

Identifying Relationship-level Effects Using Covariance Restrictions

Olivier De Jonghe
ECB, NBB

Daniel Lewis
UCL

IBEFA - ASSA, Jan. 3, 2026

Match decomposition using fixed effects

Fixed effects are often used to decompose the product of a match.

- **Corporate credit** (Amiti and Weinstein 2018; Khwaja and Mian 2008)
- **Workers/firms** (Abowd et al. 1999) (AKM)
- **Import/export** (Kramarz et al. 2020)

More generally, **many-to-many bipartite networks** (e.g., Bonhomme 2020).

Match decomposition using fixed effects

Fixed effects are often used to decompose the product of a match.

- **Corporate credit** (Amiti and Weinstein 2018; Khwaja and Mian 2008)
- **Workers/firms** (Abowd et al. 1999) (AKM)
- **Import/export** (Kramarz et al. 2020)

More generally, **many-to-many bipartite networks** (e.g., Bonhomme 2020).

$$\Delta l_{fb} = d_f + s_b + \epsilon_{fb} (\dots + \Gamma X_{fb}).$$

Fixed effects identify **homogeneous** demand and supply shocks (worker/firm effects).

Homogeneity assumption rules out **key policy questions**.

AKM approach is potentially **biased** in realistic settings.

A bivariate model with relationship-specific effects

We study the **bivariate** model

$$\eta_{fb} \equiv \begin{pmatrix} \Delta r_{fb} \\ \Delta l_{fb} \end{pmatrix} = A \begin{pmatrix} u_{fb}^d \\ u_{fb}^s \end{pmatrix} (\dots + \Gamma X_{fb}).$$

Changes in price and quantity (match outcomes) are driven by **relationship-specific** demand and supply shocks.

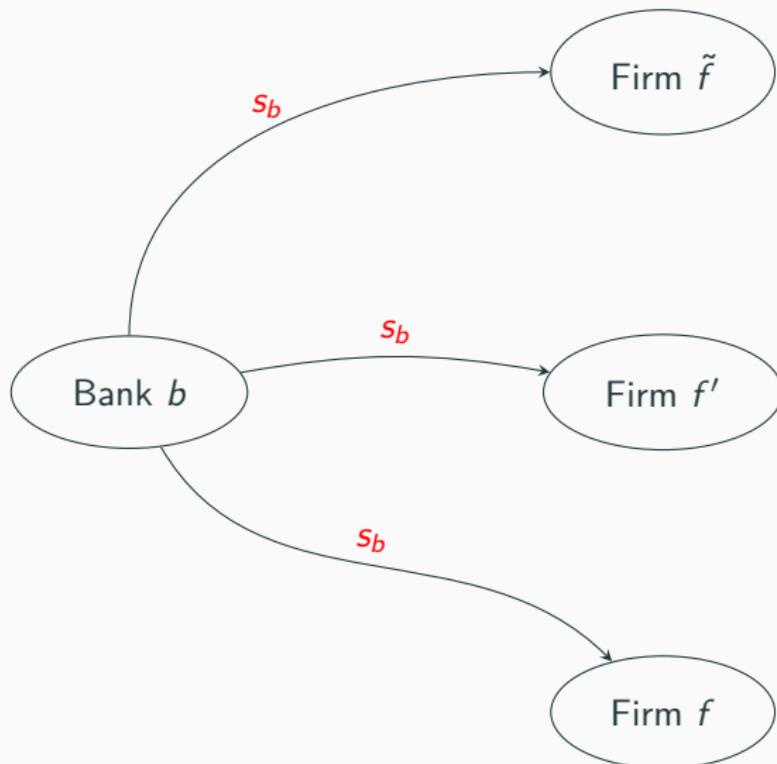
Identify A : supply and demand coefficients of P/Q.

Identify u_{fb} : shocks themselves.

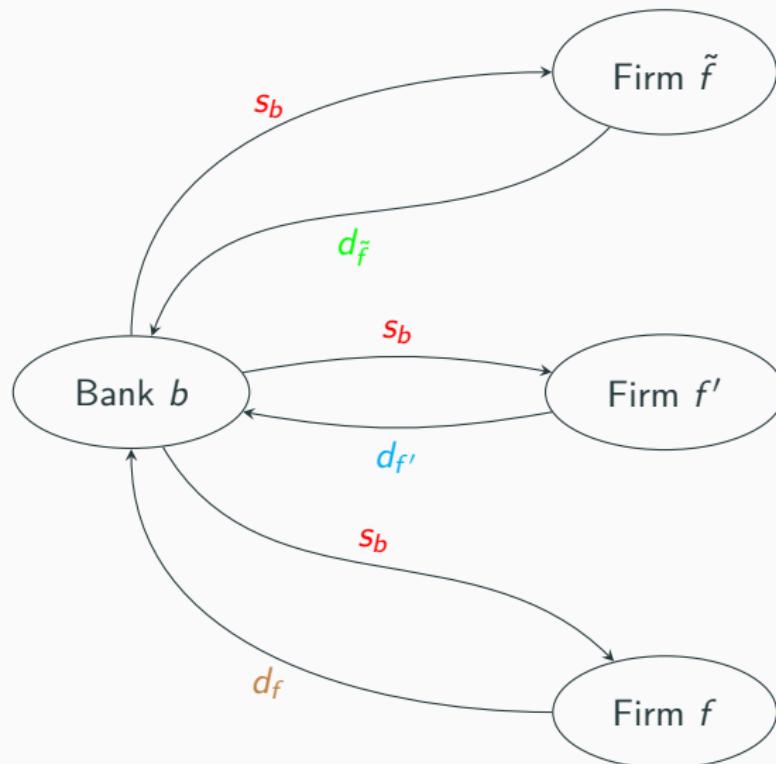
Key assumption: A is fixed across relationships (within period/sub-sample).

Our generalisation

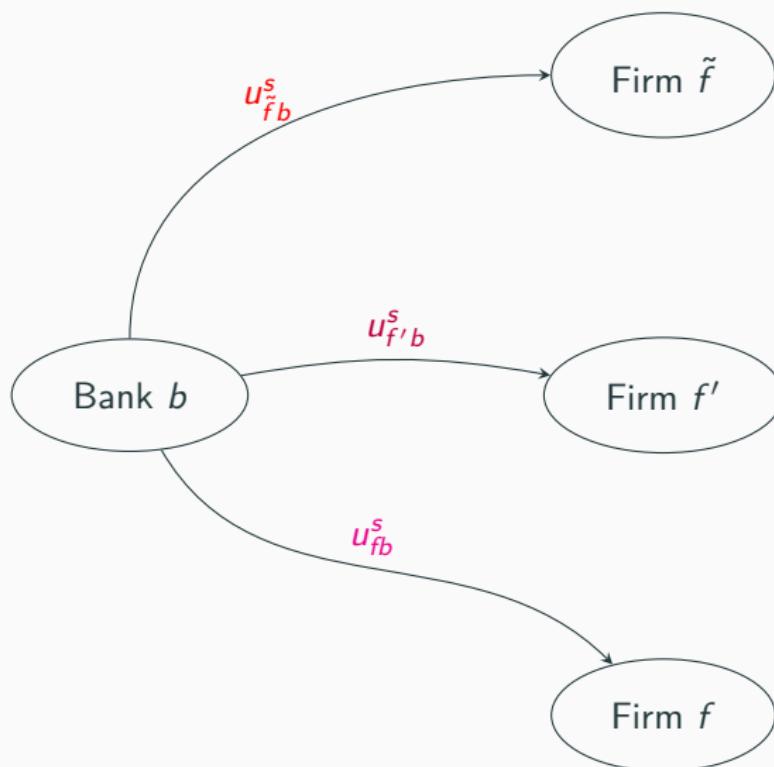
We replace AKM **homogeneity** assumption with much weaker **correlation** assumption: u_{fb} vector is *correlated*, not *constant* across f and b dimensions.

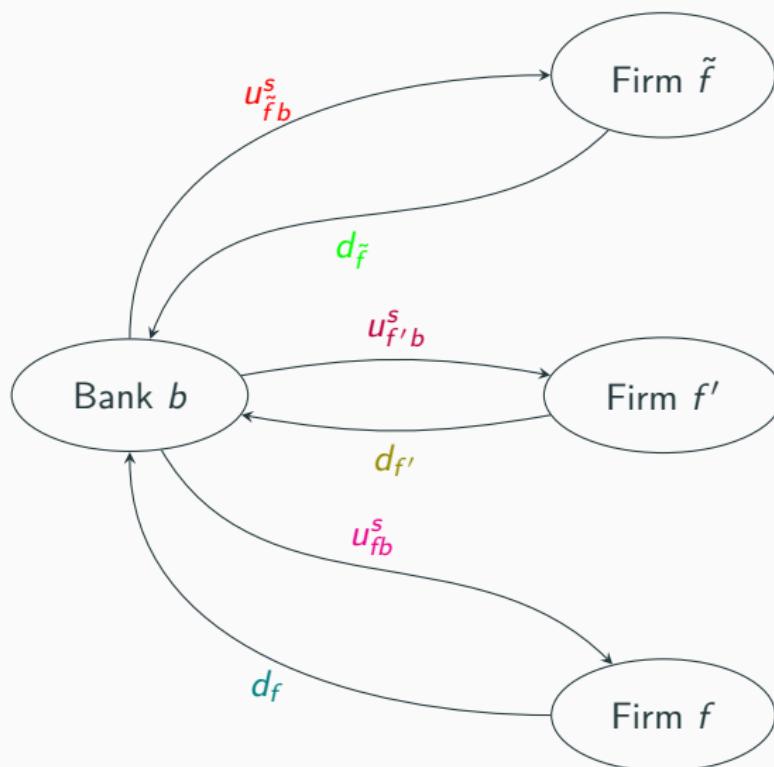

We identify from those **correlations** using **covariance restrictions**.

Can be interpreted as an IV approach under simplifying assumptions.


Propose a simple test of the AKM assumptions.

Modest assumptions on degree of agents (Jochmans and Weidner 2019).


Fixed effects model


Fixed effects model

Our model

Our model

Empirical contribution

We apply our method to the **Anacredit** dataset – 9 countries, 18 quarters, near-universe of corporate credit.

AKM assumptions are **rejected** for nearly all country-periods.

We show that Khwaja and Mian (2008) and Amiti and Weinstein (2018) FE “shocks” are **biased**: interest rates robustly decreasing in “demand shock”.

In contrast, our shocks have theoretically consistent effects.

We document role of firms’ credit composition in monetary policy transmission.

1. Methodological contribution

- Identification
- Estimation and Inference

2. Simulations

- Bias
- Size

3. Application to **AnaCredit**

- Evidence for heterogeneity
- Evidence of AKM bias
- Monetary policy transmission at relationship level

Assumptions for identification

The model:

$$\eta_{fb} = D_{fb} \times A u_{fb} (\dots + \Gamma X_{fb}), f = 1, \dots, F, b = 1, \dots, B.$$

η_{fb}, u_{fb} are 2×1 vectors.

Assumption 1

The following hold

1. *A is invertible and constant across firm-bank pairs,*
2. $E [u_{fb} | D_{fb} = 1, \bar{D}] = 0,$
3. $E [u_{fb}^d u_{f'b}^s | D_{fb} = 1, D_{f'b} = 1, \bar{D}] = 0,$
 $E [u_{fb}^d u_{fb'}^s | D_{fb} = 1, D_{fb'} = 1, \bar{D}] = 0, b' \neq b, f' \neq f.$

Henceforth drop D ; understood that equations relate to observed quantities.

Identification result

We exploit the **novel moments**

$$\text{cov}(\eta_{fb}, \eta_{f'b}) \equiv \Sigma_{FF} = A\Lambda_{FF}A', f' \neq f$$

$$\text{cov}(\eta_{fb}, \eta_{fb'}) \equiv \Sigma_{BB} = A\Lambda_{BB}A', b' \neq b,$$

where $\Lambda_{FF}, \Lambda_{BB}$ diagonal by Assumption 1.

Bank's supply is correlated over firms, as is demand to that bank, vice versa.

Proposition 1

If $\Lambda_{FF} \neq c\Lambda_{BB}$ for any scalar c , then the solution to

$$\Sigma_{FF} - A\Lambda_{FF}A' = 0$$

$$\Sigma_{BB} - A\Lambda_{BB}A' = 0$$

is unique up to scale, sign, and column ordering.

Solution in closed form: eigenvectors of $\Sigma_{FF}\Sigma_{BB}^{-1}$. See Rigobon (2003).

Example: corporate credit

Paravisini et al. (2023): **heterogeneity** in demand and supply due to specialisation.

1. P & Q responses to supply/demand are **linear** & **constant** *within-sample*.
 - By country-time period, but also slice further (industry, region, firm characteristics)
2. $E[u_{fb}^d u_{f'b}^s] = 0$
 - Firms are **atomistic**: firm f demand does not impact bank b supply.
 - No **spillovers**: firm f' supply does not impact f demand.
 - Put info on **large exposures**, **bank fundamentals** or **supply chains** in X_{fb} .
3. $E[u_{fb}^d u_{fb'}^s] = 0$
 - **Reorientation** delay: firm f demand from b unimpacted by b' supply.
 - Shocks are **causal**: firm f 's outlook can't be both supply *and* demand.

Omit granular firms and control for bank's exposure to upstream/downstream firms.

If event triggers *simultaneous* supply/demand responses, condition on it in X_{fb} .

Estimation

The sample counterparts are

$$S_{FF} = \frac{1}{N_{FF}} \sum_{b=1}^B \sum_{f' \neq f} \eta_{fb} \eta'_{f'b}$$

$$S_{BB} = \frac{1}{N_{BB}} \sum_{f=1}^F \sum_{b' \neq b} \eta_{fb} \eta'_{fb'},$$

where $N_{FF} = \frac{1}{2} \sum_{b=1}^B F_b (F_b - 1)$, $N_{BB} = \frac{1}{2} \sum_{f=1}^F B_f (B_f - 1)$, and F_b is the number of firms connected to bank b and B_f the banks connected to firm f .

Minimum distance estimator:

$$q(\eta, \theta) = \begin{pmatrix} \text{vech}(S_{FF} - A \Lambda_{FF} A') \\ \text{vech}(S_{BB} - A \Lambda_{BB} A') \end{pmatrix},$$

θ vectorises A , $\text{diag}(\Lambda_{FF})$, $\text{diag}(\Lambda_{BB})$.

- Data has a **complicated dependence structure**.
 - These challenges are common in the networks literature
- The key to **asymptotics** is:
 - Slightly more structure on demand and supply shocks.
 - A non-vanishing share of firms is well-connected.
 - No need to assume that all firms/banks heavily connected.
 - Neither F nor B grows too fast relative to the other.

1. Multiple time periods

- So far, only considered single time period - can also pool across periods.
- Consistency and asymptotic normality extend, cluster over firms/banks and time for robust variance estimate.

2. Including covariates

- Under cond. mean indep. assumption on X_{fb} , can partial out covariates.
- Mirrors AKM/existing approaches.

3. Shocks as dependent variables

- Shocks are generated regressors and induce dependence in regressions.
- Show asymptotic normality with adjusted variance estimator.

Simulations: Summary

Simulate data for networks of different sizes calibrated to **Italian data** from 2022Q3-2023Q4.

Simulations: Summary

Simulate data for networks of different sizes calibrated to **Italian data** from 2022Q3-2023Q4.

Percent Bias:

$T = 1$	$B = 10$	$B = 25$	$B = 100$	$B = 500$
A_{11}	-0.04	-0.02	-0.01	0.00
A_{21}	-0.32	-0.09	-0.02	-0.00
A_{12}	-0.13	-0.08	-0.02	-0.00
A_{22}	-0.10	-0.06	-0.01	-0.00

$T = 4$	$B = 10$	$B = 25$	$B = 100$	$B = 500$
A_{11}	-0.02	-0.01	-0.00	0.00
A_{21}	-0.05	0.03	-0.01	-0.01
A_{12}	-0.05	-0.01	-0.00	-0.00
A_{22}	-0.04	-0.01	-0.00	-0.00

Simulations: Summary

Simulate data for networks of different sizes calibrated to [Italian data](#) from 2022Q3-2023Q4.

Empirical Size:

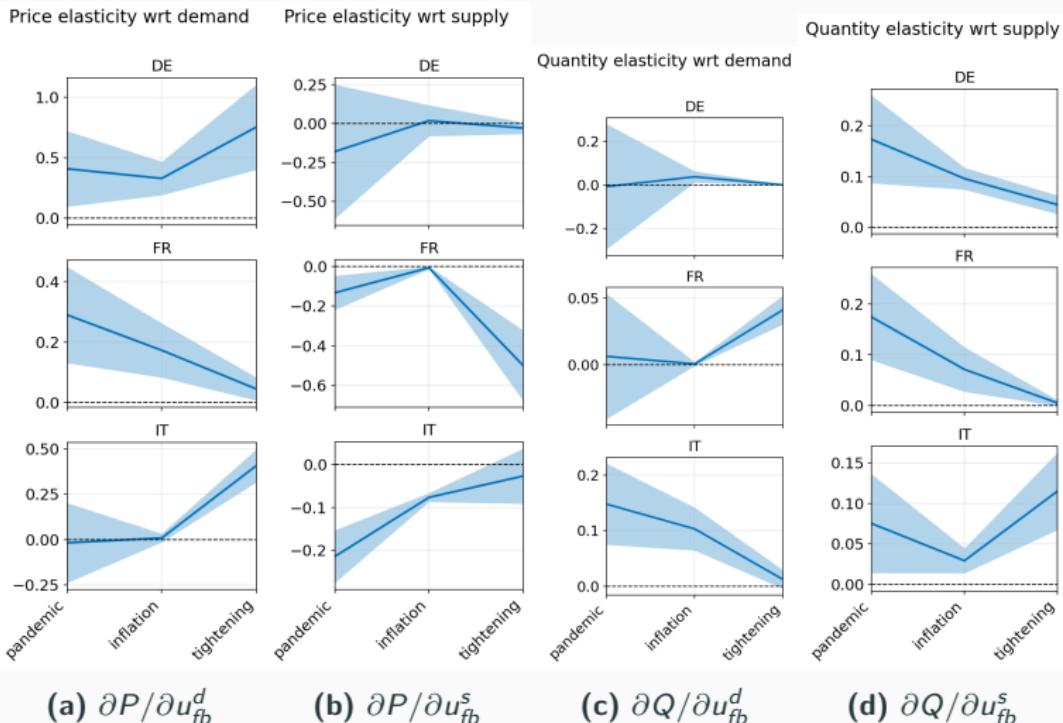
$T = 1$	$B = 10$	$B = 25$	$B = 100$	$B = 500$
A_{11}	10.7	8.1	6.0	5.7
A_{21}	10.7	9.1	6.5	5.4
A_{12}	15.4	8.9	4.9	5.3
A_{22}	18.5	14.2	5.9	5.0

$T = 4$	$B = 10$	$B = 25$	$B = 100$	$B = 500$
A_{11}	5.1	4.7	5.8	6.1
A_{21}	5.6	4.4	5.2	6.6
A_{12}	7.6	5.9	5.6	5.4
A_{22}	11.3	6.0	5.3	4.9

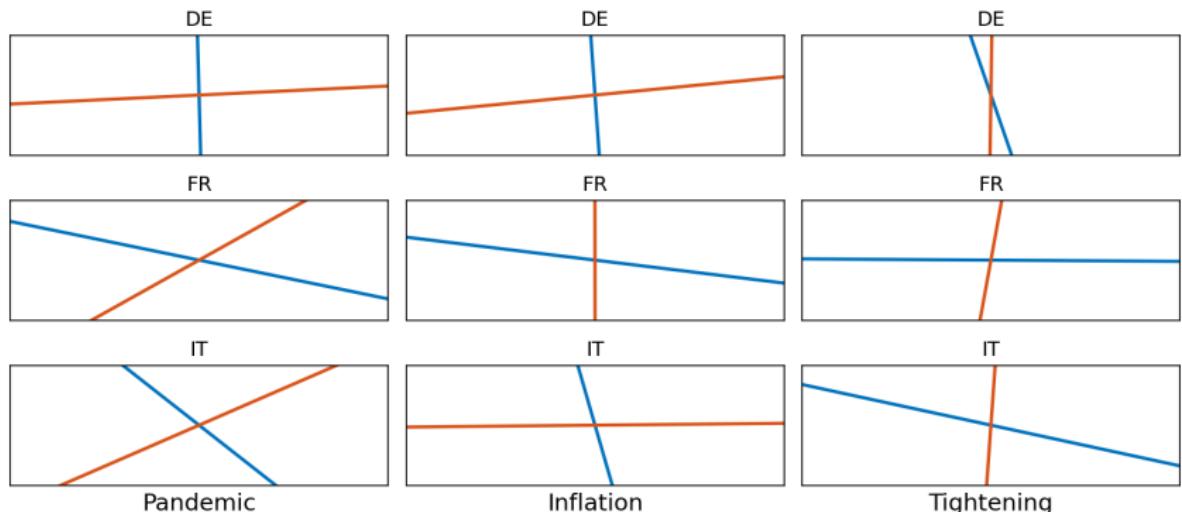
Simulations: Summary

Simulate data for networks of different sizes calibrated to **Italian data** from 2022Q3-2023Q4.

- Bias **falls quickly** with B – **excellent performance** for $B \geq 25$.
- **Pooling multiple time periods** dramatically improves MSE.
- Tests for elements of A **well-sized**.
- *Average estimated shocks* outperform **estimated fixed effects**.


▶ Simulations

Sample: period and countries


- We study **supply and demand dynamics** in 9 euro area credit markets,
- ... leveraging the **AnaCredit** database.
- Credit Types: Revolving credit, credit lines, and term loans.
- Measurement:
 - Δl_{fb} : "Midpoint" growth in committed amount
 - Δr_{fb} : Change in value-weighted interest rate
 - Both metrics are winsorized and demeaned.
 - X_{fb} contains lagged relationship specific characteristics.
- Three 6-quarter periods:
 - 2019Q3–2020Q4: Pandemic
 - 2021Q1–2022Q2: Inflationary build-up
 - 2022Q3–2023Q4: Monetary tightening

Coefficients Over Time

The Evolution of Supply and Demand Curves

Economic Periods Comparison Red (Supply), Blue (Demand) -inc0

AKM assumptions are not compatible with the data

The AKM model can be tested via over-identifying restrictions!

AKM requires that: $\Lambda_{FF} = \text{diag}(0, 1)$ and $\Lambda_{BB} = \text{diag}(1, 0)$

The AKM assumptions are rejected at the **5%** level for **25 out of 27** country-periods! **1%** level for **24 out of 27**.

Critical values are 4.61 and 5.99, respectively:

quantile	min	0.1	0.25	0.50	0.75	0.90	max
test stat.	2.95	5.91	12.19	75.86	222.86	404.14	923.31

Failures to reject: pandemic period in **Portugal** and tightening in **Netherlands**.

Shocks are characterised by heterogeneity

Collapse at the firm-time level

	p10	p25	p50	p75	p90	SD
Avg. demand innovation	-0.677	-0.253	0.000	0.171	0.677	0.646
SD demand innovation	0.019	0.063	0.225	0.863	1.681	0.780

Collapse at the bank-time level

	p10	p25	p50	p75	p90	SD
Avg. supply innovation	-0.218	-0.088	0.009	0.095	0.231	0.399
SD supply innovation	0.267	0.485	0.712	0.952	1.266	0.511

Shocks are characterised by heterogeneity

Collapse at the firm-time level

	p10	p25	p50	p75	p90	SD
Avg. demand innovation	-0.677	-0.253	0.000	0.171	0.677	0.646
SD demand innovation	0.019	0.063	0.225	0.863	1.681	0.780

Collapse at the bank-time level

	p10	p25	p50	p75	p90	SD
Avg. supply innovation	-0.218	-0.088	0.009	0.095	0.231	0.399
SD supply innovation	0.267	0.485	0.712	0.952	1.266	0.511

- For >50% of firms, within-firm SD is >30% of between-firm SD.

Shocks are characterised by heterogeneity

Collapse at the firm-time level

	p10	p25	p50	p75	p90	SD
Avg. demand innovation	-0.677	-0.253	0.000	0.171	0.677	0.646
SD demand innovation	0.019	0.063	0.225	0.863	1.681	0.780

Collapse at the bank-time level

	p10	p25	p50	p75	p90	SD
Avg. supply innovation	-0.218	-0.088	0.009	0.095	0.231	0.399
SD supply innovation	0.267	0.485	0.712	0.952	1.266	0.511

- For >50% of firms, within-firm SD is >30% of between-firm SD.
- For nearly 75% of banks, within-bank SD larger than between-bank SD.

Shocks are characterised by heterogeneity

Collapse at the firm-time level

	p10	p25	p50	p75	p90	SD
Avg. demand innovation	-0.677	-0.253	0.000	0.171	0.677	0.646
SD demand innovation	0.019	0.063	0.225	0.863	1.681	0.780

Collapse at the bank-time level

	p10	p25	p50	p75	p90	SD
Avg. supply innovation	-0.218	-0.088	0.009	0.095	0.231	0.399
SD supply innovation	0.267	0.485	0.712	0.952	1.266	0.511

- For >50% of firms, within-firm SD is >30% of between-firm SD.
- For nearly 75% of banks, within-bank SD larger than between-bank SD.
- Considerable variation cannot be studied using FE!

AKM-type estimates exhibit bias

	Change in Interest Rate		
Demand innovation (f,b,t)	0.219*** (0.008)		0.261*** (0.012)
Supply innovation (f,b,t)	-0.187*** (0.007)		-0.259*** (0.009)
Khwaja-Mian FT		-0.483*** (0.054)	1.151*** (0.084)
Khwaja-Mian BT		-0.751*** (0.096)	-1.260*** (0.104)
Khwaja-Mian Resid		-0.470*** (0.054)	1.150*** (0.082) -1.549*** (0.111)

Regression at firm-bank-time level. Relationship-specific and Khwaja-Mian shock estimates. 9 countries, 18 quarters, country-time FEs.

AKM-type estimates exhibit bias

Change in Interest Rate			
Demand innovation (f,b,t)	0.219*** (0.008)		0.261*** (0.012)
Supply innovation (f,b,t)	-0.187*** (0.007)		-0.259*** (0.009)
Khwaja-Mian FT		-0.483*** (0.054)	1.151*** (0.084)
Khwaja-Mian BT		-0.751*** (0.096)	-1.260*** (0.104)
Khwaja-Mian Resid		-0.470*** (0.054)	1.150*** (0.082) -1.549*** (0.111)

Regression at firm-bank-time level. Relationship-specific and Khwaja-Mian shock estimates. 9 countries, 18 quarters, country-time FEs.

AKM-type estimates exhibit bias

	Change in Interest Rate		
Demand innovation (f,b,t)	0.219*** (0.008)		0.261*** (0.012)
Supply innovation (f,b,t)	-0.187*** (0.007)		-0.259*** (0.009)
Khwaja-Mian FT		-0.483*** (0.054)	1.151*** (0.084)
Khwaja-Mian BT		-0.751*** (0.096)	-1.260*** (0.104)
Khwaja-Mian Resid		-0.470*** (0.054)	1.150*** (0.082) -1.549*** (0.111)

Regression at firm-bank-time level. Relationship-specific and Khwaja-Mian shock estimates. 9 countries, 18 quarters, country-time FEs.

AKM-type estimates exhibit bias

Change in Interest Rate			
Demand innovation (f,b,t)	0.219*** (0.008)		0.261*** (0.012)
Supply innovation (f,b,t)	-0.187*** (0.007)		-0.259*** (0.009)
Khwaja-Mian FT		-0.483*** (0.054)	1.151*** (0.084)
Khwaja-Mian BT		-0.751*** (0.096)	-1.260*** (0.104)
Khwaja-Mian Resid		-0.470*** (0.054)	1.150*** (0.082) -1.549*** (0.111)

Regression at firm-bank-time level. Relationship-specific and Khwaja-Mian shock estimates. 9 countries, 18 quarters, country-time FEs.

AKM-type estimates exhibit bias

	Change in Interest Rate		
Demand innovation (f,b,t)	0.219*** (0.008)		0.261*** (0.012)
Supply innovation (f,b,t)	-0.187*** (0.007)		-0.259*** (0.009)
Khwaja-Mian FT		-0.483*** (0.054)	1.151*** (0.084)
Khwaja-Mian BT		-0.751*** (0.096)	-1.260*** (0.104)
Khwaja-Mian Resid		-0.470*** (0.054)	1.150*** (0.082) -1.549*** (0.111)

Regression at firm-bank-time level. Relationship-specific and Khwaja-Mian shock estimates. 9 countries, 18 quarters, country-time FEs.

Credit markets and monetary policy transmission

	Demand innovation	Supply innovation
Share fixed rate loans	0.014 (0.015)	-0.018** (0.008)
Monetary Policy	-0.538*** (0.195)	0.692*** (0.195)
× Share fixed rate loans		
Central Bank Information	0.960*** (0.223)	-0.392*** (0.150)
× Share fixed rate loans		
Share collateralised loans	0.015** (0.007)	-0.009 (0.011)
Monetary Policy	-0.064 (0.094)	0.431*** (0.086)
× Share collateralised loans		
Central Bank Information	0.087 (0.106)	-0.028 (0.088)
× Share collateralised loans		

9 countries, 18 quarters, FT & BILT FEs, 1-quarter lagged regressors, and Jarociński and Karadi (2020) shocks.

Credit markets and monetary policy transmission

	Demand innovation	Supply innovation
Share fixed rate loans	0.014 (0.015)	-0.018** (0.008)
Monetary Policy × Share fixed rate loans	-0.538*** (0.195)	0.692*** (0.195)
Central Bank Information × Share fixed rate loans	0.960*** (0.223)	-0.392*** (0.150)
Share collateralised loans	0.015** (0.007)	-0.009 (0.011)
Monetary Policy × Share collateralised loans	-0.064 (0.094)	0.431*** (0.086)
Central Bank Information × Share collateralised loans	0.087 (0.106)	-0.028 (0.088)

9 countries, 18 quarters, FT & BILT FEs, 1-quarter lagged regressors, and Jarociński and Karadi (2020) shocks.

Credit markets and monetary policy transmission

	Demand innovation	Supply innovation
Share fixed rate loans	0.014 (0.015)	-0.018** (0.008)
Monetary Policy	-0.538***	0.692***
× Share fixed rate loans	(0.195)	(0.195)
Central Bank Information	0.960*** (0.223)	-0.392*** (0.150)
× Share fixed rate loans		
Share collateralised loans	0.015** (0.007)	-0.009 (0.011)
Monetary Policy	-0.064	0.431***
× Share collateralised loans	(0.094)	(0.086)
Central Bank Information	0.087	-0.028
× Share collateralised loans	(0.106)	(0.088)

9 countries, 18 quarters, FT & BILT FEs, 1-quarter lagged regressors, and Jarociński and Karadi (2020) shocks.

Credit markets and monetary policy transmission

	Demand innovation	Supply innovation
Share fixed rate loans	0.014 (0.015)	-0.018** (0.008)
Monetary Policy	-0.538*** (0.195)	0.692*** (0.195)
× Share fixed rate loans		
Central Bank Information	0.960*** (0.223)	-0.392*** (0.150)
× Share fixed rate loans		
Share collateralised loans	0.015** (0.007)	-0.009 (0.011)
Monetary Policy	-0.064 (0.094)	0.431*** (0.086)
× Share collateralised loans		
Central Bank Information	0.087 (0.106)	-0.028 (0.088)
× Share collateralised loans		

9 countries, 18 quarters, FT & BILT FEs, 1-quarter lagged regressors, and Jarociński and Karadi (2020) shocks.

ΔQ and ΔP vs. Demand and Supply Innovations

	Credit growth	Change in Interest Rate	Demand innovation	Supply innovation
Share fixed rate loans	-0.004 (0.003)	0.042*** (0.012)	0.014 (0.015)	-0.018** (0.008)
Monetary Policy \times Share f.r.l.	0.086 (0.057)	-1.091*** (0.143)	-0.538*** (0.195)	0.692*** (0.195)
CB Info \times Share f.r.l.	-0.084 (0.053)	1.082*** (0.159)	0.960*** (0.223)	-0.392*** (0.150)
Share collateralized loans	0.006 (0.010)	0.025*** (0.005)	0.015** (0.007)	-0.009 (0.011)
Monetary Policy \times Share c.l.	0.131** (0.066)	-0.324*** (0.078)	-0.064 (0.094)	0.431*** (0.086)
CB Info \times Share c.l.	0.048 (0.063)	0.271*** (0.088)	0.087 (0.106)	-0.028 (0.088)

9 countries, 18 quarters, FT & BILT FEs, 1-quarter lagged regressors, and Jarociński and Karadi (2020) shocks.

ΔQ and ΔP vs. Demand and Supply Innovations

	Credit growth	Change in Interest Rate	Demand innovation	Supply innovation
Share fixed rate loans	-0.004 (0.003)	0.042*** (0.012)	0.014 (0.015)	-0.018** (0.008)
Monetary Policy \times Share f.r.l.	0.086 (0.057)	-1.091*** (0.143)	-0.538*** (0.195)	0.692*** (0.195)
CB Info \times Share f.r.l.	-0.084 (0.053)	1.082*** (0.159)	0.960*** (0.223)	-0.392*** (0.150)
Share collateralized loans	0.006 (0.010)	0.025*** (0.005)	0.015** (0.007)	-0.009 (0.011)
Monetary Policy \times Share c.l.	0.131** (0.066)	-0.324*** (0.078)	-0.064 (0.094)	0.431*** (0.086)
CB Info \times Share c.l.	0.048 (0.063)	0.271*** (0.088)	0.087 (0.106)	-0.028 (0.088)

9 countries, 18 quarters, FT & BILT FEs, 1-quarter lagged regressors, and Jarociński and Karadi (2020) shocks.

ΔQ and ΔP vs. Demand and Supply Innovations

	Credit growth	Change in Interest Rate	Demand innovation	Supply innovation
Share fixed rate loans	-0.004 (0.003)	0.042*** (0.012)	0.014 (0.015)	-0.018** (0.008)
Monetary Policy \times Share f.r.l.	0.086 (0.057)	-1.091*** (0.143)	-0.538*** (0.195)	0.692*** (0.195)
CB Info \times Share f.r.l.	-0.084 (0.053)	1.082*** (0.159)	0.960*** (0.223)	-0.392*** (0.150)
Share collateralized loans	0.006 (0.010)	0.025*** (0.005)	0.015** (0.007)	-0.009 (0.011)
Monetary Policy \times Share c.l.	0.131** (0.066)	-0.324*** (0.078)	-0.064 (0.094)	0.431*** (0.086)
CB Info \times Share c.l.	0.048 (0.063)	0.271*** (0.088)	0.087 (0.106)	-0.028 (0.088)

9 countries, 18 quarters, FT & BILT FEs, 1-quarter lagged regressors, and Jarociński and Karadi (2020) shocks.

Conclusion

Relaxing **homogeneity** assumption identifies **relationship-specific** effects.

Wide range of potential applications – **finance, labour, trade**.

Simple identification, estimation, inference – **Stata/Python** routine soon.

Conclusion

Relaxing **homogeneity** assumption identifies **relationship-specific** effects.

Wide range of potential applications – **finance, labour, trade**.

Simple identification, estimation, inference – **Stata/Python** routine soon.

Results for **9 European credit markets** illustrate potential:

- Supply and Demand curves **evolve** over time.
- Considerable variation **unexplained** by fixed effects.
- Heterogeneity reflects **differential responses to policy**.

Next step: impact on Khwaja-Mian type firm-level outcome regressions

Conclusion

Relaxing **homogeneity** assumption identifies **relationship-specific** effects.

Wide range of potential applications – **finance, labour, trade**.

Simple identification, estimation, inference – **Stata/Python** routine soon.

Results for **9 European credit markets** illustrate potential:

- Supply and Demand curves **evolve** over time.
- Considerable variation **unexplained** by fixed effects.
- Heterogeneity reflects **differential responses to policy**.

Next step: impact on Khwaja-Mian type firm-level outcome regressions

Discipline **models**, motivate **identification assumptions**, inform **policy**.

Thank you!

References

- Abowd, J. M., Kramarz, F., & Margolis, D. N. (1999). High wage workers and high wage firms. *Econometrica*, 67(2), 251–333.
<https://doi.org/https://doi.org/10.1111/1468-0262.00020>
- Amiti, M., & Weinstein, D. E. (2018). How much do idiosyncratic bank shocks affect investment? evidence from matched bank-firm loan data. *Journal of Political Economy*, 126(2), 525–587.
<https://doi.org/10.1086/696272>
- Bonhomme, S. (2020). Econometric analysis of bipartite networks. In B. Graham & Á. de Paula (Eds.), *The econometric analysis of network data* (pp. 83–121). Academic Press. <https://doi.org/https://doi.org/10.1016/B978-0-12-811771-2.00011-0>

References ii

- Jarociński, M., & Karadi, P. (2020). Deconstructing monetary policy surprises—the role of information shocks. *American Economic Journal: Macroeconomics*, 12(2), 1–43.
<https://doi.org/10.1257/mac.20180090>
- Jochmans, K., & Weidner, M. (2019). Fixed-effect regressions on network data. *Econometrica*, 87(5), 1543–1560.
<https://doi.org/https://doi.org/10.3982/ECTA14605>
- Khwaja, A. I., & Mian, A. (2008). Tracing the impact of bank liquidity shocks: Evidence from an emerging market. *American Economic Review*, 98(4), 1413–42. <https://doi.org/10.1257/aer.98.4.1413>
- Kramarz, F., Martin, J., & Mejean, I. (2020). Volatility in the small and in the large: The lack of diversification in international trade. *Journal of International Economics*, 122, 103276.
<https://doi.org/https://doi.org/10.1016/j.jinteco.2019.103276>

References iii

- Paravisini, D., Rapoport, V., & Schnabl, P. (2023). Specialization in bank lending: Evidence from exporting firms. *The Journal of Finance*, 78(4), 2049–2085.
<https://doi.org/https://doi.org/10.1111/jofi.13254>
- Rigobon, R. (2003). Identification through heteroskedasticity. *The Review of Economics and Statistics*, 85(4), 777–792. Retrieved October 3, 2023, from <http://www.jstor.org/stable/3211805>

Approach for consistency

First, show that the variance of S_{FF} is vanishing as $F, B \rightarrow \infty$: *Within banks*, there are $O(BF^4)$ non-zero covariances, but $N_{FF}^2 = O(B^2F^4) \Rightarrow O(B^{-1})$.

Across different b , there are $O(B^2F^2)$ non-zero covs $\Rightarrow O(F^{-2}) < O(B^{-1})$.

Then, $S_{FF} \xrightarrow{P} \Sigma_{FF}$ (uniformly) by Chebyshev (at rate \sqrt{B}).

Same true for S_{BB} by symmetry, and consistency of $\hat{\theta}$ follows from standard minimum distance results.

Approach for asymptotic normality

Non-trivial to apply a CLT, observations **are not in general independent**.

Trick is to expand each $\eta_{fb,i}\eta_{f'b,j}$, $i, j \in \{1, 2\}$ based on Assumption 2.

Obtain four components, one of which is **independent** across b , call it $\beta_{b,ff',ij}$. $\sqrt{B} \left(\frac{1}{N_{FF}} \sum_{b=1}^B \left(\sum_{f' \neq f} \beta_{b,ff',ij} - \Sigma_{FF,ij} \right) \right)$ satisfies Lyapunov's condition where observations are the inner sums for each b .

Joint normality of $\beta_{b,ff'}$ follows from Cramer-Wold.

Similarly scaled sums of all other terms converge to zero in probability, so normality of S_{FF} follows. S_{BB} by symmetry. $\hat{\theta}$ by minimum distance results.

Assumptions for inference 1

Assumption 2

Demand and supply shocks have the structure

$$\begin{aligned}u_{fb}^d &= e_{fb}^d + v_{fb}^d \\u_{fb}^s &= e_{fb}^s + v_{fb}^s.\end{aligned}$$

where e_{fb}^i is mean zero and independent of all innovations except for $e_{fb'}^i$ and v_{fb}^i is mean zero and independent of all innovations except for $v_{f'b}^i$. All innovations have strictly positive variance and finite eighth moments, and $\lim_{F,B \rightarrow \infty} \frac{B}{N_{FF}^2} \sum_{b=1}^B \text{var} \left(\sum_{f' \neq f} \text{vech}(v_{fb} v_{f'b}') \right)$ and $\lim_{F,B \rightarrow \infty} \frac{F}{N_{FF}^2} \sum_{f=1}^F \text{var} \left(\sum_{b' \neq b} \text{vech}(e_{fb} e_{fb'}') \right)$ are symmetric positive definite, where e_{fb} and v_{fb} stack the bank and firm demand and supply components, respectively.

Assumptions for inference 2

Assumption 3

The following limits hold:

1.

$$\lim_{F,B \rightarrow \infty} \frac{N}{FB} = \kappa \in (0, 1], \quad N \equiv \sum_{b=1}^B F_b = \sum_{f=1}^F B_f;$$

2.

$$\frac{B}{F^2} \rightarrow 0 \text{ as } F, B \rightarrow \infty;$$

3.

$$\frac{F}{B^2} \rightarrow 0 \text{ as } F, B \rightarrow \infty.$$

Estimating the asymptotic variance

Define

$$\hat{W}_{FF} = \frac{B^2}{N_{FF}^2} \frac{1}{B} \sum_{b=1}^B \left(\sum_{f' \neq f} \text{vech}(\eta_{fb} \eta'_{f'b}) - \text{vech}(S_{FF}) \right) \left(\sum_{f' \neq f} \text{vech}(\eta_{fb} \eta'_{f'b}) - \text{vech}(S_{FF}) \right)'.$$

Proposition 2

Under Assumptions 1-3 and the identification condition in Proposition 1,
 $\hat{W} \xrightarrow{P} W$.

Looks very much like **clustered standard error** formula!

So far, we have only considered data from a single time period.

Consistency and asymptotic normality extend to **pooled data**, and \hat{W} is straightforward to adjust for **serial correlation**.

Simulations: Setup

Simulations are based on estimates for Italy in tightening subsample

$$A = \begin{bmatrix} 0.0761 & -0.0687 \\ 0.0124 & 0.0610 \end{bmatrix}$$

Serially uncorrelated (SU) shocks are generated from:

$$u_{fb}^i = z_f^i + z_b^i + z_{fb}^i, \quad i = \{d, s\}, \quad f = 1, \dots, F, \quad b = 1, \dots, B,$$

z 's are independent and normally distributed with mean zero and empirically calibrated variance

Serially-correlated (SC) shocks: z_f^i and z_b^i independent mean-zero AR(1), with autoregressive parameters matching the data

- 1000 Monte Carlo samples
- $B = 10, 25, 100, 500$, with $F = 1000B$
- fraction of connections are non-zero, at random, matching sparsity of network