

Natural Disasters and Central Bank Asset Purchases

Alessandro Cantelmo (Bank of Italy), Alessandro Lin (Bank of Italy), and Francesco Zanetti (University of Oxford)

January 3-5, 2026

ASSA 2026 Annual Meeting
Philadelphia, PA

Disclaimer

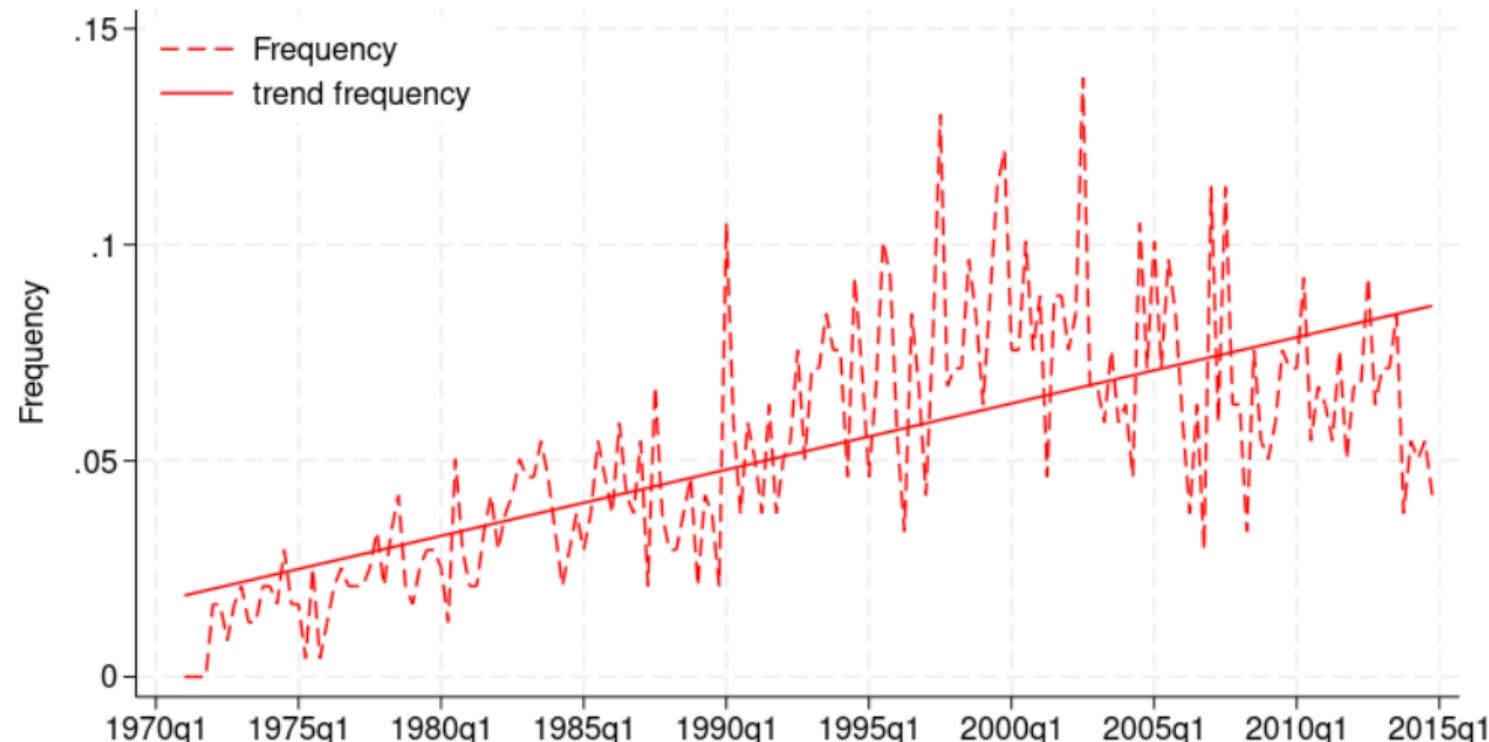
Preliminary, please do not quote or circulate without permission.

The views expressed herein are those of the authors and do not necessarily reflect those of the Bank of Italy, the Eurosystem, or their executive boards.

Outline

Introduction

Model


Results

Conclusions

Introduction

Introduction (1) - Increasing frequency of natural disasters

Figure 1: frequency of natural disasters - 1970-2015. Source: Fratzscher et al. (2020) and authors' calculations.

- **Disaster strikes:** usually inflationary and recessionary (Fratzscher et al., 2020; Parker, 2018; Cantelmo et al., 2024).

- **Disaster strikes:** usually inflationary and recessionary (Fratzscher et al., 2020; Parker, 2018; Cantelmo et al., 2024).
 - Central banks face inflation-output trade-off (supply-type shocks).

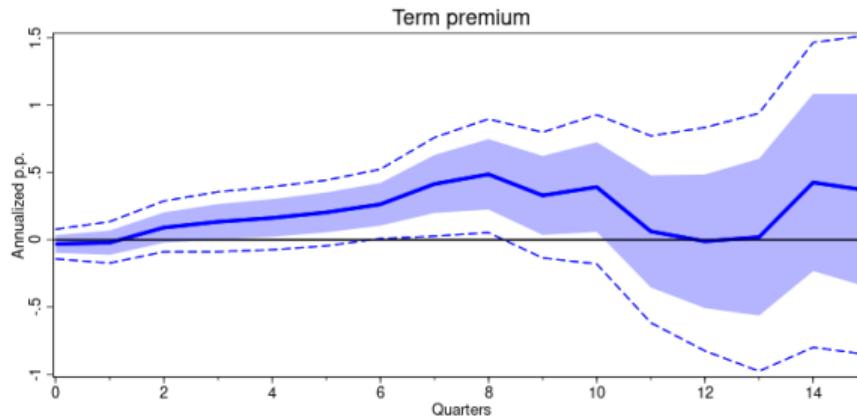
- **Disaster strikes:** usually inflationary and recessionary (Fratzscher et al., 2020; Parker, 2018; Cantelmo et al., 2024).
 - Central banks face inflation-output trade-off (supply-type shocks).
- **Disaster risk:** increases precautionary savings, reducing aggregate demand and inflation in the long-run (Cantelmo, 2022).

- **Disaster strikes:** usually inflationary and recessionary (Fratzscher et al., 2020; Parker, 2018; Cantelmo et al., 2024).
 - Central banks face inflation-output trade-off (supply-type shocks).
- **Disaster risk:** increases precautionary savings, reducing aggregate demand and inflation in the long-run (Cantelmo, 2022).
 - Harder for central banks to achieve inflation target; lower natural interest rate; ELB more likely to bind.

- **Financial markets reaction.** Increase in term-premium:
 - magnify output losses and reduce inflation (negative demand shocks);
 - potential disruption of monetary policy transmission;
 - risks for financial and macroeconomic stability (Bolton et al., 2020).

- **Financial markets reaction.** Increase in term-premium:
 - magnify output losses and reduce inflation (negative demand shocks);
 - potential disruption of monetary policy transmission;
 - risks for financial and macroeconomic stability (Bolton et al., 2020).
- Formally investigate the effects estimating the following LP:

$$\Delta y_{i,t} = c + \sum_{j=0}^J [\beta_j S_{i,t-j} + \vartheta_j GDPpc_{i,t-j} S_{i,t-j}] + \nu_i + \nu_Y + \phi X_{i,t-1} + \sum_{l=1}^L \mu_l \Delta y_{i,t-l} + \varepsilon_{i,t}. \quad (1)$$


- $y_{i,t}$ is the term premium (i.e. difference between long- and short-term rates);
- $S_{i,t-j}$ is the natural disaster shock;
- Specification and data follows Fratzscher et al. (2020).

Introduction (3.2) - Natural Disasters and Term Premia: data

- Countries: 76 (36 OECD, 40 EMDEs);
- Sample: 1980Q1-2015Q4;
- Disaster shock:
 - Source: EM-DAT;
 - Weighted quarterly damage (% of pre-disaster GDP);
 - We include only climate-related natural disasters (i.e. no earthquakes).
 - We consider 90-99 percentiles (robust to alternatives).

	N. obs	Average damages (% GDP)	St. dev.
Disaster shocks	220	5.92	5.55

Introduction (3.3) - Natural Disasters and Term Premia

Notes: The figure shows the cumulated response of the term premium to large natural disasters over the period 1980Q1-2015Q4. Confidence bands refer to the 90% level (dashed lines) and a one standard deviation interval (shaded area).

- Evidence of higher term premia following large natural disasters, such that it might be desirable for central banks to intervene.
- Natural disaster of 1% of GDP on average increases the term premium by 0.5 p.p. at the peak.

1. Can monetary policy be effective in alleviating the risks and effects of natural disasters?
 - Yes, it can play a role in addressing *both* disaster risk and strikes.

1. Can monetary policy be effective in alleviating the risks and effects of natural disasters?
 - Yes, it can play a role in addressing *both* disaster risk and strikes.
2. What monetary policy: standard or “unconventional” ?
 - Standard tool (short-term rate): stimulates demand through consumption/savings decisions (via households).
 - Asset purchases (APs): affect the term-premium and hence financing conditions (via firms' investment and production capacity).

1. Can monetary policy be effective in alleviating the risks and effects of natural disasters?
 - Yes, it can play a role in addressing *both* disaster risk and strikes.
2. What monetary policy: standard or “unconventional” ?
 - Standard tool (short-term rate): stimulates demand through consumption/savings decisions (via households).
 - Asset purchases (APs): affect the term-premium and hence financing conditions (via firms' investment and production capacity).
 - Central bank purchases of long-term government bonds is an important tool to deploy.

1. Can monetary policy be effective in alleviating the risks and effects of natural disasters?
 - Yes, it can play a role in addressing *both* disaster risk and strikes.
2. What monetary policy: standard or “unconventional” ?
 - Standard tool (short-term rate): stimulates demand through consumption/savings decisions (via households).
 - Asset purchases (APs): affect the term-premium and hence financing conditions (via firms' investment and production capacity).
 - Central bank purchases of long-term government bonds is an important tool to deploy.
3. Are higher frequency or severity of natural disasters relevant for monetary policy?

1. Can monetary policy be effective in alleviating the risks and effects of natural disasters?
 - Yes, it can play a role in addressing *both* disaster risk and strikes.
2. What monetary policy: standard or “unconventional” ?
 - Standard tool (short-term rate): stimulates demand through consumption/savings decisions (via households).
 - Asset purchases (APs): affect the term-premium and hence financing conditions (via firms' investment and production capacity).
 - Central bank purchases of long-term government bonds is an important tool to deploy.
3. Are higher frequency or severity of natural disasters relevant for monetary policy?
 - Exploiting NGFS scenarios, asset purchases are needed unless further climate mitigation policies are implemented.

- DSGE model with disaster shocks to evaluate two monetary policy tools (short-term interest rate and asset purchases):

- DSGE model with disaster shocks to evaluate two monetary policy tools (short-term interest rate and asset purchases):
 - on the distributions of inflation and output distinguishing between disaster risk (*normal times*) and disaster strikes (*ex-post*);

- DSGE model with disaster shocks to evaluate two monetary policy tools (short-term interest rate and asset purchases):
 - on the distributions of inflation and output distinguishing between disaster risk (*normal times*) and disaster strikes (*ex-post*);
 - under historical data and NGFS *Current Policies* and *Net Zero 2050* scenarios.

- Natural Disasters and monetary policy:
 - Fratzscher et al. (2020), Cantelmo (2022), Cantelmo et al. (2024): focus on short-term rate.
- Natural disasters and higher risk premia:
 - Painter (2020), Beirne et al. (2021), Cevik and Jalles (2022), Mallucci (2022).
- Central bank asset purchases:
 - Financial market stabilization: Bolton et al. (2020), Motto and Özen (2022).
 - APs above the ELB: De Fiore and Tristani (2019), Bigio and Sannikov (2021), Vissing-Jorgensen (2023).
- Our contributions:
 - Study the role of APs in addressing the effects of natural disasters both after disasters strikes and in normal times and regardless of the ELB.
 - Evaluate APs under NGFS scenarios.

Model

New-Keynesian representative agent model with:

- Epstein-Zin preferences.
- Financial intermediaries (as in Carlstrom et al., 2017): real effects of APs.
- Standard New Keynesian Phillips curve (Calvo rigidities).
- Monetary policy:
 - short term rate R_t ;
 - asset purchases B_t^{CB} .
- Natural disasters affecting: capital, TFP and term-premium.

Model (2) - Natural Disasters

- Stochastic process for disasters (Fernández-Villaverde and Levintal, 2018):
 - strike: $d_t = 1$ with probability p_d ,
 - size: determined by a time-varying force θ_t

$$\log \theta_t = (1 - \rho_\theta) \log \bar{\theta} + \rho_\theta \log \theta_{t-1} + \sigma_\theta \epsilon_{\theta,t}, \quad \epsilon_{\theta,t} \sim \mathcal{N}(0, 1) \quad (2)$$

- Stochastic process for disasters (Fernández-Villaverde and Levintal, 2018):
 - strike: $d_t = 1$ with probability p_d ,
 - size: determined by a time-varying force θ_t

$$\log \theta_t = (1 - \rho_\theta) \log \bar{\theta} + \rho_\theta \log \theta_{t-1} + \sigma_\theta \epsilon_{\theta,t}, \quad \epsilon_{\theta,t} \sim \mathcal{N}(0, 1) \quad (2)$$

- Two sources of uncertainty:
 - **Timing**: agents only know the (fixed) probability of a disaster strike but know about the realization only when it happens.
 - **Magnitude**: agents only know the average impact of a disaster but the actual size cannot be known ex-ante.

Model (3) - Natural Disasters impact on capital and TFP

- Shock is realized at the beginning of the period so the actual capital k_t is a function of the previous period capital optimal choice k_{t-1}^*

$$k_t = k_{t-1}^* e^{-d_t \theta_t} \quad (3)$$

Model (3) - Natural Disasters impact on capital and TFP

- Shock is realized at the beginning of the period so the actual capital k_t is a function of the previous period capital optimal choice k_{t-1}^*

$$k_t = k_{t-1}^* e^{-d_t \theta_t} \quad (3)$$

- TFP, A_t^{agg} , has a permanent and a stationary component to capture realistic dynamics→ disaster strikes have permanent effects followed by partial recoveries (Hsiang and Jina, 2014; Bodenstein and Scaramucci, 2024):

$$\log A_t^{\text{agg}} = \log A_t + \log A_t^T, \quad (4)$$

$$\log A_t = \log A_{t-1} + \Lambda_A - \omega (1 - \alpha) d_t \theta_t, \quad (5)$$

$$\log A_t^T = \rho_a \log A_{t-1}^T - (1 - \omega) (1 - \alpha) d_t \theta_t, \quad (6)$$

Model (4) - Financial Markets and overreaction

- FIs modeled as in Carlstrom et al. (2017): amplify aggregate shocks and propagate APs to real economy.

Model (4) - Financial Markets and overreaction

- FIs modeled as in Carlstrom et al. (2017): amplify aggregate shocks and propagate APs to real economy.
- Term-premium between actual long yield and corresponding yield under expectation hypothesis

$$TP_t = 1 + R_t^{10} - R_t^{10,EH} \quad (7)$$

Model (4) - Financial Markets and overreaction

- FIs modeled as in Carlstrom et al. (2017): amplify aggregate shocks and propagate APs to real economy.
- Term-premium between actual long yield and corresponding yield under expectation hypothesis

$$TP_t = 1 + R_t^{10} - R_t^{10,EH} \quad (7)$$

- When a disaster hits, the long-term rate on loans and hence the term premium increase as a proxy for financial markets overreaction.

$$R_{t+1}^L = \frac{1 + \kappa_L P_{L,t+1}}{P_{L,t}} e^{\eta \tau_t} \quad (8)$$

$$\log \tau_t = \rho_\tau \log \tau_{t-1} + d_t \theta_t \quad (9)$$

- The size of the overreaction is determined by η .

Model (5) - Monetary Policy Instruments

1. Standard Taylor rule

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R} \right)^{\gamma_R} \left(\left(\frac{\Pi_t}{\bar{\Pi}} \right)^{\gamma_\Pi} \left(\frac{\frac{y_t}{y_{t-1}}}{\exp(\Lambda_y)} \right)^{\gamma_y} \right)^{1-\gamma_R} \quad (10)$$

Model (5) - Monetary Policy Instruments

1. Standard Taylor rule

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R} \right)^{\gamma_R} \left(\left(\frac{\Pi_t}{\bar{\Pi}} \right)^{\gamma_{\Pi}} \left(\frac{\frac{y_t}{y_{t-1}}}{\exp(\Lambda_y)} \right)^{\gamma_y} \right)^{1-\gamma_R} \quad (10)$$

2. Short term rate for financial markets stabilization (Term premium TR)

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R} \right)^{\gamma_R} \left(\left(\frac{\Pi_t}{\bar{\Pi}} \right)^{\gamma_{\Pi}} \left(\frac{\frac{y_t}{y_{t-1}}}{\exp(\Lambda_y)} \right)^{\gamma_y} \exp \left(- \frac{d_t \text{TP}_t}{d \text{TP}} \right)^{\gamma_{\text{TP}}} \right)^{1-\gamma_R} \quad (11)$$

Model (5) - Monetary Policy Instruments

1. Standard Taylor rule

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R} \right)^{\gamma_R} \left(\left(\frac{\Pi_t}{\bar{\Pi}} \right)^{\gamma_\Pi} \left(\frac{\frac{y_t}{y_{t-1}}}{\exp(\Lambda_y)} \right)^{\gamma_y} \right)^{1-\gamma_R} \quad (10)$$

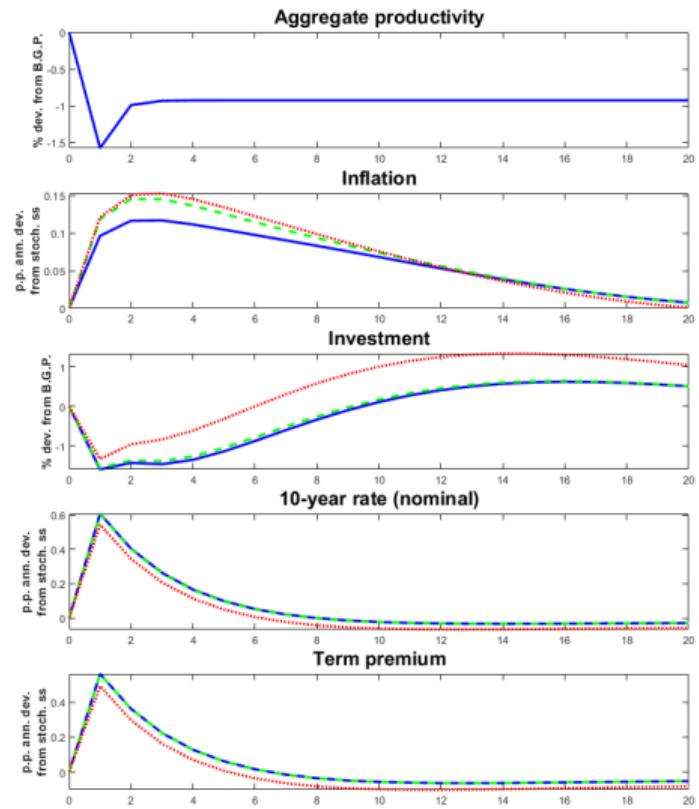
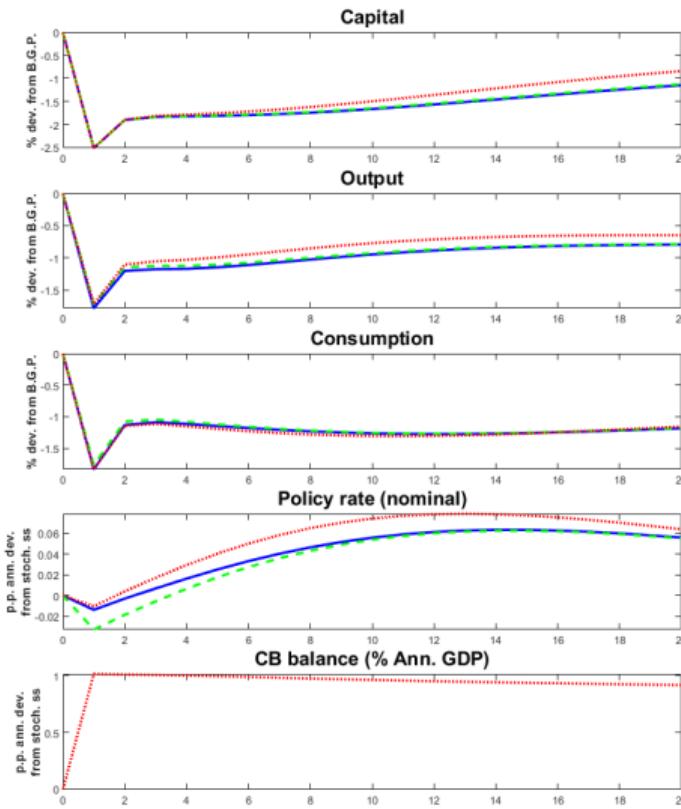
2. Short term rate for financial markets stabilization (Term premium TR)

$$\frac{R_t}{R} = \left(\frac{R_{t-1}}{R} \right)^{\gamma_R} \left(\left(\frac{\Pi_t}{\bar{\Pi}} \right)^{\gamma_\Pi} \left(\frac{\frac{y_t}{y_{t-1}}}{\exp(\Lambda_y)} \right)^{\gamma_y} \exp \left(- \frac{d_t \text{TP}_t}{d \text{TP}} \right)^{\gamma_{\text{TP}}} \right)^{1-\gamma_R} \quad (11)$$

3. Asset purchases to tame financial markets overreaction (+TR) (APs)

$$\frac{\bar{B}_t^{CB}}{\bar{B}^{CB}} = \left(\frac{\bar{B}_{t-1}^{CB}}{\bar{B}^{CB}} \right)^{\gamma_b} \exp \left(\frac{d_t \text{TP}_t}{d \text{TP}} \right)^{\gamma_{b \text{TP}}} \quad (12)$$

Calibration of disasters: historical data and scenarios



- Baseline calibration: EM-DAT, OECD 1960-2018.
- Scenarios based on Chavleishvili and Moench (2025):
 1. Costly disaster index (CD) of Ludvigson et al. (2021), US 1980-2019;
 2. Estimate distribution of CD under *Current Policies* and *Net Zero 2050* scenarios using corresponding global average carbon concentration from 2020 to 2040.
 3. Retrieve increase in annual probability and average impact of disasters;
 4. Apply these effects to our baseline calibration (damages are rescaled by GDP projections).

Scenario	Disaster probability	Average damages (% GDP)
Baseline	1.2%	1.8%
Net Zero 2050	2.2%	1.8%
Current policies	10%	1.8%

Results

Dynamic Effects of an Average Disaster Shock

- To compare APs and TP Taylor rule: effect on output on *impact* is equalized by construction.
- Deviating from Standard Taylor rule:
 - term premium is only slightly affected;
 - mild stimulus to consumption, investments and output;
 - temporarily higher inflation.
- Using asset purchases:
 - stronger effect on the term premium;
 - boosting investments and sustaining output;
 - with similar additional inflation.

Results - Distributions in normal and disaster times

- What are the stabilization properties of monetary policy instruments when disasters of different sizes occur? What happens in the long-run due to disaster risk?

Results - Distributions in normal and disaster times

- What are the stabilization properties of monetary policy instruments when disasters of different sizes occur? What happens in the long-run due to disaster risk?

1. Simulate the model for 100k quarters under the three natural disasters scenarios.

Results - Distributions in normal and disaster times

- What are the stabilization properties of monetary policy instruments when disasters of different sizes occur? What happens in the long-run due to disaster risk?

1. Simulate the model for 100k quarters under the three natural disasters scenarios.
2. For each scenario, we compute the distributions of inflation and output gap under the three monetary policies:

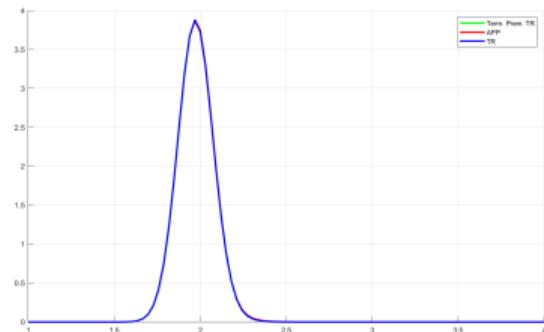
Results - Distributions in normal and disaster times

- What are the stabilization properties of monetary policy instruments when disasters of different sizes occur? What happens in the long-run due to disaster risk?

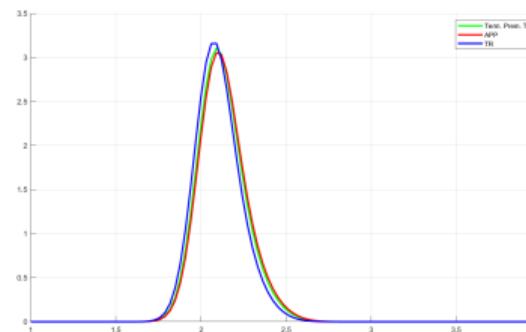
1. Simulate the model for 100k quarters under the three natural disasters scenarios.
2. For each scenario, we compute the distributions of inflation and output gap under the three monetary policies:
 - 2 years after disasters, t to $t + 7$, (capturing short-run effects of disaster strikes);

Results - Distributions in normal and disaster times

- What are the stabilization properties of monetary policy instruments when disasters of different sizes occur? What happens in the long-run due to disaster risk?


1. Simulate the model for 100k quarters under the three natural disasters scenarios.
2. For each scenario, we compute the distributions of inflation and output gap under the three monetary policies:
 - 2 years after disasters, t to $t + 7$, (capturing short-run effects of disaster strikes);
 - 2 years before disasters, $t - 8$ to $t - 1$, (capturing long-run effects of disaster risk).

Results - Distributions in normal and disaster times

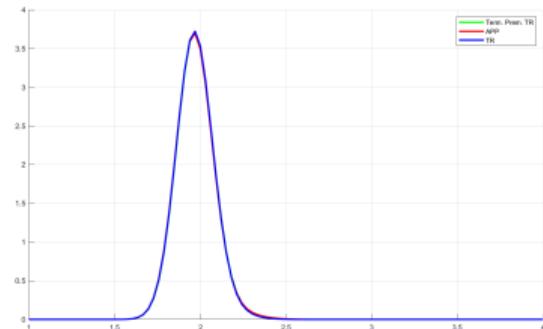

- What are the stabilization properties of monetary policy instruments when disasters of different sizes occur? What happens in the long-run due to disaster risk?

1. Simulate the model for 100k quarters under the three natural disasters scenarios.
2. For each scenario, we compute the distributions of inflation and output gap under the three monetary policies:
 - 2 years after disasters, t to $t + 7$, (capturing short-run effects of disaster strikes);
 - 2 years before disasters, $t - 8$ to $t - 1$, (capturing long-run effects of disaster risk).

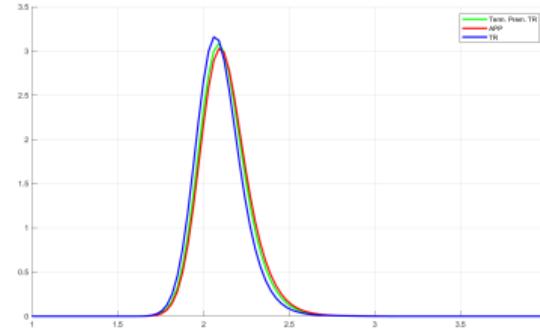

Baseline Calibration

(a) Inflation - Pre-Disaster

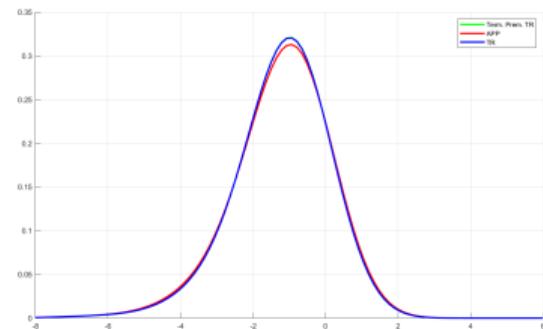
(b) Inflation - Post-Disaster



(c) Output Gap - Pre-Disaster

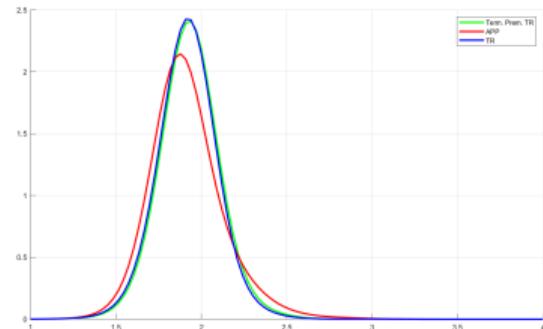


(d) Output Gap - Post-Disaster

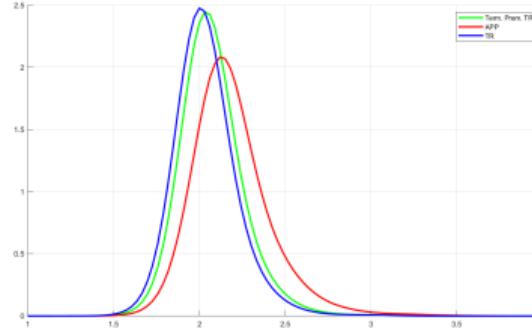

Net zero 2050


(a) Inflation - Pre-Disaster

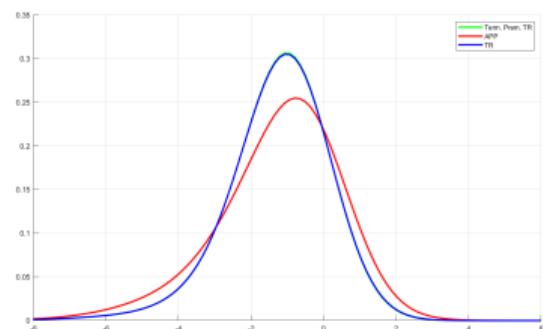
(b) Inflation - Post-Disaster

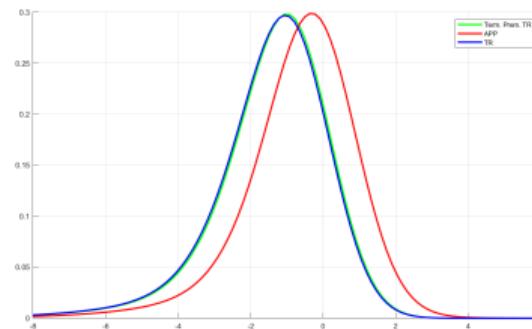


(c) Output Gap - Pre-Disaster



(d) Output Gap - Post-Disaster


Current Policies


(a) Inflation - Pre-Disaster

(b) Inflation - Post-Disaster

(c) Output Gap - Pre-Disaster

(d) Output Gap - Post-Disaster

Summary of Results

- Under baseline calibration, little impact of APs due to historical low frequency and impact of disasters.

Summary of Results

- Under baseline calibration, little impact of APs due to historical low frequency and impact of disasters.
- APs not needed under "*Net Zero 2050*" scenario.

Summary of Results

- Under baseline calibration, little impact of APs due to historical low frequency and impact of disasters.
- APs not needed under "*Net Zero 2050*" scenario.
- Significantly positive effects under "*Current Policies*" scenario with more frequent shocks.

Summary of Results

- Under baseline calibration, little impact of APs due to historical low frequency and impact of disasters.
- APs not needed under "*Net Zero 2050*" scenario.
- Significantly positive effects under "*Current Policies*" scenario with more frequent shocks.
- APs appear effective at moving the entire distribution of output to the right while temporarily moving that of inflation rightward and increasing its positive skewness, especially with more frequent events.

Conclusions

Conclusions and policy implications

1. Estimate the impact of natural disasters on the term premium.

Conclusions and policy implications

1. Estimate the impact of natural disasters on the term premium.
2. NK model + disaster risk and strikes + financial markets overreaction.

Conclusions and policy implications

1. Estimate the impact of natural disasters on the term premium.
2. NK model + disaster risk and strikes + financial markets overreaction.
3. Simulate the model according to historical data and NGFS scenarios.

Conclusions and policy implications

1. Estimate the impact of natural disasters on the term premium.
2. NK model + disaster risk and strikes + financial markets overreaction.
3. Simulate the model according to historical data and NGFS scenarios.
4. Monetary Policy implications:

Conclusions and policy implications

1. Estimate the impact of natural disasters on the term premium.
2. NK model + disaster risk and strikes + financial markets overreaction.
3. Simulate the model according to historical data and NGFS scenarios.
4. Monetary Policy implications:
 - Post-disasters: APs provide better output outcomes with temporarily slightly higher inflation.

Conclusions and policy implications

1. Estimate the impact of natural disasters on the term premium.
2. NK model + disaster risk and strikes + financial markets overreaction.
3. Simulate the model according to historical data and NGFS scenarios.
4. Monetary Policy implications:
 - Post-disasters: APs provide better output outcomes with temporarily slightly higher inflation.
 - Pre-disasters: under APs, more positive or less negative skewness of inflation and output gap;

Conclusions and policy implications

1. Estimate the impact of natural disasters on the term premium.
2. NK model + disaster risk and strikes + financial markets overreaction.
3. Simulate the model according to historical data and NGFS scenarios.
4. Monetary Policy implications:
 - Post-disasters: APs provide better output outcomes with temporarily slightly higher inflation.
 - Pre-disasters: under APs, more positive or less negative skewness of inflation and output gap;
 - APs contrast the negative effects of disaster risk on inflation making more likely to achieve the inflation target;

Conclusions and policy implications

1. Estimate the impact of natural disasters on the term premium.
2. NK model + disaster risk and strikes + financial markets overreaction.
3. Simulate the model according to historical data and NGFS scenarios.
4. Monetary Policy implications:
 - Post-disasters: APs provide better output outcomes with temporarily slightly higher inflation.
 - Pre-disasters: under APs, more positive or less negative skewness of inflation and output gap;
 - APs contrast the negative effects of disaster risk on inflation making more likely to achieve the inflation target;
 - Using APs avoid reducing the policy rate, making the ELB less likely to bind and leaving more room for maneuver of the standard tool.

Conclusions and policy implications

1. Estimate the impact of natural disasters on the term premium.
2. NK model + disaster risk and strikes + financial markets overreaction.
3. Simulate the model according to historical data and NGFS scenarios.
4. Monetary Policy implications:
 - Post-disasters: APs provide better output outcomes with temporarily slightly higher inflation.
 - Pre-disasters: under APs, more positive or less negative skewness of inflation and output gap;
 - APs contrast the negative effects of disaster risk on inflation making more likely to achieve the inflation target;
 - Using APs avoid reducing the policy rate, making the ELB less likely to bind and leaving more room for maneuver of the standard tool.
5. APs would be needed to provide significant stabilization unless further climate mitigation policies are implemented.

References

Beirne, J., Renzhi, N., and Volz, U. (2021). Feeling the heat: Climate risks and the cost of sovereign borrowing. *International Review of Economics and Finance*, 76:920–936.

Bigio, S. and Sannikov, Y. (2021). A model of credit, money, interest, and prices. Working Paper 28540, National Bureau of Economic Research.

Bodenstein, M. and Scaramucci, M. (2024). On the GDP Effects of Severe Physical Hazards. International Finance Discussion Papers 1386, Board of Governors of the Federal Reserve System (U.S.).

Bolton, P., Luiz, M., Pereira, A., Silva, D., Samama, F., and Svartzman, R. (2020). *The green swan: Central banking and financial stability in the age of climate change*. Bank for International Settlements.

References ii

Cantelmo, A. (2022). Rare disasters, the natural interest rate and monetary policy. *Oxford Bulletin of Economics and Statistics*, 84(3):473–496.

Cantelmo, A., Fatouros, N., Melina, G., and Papageorgiou, C. (2024). Monetary policy under natural disaster shocks. *International Economic Review*.

Carlstrom, C. T., Fuerst, T. S., and Paustian, M. (2017). Targeting long rates in a model with segmented markets. *American Economic Journal: Macroeconomics*, 9(1):205–242.

Cevik, S. and Jalles, J. T. (2022). This changes everything: Climate shocks and sovereign bonds*. *Energy Economics*, 107:105856.

Chavleishvili, S. and Moench, E. (2025). Natural disasters as macroeconomic tail risks. *Journal of Econometrics*, 247:105914.

De Fiore, F. and Tristani, O. (2019). (un)conventional policy and the effective lower bound. *Journal of Economic Dynamics and Control*, 106:103696.

References iii

Fernández-Villaverde, J. and Levintal, O. (2018). Solution methods for models with rare disasters. *Quantitative Economics*, 9(2):903–944.

Fratzscher, M., Grosse-Steffen, C., and Rieth, M. (2020). Inflation targeting as a shock absorber. *Journal of International Economics*, page 103308.

Hsiang, S. M. and Jina, A. S. (2014). The Causal Effect of Environmental Catastrophe on Long-Run Economic Growth: Evidence From 6,700 Cyclones. NBER Working Papers 20352, National Bureau of Economic Research, Inc.

Ludvigson, S. C., Ma, S., and Ng, S. (2021). Covid-19 and the costs of deadly disasters. *AEA Papers and Proceedings*, 111:366–70.

Mallucci, E. (2022). Natural disasters, climate change, and sovereign risk. *Journal of International Economics*, 139:103672.

Motto, R. and Özen, K. (2022). Market-stabilization QE. Working Paper Series 2640, European Central Bank.

Painter, M. (2020). An inconvenient cost: The effects of climate change on municipal bonds. *Journal of Financial Economics*, 135(2):468–482.

Parker, M. (2018). The Impact of Disasters on Inflation. *Economics of Disasters and Climate Change*, 2(1):21–48.

Vissing-Jorgensen, A. (2023). Balance Sheet Policy Above the Effective Lower Bound. Paper for the ecb's sintra conference.