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How much are the inequality at universities due to the
policy makers’ choice of grading regimes?

and how do schools’ heterogeneous grading policies
influence the inequality?



Britains’ replacement of A-levels with teacher
assigned grades and the admissions surge
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Schools issued 200% more top grades.



Subsequent overcrowding at univ.
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Research Questions: Grading Policies and Their Consequences

Research Question 1. How did grading policies differ across schools?

Across-school channels

School quality and type

Adjustments from 2020 to 2021

Within-school channels

Student demographics

Subject area (STEM vs. non-STEM)

Research Question 2. How did the grading policies change students comp. at unis?

Method: Cross-cohort comparison (COVID vs. non-COVID).
Identification (grading policy): The A-level grade distribution is stationary in the pre-
COVID period.
Identification (composition): University–course variation in exposure to applicants’
schools’ grading policies.



Preview of Results: Heterogeneous Grading Policies and Changes
in University Composition

Grade inflation closed attainment gaps across schools.
Bottom decile schools were 13 p.p more likely to assign A/A* than top decile school.
Elite-secondary schools had the largest conversion of non-top grade into top grades

Private schools outpaced public via revisions.

Inflation skewed towards non-STEM, female, white, and high-income parent students.
However, grade inflation levels followed prior academic attainment levels.

Universities admitted lower-achieving but higher-SES students
A 10% increase in intake reduced average grades by 0.5 s.d. in Mathematics and 0.4
s.d. in English.
The same expansion increased the parental income score by 0.2 s.d..



Empirical Model & Identification

1 Motivation

2 Empirical Model & Identification

3 Data

4 Results

5 Conclusion



Mechanics of how the UK monitors grade distributions

Threat to identification: Confounding time trend and policy effect.

E[Yi,j,k,t′ |Xt′≥2020,Standardized] = E[Yi,j,k,t|Xt<2020,Standardized]

Figure: Timeline for 16–18 education

16 18

Age

GCSE exams A-level exams

Comparable Outcomes rule
For each subject s, central graders impose:

Fs,t(Y | GCSE) = Fs,t−1(Y | GCSE)

The conditional distribution of A-level grades
given GCSE scores is constant across years.



Grade distribution in the UK is stationary

Figure: Conditional probability of achieving an A/A* by school type
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Estimating grading policy as responses to grading regime change

Yi,j,k,t = 1{ℓi,j,k,t ≥ 0}, Pr(Yi,j,k,t = 1 | ·) = eℓi,j,k,t
1+ eℓi,j,k,t

ℓi,j,k,t = αj + Xiη + γk

+
∑

τ∈{2020,2021}

Dτ ×
(

∆αj,τ︸ ︷︷ ︸
Betw.-School Effect

+Xi ∆ητ +∆γk,τ
)

Y: top-grade indicator; Xi: controls (GCSE, demographics).

αj, γk: school/subject FE; Dτ : year indicator.

∆·: Grading policy.

Estimation: Maximum likelihood estimation with EB shrinkage.



Data

Universities and Colleges Admissions Service (UCAS) administrative data

Coverage: (2015-2021).

Grade outcome for each A-level qualification.
GCSE qualification scores.
School of attendance.
Demographics (e.g. race, gender).
Income measures.

Preference rank among university programs.
Final placement destination.
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Higher inflation concentrated at lower performing schools

2020 2021
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Elite schools converted ill-performing students the most

Slope = 0.015
(SE = 0.009)

Slope = 0.014
(SE = 0.010)

2020 2021
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Private (Independent) schools vs. publicly funded schools

Academy

Independent School

State School

Academy

Independent School

State School

2020 2021

25 50 75 100 25 50 75 100

0

20

40

School Quality Percentile (ranked across schools)

In
cr

ea
se

 in
 p

ro
ba

bi
lit

y 
po

in
ts



Strictly grading schools loosened standards in second year



Estimating how teachers assigned grades to different students

Yi,j,k,t = 1{ℓi,j,k,t ≥ 0}, Pr(Yi,j,k,t = 1 | ·) = eℓi,j,k,t
1+ eℓi,j,k,t

ℓi,j,k,t = αj + Xiη + γk

+
∑

τ∈{2020,2021}

Dτ

(
Sk × ∆αj,τ︸ ︷︷ ︸

Between-school by subject type

+Xi ×∆ηj,τ︸ ︷︷ ︸
Within-school

+∆γk,τ

)

Sk: Indicator for non-STEM subjects.

Xi: Student attributes (e.g. GCSE, demographics)



Grading varied more in non-STEM subjects.

2020 2021
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Academically well-performing students received higher grades

2020 2021
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Female, White, and High Income students receives higher grades

2020 2021
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Impact of grade inflation on univ. placements

(How) Did the grading policies improve students’ enrollment?

Which schools translated the grading policy into placements?

Placedi,j,t = β (Dt × Inflationi,j,t) + ιj + ςi,j,t

Placedi,j,t: Indicator for student i placing at their top choice in university j at time t.
ιj: School fixed effect.
Inflationi,j,t: Degree of grade inflation,

Inflationi,j,t ≡ Gradei,j,t − GradeLASSOi,j,t

Gradei,j,t: Aggregate A-level score.



Private schools converted inflation into placements the most
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Impact of grade inflation on univ. composition

How did grade policies change student composition at universities?

Did universities enroll students from different parental occupation group?

Yu,t = β log(Nu,t) + ιj + λu + ςu,t

log(Nu,t) = δ · 1
Mu,t

∑
i∈Mu,t

Inflationi,u,t

Yu,t: Outcome (e.g., avg. academic score, avg. parental income).

Nu,t: Number of accepted students at university u in year t.

Mu,t: Number of applicants to university u in year t.

λu: Subject-group fixed effect. ιj: University fixed effect.



Academic preparedness Parental affluence
Math score (z) Income score (z)

(1) (2) (1) (2)

log N −0.0351∗∗∗ −0.0530∗∗∗ 0.0136∗∗∗ 0.0182∗∗∗

(0.0070) (0.0130) (0.0027) (0.0047)
Highly selective × logN −0.0282∗∗∗ −0.0879∗ 0.0108∗∗∗ 0.0312∗

(0.0063) (0.0357) (0.0024) (0.0127)
Mid-selective × logN −0.0337∗∗∗ −0.0470∗∗ 0.0131∗∗∗ 0.0161∗∗

(0.0071) (0.0159) (0.0028) (0.0058)
Less selective × logN −0.0389∗∗∗ −0.0352∗∗ 0.0156∗∗∗ 0.0117∗

(0.0081) (0.0132) (0.0032) (0.0049)

University FE ✓ ✓

Observations 31,478 31,478 31,592 31,592



Conclusion and Policy Discussion
Who benefits from non-standardized assessments in university admissions?

Proponents
“Holistic assessments broaden access.”

Reduces reliance on high-stakes exams

Allows teachers to contextualize
performance

Increases diversity in admitted cohorts

Opponents
“Holistic assessments amplify inequality.”

School resources affect credibility of
grades

Stronger signalling power for elite schools

Reinforces pre-existing advantage

What the pandemic reveals
Large upward shift in average grades
Heterogeneous adjustments across schools and students (e.g. gender, race)
Grading integrity revised downward in the second year.
More female and economically affluent students entered selective universities.



Future projects

1 Effects of grade inflation on academic and labor-market outcomes
Did students who gained access to more selective universities perform differently in
university courses and subsequent labor markets than conventional students?
Data: Administrative university transcripts and linked graduate labor-market records.

2 Behavioral model of grade assignment
Teachers preserve within-cohort rank ordering, while grade levels respond to racial
and gender biases.
Data: Administrative records with student ranks within course cohorts.

3 Student–university matching under strategic responses
Estimating equilibrium student allocation when both students and universities
optimally respond to grade inflation.



Thank You!



Empirical Challenge 2

Confounding learning disruptions from COVID with grading effects.

E[Dτ × (ϵ2020,2021 − ϵ̄)] = 0

Solution: I control for the learning disruption during the pandemic by comparing
students who took other standardized exams that weren’t canceled during the
pandemic.



Persistence of grade inflation

Yi,j,k,t = 1{ℓi,j,k,t ≥ 0}, Pr(Yi,j,k,t = 1 | ·) = Λ
(
ℓi,j,k,t

)
ℓi,j,k,t = αj + Xiη + γk 2005/06/28ver : 1.3subfigpackage

+
∑

τ∈{2020,2021}

Dτ ×
(

∆αj,τ︸ ︷︷ ︸
Betw.-School Effect

+ Xi ∆ητ︸ ︷︷ ︸
Within-School Effect

+∆γk,τ
)

2005/06/28ver : 1.3subfigpackage

I estimate the descriptive estimate of grade inflation within schools.

∆αj,2021 = ρ∆αj,2020 + εj.

... and across subject groups.

∆αj,g,2021 = ρg ∆αj,g,2020 + ρ−g ∆̄αj,−g,2020 + εj,g,



Grading patterns within classrooms

Yi,j,k,t = 1{ℓi,j,k,t ≥ 0}, Pr(Yi,j,k,t = 1 | ·) = Λ
(
ℓi,j,k,t

)
ℓi,j,k,t = αj + Xiη + γj,k 2005/06/28ver : 1.3subfigpackage

+
∑

τ∈{2020,2021}

Dτ ×
(

∆αj,τ︸ ︷︷ ︸
Betw.-School Effect

+ Xi ∆ηj,τ︸ ︷︷ ︸
Within-School Effect

+∆γj,k,τ
)

2005/06/28ver : 1.3subfigpackage



Measuring Impact of grade inflation on univ. placements

Instrumental variable approach at the school level.

Applicationi,j,t = δYi,j,k,t + ςi,j,t

Yi,j,k,t = 1{ℓi,j,k,t ≥ 0}, Pr(Yi,j,k,t = 1 | ·) = Λ
(
ℓi,j,k,t

)
ℓi,j,k,t = αj + Xiη + γk

+
∑

τ∈{2020,2021}

Dτ ×
(

∆αj,τ︸ ︷︷ ︸
Betw.-School Effect

+ Xi ∆ητ︸ ︷︷ ︸
Within-School Effect

+∆γk,τ
)



Persistence and adjustment in grading policies
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GCSE Math Scores
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GCSE English Scores
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Females students vs. Male students

2020 2021
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Figure: The x axis measures the quality of school.y is the logit coefficient on the white student
dummy



Conditional on parental occupation class
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Changes in university course composition

∆Nu,g = Nt
u,g − N2019

u,g , Nt
u,g = Mt

u,g · EFt [pt(x)]

Ms
u,g: number of applicants from group g to uni u in year s

Fs: distribution of applicant characteristics in year s
ps(x): acceptance probability given x under year-s mechanics
φt(x): Degree of grade inflation.
c: Acceptance threshold.

∆Nu,g = (Mt
u,g −M0

u,g) EF0 [p0(x)]︸ ︷︷ ︸
Application Volume

+Mt
u,g

(
EFt [p0(x)]− EF0 [p0(x)]

)︸ ︷︷ ︸
Composition

+Mt
u,g

(
EFt [pt(x)]− EFt [p0(x)]

)︸ ︷︷ ︸
Inflation + Threshold

.

EFt [pt(x)]− EFt [p0(x)] = EFt
[
p(φt(x), c0)− p(0, c0)

]︸ ︷︷ ︸
Inflation effect

(1)

+ EFt
[
p(φt(x), ct)− p(φt(x), c0)

]︸ ︷︷ ︸
Threshold reaction

. (2)



Estimating pt
if

Baseline index: η0
i ≡ µi + ϕ0

s(i),g with ϕ0=0 by normalization.
Inflation-only counterfactual:

p̂ϕ-only
if = F̂

(
η0
i +∆ϕs(i),g

)
.

Threshold remainder (Oaxaca):

∆̂p
thr
if = p̂ 1

if − p̂ϕ-only
if .



Firm placement with changing applications
zti ∼ F; offer at f iff zti ≥ bt

if , bt
if = ctf −

(
µi + ϕt

s(i),g
)
.

pt
if ≡ Pr(offer at f | i, t) = 1 − F

(
bt
if
)
.

Let atif ≡ Pr(f(i) = f | Xi, t) be the prob. student i makes f their firm choice. Total firm inflow for group g:

Nt
fg =

∑
i∈Rg

atif p
t
if , ∆Nfg =

∑
i∈Rg

(
a1
ifp

1
if − a0

ifp
0
if
)
.

∆Nfg =
∑

i

(a1
if − a0

if) p
(0)
if︸ ︷︷ ︸

(A) Application mix

+
∑

i

a1
if

[
p(ϕ

1,c0f )
if − p(ϕ

0,c0f )
if

]
︸ ︷︷ ︸

(B) Inflation at school

+
∑

i

a1
if

[
p(ϕ

1,c1f )
if − p(ϕ

1,c0f )
if

]
︸ ︷︷ ︸

(C) Threshold/tightness

,

where p(0)if ≡ p(ϕ
0,c0f )

if .

Estimation recipe (no direct ctf ):
Applications: Estimate âtif from observed firm choices (e.g., MNL or flexible ML on Xi , school s(i), group g, year t).
Acceptance index: Fit F̂ with baseline index η0

i = µi + ϕ0
s(i),g (normalize ϕ0=0).

Inflation-only counterfactual:
p̂ϕ-only
if = F̂

(
η0
i +∆ϕs(i),g

)
.

Assemble the three pieces:

(̂A) =
∑

i

(â1
if − â0

if) p̂
(0)
if , (̂B) =

∑
i

â1
if
(
p̂ϕ-only
if − p̂(0)if

)
,

(̂C) =
∑

i

â1
if
(
p̂ 1
if − p̂ϕ-only

if
)

︸ ︷︷ ︸
threshold/tightness remainder

.

Optional (insurance path): If each i chooses firm f and insurance u, with rtiu|f = Pr(u(i) = u | f,Xi, t), the inflow to program u

is
∑

i

[
atiup

t
iu +

∑
f ̸=ua

t
if r

t
iu|f(1 − pt

if) p
t
iu

]
, and the same (A)(B)(C) split applies after multiplying by â, r̂ where relevant.



Conclusion
I provide evidence of differential grading policies across schools in the UK during the
COVID 19 pandemic.

Lower quality schools inflated grade more than high quality schools.

Teachers/schools inflated students from their top students wrt. better
academic/socio-economic backgrounds.

The grade inflation mainly helped students from low quality schools to place into less
selective universities.

Test-optional admissions could help disadvantaged students to obtain the signals
for moving into selective universities.

However, such students may not use the grades to enroll themselves into selective
universities (Hoxby and Avery [2012]).

Moreover, test optional policies may backfire by reallocating access to selective
universities from academically capable students to students from schools with
strong incentive to improve their placement records.





Application success and Grade inflation



Grading by parental income class in 2020
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Improvements in application success rate in 2020
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Improvements into Selective Univs in 2020
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Changes in university course composition

∆Nu,g = Nt
u,g − N2019

u,g , Nt
u,g = Mt

u,g · EFt [pt(x)]

Ms
u,g: number of applicants from group g to uni u in year s

Fs: distribution of applicant characteristics in year s
ps(x): acceptance probability given x under year-s mechanics
φt(x): Degree of grade inflation.
c: Acceptance threshold.

∆Nu,g = (Mt
u,g −M0

u,g) EF0 [p0(x)]︸ ︷︷ ︸
Application Volume

+Mt
u,g

(
EFt [p0(x)]− EF0 [p0(x)]

)︸ ︷︷ ︸
Composition

+Mt
u,g

(
EFt [pt(x)]− EFt [p0(x)]

)︸ ︷︷ ︸
Inflation + Threshold

.

EFt [pt(x)]− EFt [p0(x)] = EFt
[
p(φt(x), c0)− p(0, c0)

]︸ ︷︷ ︸
Inflation effect

(3)

+ EFt
[
p(φt(x), ct)− p(φt(x), c0)

]︸ ︷︷ ︸
Threshold reaction

. (4)





Application success and Grade inflation

(1) (2)
Inflation 0.005*** 0.008***

(0.00) (0.00)

Year 2020 2021
School FE ✓ ✓
Control ✓ ✓

Observations 1,316,615 1,258,913

Notes: Entries are coefficients; stan-
dard errors in parentheses. Stars: ***
p < 0.01, ** p < 0.05, * p < 0.10. “Tar-
iff (observed)” is the running variable.
School type interactions in col. (2). SEs
clustered by school_id. Fixed effects as
listed in Panel B.



Composition English

(1) (2) (3) (4)

Baseline
logN −3.125∗∗∗ −4.226∗∗∗

(0.583) (1.073)

Tariff group × logN
Lower tariff × logN −3.435∗∗∗ −2.625∗

(0.630) (1.087)
Higher tariff × logN −2.457∗∗∗ −7.207∗

(0.494) (2.897)
Medium tariff × logN −2.990∗∗∗ −3.787∗∗

(0.554) (1.322)

Observations 31,495 31,495 31,495 31,495
FE: subject_group_name X X X X
FE: factor(Year) X X X X
FE: factor(Univ_code) X X

Notes: Coefficients shown with standard errors in parentheses. Stars denote significance: *** p < 0.01, **
p < 0.05, * p < 0.10. logN denotes log cohort size. Standard errors clustered by university (Univ_code). Fixed
effects as listed in Panel B.



Composition Gender

(1) (2) (3) (4)

logN 0.357∗∗∗ 0.700∗∗∗

(0.105) (0.168)

Tariff group × logN
Lower tariff × logN 0.413∗∗ 0.601∗∗∗

(0.131) (0.162)
Higher tariff × logN 0.324∗∗ 0.828∗

(0.102) (0.333)
Medium tariff × logN 0.355∗∗ 0.707∗∗∗

(0.117) (0.195)

Observations 31,592 31,592 31,592 31,592
FE: subject_group_name X X X X
FE: factor(Year) X X X X
FE: factor(Univ_code) X X

Notes: Coefficients shown with standard errors in parentheses. Stars denote significance: *** p < 0.01, **
p < 0.05, * p < 0.10. logN denotes log cohort size. Standard errors clustered by university (Univ_code). Fixed
effects as listed in Panel B.
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Applications to less selective universities were the most affected
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