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2024 Brought the World to a Dangerous
Warming Threshold. Now What?

Global temperatures last year crept past a key goal, raising questions
about how much nations can stop the planet from heating up further.
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Motivation: Adaptation-Mitigation Tradeoff

e Extreme temperatures are dangerous for human health
» Climate change — more extreme heat days
® Air conditioning is an important adaptation to heat exposure
» Marginal cost of this adaptation: electricity prices
e Adaptation-Mitigation Tradeoff
» Climate policy (mitigation) raises the cost of electricity (adaptation)
» Higher prices could exacerbate health consequences
[

How is the temperature-mortality response function influenced by:
» Marginal cost of adaptation (residential electricity prices)

» Targeted public assistance programs (LIHEAP cooling benefits)

Krause (U Kentucky)

Jan 2026

3/19



This paper

What we do:
® Spatial border-pair research design: compare adjacent counties across state lines
» Examine how electricity prices and public assistance influence temperature-mortality fn

® Simulate mortality impacts of future warming and electricity price changes

What we find:
e Higher residential electricity prices exacerbate mortality effects of extreme heat
» 1-SD increase in price — 0.21 addt'l deaths per 100,000 for an extra 35°C day

e More generous assistance (LIHEAP) has countervailing effect
» 1-SD increase in LIHEAP cooling benefits — 0.16 fewer addt’l deaths per 100,000

® Higher electricity prices modestly increase projected mortality burden of climate change
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Related literature

® Temperature-mortality response function & role of adaptation

Deschénes and Moretti (2009); Deschénes and Greenstone (2011); Deschénes (2014); Davis and Gertler
(2015); Heutel et al. (2021); Carleton et al. (2022); Barreca et al. (2022)

» Importance of adaptive investments in moderating the health impacts of climate

® Role of energy prices in adaptation; “heat or eat” tradeoff

Bhattacharya et al. (2003); Beatty et al. (2014); Doremus et al. (2022); He and Tanaka (2023); Chirakijja
et al. (2023)

» Adaptive technologies may be unequally realized due to price/income constraints

® Role of public programs and safety nets that support adaptation

Mullins and White (2020); Banerjee and Maharaj (2020); Garg et al. (2020); Cohen and Dechezleprétre
(2022); Brewer and Goldgar (2024); Garg et al. (2025)

» Assistance/adaptation programs may reduce marginal damages of extreme heat
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County-month data, 2003-2019

Mortality: Restricted-use death records (CDC)
» Combine with annual population counts by age (SEER)

» Aggregate to county-month level and age-adjust to get rate per 100k

Electricity prices: county-year prices indexed to state-month price changes (EIA)

Weather: Temperature and precip aggregated from daily 2.5x2.5 mile grid (PRISM)
» # of days mean temp is in one of 9 bins: <0°C, 0-5°, 5-10°C...25-30°, 30-35°, 35°+

LIHEAP: Admin. for Children and Families’ LIHEAP Performance Management Website
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LIHEAP Cooling Benefits




Empirical approach: Temperature-mortality response function

e We first recover temp-mort response function by estimating:

Yimy = Z Bk Timyk + T Xjmy + 0jm + Omy + 1jy + Ejmy

» Yjm,: mortality rate (per 100,000) in county j-month m-year y
- T
» Xjmy: mean precip; 20-39/40-64/65+ age shares interacted w/ month
>

Ojmy Omy, Itjy: county-month, month-year, county-year FE

myk: number of days mean temperature is in bin k (omit 20-25°C)

- absorbs variation in seasonal mortality x counties, macro conditions, local changes
- identified by variation in temp distribution within county/month/year

» Weight by county pop; cluster on county

® (3. mortality effect of one addtl day in bin k relative to a 20-25°C day
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Temperature-mortality response function

Estimated coefficient
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U-shaped relationship consistent w/ other work

(e.g., Deschénes and Greenstone, 2011; Barreca et al.,
2016; He and Tanaka, 2023)

Replacing a 20-25°C day with a day:
® Below 0°C — 0.25 addt’l deaths per 100k

® QOver 35°C — 0.21 addt’l deaths per 100k
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Empirical approach: Price & policy impact on response function

® For each county on a state border, estimate:

ijy = Z B ijyk + Z Qk (ijyk X Lsy) + Z,\/k (ijyk X 'Djmy)
k k k

‘H/JLsy + Qijmy + 7T)<jmy + dpm + Hmy + by + Ejmy
Yimy, Timyk, Xjmy, Omy defined as before

Ls,: (standardized) LIHEAP cooling benefits in state s in year y

>
>

» Pjym: (standardized) price of electricity in county-month-year jmy

> Opm, [iby: Replace county-month/county-year w/ border-pair-month/border-pair-year FE
>

Weight by county pop times inverse # times in sample; cluster on state-state border pair

® Hypothesis: oy negative, v, positive on extreme heat bins
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Border-pair approach

Border counties have:

® Shared climates/temperature shocks

e Different policy regimes and prices

Central identification assumption:

® No confounding variables independently affect
temperature-mortality relationship
» Many borders & years

» Variation plausibly idiosyncratic x time & space

> Residualized variation

» Robust to controlling for cross-border differences
in AC adoption, other social ins. programs
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Border-pair results: Coefficients on temperature

Yimy = > BiTim + >k (Timpk X Loy) + Y W (Timpk X Pimy) + €y
k k k
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» Border-pair w/ no price/policy vars
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Border-pair results: Coefficients on LIHEARP interaction
Yiny = Y BT+ > s (Timpk X Lyy) + Y Ve (Timpk X Pimy) + ---€jmy
k k k
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Border-pair results: Coefficients on electricity price interaction

Yimy = Y B Timpk + 3k (Timgk % Loy) + > 9 (Tjmpke X Pimy) + -Ejmy
k k k
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Taking stock

® 1-SD increase in electricity prices (2.8¢/kWh) is 22% increase over mean (12.9¢)
» Average AC/home cooling expenditures: $299 in 2020 (EIA RECS)

» 22% increase — $66 annually for avg household

® Avg LIHEAP cooling benefits: $461 per household (2019)
» Modest assistance required to “reverse” mortality effect of heat/high prices

» Assumes prices and LIHEAP benefits affect mortality through equivalent channels (prices)

® |n beta: Can we say anything about “optimal” adaptation?
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Simulating the mortality impact of climate change

e Combine estimated temp-mortality-price relationship with projections of:
» Temperature (CCSM4 model, RCP4.5 scenario)

» Electricity prices (HAIKU model, $50/ton carbon fee)
® Simulate mortality effects of two 2050 scenarios:
» Warming only: RCP4.5 temperature (moderate mitigation)
» Climate policy: RCP4.5 temperature + price increases from $50 carbon fee

® Apply avg. historical effects (3, and ~4) to these future temps and prices
pply avg v p p
» Assume temperature-mortality-price relationship remains stable

® Abstract from:
» Local variation in adaptive capacity (e.g., AC penetration)
» Future adaptation or expansion of programs like LIHEAP

» Statistical uncertainty in regression estimates
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Simulation results

(1) (2) (3)

Warming only  Climate policy Price effect (2 - 1)
Amortality rate 4.76 4.86 0.10
Atotal mortality 19,014 19,427 413

Warming only: RCP4.5 temperature (moderate mitigation)
® 19,014 additional deaths in 2050 due to “intermediate” warming scenario
Climate policy: RCP4.5 temperature + price increases from $50 carbon fee

® 19,427 additional deaths in 2050 due to warming + projected price increases
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Conclusion

Residential electricity prices shape the mortality impact of extreme heat
» Higher prices — larger mortality effects on hot days

» LIHEAP assistance has opposing effect

» Relationships robust to addt'l controls, alt. price construction, lagged variables, etc.

Simulations show slightly higher mortality under climate policy due to energy prices

Highlights an adaptation—mitigation tension:
» Mitigation policy may raise the cost of adaptive behavior (e.g., cooling)

Targeted support can encourage adaptation in a warming world
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Thank you!

eleanor.krause@uky.edu
www.eleanorkrause.com
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Background: Residential electricity consumption

® Households rely on electricity (esp. AC) to adapt to extreme heat
» Use shaped by outdoor temps, electricity prices, and income

® Descriptive facts from the EIA RECS survey:
» 20% reduce/forego necessities due to energy bills
» 15% receive disconnect notices; ~1% lose power entirely
» AC use T with hotter weather, | with higher prices
» Energy assistance participation — lower thermostat temps
® Implications:

» Higher prices — less cooling/adaptation

® Energy costs may also crowd out spending on health (“heat or eat”)

» Assistance may reduce energy burdens and support adaptation
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Constructing County-Level Electricity Prices
® Flectricity prices are only observed at the state-month-year

® To construct county-month-year prices:
» Utility-level annual prices from EIA (Forms 861/861S) + monthly state-level changes

® Price in county j, month-year my:
|
Pﬁr?;t = Wsmy X Z (Pry X ¢xy)
kej

» Py, = Price at utility k in year y (EIA Forms 861/861S)
> ¢, = # of customers served by utility k

> Wsmy = price in state-month-year smy, indexed to January=1
® Assumes intra-annual price changes at the county level follow the state pattern

e All prices are adjusted to constant 2019 dollars using CPI-U
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Electricity prices

2003 2019

Avg. price: 14.6 ¢/kWh (2019 dollars) Avg. price: 13.8 ¢/kWh




Standardization details

1-SD increase in:

® Electricity price=2.8 cents/kilowatt hour

e LIHEAP cooling benefits=$230
Why standardize?
® Provides consistent scale for interpretation across variables in different units
» Yk vs. ay: effect of 1-SD increase in elect. price vs. 1-SD increase in LIHEAP
® Gives uninteracted temp bin coefficients (Sx) a clear interpretation
» Effect of temp. bin when interacted variables equal zero (i.e., at mean value)
» Otherwise, S8k measured when electricity prices/LIHEAP=0

Findings similar when using raw dollar or log-transformed values
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Residualized price/policy distribution

(a) Residential electricity prices (b) Avg. LIHEAP cooling benefits
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Both variables are residualized on dpm, Omy, by, and Xjm,
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Border-pair results: Coefficients on temperature (no policy/price vars)

\/jmy = Z Bk T/‘myk + 7T)<jmy + 6bm + emy + by + Ejmy
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Border-pair results: Coefficients on temperature (65+)

Estimated coefficient

-1.001

Vi = 3 50T 3 (T ¢ L)+ 320 (Tt P + 5
k k k

3.00

2.00

1.007

o
—

0.00

0.
a
&

Krause (U Kentucky)

R N

o
N o

Temperature bin (°C)

B354 =1.35 (vs. 0.67)

Jan 2026



Border-pair results: Coefficients on LIHEAP interaction (654)

Vi = 3 BTt 3 0 (T ¢ L)+ 320 Tyt x P + 5,
k k k

3.0
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Border-pair results: Coefficients on LIHEAP interaction (levels)

Vi = 3 BTt 3 0 (T ¢ L)+ 320 Tyt x P + 5,
k k k

0.00 7o —_———
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Border-pair results: Coefficients on electricity price interaction (65+)

Yimy = Y B Timpk + 3k (Timpk % Loy) + > 9 (Tjmpke X Pimy) + -Ejmy
k k k
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Border-pair results: Coefficients on electricity price interaction (levels)

Yimy = Y B Timpk + 3k (Timpk % Loy) + > 9 (Tjmpke X Pimy) + -Ejmy
k k k
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Control for initial AC adoption; state-level policies (3 temp bins)

(1) (2) (3) 4)
Mortality rate per 100,000

<0°C
> 30°C
LIHEAP (Ls,)x < 0°C
LIHEAP (Ls,)x > 30°C

Price (Pjmy)x < 0°C

0.049* 0.031 0.031 0.039*
(0.026) (0.024) (0.024) (0.023)
0.155***  0.168***  0.181***  0.166***
(0.028) (0.026) (0.027) (0.026)
0.005 0.004 0.005 0.007
(0.005) (0.005) (0.007) (0.006)
-0.034***  .0.035***  -0.037***  -0.031***
(0.012) (0.012) (0.012)  (0.011)
0.008* 0.008*  0.012***  0.013***
(0.005) (0.005) (0.004) (0.005)

[Price (Pjmy)x > 30°C

0.078***  0.079"**  0.086***  0.065***
(0.030) (0.029) (0.024)  (0.019)

5bmr emyr Kby, )<jmy
Baseline AC adoption
Medicaid transfers
SNAP transfers

v v v v
v v v

v v

v

*RK 520,01, ** p<0.05, * p<0.1
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Simulation details

® Temp projections from CCSM4 (RCP4.5) and elect. prices from HAIKU ($50 carbon fee)
» Division-level price effect defined as carbon scenario — reference, standardized

® For each county-month:
» Count projected number of days in each temp bin vs. 20-25°C bin (reference)
» Compute differences in bin counts between 2050 and 2020
» Aggregate to annual county-level change in relative bin counts
® Apply regression coefficients from border-pair estimates:
» “Warming only:" Apply Bk (temp—mortality effects) to relative change in bin counts
» “Climate policy:" Apply Bk & ~y« (bin x price)

e Convert predicted change in mortality rate to expected number of deaths using county
population projections (Hauer and CIESIN, 2020)
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Simulation results: County-level estimates
Warming only Climate policy
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