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Motivation

Global supply chains have drawn renewed attention from COVID-19 disruptions to the Red Sea crisis

and rising geopolitical fragmentation.

What are the causal effects of supply chain disruptions?

How can we measure the state of the global supply chain?
▶ Shipping prices, NY Fed’s GSCPI, etc.

How do supply chain shocks differ from other shocks in theory?
▶ Aggregate demand, productive capacity, etc.

Can we quantify their contribution to inflation before, during, and after COVID-19?
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Contributions

A new spatial clustering algorithm that transforms satellite data on container ships into a

high-frequency measure of port congestion applicable to major ports worldwide.

A novel and simple analytical framework for studying supply chain disruptions, capturing the

coexistence of upstream economic slack and downstream supply scarcity.

A causality assessment using SVARs and LPs that integrates our congestion indices with

theory-predicted sign restrictions and domain-knowledge-based zero restrictions on structural shocks.

A state-dependence analysis examining the interaction between supply chain disruptions and the

effectiveness of monetary policy in controlling inflation and output —Not today.
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Why Containerized Trade?

We measure the state of the global supply chain by estimating congestion at container ports.
▶ Containerized trade ≈ 46% of world trade;
▶ For the U.S., container shipping accounts for > 50% of trade by weight and ≈ 30% by value;
▶ Computer chips (by air) + motherboards/hard drives (by sea) ⇒ computers.

Containerized shipping features two short-run frictions that work in our favor:
▶ Economic: service contracts fix invoiced freight rates for at least a one-month horizon, keeping the

“reservation” transportation cost rigid when profitability is unchanged;
▶ Operational: fixed rotations, berth windows, and alliance schedules make arrivals rigid, with adjustments

only every 3–6 months.

Sign Restrictions Zero Restrictions
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Anchorage vs. Berth

In containerized trade, seaports serve as international hubs for freight collection and distribution.

Port congestion: a container ship must first moor in an anchorage within the port (random areas to

lower anchors) before docking at a berth (designated spots to load/unload cargo).

Figure: Anchorage. Figure: Berth.
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Why Port Congestion?

1 Before the pandemic, port waits lasted only a few hours, but COVID-19 disruptions extended them to

2–3 days at major ports.

2 ≈ 80% of world trade is shipped indirectly, and the average shipment stops at 5 additional ports

before reaching its destination.

3 The industry is surprisingly concentrated, with only 5,589 container ships worldwide, of which roughly

500 belong to the larger size classes.

⇒ Even mild congestion has tremendous financial and logistical consequences.

MSC Loreto
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Estimating Port Congestion

We use movement data from container ships via the Automatic Identification System (AIS).
▶ A real-time satellite tracking system with virtually no measurement error, mandated by the International

Maritime Organization (IMO), ensuring compliance across the global shipping industry;
▶ Each data entry includes the vessel’s IMO number, timestamp, current draft, speed, heading, and

geographical coordinates;
▶ The AIS updates information as frequently as every two seconds.

Machine learning allows us to process spatial-temporal data from container ships at the top 50

container ports worldwide from January 2016 to March 2025.

AIS Transceiver
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Sample AIS Data

Figure: First 50,000 AIS Records in the Port of Ningbo-Zhoushan Since January 1, 2020.
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A Machine Learning Spatial Clustering Algorithm

1 Data preprocessing and mooring area
identification:

▶ Noise elimination;
▶ Frequency reduction.

2 Anchorage and berth identification:
▶ Iterative approach for generalized and suitable

parameter setting;
▶ Inclusion of multiple attributes: geographical

coordinates, headings, and timestamps.

Start


End


Is a stable result
obtained?


Identify AIS observations
in a port


Remove noise & reduce
the data frequency


ST-DBSCAN


Get the range of berths
and anchorages based on

domain knowledge


AIS database


Berths and anchorages
database


First level


Iteration process


Merge clusters


IMA-DBSCAN


Second level


No


Yes


Figure: The IMA-DBSCAN Algorithm.
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Granular Information in the AIS Data

Figure: Headings at an Anchorage. Figure: Headings at a Berth.
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Ningbo-Zhoushan

Figure: Anchorages. Figure: Berths.

Los Angeles, Long Beach, Rotterdam, & Singapore
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From Identification to Aggregation

Identifying Anchorages & Berths Counting Delayed Ships Normalization Aggregation

1 Map the geographical boundaries of anchorages and berths for the top 50 container ports (P).

2 Count the number of ships at each port p that first moor in an anchorage before docking at a berth

at a monthly frequency (Delayedp,t).
3 Calculate the congestion rate for each port p by dividing the number of delayed ship visits by the total

number of ship visits (Delayedp,t + Undelayedp,t),

Congestionp,t ≡
Delayedp,t

Delayedp,t + Undelayedp,t

, ∀p ∈ P.

4 Calculate the Average Congestion Rate (ACRt), weighted by the relative number of ship visits,

ACRt =
∑
p∈P

[
Delayedp,t + Undelayedp,t∑

p∈P

(
Delayedp,t + Undelayedp,t

) · Congestionp,t

]
.
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Congestion at Individual Ports

Savannah, U.S.A

New York-New Jersey, U.S.A

Long Beach, U.S.A
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Rotterdam, The Netherlands

Tianjin, China

Hong Kong, S.A.R, China

Qingdao, China

Busan, South Korea

Guangzhou Harbor, China

Shenzhen, China

Ningbo-Zhoushan, China

Singapore

Shanghai, China
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Figure: Congestion Rates at Major Global and U.S. Container Ports.
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Average Congestion Rate

Declined before 2018 and bottomed near 25% by

mid-2020 after global port upgrades.

Surged to 37% in June 2021 amid COVID-19.

Stayed high through 2022, then normalized

around 30% by mid-2023.

Rose again in 2024 due to Red Sea and Panama

Canal disruptions, before dropping below 25% in

early 2025. 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
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Figure: ACR for January 2016 to March 2025.
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Why the ACR Index?

Identification of supply chain shocks = SVARs or LPs with macro aggregates

+ ACR

+ theory-predicted sign restrictions

+ domain-knowledge-based zero restrictions.

The ACR index provides a measure that tracks the flow of tradable goods worldwide with virtually

no measurement error.

However, ACR captures a broad range of factors affecting the global supply chain beyond disruptions

in goods transportation (e.g., demand shifts, capacity constraints).

Short-run operational rigidities in container shipping ⇒ ACR will not immediately respond to demand

or capacity shocks within the first month.

Operational Rigidity ACR & MP Shock ACR & Oil Price Back
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A Model of the Global Supply Chain

Producers:
▶ Exogenous unit mass;
▶ Produce goods with capacity determined by a fixed-factor endowment l;
▶ Ship goods subject to idiosyncratic transportation costs z;
▶ Supply goods to retailers at a wholesale price r, but matching frictions prevent full capacity utilization.

Retailers:
▶ Endogenous measure;
▶ Purchase goods by visiting producers at a fixed cost ρ, but not all visits result in a match;
▶ Resell goods to the representative household at price p.

Representative household:
▶ Consumes goods and holds money m;
▶ Moves goods and owns firms.
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Matching Process

The matching function determines the number of meetings m between producers and retailers:

m = (x−ξ
U + i−ξ

U )− 1
ξ ,

where xU and iU : numbers of unmatched producers and retailers, respectively; ξ > 0: elasticity of

substitution between them.

Product market tightness θ is defined as:

θ ≡ iU

xU
.

Tightness θ determines the matching probabilities for producers and retailers:

f(θ) = m

xU
= (1 + θ−ξ)− 1

ξ , q(θ) = m

iU
= (1 + θξ)− 1

ξ .
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Transportation Cost

Producers pay an idiosyncratic per-unit transportation cost to ship goods to retailers.

Households receive these payments for transporting goods.

Each period, producers draw a transportation cost z from a log-normal distribution G(z):

G(z) ≡ Φ
( ln z − γ

σ

)
,

where Φ(·): standard normal CDF.

A reservation transportation cost z̄ exists, above which matches are unprofitable.

Matches with z > z̄ are severed, while those with z ≤ z̄ continue.
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Producers

The value of a matched producer, XM (z), is given by:

XM (z) = (r(z) − z) l + βEz′
[
max

(
XM (z′), XU

)]
,

where r(z): endogenous wholesale price; z: transportation cost; β: discount factor; z′: next period’s

transportation-cost draw.

The value of an unmatched producer, XU , satisfies:

XU = βf(θ)Ez′
[
max

(
XM (z′), XU

)]
+ β [1 − f(θ)] XU ,

where f(θ): probability that a producer meets a retailer.
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Retailers

The value of a matched retailer, IM (z), is given by:

IM (z) = (p − r(z)) l + βEz′
[
max

(
IM (z′), IU

)]
,

where p: endogenous retail price.

The value of an unmatched retailer, IU , satisfies:

IU = −ρl + βq(θ)Ez′
[
max

(
IM (z′), IU

)]
+ β [1 − q(θ)] IU ,

where ρ: per-unit fixed cost paid during each visit; q(θ): probability that a retailer meets a producer.

Free entry drives the value of an unmatched retailer to zero in equilibrium:

IU = 0.
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Nash Bargaining

Nash bargaining divides the total surplus from a match between the producer and the retailer.

The total surplus is:

S(z) = XM (z) − XU + IM (z) − IU .

The producer receives a constant share η of the surplus, while the retailer receives the remaining share

1 − η, implying:

η [IM (z) − IU ] = (1 − η) [XM (z) − XU ] .

The wholesale price that splits the surplus according to Nash bargaining is:

r(z) = η (p + ρθ) + (1 − η)z.
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Match Separation and Creation

Because XM (z) + IM (z) is strictly decreasing in z ∈ (0, +∞), there exists a cutoff transportation cost z̄

such that matches with z > z̄ are severed and those with z ≤ z̄ continue. At z̄, total surplus satisfies:

S(z̄) = 0.

The match separation condition links price p, reservation cost z̄, and market tightness θ:

F(p, z̄, θ) = (p − z̄)l + (1 − ηf(θ))βEz′
[
S(z′)

]
= 0,

where Ez′
[
S(z′)

]
=

∫ z̄

0
S(z′) dG(z′).

Using the free-entry condition IU = 0, the match creation condition is:

H(z̄, θ) = ρl

q(θ) − (1 − η)βEz′
[
S(z′)

]
= 0.
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Aggregate Supply

Aggregate supply equals the quantity of goods traded by producers and retailers that survive

separation, given productive capacity l.

The law of motion for matched producers:

x′
M = G(z̄)xM + f(θ)G(z̄)xU .

Using xM + xU = 1, this becomes:

x′
M = f(θ)G(z̄) + [G(z̄) − f(θ)G(z̄)] xM .

Aggregate supply is the output of matched producers for a given capacity:

cs(z̄, θ) = xM (z̄, θ) l.
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Representative Household

The representative household derives utility from consuming goods and holding real money balances:

u

(
c,

m

p

)
= χ

1 + χ
c

ε−1
ε + 1

1 + χ

(
m

p

) ε−1
ε

,

where χ > 0: taste for consumption over money; ε > 1: elasticity of substitution between c and m/p.

Budget constraint:

pc + m ≤ µ︸︷︷︸
Money Endowment

+ pcs(z̄, θ) − ρl iU −
∫ z̄

0
z′cs(z̄, θ) dG(z′)︸ ︷︷ ︸

Profits of Producers & Retailers

+
∫ z̄

0
z′cs(z̄, θ) dG(z′)︸ ︷︷ ︸

Transportation Income

.

Optimality condition:
χ

1 + χ
c− 1

ε = 1
1 + χ

(
m

p

)− 1
ε

.
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Aggregate Demand

Aggregate demand is the level of consumption that maximizes utility at a given price when the money

market clears.

Substituting m = µ in the household’s optimality condition gives:

cd(p) = χε µ

p
,

which is strictly decreasing and convex in p for p > 0.
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General Equilibrium

General equilibrium requires that both the upstream (producer–retailer) and downstream

(retailer–household) markets clear simultaneously.

Definition 1
General equilibrium is characterized by a price p, a reservation transportation cost z̄, and a product

market tightness θ such that the match separation and creation conditions hold simultaneously:

F(p, z̄, θ) =H(z̄, θ) = 0,

and the retailer–household market clears:

cs(z̄, θ) = cd(p),

where aggregate supply cs(z̄, θ) evolves according to the law of motion for matched producers.
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Steady State: Core Relationships

We focus on the steady state where the number of matched producers is constant, x′
M = xM .

The steady-state share of matched producers:

xss
M (z̄, θ) = f(θ)G(z̄)

1 − G(z̄) + f(θ)G(z̄) .

Steady-state aggregate supply:

css
s (z̄, θ) = xss

M (z̄, θ) l = f(θ)G(z̄)
1 − G(z̄) + f(θ)G(z̄) l.

Comparative statics of the steady state identify the effects of structural shocks in our empirical analysis.
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Steady State: Definition and Existence

Definition 2
The steady state of the economy consists of a price p, a reservation transportation cost z̄, and a

product market tightness θ that jointly satisfy the match separation condition, the match creation

condition, and the retailer–household market-clearing condition:

F(p, z̄, θ) = (p − z̄)l + (1 − ηf(θ))βEz′
[
S(z′)

]
= 0,

H(z̄, θ) = ρl

q(θ) − (1 − η)βEz′
[
S(z′)

]
= 0,

css
s (z̄, θ) = f(θ)G(z̄)

1 − G(z̄) + f(θ)G(z̄) l = χε µ

p
= cd(p).
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Graphical Representation of the Steady State
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Figure: Aggregate Supply–Demand and Match Separation–Creation.

Analytical Properties of Aggregate Supply
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Comparative Statics

We study how macro aggregates respond to (unanticipated) adverse shocks when the economy is
initially at the steady state:
▶ Aggregate demand: lower money supply (µ) or weaker consumption preference (χ);
▶ Productive capacity: smaller fixed-factor endowment (l);
▶ Supply chain: higher transportation costs (γ in G(·)).

Numerical exercises show that the transition dynamics are consistent with the identification
restrictions:
▶ Convergence to the new steady state occurs within a one-month horizon;
▶ The adjustment is monotonic.
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Aggregate Demand Shock
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Productive Capacity Shock
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Supply Chain Shock
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Theory-Predicted Sign Restrictions

Effects On:

Adverse Shock To:

Consumption Price Reservation Product Wholesale Spare

(or Output) Transportation Market Price Capacity

Cost Tightness

c p z̄ θ r l − c

Aggregate Demand (µ ↓ or χ ↓) − − − − − +

Productive Capacity (l ↓) − + + + + −

Assuming sticky z̄ in short-run,

Supply Chain (γ ↑) − + 0 − ± +

Economic Rigidity Back
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A SVAR Model with Sign and Zero Restrictions

We examine the causal effects of global supply chain disruptions using an SVAR framework following

Rubio-Ramírez et al. (2010) and Arias et al. (2018):

y′
tA0 = x′

tA+ + ε′
t, 1 ≤ t ≤ T.

The model includes six endogenous variables:
1 U.S. real PCE;
2 U.S. PCE chain-type price index;
3 Spare capacity;
4 Product market tightness;
5 U.S. import price;
6 ACR.

All series are seasonally adjusted. The sample spans January 2016 to March 2025.

Setting Up the SVAR
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Spare Capacity and Product Market Tightness

We compute the average spare capacity rate of the top five exporters to the U.S., weighted by U.S.

goods imports from each country in 2016:

SpareCapacityRatet =
∑
i∈C

[
Importi,2016∑

i∈C
Importi,2016

·
(
1 − CapacityUtilizationi,t

)]
,

where C ≡ {Mexico, Canada, China, Germany, Japan}.

We measure product market tightness as the ratio of total U.S. manufacturers’ new orders to the

import-weighted average spare capacity of the same trading partners:

Tightnesst = ManufactureNewOrdert

SpareCapacityDollart

,

SpareCapacityDollart =
∑
i∈C

[
Importi,2016∑

i∈C
Importi,2016

·
(

IPi,t

CapacityUtilizationi,t

− IPi,t

)]
.
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Identification Restrictions

An adverse aggregate demand shock leads to a negative response of real PCE, the PCE price

index, product market tightness, and the import price index, as well as a positive response of spare

capacity at k = 1. The ACR index does not respond at k = 1.

An adverse productive capacity shock leads to a negative response of real PCE and spare

capacity, and a positive response of the PCE price index, product market tightness, and the import

price index at k = 1. The ACR index does not respond at k = 1.

An adverse supply chain shock leads to a negative response of real PCE and product market

tightness, and a positive response of the PCE price index, spare capacity, and the ACR index at k = 1.

Theory-Predicted Sign Restrictions Domain-Knowledge-Based Zero Restrictions
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Estimation Details

We use two lags in the baseline specification; results are robust to longer lag lengths.

Real PCE, the PCE price index, product market tightness, and the import price index enter the SVAR

in log points, while spare capacity and the ACR index enter in percentages.

Estimation is Bayesian, with a Normal–Generalized-Normal (NGN) prior distribution over {A0,A+}.

We verify robustness along several dimensions, including the use of monthly inflation instead of price

levels, checks for invertibility, variable substitutions, and estimation using the prior robust approach.
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Response to an Aggregate Demand Shock
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Figure: IRFs of U.S. Variables to a One-S.D. Adverse Demand Shock.
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Response to a Productive Capacity Shock
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Figure: IRFs of U.S. Variables to a One-S.D. Adverse Capacity Shock.
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Response to a Supply Chain Shock
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Which Shock Matters?
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What Drove U.S. Inflation?
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Comparing Price IRFs Across Proxies

ACR-based SVAR ⇒ larger and

sharper inflation responses.

Zero restrictions (k = 1) on

ACR/ACT/Trans-Pacific ACR

⇒ even sharper identification.

HARPEX, GSCPI, SDI ⇒

weaker and imprecise responses.
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Figure: PCE Price Responses to a Supply Chain Shock.
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Comparing Price FEVDs Across Proxies

Congestion indices ⇒ larger

price variance share from supply

chain disturbances.

Other proxies ⇒ variance

dominated by demand shocks.
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Conclusion

We estimate the causal effects of global supply chain disruptions —stagflationary, generating

upstream spare capacity while slackening the downstream market.

This is achieved by constructing a new index, developing a novel theory, and integrating them with

state-of-the-art methods for assessing causality in time series.

Far from being just a postmortem of what happened during the COVID-19 pandemic, our analysis

distills important lessons for both the present and the future.
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Public Goods and Extensions

We are happy to share the following datasets upon request:
▶ Average Congestion Rate (ACR);
▶ Average Congestion Time (ACT);
▶ Individual port congestion indices.

We are currently working on two extensions:
▶ “Shipping to America”;
▶ “Dynamic Prioritization Failures in Maritime Logistics: Evidence from the Panama Canal”.
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Bypassing the Suez Canal

Figure: 26/10/2023 – 26/12/2023. Figure: 27/12/2023 – 27/02/2024.
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Taking the Cape Route Instead

Figure: 26/10/2023 – 26/12/2023. Figure: 27/12/2023 – 27/02/2024.
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The World’s Largest Container Ship

Figure: MSC Loreto.

Back
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AIS Transceiver

Figure: Example of an AIS Transceiver.

Back
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Los Angeles and Long Beach

Figure: Sample AIS Data. Figure: Anchorages. Figure: Berths.

Bai, Fernández-Villaverde, Li, Zanetti 4/21



Rotterdam

Figure: Sample AIS Data. Figure: Anchorages. Figure: Berths.
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Singapore

Figure: Sample AIS Data. Figure: Anchorages. Figure: Berths.

Back
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Testing Short-Run Rigidity in Container Shipping: Setup

We formally test whether the ACR index responds immediately to monetary policy shocks.

Estimation uses LPs:

ACRt+k = αk + βk MPt + uk,t+k, 0 ≤ k ≤ K,

where MPt: monthly orthogonalized Bauer–Swanson monetary policy surprise (FRB San Francisco).

To smooth noisy estimates, we apply Smooth Local Projections (Barnichon and Brownlees, 2019) using

B-spline basis functions.

Standard errors are Newey–West adjusted to allow for serial correlation.
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Testing Short-Run Rigidity in Container Shipping: Results

On-impact response of ACR is near zero

⇒ short-run rigidity.

Medium-run decline ⇒ monetary tightening

gradually reduces port congestion.

Confirms that policy effects on global shipping

are delayed, not immediate.
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Figure: IRF of ACR to a Monetary Policy Shock.
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Oil Price, Vessel Speed, and Port Congestion

Fuel costs make up 50–60% of liner shipping expenses, and fuel use rises roughly with the cube
of vessel speed.
▶ A 1% rise in Brent price ⇒ vessel speed ↓ by 0.022% (p = 0.004).

Yet, port congestion shows no significant link to oil prices (p = 0.313, R2 = 0.021).

Interpretation: oil prices drive cost-based speed adjustments, not congestion, which is shaped by

scheduling rigidities and the “hurry up and wait” nature of port operations.

Back
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Steady-State Aggregate Supply Schedule

Proposition 1

For any z̄ ≥ z̄min satisfying
∫ z̄min

0
G(z′) dz′ = ρ/ [(1 − η)β], define

p(z̄) = z̄ − (1 − ηf(z̄)) β

∫ z̄

0
G(z′) dz′, f(z̄) =

(
1 − q(z̄)ξ

)1/ξ
, q(z̄) = ρ/

[
(1 − η)β

∫ z̄

0
G(z′) dz′

]
.

Then the steady-state aggregate supply schedule p 7→ css
s (p), represented by (p(z̄), css

s (z̄)), satisfies:

1 p(z̄) is continuously differentiable and strictly increasing, implying a unique, smooth css
s (p);

2 lim
p→pmin

css
s (p) = 0 and lim

p→∞
css

s (p) = l, where pmin = z̄min − ρ/(1 − η);

3 css
s (p) is strictly increasing and convergent as p → ∞;

4 Near pmin: convex if ξ ∈ (0, 1), linear if ξ ≥ 1, concave for large p.

Back
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Bound on Upstream Slackening

To ensure that the price increase does not overturn the immediate slackening in the upstream market

caused by a supply chain disturbance, we impose a bound on the response of product market tightness

θ to the cost parameter γ:

θγ ∈
[
−Fγ

Fθ
, 0

)
,

where Fγ and Fθ: partial derivatives of F(p, z̄, θ; γ) = 0 with respect to γ and θ.

This restriction limits the extent of upstream slack so that the price-feedback effect on match

separation does not dominate the direct effect of the shock.

It guarantees the coexistence of a decline in upstream market tightness and a rise in the downstream

retail price.

Back
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Setting Up the SVAR

The SVAR model can be written compactly as:

y′
tA0 = x′

tA+ + ε′
t, ∀t ∈ [1, T ],

where yt: an n × 1 vector of endogenous variables; x′
t =

[
y′

t−1 · · · y′
t−L 1 t

]
; εt: an n × 1 vector of

structural shocks; A0: an n × n invertible matrix of parameters; A+: an (nL + 2) × n matrix of

parameters; L: lag length; T : sample size.

Conditional on past information and initial conditions {y0, . . . ,y1−L}, εt ∼ N(0, In).

The matrices {A0,A+} constitute the structural parameters of the model.

Back
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Extended U.S. SVAR: Sectoral Substitution and Energy

We estimate an augmented eleven-variable SVAR including:
▶ Real PCE and PCE prices for goods and services;
▶ Spare capacity, product market tightness, import price index, and ACR;
▶ WTI spot price, effective federal funds rate, and average hourly earnings.

The model identifies three shocks:
▶ Sectoral substitution shock;
▶ Adverse oil price shock;
▶ Adverse supply chain shock.

We keep the sample, lag length, deterministic terms, and priors the same as in the baseline specification.
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Identification Restrictions

A sectoral substitution shock leads to a positive response of real PCE of goods, the PCE goods

price index, product market tightness, and the import price index, and a negative response of real PCE

of services, the PCE services price index, and spare capacity at k = 1. The WTI spot price and ACR

do not respond at k = 1.

An adverse oil price shock leads to a negative response of real PCE of goods and spare capacity,

and a positive response of the PCE goods price index, product market tightness, the import price

index, and the WTI spot price at k = 1. The ACR index does not respond at k = 1.

An adverse supply chain shock leads to a negative response of real PCE of goods and product

market tightness, and a positive response of the PCE goods price index, spare capacity, and the ACR

index at k = 1. The WTI spot price does not respond at k = 1.
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What Drove U.S. Goods Inflation?
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Figure: Historical Decomposition of U.S. Half-on-Half PCE Goods Inflation.
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What Drove U.S. Services Inflation?
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Figure: Historical Decomposition of U.S. Half-on-Half PCE Services Inflation.
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Euro Area SVAR: Goods Demand and Energy

Monthly sample: January 2016–June 2024.

Variables:
▶ Industrial production and HICP goods price index;
▶ Import-weighted spare capacity of China and U.S. (top 2 EA trading partners), product market tightness,

import price index, and ACR;
▶ Brent crude oil price and ECB deposit facility rate.

The model identifies three shocks:
▶ Positive goods demand shock;
▶ Adverse oil price shock;
▶ Adverse supply chain shock.

Identification uses the same lag length, deterministic terms, and priors as the U.S. model.
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Identification Restrictions

A positive goods demand shock leads to a positive response of industrial production, the HICP

goods price index, product market tightness, and the import price index, and to a negative response of

spare capacity at k = 1. The Brent crude oil price and ACR do not respond at k = 1.

An adverse oil price shock leads to a negative response of industrial production and spare capacity,

and to a positive response of the HICP goods price index, product market tightness, the import price

index, and the Brent crude oil price at k = 1. The ACR index does not respond at k = 1.

An adverse supply chain shock leads to a negative response of industrial production and product

market tightness, and to a positive response of the HICP goods price index, spare capacity, and the

ACR index at k = 1. The Brent crude oil price does not respond at k = 1.
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What Drove EA Goods Inflation?
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Figure: Historical Decomposition of EA Half-on-Half HICP Goods Inflation.
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Comparing Goods Price IRFs Across Proxies

Months
0 6 12 18 24

%

-0.2

0

0.2

0.4

0.6

0.8
No Supply Chain Proxy

Months
0 6 12 18 24

%

-0.2

0

0.2

0.4

0.6

0.8
ACR Only

Months
0 6 12 18 24

%

-0.2

0

0.2

0.4

0.6

0.8
ACR + Zero Restrictions

Months
0 6 12 18 24

%

-0.2

0

0.2

0.4

0.6

0.8
ACT + Zero Restrictions

Months
0 6 12 18 24

%

-0.2

0

0.2

0.4

0.6

0.8
Trans-Paci-c ACR + Zero Restrictions

Months
0 6 12 18 24

%

-0.2

0

0.2

0.4

0.6

0.8
HARPEX Only

Posterior Medians
68% Posterior Prob. Bands
90% Posterior Prob. Bands

Months
0 6 12 18 24

%

-0.2

0

0.2

0.4

0.6

0.8
GSCPI Only

Months
0 6 12 18 24

%

-0.2

0

0.2

0.4

0.6

0.8
SDI Only

Figure: PCE Goods Price Responses to a Supply Chain Shock.
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Comparing Goods Price FEVDs Across Proxies
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Figure: Posterior-Median FEVD Shares of PCE Goods Price Variance.
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