

ACR index at kK = 1. The Brent crude oil price does not respond at k = 1.
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What Drove EA Goods Inflation?
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Figure: Historical Decomposition of EA Half-on-Half HICP Goods Inflation.
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Comparing Goods Price IRFs Across Proxies
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Figure: PCE Goods Price Responses to a Supply Chain Shock.
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Comparing Goods Price FEVDs Across Proxies
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Figure: Posterior-Median FEVD Shares of PCE Goods Price Variance.
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