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Extreme heat and aging infrastructure stresses the grid

Source: Auffhammer et al. 2017 Source: theguardian.com

1



How to curb electricity consumption when a blackout is likely?
1. Demand response (DR)

- Dynamic pricing (Fu, Novan, and Smith, 2024; Burkhardt, Gillingham, and Kopalle, 2023; Ito, Ida, and
Tanaka, 2018)- Its combination with automation (Bailey et al., 2025; Blonz et al., 2025; Bollinger and Hartmann, 2020)- Its combination with information provision (Prest, 2020; Jessoe and Rapson, 2014)

2. Moral suasion
(Brewer and Crozier, 2025; He and Tanaka, 2023; Holladay, Price, and Wanamaker, 2015)

- Rely on the salience of the message and behavioral mechanisms such as warm glow
(Andreoni, 1989), social pressure (DellaVigna, List, and Malmendier, 2012), or moral payoff ofcontributing to public goods (Levitt and List, 2007; Ferraro and Price, 2013; Allcott and Kessler, 2019)

→ While recent works find that automation bypasses human inattention, it is still unclearhow this automation performs alongside moral suasion during an actual emergency
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We focus on Flex Alerts during a brutal September heatwave in 2022
Flex Alerts recommend specific cooling setpoints:

• Before peak period: 70°F
• During peak period: 78°F

Communication campaigns via social media andprivate email and text (only if customers sign-up)
In parallel, CAISO often called DR events withinthe peak period for customers enrolled inautomated DR programs

Detail on grid condition during September 2022 heatwaves

Source: X.com
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We focus on Flex Alerts during a brutal September heatwave in 2022
Flex Alerts repeteadly issued for ten consecutivedays
CalOES sent a high-salience emergency alert senton September 6th to all cell phones in California
This sequence of events provides rich variation:

• policy instrument across households(voluntary conservation vs. automated DR)
• salience over time(low-salience vs. post emergency phonealert)

Detail on grid condition during September 2022 heatwaves

Day 1 of 10, 3 hours before Flex Alert

Source: X.com
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We focus on Flex Alerts during a brutal September heatwave in 2022
Flex Alerts repeteadly issued for ten consecutivedays
CalOES sent a high-salience emergency alert senton September 6th to all cell phones in California
This sequence of events provides rich variation:

• policy instrument across households(voluntary conservation vs. automated DR)
• salience over time(low-salience vs. post emergency phonealert)

Detail on grid condition during September 2022 heatwaves

Day 1 of 10, 1 hour before Flex Alert

Source: Youtube.com
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We focus on Flex Alerts during a brutal September heatwave in 2022
Flex Alerts repeteadly issued for ten consecutivedays
CalOES sent a high-salience emergency alert senton September 6th to all cell phones in California
This sequence of events provides rich variation:

• policy instrument across households(voluntary conservation vs. automated DR)
• salience over time(low-salience vs. post emergency phonealert)

Detail on grid condition during September 2022 heatwaves

Day 7 of 10, 2 hours within Flex Alert

Source: Davis 2022
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Flex Alerts repeteadly issued for ten consecutivedays
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Day 8 of 10

Source: LATimes.com
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This Paper

How does automated demand response performs alongside moral suasion during an
actual emergency?
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This Paper
Empirical results:

1. Salience plays a central role in voluntary conservation
2. Automated DR consistently outperforms voluntary conservation
3. Salience and automation interact in a complementary way

Welfare implications:
1. Demand reductions are substantial (≈ 1,300 MW)
2. Automated DR programs contributed less than 10 percent of the total reductions
3. Primary value of emergency conservation is grid reliability in avoiding blackouts
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Contributions to existing literature
• We identify distinct behavioral dynamics: habituation, reactivation, and inattention.

- Behavioral responses to resource scarcity (Deryugina, 2017; Dinerstein et al., 2025; Reiss and White,
2008; Costa and Gerard, 2021; He and Tanaka, 2023)- Dynamics of behavioral intervention in energy economics (Ito, Ida, and Tanaka, 2018; Allcott and
Rogers, 2014; Fowlie et al., 2021; Costa and Gerard, 2021)

• We demonstrate that crisis salience and automation operate as complements duringgrid emergencies
- Automation and demand response scarcity (Bollinger and Hartmann, 2020; Bailey et al., 2025; Blonz

et al., 2025)- Smart technology and human behavior (Prest, 2020; Brandon et al., 2022)
• We provide a comprehensive welfare analysis of emergency conservation

- Economics of emergency energy conservation (Brewer and Crozier, 2025; He and Tanaka, 2023;
Holladay, Price, and Wanamaker, 2015)- Welfare effects of energy conservation (Ito, Ida, and Tanaka, 2018; Allcott and Kessler, 2019; Jacob et al.,
2023; Bollinger and Hartmann, 2020)
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We use smart thermostat data from Ecobee Donate Your Data
Main outcomes: Cooling setpoint and compressor run-time for each household

Pre and post for outcome variables

• Originally in 5-minute intervals aggregated to hourly, covering Aug 1st - Sept 25th
• We use the self-reported location (city) to match weather station data from Visual Crossing
• We exclude households with missing location or extreme setpoints (< 40◦F or > 100◦F)

Sandy

South Jordan

Fremont

ScottsdaleSanta Clarita

Roseville

Bakersfield

Mesa

Henderson

Sacramento

Control Demand Response Voluntary

• Treatment group: CA households
- 5,180 non-DR households- 3,319 DR households

Detail on identifying DR households
• Control group: NV, AZ, OR, UT households

- 3,706 non-DR households
Trends in outcome variables between treatment and control group
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• Variation in salience due to the phone alert:
- Low salience Flex Alerts: 8/31 - 9/5- Higher salience Flex Alerts: 9/6 - 9/9

• Variation in DR events for DR participantswithin peak hours:
- automated thermostat override- conservation incentives
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Estimating the effect of Flex Alerts and DR events
We employ a generalized difference-in-difference design:

yith =
2

∑
k=0

βFA,k (Dith × 1[Periodh = k ]) + δFA (Dith × 1[Periodh = 1]× 1[DReventith])

+
2

∑
k=0

βPA,k (Pith × 1[Periodh = k ]) + δPA (Pith × 1[Periodh = 1]× 1[DReventith]) + γXith + αith + εith

yith : outcomes for household i at day t and hour h,
Dith =1 for CA after Flex Alert, Pith =1 for CA after Phone Alert, DREventith =1 for CA when in DR event,
k = {Before-Peak, Peak, After-Peak}, Xith: weather controls, αith: household × hour × day and hour-of-sample FEs

ATT low-sal. Flex Alerts ATT low-sal. DR events

ATT high-sal. Flex Alerts ATT high-sal. DR events
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Summary of Findings
#1 Salience plays a central role in voluntaryconservation.
#2 Automated DR consistently outperformsvoluntary conservation.
#3 Salience and automation interact in acomplementary way.

Results on other outcome variables

(1) (2)Cooling Setpoint Compressor Run-Time
After First TweetBefore-Peak -0.086∗∗∗ 0.210(0.021) (0.224)

Peak 0.035 -0.266(0.029) (0.641)
Peak×1 (DR Event) 0.358∗∗∗ -0.182(0.120) (0.661)
After-Peak -0.085∗∗∗ 0.736(0.024) (0.501)

After Phone AlertBefore-Peak 0.001 -0.808(0.025) (0.627)
Peak 0.304∗∗∗ -0.780(0.077) (0.658)
Peak×1 (DR Event) 1.069∗∗∗ -1.991∗∗

(0.128) (0.854)
After-Peak 0.043 2.238∗∗

(0.035) (0.993)
No. of Household 11,807 12,135Observations 6,342,016 6,632,642
∗ p<0.10, ∗∗ p<0.05, ∗∗∗ p<0.01. Standard errorsfollow Driscoll and Kraay (1998)
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Result #1: Salience plays a central role in voluntary conservation
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Result#2: Automated DR consistently outperforms voluntaryconservation
The effect of Flex Alerts vs DR events
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Hourly effect on other outcome variables

• Low salience DR cause ↑0.5 °F, greater than Flex Alerts with high salience
• The DR events immediately affect cooling behavior within an hour
• In high salience DR events, household less likely to interrupt the automated override
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Result #3: Salience and automation interact in a complementary way
The effect of DR events on Cooling Setpoint and Compressor Run-Time
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Hourly effect on other outcome variables

• In low salience: setpoint ↑0.5 °F, and in high salience: setpoint ↑1.3 °F more
• Reduction of compressor run-time from DR increase by 3× after phone alert
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Model of thermostat setpoint behavior
• First stage (Brewer and Crozier, 2025): Households choose baseline setpoints tomaximize:

U0(T , p) = u(T )− px(T )

u(T ) is utility or comfort from choosing a cooling setpoint (∂u/∂T ≤ 0, ∂2u/∂T 2 <0)
x(T ) is the electricity consumption required for cooling (∂x/∂T < 0, ∂2x/∂T 2 ≤ 0)
p is the electricity price in $/kWh- We assume x(T ) is a linear function of compressor run-time (Blonz et al., 2025)

→ The baseline setpoint T 0 = argmax {u(T )− px(T )} is the cooling setpoint thehousehold will have in a normal non-emergency hour, or during an energy emergencyif they do not take conservation action.
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Model of thermostat setpoint behavior
• Second stage: The thermostat setting is:

T =

®
T ′ if Z > 0

T default otherwise
where T default is the default thermostat setpoint and T ′ is the reoptimized thermostatsetpoint that maximize:

U2(T , p′, s) = u(T )− p′x(T )− µ(T , s)

µ(T , s) is the moral payoff component (∂µ/∂T > 0, ∂2µ/∂T ∂s > 0)
→ Random variable Z determine which household take action, Z = Z (∆U2, ξ, s)

- Increases with the cost of inaction (∂Z/∂∆U2 > 0, ∂Z/∂s > 0)- Decreases with physical costs of adjusting/informational barriers (∂Z/∂ξ < 0)
13



Increasing price or moral cost improves welfare
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Figure 1: The marginal willingness to pay for cooling, with the baseline thermostat setpoint T 0,conservation thermostat setpoint T ′, and automation thermostat setpoint TA.
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Aggregate demand and welfare effect

$1.9M
$1.9M $0.1M

$10.8M

$4.3M

$56.7M

$-0.2M

$-0.5M $-0.5M

$-4.7M

$14.5M

$55.3M

-10M

0M

10M

20M

30M

40M

50M

60M

2022 USD
Low Salience Flex Alerts
(Aug 31 until Phone Alert)

High Salience Flex Alerts
(After Phone Alert)

CS
Off-Peak

PS
Off-Peak

CS
Peak

PS
Peak

VoLL Total
Welfare

Gain

CS
Off-Peak

PS
Off-Peak

CS
Peak

PS
Peak

VoLL Total
Welfare

Gain

• Our estimates translates to:Max. 800 MW reduction (low sal.)Max. 1,300 MW reduction (high sal.)
Detail on aggregate demand calculation

• DRs only contributes ≈ 10%, due tolow enrollment
• Flex Alerts (and DR) results in totalwelfare gain of $ 69.8M, primarilyfrom the benefit of avoided blackout

Theoretical framework for welfare analysis
Elasticity estimates
Daily welfare breakdown
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Summary
• We study the California’s Flex Alerts to estimate household response to voluntaryconservation request and demand response:

→ Salience plays a central role in voluntary conservation
→ Automated DR consistently outperforms voluntary conservation
→ Salience and automation interact in a complementary way

• We develop a framework to evaluate the welfare effect of emergency conservation requests:
→ Demand reductions are substantial (≈ 1,300 MW)
→ Automated DR programs contributed less than 10 percent of the total reductions
→ Primary value of emergency conservation is grid reliability in avoiding blackouts

• Our study offers insights into the design of effective conservation efforts in grid emergencies
→ Incentives for pushing DR program enrollment and/or smart technology adoption
→ Voluntary requests will continue if no DR program or supply-side improvement
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Thank you!
Please reach out with comments/questions

� maghfira.ramadhani@gatech.edu
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Power grid condition during September 2022 Flex Alerts
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Power grid condition during September 2022 Flex Alerts
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We observe cooling response during peak from the data

75

76

77

7 16 21 7 16 21

Before Flex Alert After Flex Alert

CA Control

C
oo

lin
g 

Se
tp

oi
nt

 (d
eg

. F
)

Hour of day

(a) Cooling Setpoint

0

10

20

30

7 16 21 7 16 21

Before Flex Alert After Flex Alert

CA Control

C
om

pr
es

so
r R

un
-T

im
e

Hour of day

(b) Compressor Run-Time
Pre and post comparison for other variables
Go Back

2



We observe cooling response during peak from the data

75

76

77

7 16 21 7 16 21

Before Flex Alert After Flex Alert

CA Control

C
oo

lin
g 

Se
tp

oi
nt

 (d
eg

. F
)

Hour of day

(a) Cooling Setpoint

0

10

20

30

7 16 21 7 16 21

Before Flex Alert After Flex Alert

CA Control

C
om

pr
es

so
r R

un
-T

im
e

Hour of day

(b) Compressor Run-Time
Pre and post comparison for other variables
Go Back

2



74

76

78

7 16 21 7 16 21

Before Flex Alert After Flex Alert

CA Control

In
do

or
 T

em
pe

ra
tu

re
 (d

eg
. F

)

Hour of day

(a) Indoor Temperature

10

20

30

7 16 21 7 16 21

Before Flex Alert After Flex Alert

CA Control

Fa
n 

R
un

-T
im

e

Hour of day

(b) Fan Run-Time

.18

.2

.22

.24

.26

7 16 21 7 16 21

Before Flex Alert After Flex Alert

CA Control

%
 o

f H
H

 o
n 

H
ol

d 
M

od
e

Hour of day

(c) Whether thermostat is on hold

.05

.1

.15

7 16 21 7 16 21

Before Flex Alert After Flex Alert

CA Control

%
 o

f H
H

 b
el

ow
 7

0 
de

g.
 F

Hour of day

(d) Whether setpoint ≤70°F

.3

.4

.5

7 16 21 7 16 21

Before Flex Alert After Flex Alert

CA Control

%
 o

f H
H

 a
bo

ve
 7

8 
de

g.
 F

Hour of day

(e) Whether setpoint ≥78°F

.1

.15

.2

.25

.3

7 16 21 7 16 21

Before Flex Alert After Flex Alert

CA Control

%
 o

f H
H

 tu
rn

in
g 

of
f c

oo
lin

g

Hour of day

(f) Whether cooling is off
Go Back 3



Detail on identifying DR households
Using the calendar event variable in the Ecobee data, I identified several demand responseevent names.

• I identify a general demand response event name that contains Demand Response (”DR”) andPrecooling (”PC” or ”PRC”), which is a common term in AC load control.
• The second one is the California Public Utility Commission pilot Power Saver RewardsProgram that started in May 2022. Participating customers receive a bill credit of $2 per kWhof electricity savings in a Flex Alert during my sample period. The program incurs no penaltyfor the household when they are enrolled and decide not to respond to emergency requests.
• I identify program names from SDGE, they are AC Saver DA (”ACSDA”), Bring Your OwnThermostat (”BYOT”), and Reduce Your Use (”RYU”).
• I also identify a demand response event name from Portland General Electric of which theycollaborate with PGE.
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Detail on timing of Flex Alerts and DR events
Table 1: Summary of the Flex Alerts timing

Date Start of peak End of peak
Wednesday, August 31, 2022 4 p.m. 9 p.m.Thursday, September 1, 2022 4 p.m. 9 p.m.Friday, September 2, 2022 4 p.m. 9 p.m.Saturday, September 3, 2022 4 p.m. 9 p.m.Sunday, September 4, 2022 4 p.m. 9 p.m.Monday, September 5, 2022 4 p.m. 10 p.m.Tuesday, September 6, 2022 4 p.m. 9 p.m.Wednesday, September 7, 2022 4 p.m. 9 p.m.Thursday, September 8, 2022 3 p.m. 10 p.m.Friday, September 9, 2022 4 p.m. 9 p.m.

Note. The information is compiled from CAISO’s Grid Emergencies HistoryReport.
Go Back 5



Detail on timing of Flex Alerts and DR events (cont.)
Table 2: Summary of the demand response event timing

Date Start of event End of event DR treatment
Wednesday, August 31, 2022 7:25 p.m. 7:40 p.m. 7-8 p.m.Thursday, September 1, 2022 5:00 p.m. 8:25 p.m. 5-9 p.m.Monday, September 5, 2022 6:40 p.m. 8:20 p.m. 6-9 p.m.Tuesday, September 6, 2022 4:10 p.m. 9:05 p.m. 4-9 p.m.Wednesday, September 7, 2022 4:10 p.m. 8:55 p.m. 4-9 p.m.Thursday, September 8, 2022 5:05 p.m. 8:15 p.m. 5-9 p.m.

Note. The information is compiled from CAISO’s Today’s Outlook. We define an hour to bedemand response treatment when there is at least 15 minutes of demand response event withinthe hour.
Go Back
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Detail on timing of Flex Alerts and DR events (cont.)
Table 3: Summary of the September 2022 Flex Alert events

Date Time posted Announcement
Wednesday, August 31, 2022 12:48 p.m. Flex Alert issuedWednesday, August 31, 2022 5:40 p.m. Flex Alert extendedThursday, September 1, 2022 4:23 p.m. Flex Alert extendedSaturday, September 3, 2022 8:21 a.m. Flex Alert issuedSaturday, September 3, 2022 4:03 p.m. Flex Alert extendedSunday, September 4, 2022 5:05 p.m. Flex Alert extendedMonday, September 5, 2022 4:28 p.m. Flex Alert extendedTuesday, September 6, 2022 9:10 p.m. Flex Alert extendedWednesday, September 7, 2022 9:12 p.m. Flex Alert extendedThursday, September 8, 2022 10:00 p.m. Flex Alert extended

Note. The announcement is summarized from the @flexalert Twitter account posts.
Go Back
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(1) (2) (3) (4)
1 (On Hold) 1 (Cool. Setpoint ≤ 70°) 1 (Cool. Setpoint ≥ 78°) 1 (Cooling Off)

After First TweetBefore-Peak 0.008∗∗∗ 0.002∗∗∗ -0.009∗∗∗ -0.036∗∗∗(0.003) (0.001) (0.002) (0.004)
Peak 0.005 0.001 0.007∗∗∗ -0.024∗∗∗(0.004) (0.001) (0.003) (0.004)
Peak×1 (DR Event) -0.015 -0.006∗∗∗ 0.033∗∗∗ -0.020∗∗∗(0.013) (0.002) (0.013) (0.007)
After-Peak 0.003 0.001 -0.011∗∗∗ -0.039∗∗∗(0.002) (0.001) (0.003) (0.004)

After Phone AlertBefore-Peak 0.007∗ -0.002 -0.006∗∗ -0.045∗∗∗(0.004) (0.001) (0.003) (0.004)
Peak -0.003 -0.003∗∗ 0.031∗∗∗ -0.022∗∗∗(0.009) (0.002) (0.006) (0.004)
Peak×1 (DR Event) -0.051∗∗∗ -0.011∗∗∗ 0.107∗∗∗ -0.026∗∗∗(0.017) (0.002) (0.012) (0.005)
After-Peak 0.000 -0.000 -0.003 -0.042∗∗∗(0.005) (0.001) (0.004) (0.006)

Pre-treatment MeanBefore-Peak 0.21 0.08 0.41 0.23Peak 0.25 0.07 0.39 0.20After-Peak 0.24 0.10 0.38 0.22No. of Household 12,135 12,135 12,135 12,135Observations 6,632,642 6,632,642 6,632,642 6,632,642
Go Back 8



Hourly effect of Flex Alerts and DR events (cont.)
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(b) Effect of DR events
Panel fixed effects: Hourly effect Go Back
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Hourly effect of Flex Alerts and DR events (cont.)
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Event study on other outcomes
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Event study using DD sample

-.5

0

.5

1

C
oo

lin
g 

Se
tp

oi
nt

 (d
eg

. F
)

Start of
Standard
Flex Alert
Treatment

Start of
Phone
Alert

Treatment

End of
Treatment

Period

-7 0 7 14 21
Day since First Day of Flex Alert

Before-Peak
Peak
After-Peak

Panel fixed effects: Event study Go Back

yith = ∑
t∈[−7,23],t ̸=−1

2

∑
k=0

βtkDitk + ∑
t∈DRevent

δtkDit1 + γXith + αith + εith.
11



Event study using DD sample

-2

0

2

In
do

or
 T

em
pe

ra
tu

re
 (d

eg
. F

)

Start of
Standard
Flex Alert
Treatment

Start of
Phone
Alert

Treatment

End of
Treatment

Period

-7 0 7 14 21
Day since First Day of Flex Alert

Before-Peak
Peak
After-Peak

Panel fixed effects: Event study Go Back

yith = ∑
t∈[−7,23],t ̸=−1

2

∑
k=0

βtkDitk + ∑
t∈DRevent

δtkDit1 + γXith + αith + εith.
11



Event study using DD sample

-10

-5

0

5

10

C
om

pr
es

so
r R

un
-T

im
e 

(m
in

/h
r)

Start of
Standard
Flex Alert
Treatment

Start of
Phone
Alert

Treatment

End of
Treatment

Period

-7 0 7 14 21
Day since First Day of Flex Alert

Before-Peak
Peak
After-Peak

Panel fixed effects: Event study Go Back

yith = ∑
t∈[−7,23],t ̸=−1

2

∑
k=0

βtkDitk + ∑
t∈DRevent

δtkDit1 + γXith + αith + εith.
11



Event study using DD sample

-10

-5

0

5

10

Fa
n 

R
un

-T
im

e 
(m

in
/h

r)

Start of
Standard
Flex Alert
Treatment

Start of
Phone
Alert

Treatment

End of
Treatment

Period

-7 0 7 14 21
Day since First Day of Flex Alert

Before-Peak
Peak
After-Peak

Panel fixed effects: Event study Go Back

yith = ∑
t∈[−7,23],t ̸=−1

2

∑
k=0

βtkDitk + ∑
t∈DRevent

δtkDit1 + γXith + αith + εith.
11



Detail on aggregate demand
• We follow Blonz et al. (2021) to convert ATT on compressor run-time to electricityconsumption reduction:

∆Demandith(MW/HH) = β̂κ
ith(min/hr) × UCR (BTU/hr.HH)

SEER (BTU/W.hr)
× 1 hour

60 min × 10−6 MW
W

= β̂κ
ith(min/hr) × 0.0000417(MWh/HH.min). (1)

Since we do not observe households cooling systems characteristics, we assume
- Residential central air conditioner in the southern region following Appendix A of EIAUpdated Buildings Sector Appliance and Equipment Costs and Efficiencies, with a UnitCapacity Ratio (UCR) of 36,000 BTU per hour per unit with a typical Seasonal EnergyEfficiency Ratio (SEER) of 14.4 BTU per W per hour.

Go Back
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How big is the aggregate demand reduction?
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(a) Aggregate Impact of Flex Alert, All households
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(b) Aggregate Impact of DR Event, DR participant
• We convert the ATT and scale by # of household to calculate aggregate reduction
• This translates to max. reduction of 800 MW (low sal.) and 1,300 MW (high sal.)
• DRs only contributes ≈ 10%, due to low enrollment

Go Back
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Detail on aggregate demand (cont.)

• To scale the individual number to aggregate, we assume
- Total number of residential customers in CA: 13,550,586 households (ACS 1-yearEstimates 2022) of which 72 percent of households in California own an AC followingEIA (2020).- This leaves me with approximately 9.75 million households.- We assume 505,116 households to be demand response participants, and the rest arenon-demand response households.
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Review: Welfare effect of Flex Alerts
Go Back
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(b) Welfare losses from nudges
• Our estimates for pure moral suasion”βT → T ′

1 − T

• Our estimates for demand response δ̂T allow us to infer the price change pT
′ (forcertain εT ) 15



We simulate the welfare effect of Flex Alerts
1. Assume the demand for cooling for each i , t, h follow T = αT + βTD + εT ln pT

2. Estimate”βT and δ̂T from empirical analysis
3. Resample i from California household and simulate welfare effect

3.1 Draw the βT and δT for each i , t, h from distribution of”βT and δ̂T3.2 Estimate marginal effect of cooling setpoint on compressor run-time (∂κ/∂T )3.3 Compute cooling price, assuming baseline retail rate c$26/kWh (EIA, 2022)
pT = −0.0417p∂κ/∂T

3.4 Compute semi elasticity, assuming elasticity (ε) of - 0.1 (Ito, Ida, and Tanaka, 2018; Ito, 2014;
Wolak, 2011)

εT =
κ

∂κ/∂T
ε

Elasticity estimates
3.5 Compute changes in PS, CS, VoLL, and welfare

4. Compute aggregate welfare
16



Theoretical framework for the welfare analysis
Go Back Welfare Effects

Flex Alerts

Change in Producer Surplus ∆PSMoral =
®

βT (cT − pT ) if cT ≥ pT ,

−βT (pT − cT ) if cT < pT .

Change in Consumer Surplus ∆CSMoral =
{
− 1

2 (βT )2 p
T

εT
if βT ≥ 0,

1
2 (βT )2 p

T

εT
if βT < 0.

Total Welfare Change ∆WMoral = ∆PSMoral + ∆CSMoral
Demand Response Event

Change in Producer Surplus ∆PSDR =

®
δT (pT

′ − pT ) if pT ′ ≥ pT ,

−δT (pT − pT
′
) if pT ′

< pT .

Change in Consumer Surplus ∆CSDR =

{
− 1

2 (δ
T )2 p

T

εT
if δT ≥ 0,

1
2 (δ

T )2 p
T

εT
if δT < 0.

Total Welfare Change ∆WDR = ∆PSDR + ∆CSDR

Value of Lost Load

Gain from Avoided Outage in Peak Period ∆VoLLMoral = βTVoLLT
∆VoLLDR = δTVoLLT
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Cooling (semi)elasticity ranges from 0.2 to 0.59 °F
Go Back
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(a) Elasticity estimates during 2022 Flex Alerts
Our estimates are in the ballpark of values found in the literature

• Brewer (2023) find a 100% price increase reduce setpoint by 0.31 to 0.97 °F (winter)
• Fu, Novan, and Smith (2024) find a 100% price increase increase setpoint by 1.04°F (summer)18



Daily breakdown of welfare effect

Total ∆PS:    5.7 M$
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(a) Change in PS

Total ∆CS:   -3.5 M$
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Daily breakdown of welfare effect

Total ∆W:    2.2 M$
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(a) Change in Welfare

Total ∆W + VoLL:   69.8 M$
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