

Who pays, Who adopts? Efficiency and Equity of Residential Solar Policy

Dongchen He

Tilburg University
ASSA IAEE

Jan 5, 2026

German econ min considers phasing out subsidies for new small-scale solar PV

#Solar #Cost & Prices #Policy

f X in

Germany's economy minister told the newspaper Augsburger Allgemeine that new small-scale solar installations should be able to go without a subsidy which remunerates the electricity they feed into the grid. The proposal was both celebrated and rejected, with some saying the end of the feed-in tariffs for small solar units are long overdue and others warning that the move could stifle the expansion of the important power source. [UPDATE: Adds reactions from energy sector, Greens, ministry response]

German econ min considers phasing out subsidies for new small-scale solar PV

#Solar #Cost & Prices #Policy

f X in

Germany's economy minister told the newspaper Augsburger Allgemeine that new small-scale solar installations should be able to go without a subsidy which remunerates the electricity they feed into the grid. The proposal was both celebrated and rejected, with some saying the end of the feed-in tariffs for small solar units are long overdue and others warning that the move could stifle the expansion of the important power source. [UPDATE: Adds reactions from energy sector, Greens, ministry response]

EU solar energy rollout slows for first time in decade as subsidies cut

By Kate Abnett and Riham Alkousaa

July 24, 2025 7:25 PM GMT+2 · Updated July 24, 2025

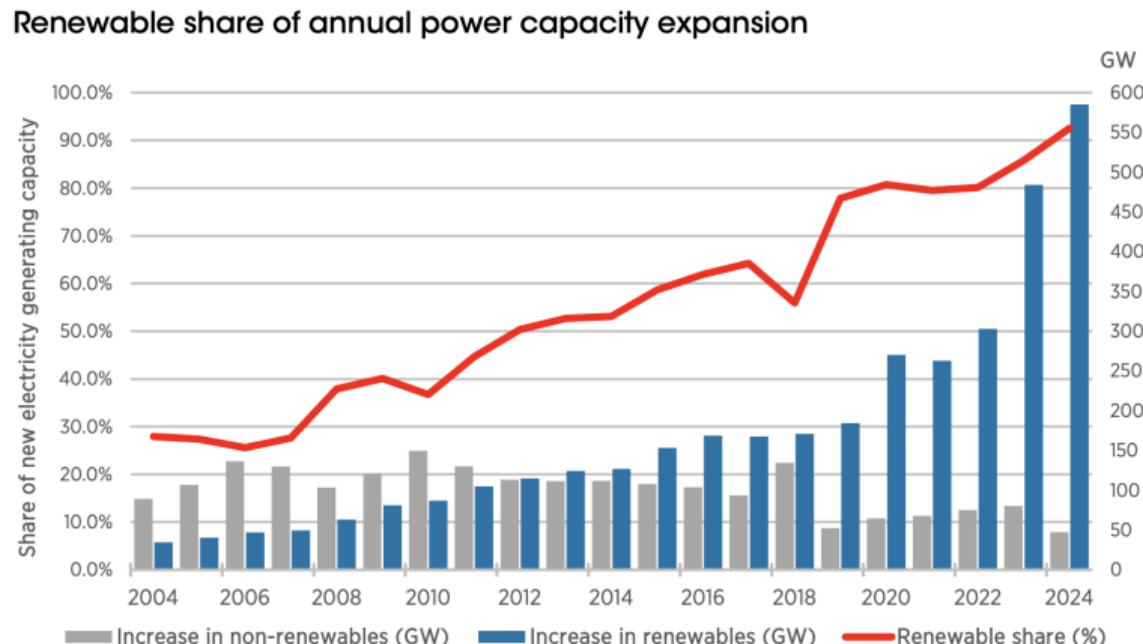
Design good subsidies considering multiple objectives

- **Low installation costs:** Large PV sizes reduces average installation costs.

Design good subsidies considering multiple objectives

- **Low installation costs:** Large PV sizes reduces average installation costs.
- **Low grid cost:** More self-consumption lowers grid costs.

Design good subsidies considering multiple objectives


- **Low installation costs:** Large PV sizes reduces average installation costs.
- **Low grid cost:** More self-consumption lowers grid costs.
- **Low fiscal costs:** Less infra-marginal effects lowers fiscal costs.

Design good subsidies considering multiple objectives

- **Low installation costs:** Large PV sizes reduces average installation costs.
- **Low grid cost:** More self-consumption lowers grid costs.
- **Low fiscal costs:** Less infra-marginal effects lowers fiscal costs.
- **Fairness:** Both high and low-income households receive subsidies.

Renewables take over the power sector to tackle climate change


- In 2024, 92.5% of new power capacity was renewable.

Solar power is a major component of renewables

- By 2024, solar power accounted for 42% of global renewable power capacity.

Capacity by source
in 2024

Residential solar PV has unique advantages

- Not require new land; installed on rooftop.
- Engage households in the energy transition.

Residential solar PV has unique advantages

- Not require new land; installed on rooftop.
- Engage households in the energy transition.
- Global residential solar takes 20% in total solar capacity (23% commercial, 57% utility-scale).

Contribution to literature

- The effect of subsidies on solar PV adoption:
 - simulation & reduced form: Eid et al. (2014), Londo et al. (2020), Burr (2016), Böning et al. (2025), etc.
 - structural (different topic and specification): De Groote and Verboven (2019), Feger et al. (2022).
 - This paper: structural model with endogenous capacity choice, heterogeneous preference, diverse subsidy design.
- Redistribution effect of industrial policies:
 - Wolak (2018), Feger et al. (2022), Käenzig (2023), Ito et al. (2023)
 - This paper: specific in solar subsidies, integrating the subsidy allocation & financing.
- Data contribution:
 - This paper: population of Dutch households with capacity choice.

Residential solar PV subsidies

Investment-based policies

(1) Lump-sum transfer

Upfront payment conditional on adoption; independent of capacity.

(2) Investment subsidy

Upfront payment proportional to installed capacity.

Residential solar PV subsidies

Investment-based policies

(1) Lump-sum transfer

Upfront payment conditional on adoption; independent of capacity.

(2) Investment subsidy

Upfront payment proportional to installed capacity.

Production-based policies

(1) Feed-in tariff

fixed regulated payment per kilowatt hour (kWh) of all electricity feed-in.

(2) Net metering

retail-price payment per kWh of electricity feed-in, only up to total consumption.

Preview of Results

- **Heterogenous preference:** Low-income households are more sensitive to fixed costs than the future revenue.

Preview of Results

- **Heterogenous preference:** Low-income households are more sensitive to fixed costs than the future revenue.
- **Intensive margin effect:** Investment-based policies lead to smaller average capacity than production-based policies.

Preview of Results

- **Heterogenous preference:** Low-income households are more sensitive to fixed costs than the future revenue.
- **Intensive margin effect:** Investment-based policies lead to smaller average capacity than production-based policies.
- **Cost efficiency:**
 - Investment-based policies require higher subsidy level.
 - Screening based on heterogenous preference incurs a lower cost than uniform subsidy.

Preview of Results

- **Heterogenous preference:** Low-income households are more sensitive to fixed costs than the future revenue.
- **Intensive margin effect:** Investment-based policies lead to smaller average capacity than production-based policies.
- **Cost efficiency:**
 - Investment-based policies require higher subsidy level.
 - Screening based on heterogenous preference incurs a lower cost than uniform subsidy.
- **Distributional effect:**
 - Investment-based policies encourage more adoption of low-income.

1 Model

2 Data & Estimation Results

3 Counterfactuals

4 Appendix

Household nested discrete choice model

- Household i , belonging to income quintile $q_i \in \{1, 2, 3, 4, 5\}$, chooses capacity $j \in \{0, 1, 2, 3, 4, 5\}$ ($j = 0$ means no adoption) in year t to maximize the utility:

$$u_{ijt} = \boxed{\beta_{q_i}^R \cdot \mathcal{R}_{ijt} - \beta_{q_i}^C \cdot \mathcal{C}_{jt}} + \Phi_j \cdot \text{HH characteristics}_i + \gamma \cdot \text{FE} + \boxed{\zeta_{igt} + (1 - \sigma)\epsilon_{ijt}}. \quad (1)$$

- Total revenue: \mathcal{R}_{ijt} = market revenue + subsidy.
Total cost: \mathcal{C}_{jt} = installation cost - subsidy.

Household nested discrete choice model

- Household i , belonging to income quintile $q_i \in \{1, 2, 3, 4, 5\}$, chooses capacity $j \in \{0, 1, 2, 3, 4, 5\}$ ($j = 0$ means no adoption) in year t to maximize the utility:

$$u_{ijt} = \boxed{\beta_{q_i}^R \cdot \mathcal{R}_{ijt} - \beta_{q_i}^C \cdot \mathcal{C}_{jt}} + \Phi_j \cdot \text{HH characteristics}_i + \gamma \cdot \text{FE} + \boxed{\zeta_{igt} + (1 - \sigma)\epsilon_{ijt}}. \quad (1)$$

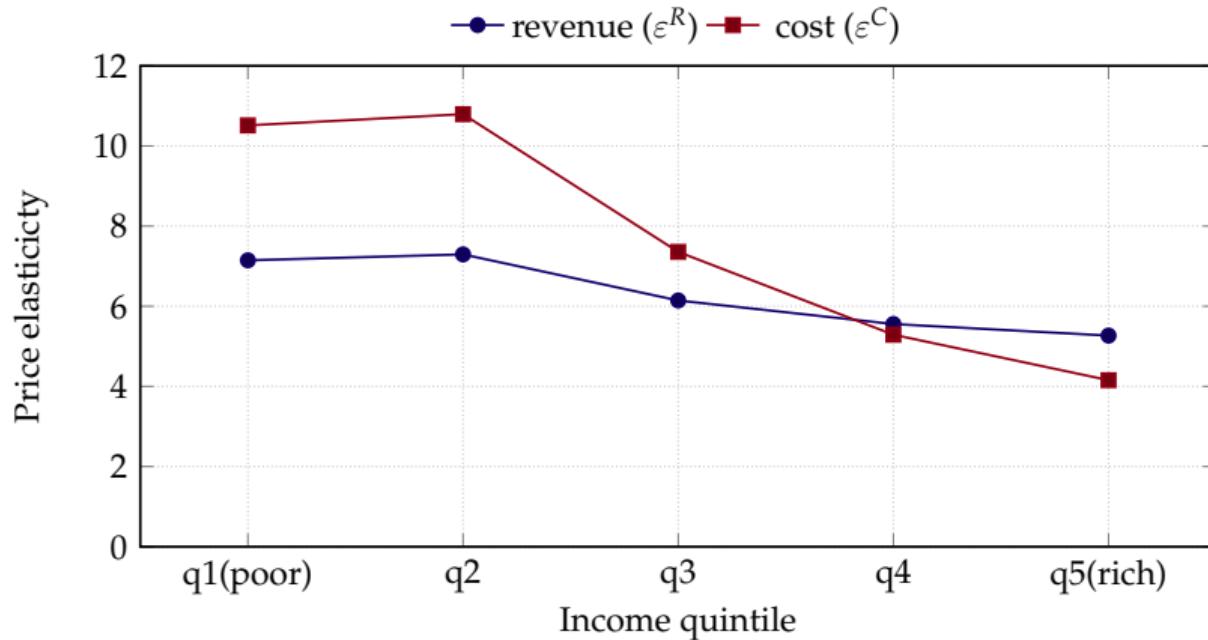
- Total revenue: \mathcal{R}_{ijt} = market revenue + subsidy.
Total cost: \mathcal{C}_{jt} = installation cost - subsidy.
- **Two comments on the specifications:**
 - (1) Households endogenously choose capacity, and the choices are not independent.
 - (2) Households have different price sensitivity to cost and revenue.

1 Model

2 Data & Estimation Results

3 Counterfactuals

4 Appendix


Dutch Data: 2019-2022

- Main data for nested logit model:
 - Yearly retail electricity price (CBS);
 - Yearly solar PV installation cost (Milieu Centraal);
 - Household data: yearly electricity consumption, feed-in, solar PV capacity, dwelling characteristics, household characteristics (CBS).
- Data for calibrating exogenous parameters of PV, and for counterfactuals:
 - Quarter-hourly profile data for households' electricity consumption and feed-in (MFFBAS);
 - Hourly wholesale electricity price data (SMARD).
- Dutch subsidy: net metering.

Summary statistics: Comparison by income quintile (2022)

	N Obs	All	< 20%	20 – 40%	40 – 60%	60 – 80%	> 80%
Dispo-income (€)	5444262	50859	19364	29607	42152	60110	100591
Grid consumption (kWh)	5444262	2623	1694	2048	2455	3032	3778
Feed-in (kWh)	5444262	523	152	237	458	730	994
House size (m ²)	5444262	118	83	99	116	130	156
Ownership (%)	5444262	62	9	40	72	84	93
House (%)	5444262	68	37	56	71	83	89
Adoption (%)	5444262	27	12	16	26	36	44
PV Capacity (kW)	1491062	3.62	2.40	2.77	3.33	3.79	4.27
Feed-in (kWh)	1491062	1910	1229	1469	1788	2005	2239

Estimation Results: Poorer households are more sensitive to costs

- Difference in price elasticities is used to calculate counterfactuals.

1 Model

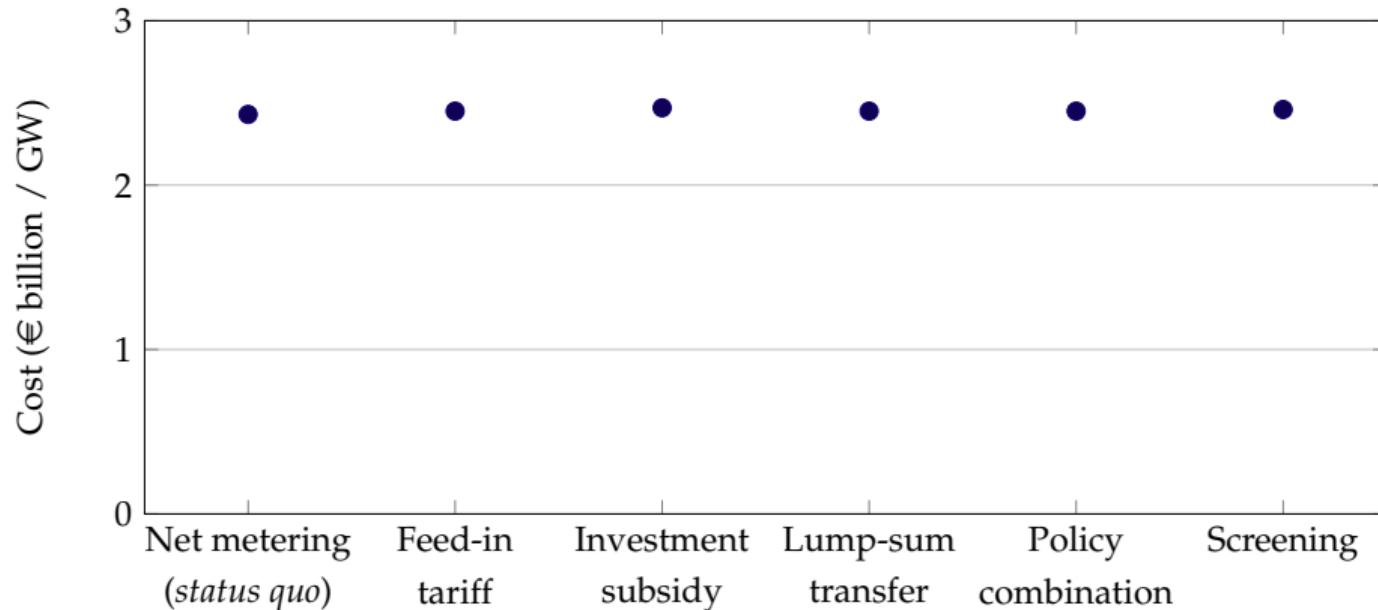
2 Data & Estimation Results

3 Counterfactuals

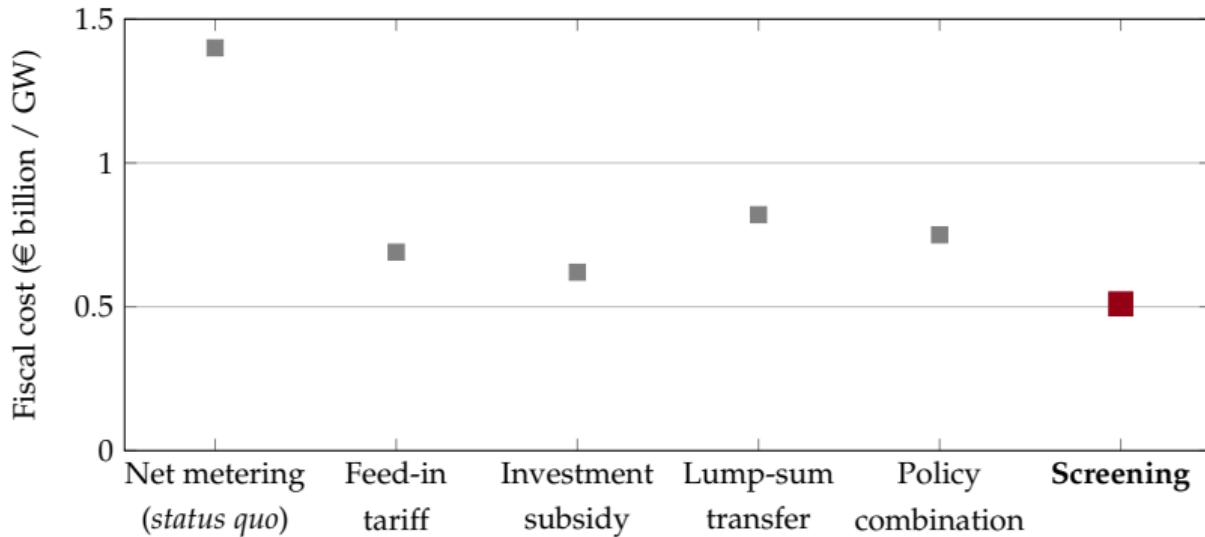
4 Appendix

Counterfactual setup

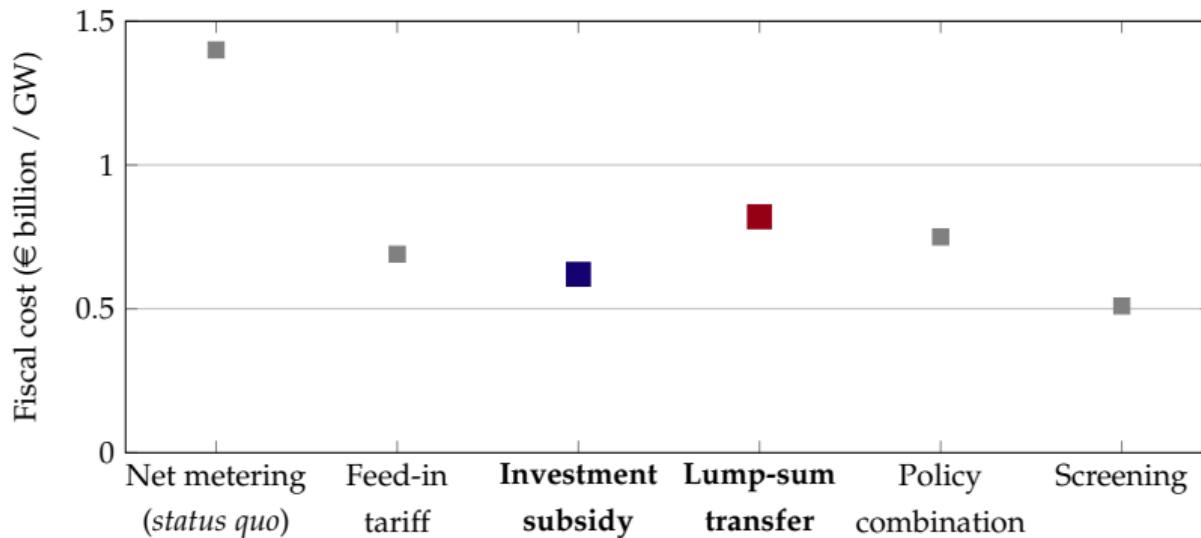
Uniform subsidy: same policy applies to all households

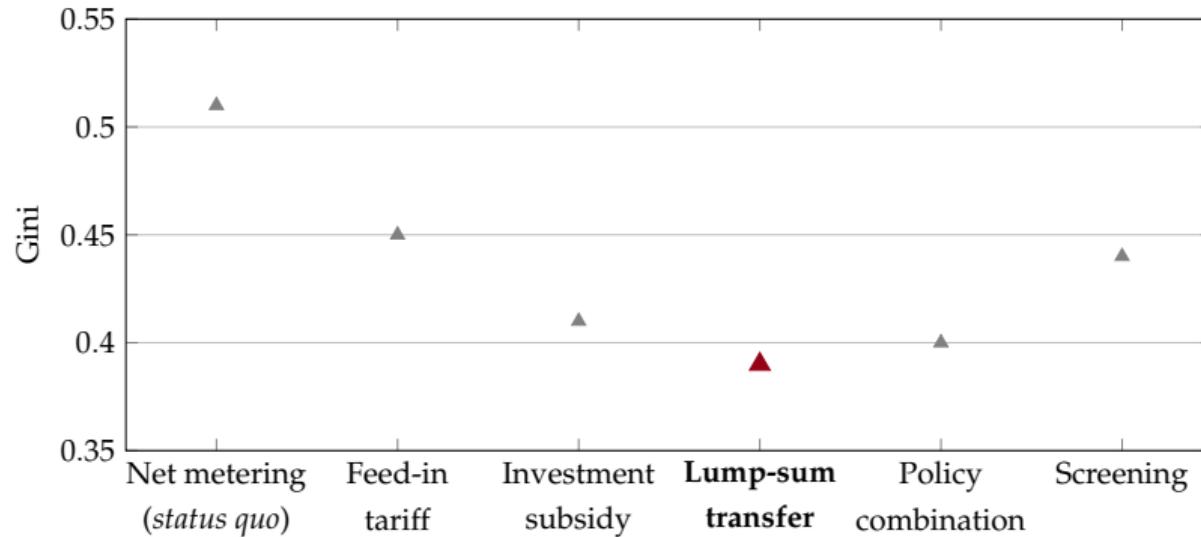

- Four single policies:
 - Net metering (*status quo*)
 - Feed-in tariff
 - Investment subsidy
 - Lump-sum transfer
- Combinations of these policies

Screening: A menu of policies offered and households choose preferred one.


Counterfactual setup

- (1) Fix the adopted capacity K^* and find the level of different subsidies.
- (2) Compare different subsidies by three policy objectives:
 - Social cost minimization
 - Fiscal budget minimization
 - Equity maximization


Social cost is similar across different policies.


Fiscal cost by screening is the lowest.

Fiscal cost by investment-based subsidies could be expensive

Investment-based subsidies are fairer.

Mechanism I: Intensive margin

Policy	Adoption rate (%)	Average capacity per adoption (kW)
Net metering (<i>status quo</i>)	6.70	4.23
Feed-in tariff	6.04	4.69
Investment subsidy	7.14	4.03
Lump-sum	8.13	3.48

Given total capacity target, investment-based subsidies lead to:

- **smaller** capacity size per adoption.
- **higher** adoption rates.
- **higher** subsidy level.

Mechanism II: Heterogeneous preference

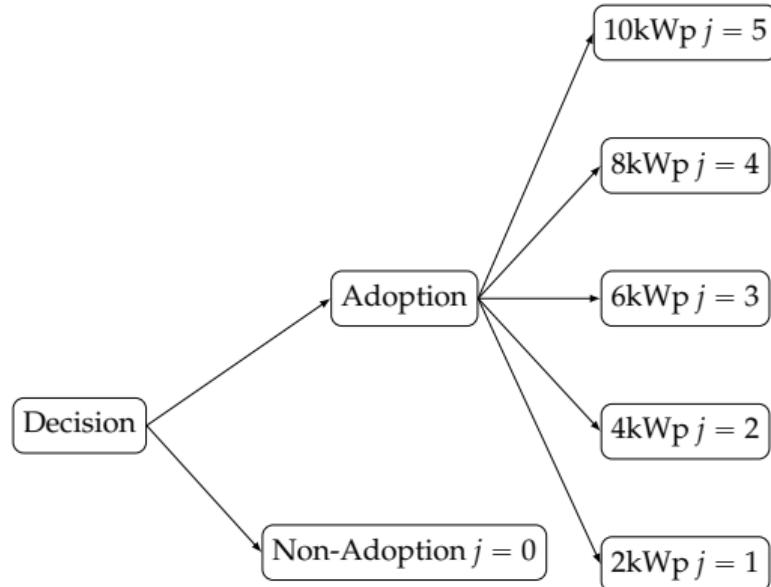
	< 20%	20–40%	40–60%	60–80%	> 80%
Panel A: conditional adoption rate (%)					
Net metering (<i>status quo</i>)	2.68	2.89	5.06	8.12	10.53
Feed-in tariff	2.76	2.94	4.74	7.20	9.14
Investment subsidy	3.95	4.25	5.80	8.08	9.87
Lump-sum	5.38	5.72	6.97	9.10	10.70

- Low-income households benefit more from investment-based subsidies.

Conclusion

- A structural model of PV adoption, with **heterogeneous preferences** and **endogenous capacity choice**.
- Counterfactual analysis of **PV policy design** on cost and distributional effect.
 - Investment-based subsidies can incur high fiscal cost.
 - Investment-based subsidies are less regressive.
 - Screening can achieve the capacity target at a lower cost.

1 Model


2 Data & Estimation Results

3 Counterfactuals

4 Appendix

Household decision tree

- (1) Household i chooses whether to adopt solar PV.
- (2) If adopting, Household i chooses the capacity type j of PV.
- (3) $j \in \{0, 1, 2, 3, 4, 5\}$, where 0 means non-adoption.

PV costs and revenues I

- Cost C_{jt} depends on the capacity size K_j and the unit installation cost p_{Ijt} at year t .
Economies of scale exists:

$$C_{jt} = K_j p_{Ijt}(K_j) \quad (2)$$

- Without subsidy (*laissez-faire* scenario), households benefit \mathcal{R}_{ijt}^{lf} includes saving from self-consumption and selling surplus electricity at wholesale prices:

$$\begin{aligned} \mathcal{R}_{ijt}^{lf} = & \underbrace{\sum_{k=t}^{t+24} \rho^{k-t} (1-\pi)^{k-t} \mathbb{E}_t^k[R] \min\{\mathbb{E}_t^k[D_i], \alpha \mathbb{E}_t^k[Y_j]\}}_{\text{self-consumption}} \\ & + \underbrace{\sum_{k=t}^{t+24} \mathbb{E}_t^k[p_s] \rho^{k-t} (1-\pi)^{k-t} \max\{\mathbb{E}_t^k[Y_j] - \mathbb{E}_t^k[D_i], (1-\alpha) \mathbb{E}_t^k[Y_j]\}}_{\text{revenue from wholesale market}}. \end{aligned} \quad (3)$$

PV costs and revenues II

- The cost reduction from subsidy C_{jt}^{gs} is:

$$C_{jt}^{gs} = \underbrace{T}_{\text{lump-sum}} \cdot \mathbf{1}\{K_j > 0\} + \underbrace{\kappa C_{ijt}}_{\text{investment subsidy}} . \quad (4)$$

- The revenue from the subsidy R_{ijt}^{gs} is:

$$R_{ijt}^{gs} = \underbrace{\sum_{k=t}^{t+24} (\mathbf{p}_c - \mathbb{E}_t^k[p_s]) \rho^{k-t} (1 - \pi)^{k-t} \max\{\mathbb{E}_t^k[Y_j] - \mathbb{E}_t^k[D_i], (1 - \alpha)\mathbb{E}_t^k[Y_j]\}}_{\text{feed-in tariff}} \\ + \underbrace{\sum_{k=t}^{t+24} (\mathbb{E}_t^k[R] - \mathbb{E}_t^k[p_s]) \rho^{k-t} (1 - \pi)^{k-t} \min\{\mathbb{E}_t^k[D_i] - \alpha\mathbb{E}_t^k[Y_j], (1 - \alpha)\eta\mathbb{E}_t^k[Y_j]\}}_{\text{net metering}} . \quad (5)$$

Dutch subsidy: net metering

No cost reduction: $T = 0, \kappa = 0$.

$$\mathcal{C}_{ijt}^{gs} = 0. \quad (6)$$

Dutch subsidy: net metering

Full net metering $\eta = 1, p_c = p_s$.

$$R_{ijt}^{gs} = \underbrace{\sum_{k=t}^{t+24} (\mathbb{E}_t^k[R] - \mathbb{E}_t^k[p_s]) \rho^{k-t} (1 - \pi)^{k-t} \min\{\mathbb{E}_t^k[D_i] - \alpha \mathbb{E}_t^k[Y_j], (1 - \alpha) \mathbb{E}_t^k[Y_j]\}}_{\text{net metering}}. \quad (6)$$

Simple expectation.

$$\mathbb{E}_t^k[R] = R_t$$

$$\mathbb{E}_t^k[p_s] = p_{st}$$

$$\mathbb{E}_t^k[D_i] = D_{i,t-1}$$

$$\mathbb{E}_t^k[Y_j] = (1 - \lambda)^{k-t} \iota K_j$$

Dutch subsidy: net metering

Full net metering $\eta = 1, p_c = p_s$.

$$R_{ijt}^{gs} = \underbrace{\sum_{k=t}^{t+24} (\mathbb{E}_t^k[R] - \mathbb{E}_t^k[p_s]) \rho^{k-t} (1 - \pi)^{k-t} \min\{\mathbb{E}_t^k[D_i] - \alpha \mathbb{E}_t^k[Y_j], (1 - \alpha) \mathbb{E}_t^k[Y_j]\}}_{\text{net metering}}. \quad (6)$$

Parameters.

Literature: $\rho = 0.85, \pi = 0.03, \lambda = 0.03/0.007$

Calibration: $\alpha = 0.33, \iota = 0.91$

Summary statistics: comparison of PV adopters and non-adopters (2022)

	(1) Non-Adopter	(2) PV-Adopter	(3) p-value of difference between (1) and (2)
Age	57.47	56.37	0.00
Household (HH) size	2.01	2.57	0.00
Ownership	0.55	0.79	0.00
Single family house(SFH)	0.59	0.94	0.00
Wealth percentile	50.00	62.41	0.00
Income percentile	47.50	63.63	0.00
House area (HA) m^2	108.82	140.88	0.00
Electricity Consumption (kWh)	2547.37	2821.91	0.00
# of obs	3955200	1491062	5446262

Sample construction

- Homeowners only;
- Households not moving during 2019-2022;
- Households installing in year $t - 1$ are excluded from the potential market of year t .
- Data in 2019 cannot be used because of missing information on year 2018 adoption status.
- 4245805 observations left

Screening

Screening: A menu of policies offered and households choose preferred one.

$$\frac{\beta_H^C}{\beta_H^R} < \frac{\mathcal{R}^{\text{production-based}}}{\mathcal{R}^{\text{investment-based}}} < \frac{\beta_L^C}{\beta_L^R} \quad (7)$$

High-income households choose the production-based policy. Low-income households choose the investment-based policy.

Policy objectives

I consider three policy objectives:

(1) Social cost minimization:

$$\min \sum_i (G_i + C_i) \quad (8)$$

Policy objectives

I consider three policy objectives:

(1) Social cost minimization:

$$\min \sum_i (G_i + C_i) \quad (8)$$

(2) Fiscal budget minimization:

$$\min \sum_i R_i^{gs} + C_i^{gs} \quad (9)$$

Policy objectives

I consider three policy objectives:

(1) Social cost minimization:

$$\min \sum_i (G_i + C_i) \quad (8)$$

(2) Fiscal budget minimization:

$$\min \sum_i R_i^{gs} + C_i^{gs} \quad (9)$$

(3) Equity maximization:

$$\max \frac{1}{2n^2 \overline{EV}^{gs}} \sum_i \sum_{-i} |EV_i^{gs} - EV_{-i}^{gs}| \quad (10)$$

where EV is the equivalent variation:

$$EV_i^{gs} = \frac{1}{\bar{\beta}_i} \left\{ \log[1 + \exp(I_{igt}^{gs})] - \log[1 + \exp(I_{igt}^{base})] \right\}$$