

Climate Tradeoffs: Emission Mitigation Policy, Public Assistance, and Adapting to a Warming Planet

Joe Aldy
Harvard University

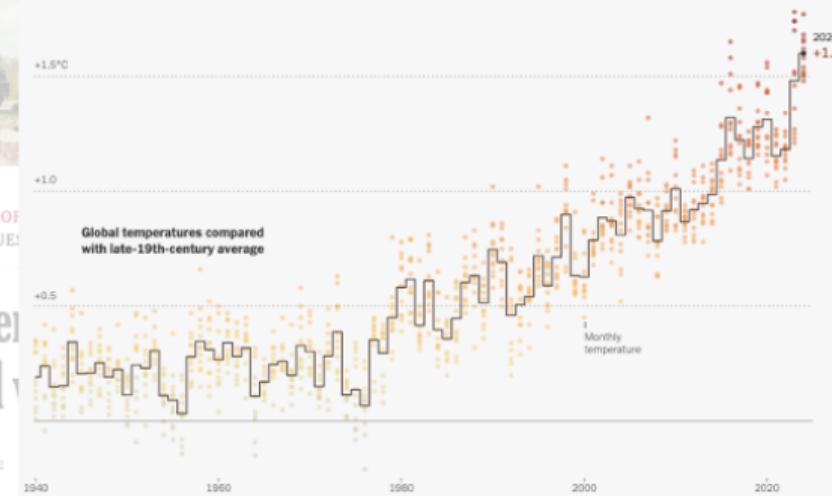
Eleanor Krause
University of Kentucky

January 2026
AERE@ASSA

The New America The Cooled

Listen to this article · 9:09 min [Learn more](#)

By Jeff Goodell


Visuals by Tova Katzman

Mr. Goodell has been reporting on climate in Heat Will Kill You First: Life and Death on a S

Aug. 20, 2025

2024 Brought the World to a Dangerous Warming Threshold. Now What?

Global temperatures last year crept past a key goal, raising questions about how much nations can stop the planet from heating up further.

Source: Copernicus/ECMWF Note: Temperature anomalies relative to 1850-1900 averages.

[Share full article](#) [Email](#) [Comment 363](#)

By Raymond Zhong and Brad Plumer. Graphics by Mira Rojanasakul. Jan. 9, 2025

Affect Your

arts of the U.S., according to

climate change

change is making heat more

Motivation: Adaptation-Mitigation Tradeoff

- Extreme temperatures are dangerous for human health
 - ▶ Climate change → more extreme heat days
- Air conditioning is an important adaptation to heat exposure
 - ▶ Marginal cost of this adaptation: electricity prices
- Adaptation-Mitigation Tradeoff
 - ▶ Climate policy (**mitigation**) raises the cost of electricity (**adaptation**)
 - ▶ Higher prices could exacerbate health consequences
- *How is the temperature-mortality response function influenced by:*
 - ▶ Marginal cost of adaptation (residential electricity prices)
 - ▶ Targeted public assistance programs (LIHEAP cooling benefits)

This paper

What we do:

- Spatial border-pair research design: compare adjacent counties across state lines
 - ▶ Examine how electricity prices and public assistance influence temperature-mortality fn
- Simulate mortality impacts of future warming and electricity price changes

What we find:

- Higher residential electricity prices exacerbate mortality effects of extreme heat
 - ▶ 1-SD increase in price → 0.21 add'l deaths per 100,000 for an extra 35°C day
- More generous assistance (LIHEAP) has countervailing effect
 - ▶ 1-SD increase in LIHEAP cooling benefits → 0.16 fewer add'l deaths per 100,000
- Higher electricity prices modestly increase projected mortality burden of climate change

Related literature

- Temperature-mortality response function & role of adaptation

Deschênes and Moretti (2009); Deschênes and Greenstone (2011); Deschênes (2014); Davis and Gertler (2015); Heutel et al. (2021); Carleton et al. (2022); Barreca et al. (2022)

- ▶ Importance of adaptive investments in moderating the health impacts of climate

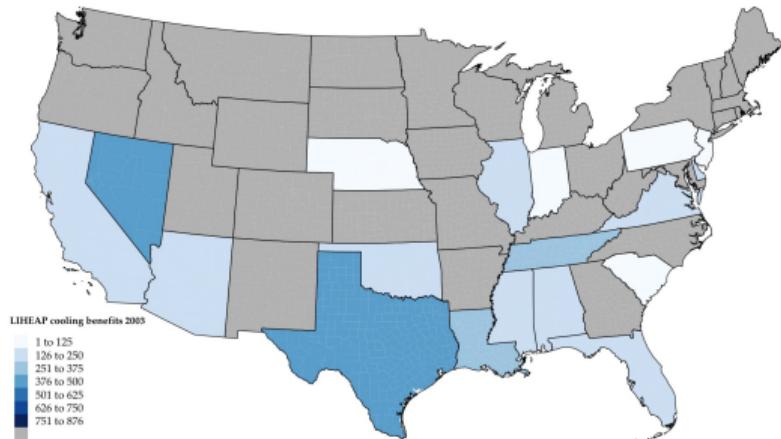
- Role of energy prices in adaptation; “heat or eat” tradeoff

Bhattacharya et al. (2003); Beatty et al. (2014); Doremus et al. (2022); He and Tanaka (2023); Chirakijja et al. (2023)

- ▶ Adaptive technologies may be unequally realized due to price/income constraints

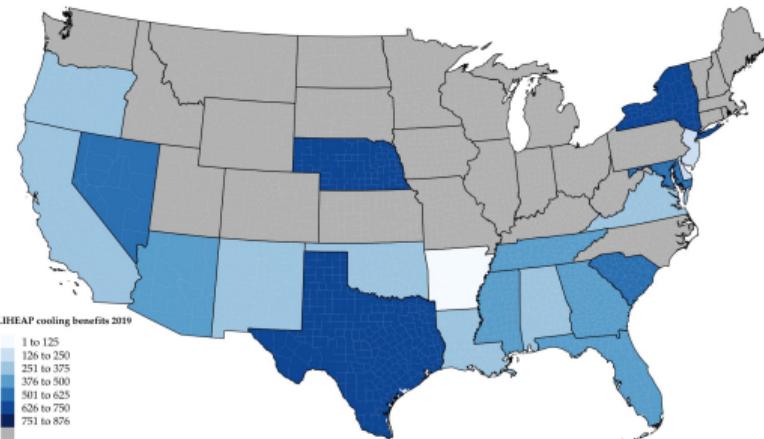
- Role of public programs and safety nets that support adaptation

Mullins and White (2020); Banerjee and Maharaj (2020); Garg et al. (2020); Cohen and Dechezleprêtre (2022); Brewer and Goldgar (2024); Garg et al. (2025)


- ▶ Assistance/adaptation programs may reduce marginal damages of extreme heat

County-month data, 2003–2019

- Mortality: Restricted-use death records (CDC)
 - ▶ Combine with annual population counts by age (SEER)
 - ▶ Aggregate to county-month level and age-adjust to get rate per 100k
- Electricity prices: county-year prices indexed to state-month price changes (EIA)
 - ▶ Details
- Weather: Temperature and precip aggregated from daily 2.5x2.5 mile grid (PRISM)
 - ▶ # of days mean temp is in one of 9 bins: $<0^{\circ}\text{C}$, $0\text{--}5^{\circ}$, $5\text{--}10^{\circ}$... $25\text{--}30^{\circ}$, $30\text{--}35^{\circ}$, $35^{\circ}+$
- LIHEAP: Admin. for Children and Families' LIHEAP Performance Management Website
 - ▶ Background on electricity use


LIHEAP Cooling Benefits

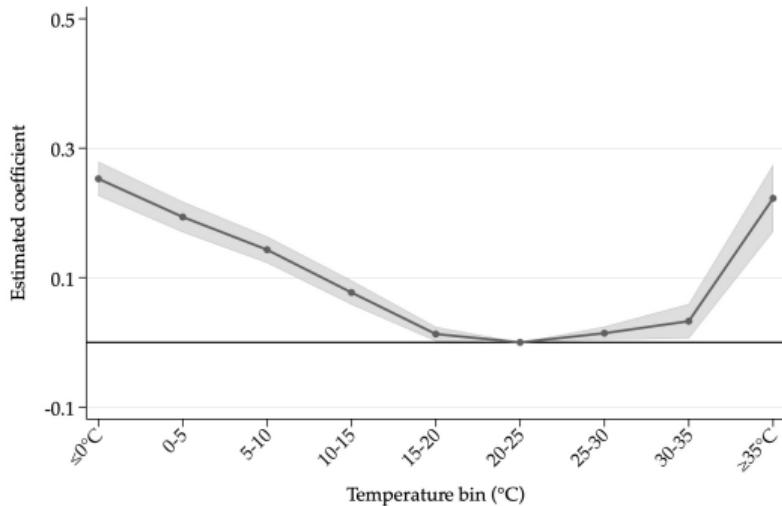
2003

Avg. benefits: \$294 (\$161 w/ 0s)

2019

Avg. benefits: \$461 (\$275 w/ 0s)

► Electricity prices


Empirical approach: Temperature-mortality response function

- We first recover temp-mort response function by estimating:

$$Y_{jmy} = \sum_k \beta_k T_{jmyk} + \pi X_{jmy} + \delta_{jm} + \theta_{my} + \mu_{jy} + \varepsilon_{jmy}$$

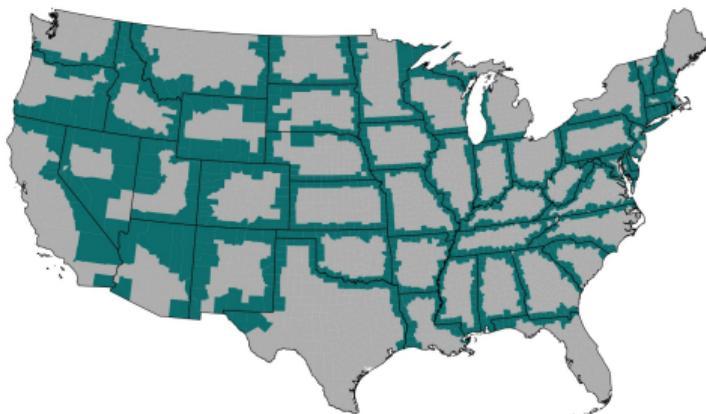
- ▶ Y_{jmy} : mortality rate (per 100,000) in county j -month m -year y
- ▶ T_{jmyk} : number of days mean temperature is in bin k (omit 20–25°C)
- ▶ X_{jmy} : mean precip; 20–39/40–64/65+ age shares interacted w/ month
- ▶ δ_{jm} , θ_{my} , μ_{jy} : county-month, month-year, county-year FE
 - absorbs variation in seasonal mortality \times counties, macro conditions, local changes
 - identified by variation in temp distribution within county/month/year
- ▶ Weight by county pop; cluster on county
- β_k : mortality effect of one addtl day in bin k relative to a 20–25°C day

Temperature-mortality response function

U-shaped relationship consistent w/ other work
(e.g., Deschênes and Greenstone, 2011; Barreca et al., 2016; He and Tanaka, 2023)

Replacing a 20–25°C day with a day:

- Below 0°C → 0.25 add'l deaths per 100k
- Over 35°C → 0.21 add'l deaths per 100k


Empirical approach: Price & policy impact on response function

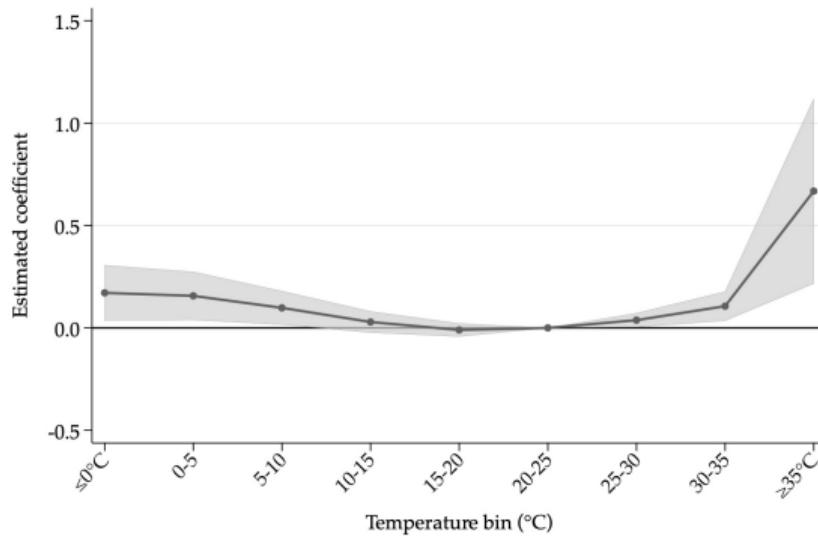
- For each county *on a state border*, estimate:

$$Y_{jmy} = \sum_k \beta_k T_{jmyk} + \sum_k \alpha_k (T_{jmyk} \times L_{sy}) + \sum_k \gamma_k (T_{jmyk} \times P_{jmy}) \\ + \omega L_{sy} + \phi P_{jmy} + \pi X_{jmy} + \delta_{bm} + \theta_{my} + \mu_{by} + \varepsilon_{jmy}$$

- ▶ Y_{jmy} , T_{jmyk} , X_{jmy} , θ_{my} defined as before
- ▶ L_{sy} : (standardized) LIHEAP cooling benefits in state s in year y
- ▶ P_{jym} : (standardized) price of electricity in county-month-year jmy ▶ Details
- ▶ δ_{bm} , μ_{by} : Replace county-month/county-year w/ border-pair-month/border-pair-year FE
- ▶ Weight by county pop times inverse # times in sample; cluster on state-state border pair
- Hypothesis: α_k negative, γ_k positive on extreme heat bins

Border-pair approach

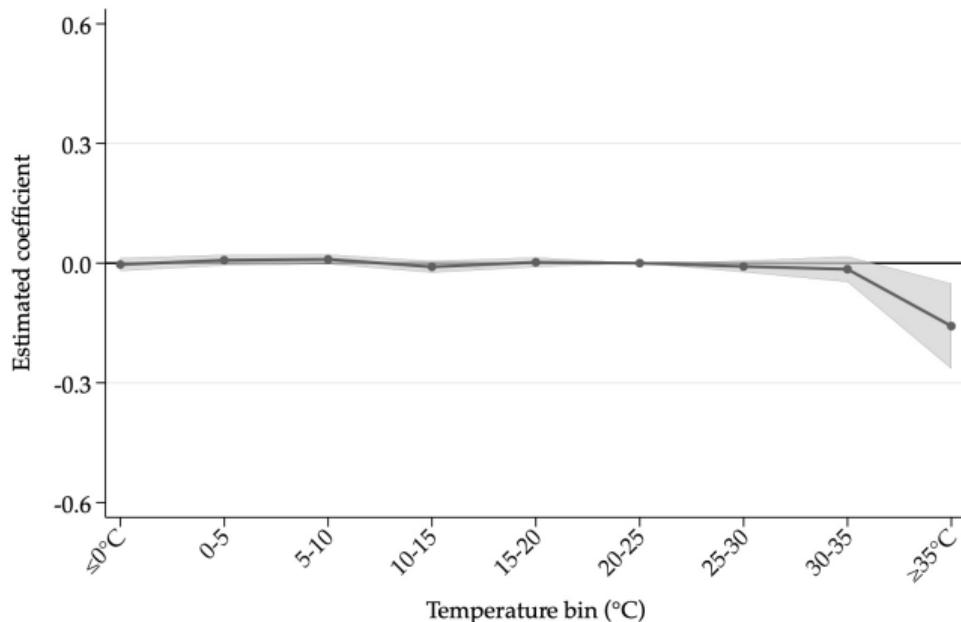
Border counties have:


- Shared climates/temperature shocks
- Different policy regimes and prices

Central identification assumption:

- No confounding variables independently affect temperature-mortality relationship
 - ▶ Many borders & years
 - ▶ Variation plausibly idiosyncratic x time & space
 - ▶ Residualized variation
 - ▶ Robust to controlling for cross-border differences in AC adoption, other social ins. programs

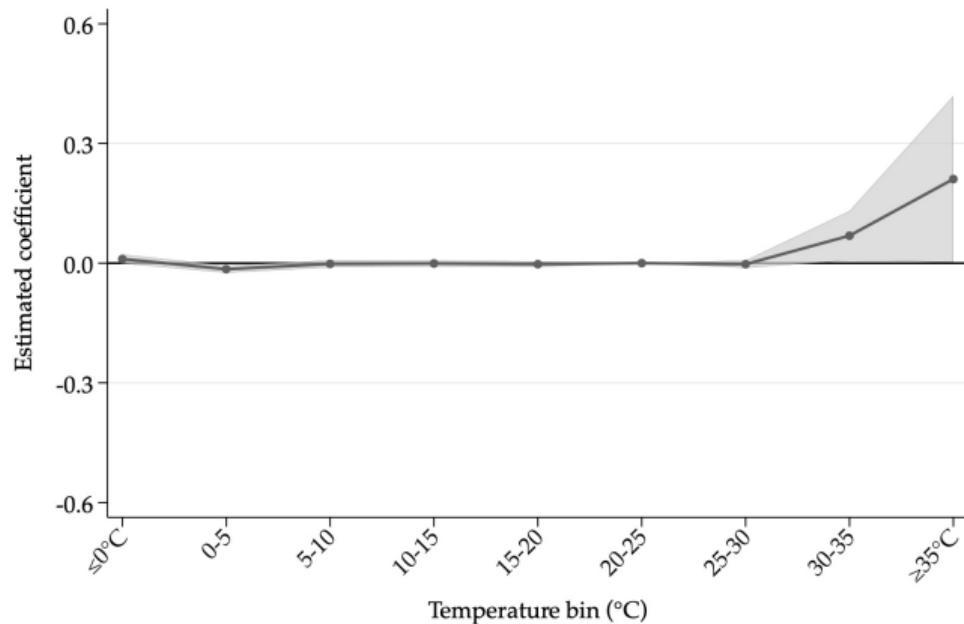
Border-pair results: Coefficients on **temperature**


$$Y_{jmy} = \sum_k \beta_k T_{jmyk} + \sum_k \alpha_k (T_{jmyk} \times L_{sy}) + \sum_k \gamma_k (T_{jmyk} \times P_{jmy}) + \dots \varepsilon_{jmy}$$

► Border-pair w/ no price/policy vars

Border-pair results: Coefficients on **LIHEAP** interaction

$$Y_{jmy} = \sum_k \beta_k T_{jmyk} + \sum_k \alpha_k (T_{jmyk} \times L_{sy}) + \sum_k \gamma_k (T_{jmyk} \times P_{jmy}) + \dots \varepsilon_{jmy}$$


1-SD increase in LIHEAP →
↓ mortality impact of 35°C day by **0.16 per 100k**

Compare to $\beta_{35+} = 0.67$

▶ 65+ ▶ levels

Border-pair results: Coefficients on **electricity price** interaction

$$Y_{jmy} = \sum_k \beta_k T_{jmyk} + \sum_k \alpha_k (T_{jmyk} \times L_{sy}) + \sum_k \gamma_k (T_{jmyk} \times P_{jmy}) + \dots \varepsilon_{jmy}$$

1-SD increase in price →
↑ mortality impact of add'l
35°C day by **0.21 per 100k**
Compare to $\beta_{35+} = 0.67$

▶ 65+ ▶ levels ▶ add'l controls

Taking stock

- 1-SD increase in electricity prices (2.8¢/kWh) is 22% increase over mean (12.9¢)
 - ▶ Average AC/home cooling expenditures: \$299 in 2020 (EIA RECS)
 - ▶ 22% increase → \$66 annually for avg household
- Avg LIHEAP cooling benefits: \$461 per household (2019)
 - ▶ Modest assistance required to “reverse” mortality effect of heat/high prices
 - ▶ Assumes prices and LIHEAP benefits affect mortality through equivalent channels (prices)
- In beta: Can we say anything about “optimal” adaptation?

Simulating the mortality impact of climate change

- Combine estimated temp-mortality-price relationship with projections of:
 - ▶ Temperature (CCSM4 model, RCP4.5 scenario)
 - ▶ Electricity prices (HAIKU model, \$50/ton carbon fee)
- Simulate mortality effects of two 2050 scenarios:
 - ▶ **Warming only:** RCP4.5 temperature (moderate mitigation)
 - ▶ **Climate policy:** RCP4.5 temperature + price increases from \$50 carbon fee
- Apply avg. historical effects (β_k and γ_k) to these future temps and prices ▶ More details
 - ▶ Assume temperature-mortality-price relationship remains stable
- Abstract from:
 - ▶ Local variation in adaptive capacity (e.g., AC penetration)
 - ▶ Future adaptation or expansion of programs like LIHEAP
 - ▶ Statistical uncertainty in regression estimates

Simulation results

	(1) Warming only	(2) Climate policy	(3) Price effect (2 - 1)
Δ mortality rate	4.76	4.86	0.10
Δ total mortality	19,014	19,427	413

Warming only: RCP4.5 temperature (moderate mitigation)

- 19,014 additional deaths in 2050 due to “intermediate” warming scenario

Climate policy: RCP4.5 temperature + price increases from \$50 carbon fee

- 19,427 additional deaths in 2050 due to warming + projected price increases

► County-level estimates

Conclusion

- Residential electricity prices shape the mortality impact of extreme heat
 - ▶ Higher prices → larger mortality effects on hot days
 - ▶ LIHEAP assistance has opposing effect
 - ▶ Relationships robust to add'l controls, alt. price construction, lagged variables, etc.
- Simulations show slightly higher mortality under climate policy due to energy prices
- Highlights an **adaptation–mitigation** tension:
 - ▶ Mitigation policy may raise the cost of adaptive behavior (e.g., cooling)
- Targeted support can encourage adaptation in a warming world

Thank you!

eleanor.krause@uky.edu
www.eleanorkrause.com

References I

Banerjee, Rakesh and Riddhi Maharaj, "Heat, infant mortality, and adaptation: Evidence from India," *Journal of Development Economics*, March 2020, 143, 102378.

Barreca, Alan, Karen Clay, Olivier Deschenes, Michael Greenstone, and Joseph S. Shapiro, "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," *Journal of Political Economy*, February 2016, 124 (1), 105–159.

—, **R. Jisung Park, and Paul Stainier**, "High temperatures and electricity disconnections for low-income homes in California," *Nature Energy*, October 2022, 7 (11), 1052–1064.

Beatty, Timothy K. M., Laura Blow, and Thomas F. Crossley, "Is there a 'heat-or-eat' trade-off in the UK?," *Journal of the Royal Statistical Society. Series A (Statistics in Society)*, 2014, 177 (1), 281–294.

Bhattacharya, Jayanta, Thomas DeLeire, Steven Haider, and Janet Currie, "Heat or Eat? Cold-Weather Shocks and Nutrition in Poor American Families," *American Journal of Public Health*, 2003, 93 (7), 6.

Brewer, Dylan and Sarah Goldgar, "The effect of extreme temperatures on evictions," *Journal of Environmental Economics and Management*, September 2024, p. 103055.

References II

Carleton, Tamara, Amir Jina, Michael Delgado, Michael Greenstone, Trevor Houser, Solomon Hsiang, Andrew Hultgren, Robert E Kopp, Kelly E Mccusker, Ishan Nath, James Rising, Ashwin Rode, Hee Kwon Seo, Arvid Viaene, Jiacan Yuan, and Alice Tianbo Zhang, "Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits," *The Quarterly Journal of Economics*, 2022, 137 (4).

Chirakijja, Janjala, Seema Jayachandran, and Pinchuan Ong, "The Mortality Effects of Winter Heating Prices," *The Economic Journal*, December 2023, 134 (657), 402–417.

Cohen, François and Antoine Dechezleprêtre, "Mortality, Temperature, and Public Health Provision: Evidence from Mexico," *American Economic Journal: Economic Policy*, May 2022, 14 (2), 161–192.

Davis, Lucas W. and Paul J. Gertler, "Contribution of air conditioning adoption to future energy use under global warming," *Proceedings of the National Academy of Sciences*, May 2015, 112 (19), 5962–5967.

Deschênes, Olivier, "Temperature, human health, and adaptation: A review of the empirical literature," *Energy Economics*, November 2014, 46, 606–619.

— and **Enrico Moretti**, "Extreme Weather Events, Mortality, and Migration," *The Review of Economics and Statistics*, 2009, p. 26.

— and **Michael Greenstone**, "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," *American Economic Journal: Applied Economics*, October 2011, 3 (4), 152–185.

References III

Doremus, Jacqueline M., Irene Jacqz, and Sarah Johnston, "Sweating the energy bill: Extreme weather, poor households, and the energy spending gap," *Journal of Environmental Economics and Management*, March 2022, 112, 102609.

Garg, Teevrat, Gordon C. McCord, and Aleister Montfort, "Can social protection reduce damages from higher temperatures?," *Journal of Environmental Economics and Management*, May 2025, 131, 103152.

—, **Maulik Jagnani, and Vis Taraz**, "Temperature and Human Capital in India," *Journal of the Association of Environmental and Resource Economists*, November 2020, 7 (6), 1113–1150. Publisher: The University of Chicago Press.

Hauer, M. and CIESIN, "Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, 2020-2100," 2020. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC).

He, Guojun and Takanao Tanaka, "Energy Saving May Kill: Evidence from the Fukushima Nuclear Accident," *American Economic Journal: Applied Economics*, 2023, 15 (2), 377–414.

Heutel, Garth, Nolan H. Miller, and David Molitor, "Adaptation and the Mortality Effects of Temperature Across U.S. Climate Regions," *The Review of Economics and Statistics*, August 2021, pp. 1–14.

Mullins, Jamie T. and Corey White, "Can access to health care mitigate the effects of temperature on mortality?," *Journal of Public Economics*, November 2020, 191, 104259.

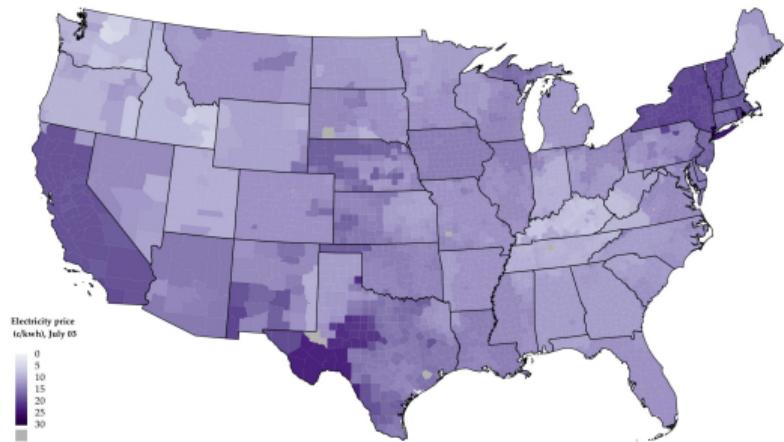
Background: Residential electricity consumption

- Households rely on electricity (esp. AC) to adapt to extreme heat
 - ▶ Use shaped by outdoor temps, electricity prices, and income
- Descriptive facts from the EIA RECS survey:
 - ▶ 20% reduce/forego necessities due to energy bills
 - ▶ 15% receive disconnect notices; ~1% lose power entirely
 - ▶ AC use ↑ with hotter weather, ↓ with higher prices
 - ▶ Energy assistance participation → lower thermostat temps
- Implications:
 - ▶ Higher prices → less cooling/adaptation
 - Energy costs may also crowd out spending on health ("heat or eat")
 - ▶ Assistance may reduce energy burdens and support adaptation

◀ Return

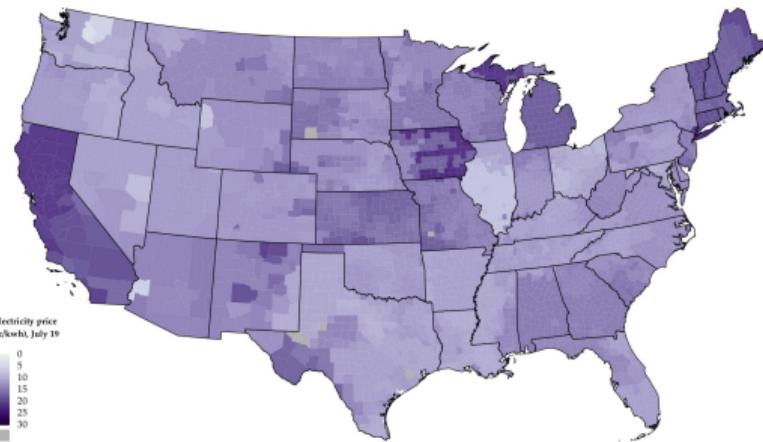
Constructing County-Level Electricity Prices

- Electricity prices are only observed at the *state-month-year*
- To construct *county-month-year* prices:
 - ▶ Utility-level annual prices from EIA (Forms 861/861S) + monthly state-level changes
- Price in county j , month-year my :


$$P_{jmy}^{\text{elect}} = \omega_{smy} \times \sum_{k \in j} (P_{ky} \times \phi_{ky})$$

- ▶ P_{ky} = Price at utility k in year y (EIA Forms 861/861S)
- ▶ ϕ_{ky} = # of customers served by utility k
- ▶ ω_{smy} = price in state-month-year smy , indexed to January=1
- Assumes intra-annual price changes at the county level follow the state pattern
- All prices are adjusted to constant 2019 dollars using CPI-U

◀ Return


Electricity prices

2003

Avg. price: 14.6 ¢/kWh (2019 dollars)

2019

Avg. price: 13.8 ¢/kWh

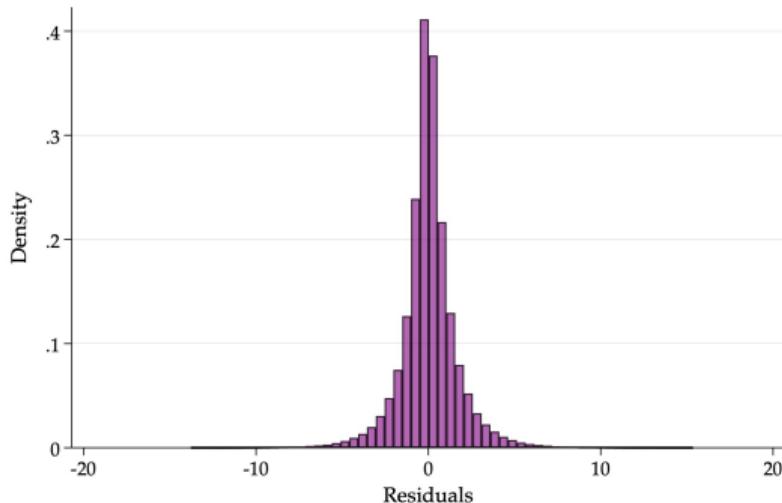
◀ Return

Standardization details

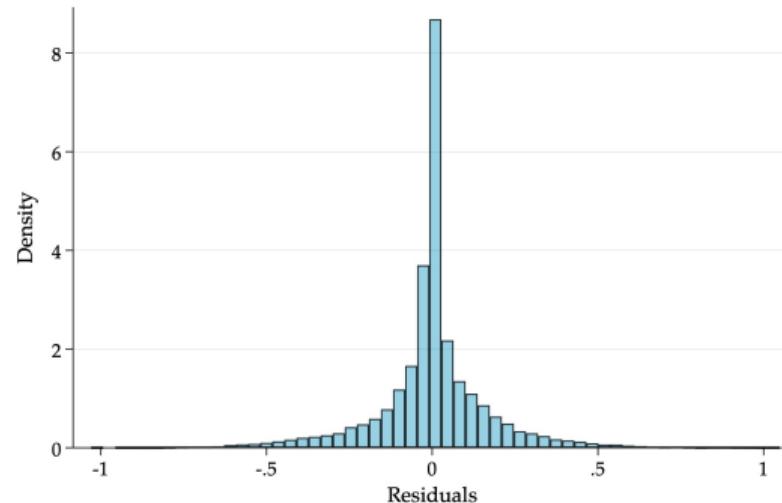
1-SD increase in:

- Electricity price=2.8 cents/kilowatt hour
- LIHEAP cooling benefits=\$230

Why standardize?


- Provides consistent scale for interpretation across variables in different units
 - ▶ γ_k vs. α_k : effect of 1-SD increase in elect. price vs. 1-SD increase in LIHEAP
- Gives uninteracted temp bin coefficients (β_k) a clear interpretation
 - ▶ Effect of temp. bin when interacted variables equal zero (i.e., at mean value)
 - ▶ Otherwise, β_k measured when electricity prices/LIHEAP=0

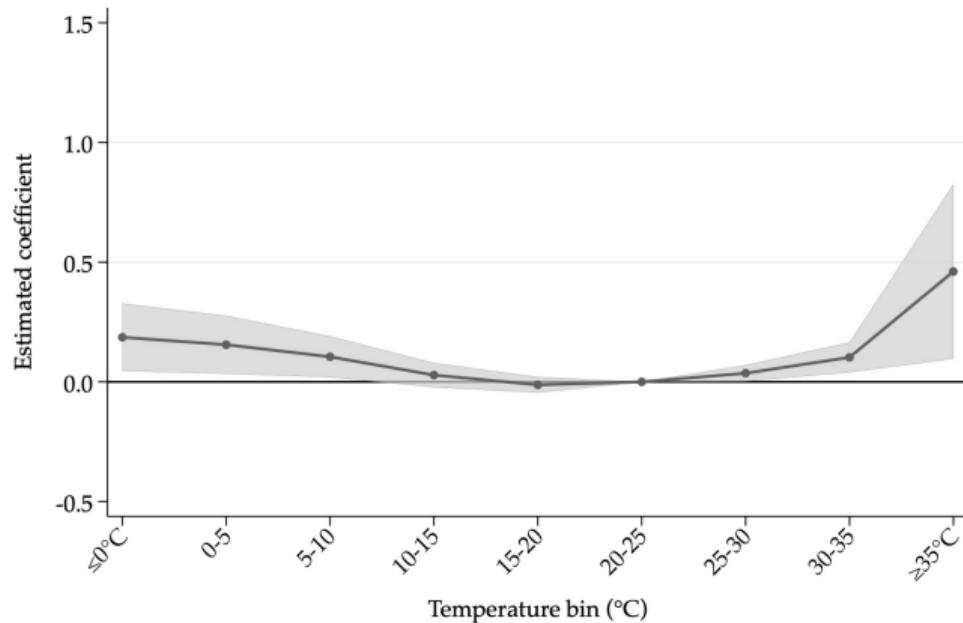
Findings similar when using raw dollar or log-transformed values


◀ Return

Residualized price/policy distribution

(a) Residential electricity prices

(b) Avg. LIHEAP cooling benefits

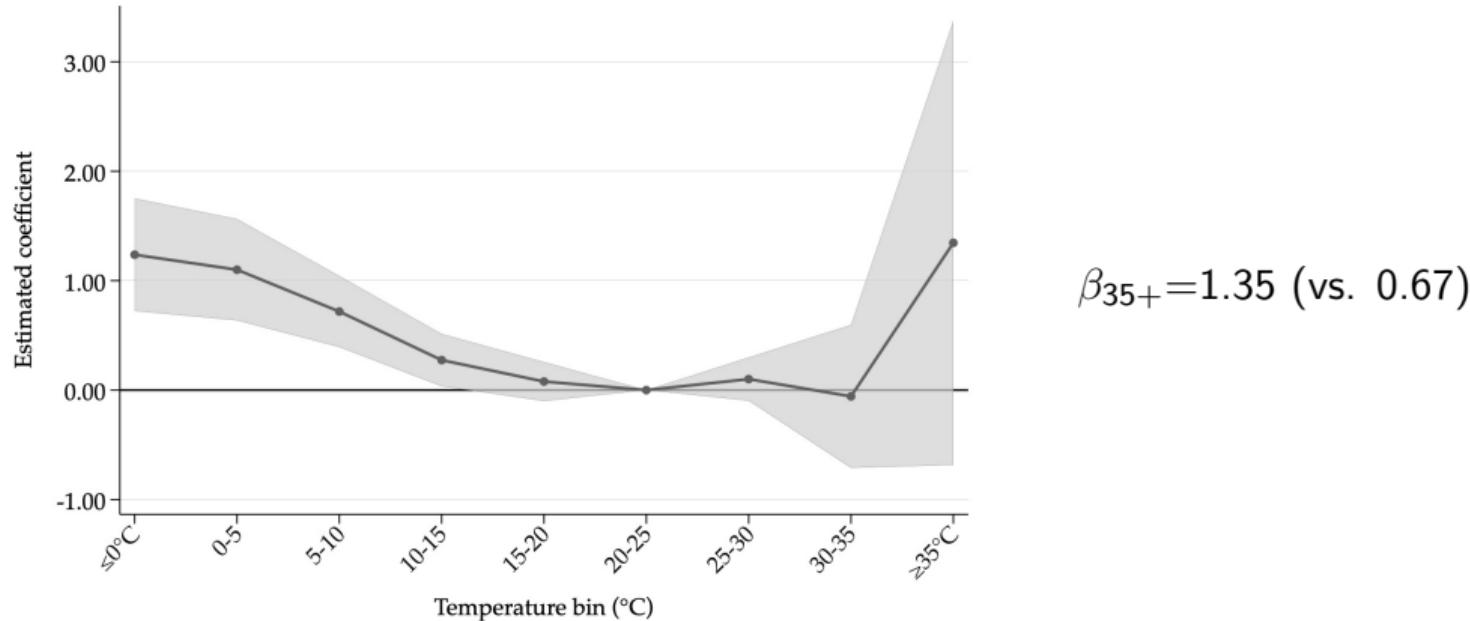


Both variables are residualized on δ_{bm} , θ_{my} , μ_{by} , and X_{jmy}

◀ Return

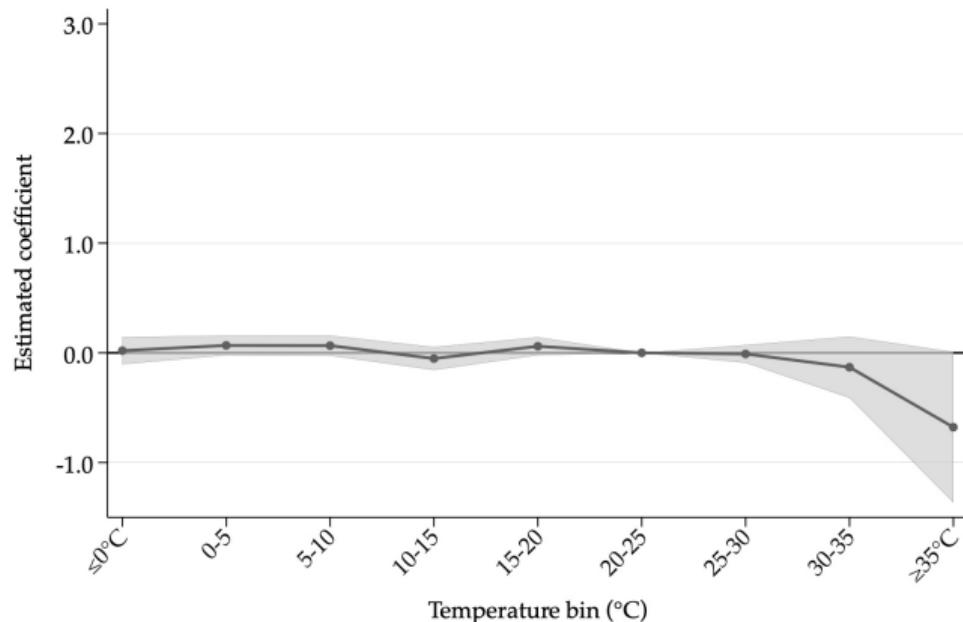
Border-pair results: Coefficients on **temperature** (no policy/price vars)

$$Y_{jmy} = \sum_k \beta_k T_{jmyk} + \pi X_{jmy} + \delta_{bm} + \theta_{my} + \mu_{by} + \varepsilon_{jmy}$$



Larger extreme heat effect from border-pair modification (not price/policy variables)

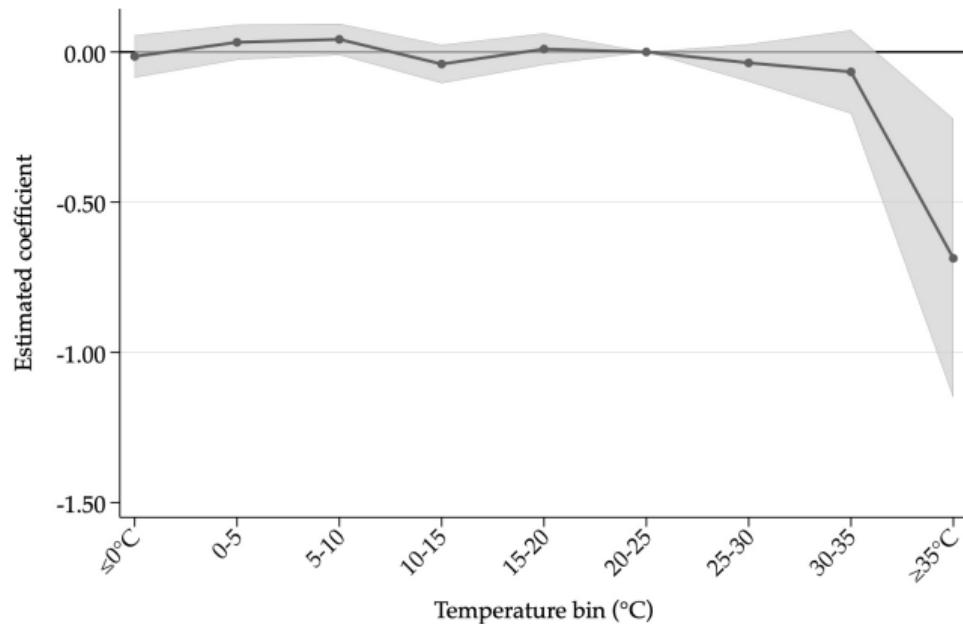
◀ Return


Border-pair results: Coefficients on **temperature (65+)**

$$Y_{jmy} = \sum_k \beta_k T_{jmyk} + \sum_k \alpha_k (T_{jmyk} \times L_{sy}) + \sum_k \gamma_k (T_{jmyk} \times P_{jmy}) + \dots \varepsilon_{jmy}$$

Border-pair results: Coefficients on **LIHEAP** interaction (65+)

$$Y_{jmy} = \sum_k \beta_k T_{jmyk} + \sum_k \alpha_k (T_{jmyk} \times L_{sy}) + \sum_k \gamma_k (T_{jmyk} \times P_{jmy}) + \dots \varepsilon_{jmy}$$

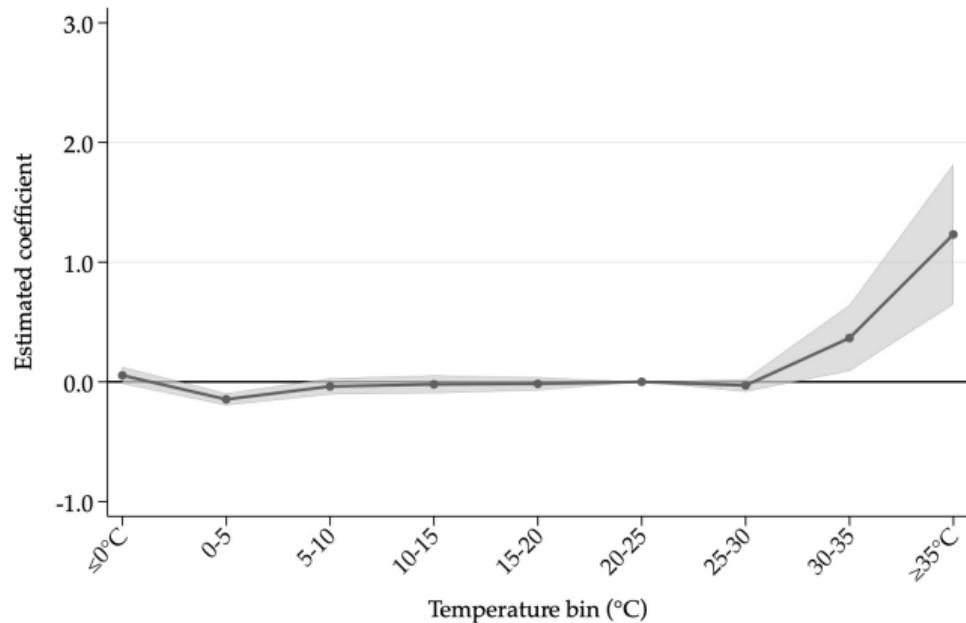


1-SD increase in LIHEAP →
↓ mortality impact of add'l
35°C day by **0.68 per 100k**
Compare to $\beta_{35+} = 1.35$

[◀ Return](#)

Border-pair results: Coefficients on **LIHEAP** interaction (**levels**)

$$Y_{jmy} = \sum_k \beta_k T_{jmyk} + \sum_k \alpha_k (T_{jmyk} \times L_{sy}) + \sum_k \gamma_k (T_{jmyk} \times P_{jmy}) + \dots \varepsilon_{jmy}$$

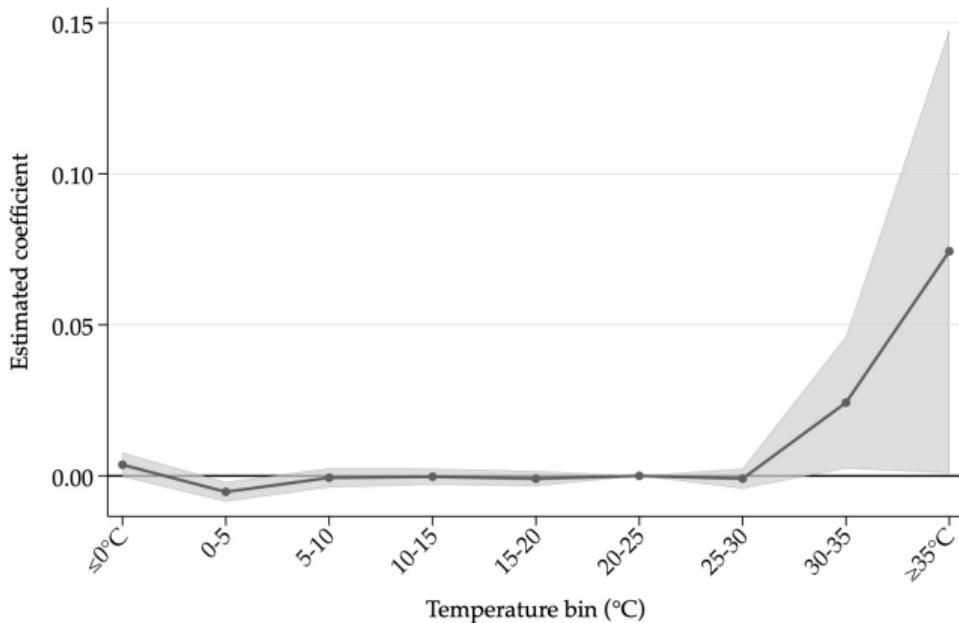

\$1,000 increase in LIHEAP →
↓ mortality impact of add'l
35°C day by **0.69 per 100k**

Same as scaling 0.16 from
\$230 to \$1,000

◀ Return

Border-pair results: Coefficients on **electricity price** interaction (65+)

$$Y_{jmy} = \sum_k \beta_k T_{jmyk} + \sum_k \alpha_k (T_{jmyk} \times L_{sy}) + \sum_k \gamma_k (T_{jmyk} \times P_{jmy}) + \dots \varepsilon_{jmy}$$



1-SD increase in price →
↑ mortality impact of add'l
35°C day by **1.23 per 100k**
Compare to $\beta_{35+} = 1.35$

◀ Return

Border-pair results: Coefficients on **electricity price** interaction (**levels**)

$$Y_{jmy} = \sum_k \beta_k T_{jmyk} + \sum_k \alpha_k (T_{jmyk} \times L_{sy}) + \sum_k \gamma_k (T_{jmyk} \times P_{jmy}) + \dots \varepsilon_{jmy}$$

1¢/kWh increase in price →
↑ mortality impact of add'l 35°C day by **0.07 per 100k**
Same as scaling 0.21 from 2.8¢ to 1¢

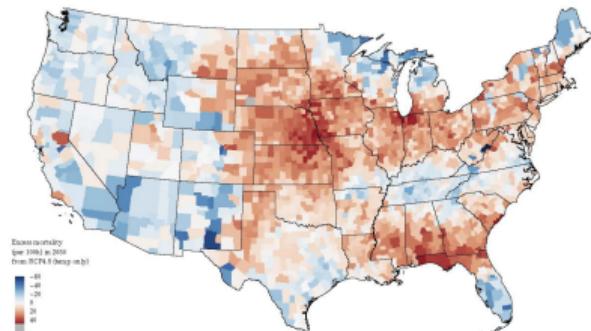
◀ Return

Control for initial AC adoption; state-level policies (3 temp bins)

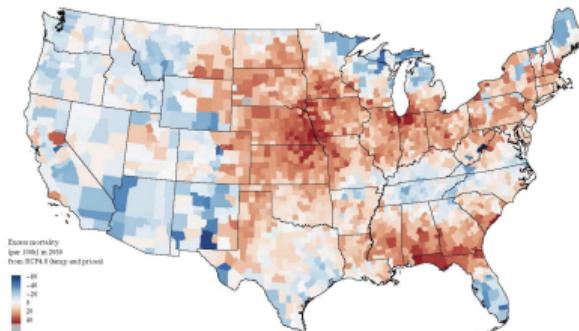
	(1)	(2)	(3)	(4)
	Mortality rate per 100,000			
$\leq 0^\circ\text{C}$	0.049*	0.031	0.031	0.039*
	(0.026)	(0.024)	(0.024)	(0.023)
$\geq 30^\circ\text{C}$	0.155***	0.168***	0.181***	0.166***
	(0.028)	(0.026)	(0.027)	(0.026)
LIHEAP (L_{sy}) $\times \leq 0^\circ\text{C}$	0.005	0.004	0.005	0.007
	(0.005)	(0.005)	(0.007)	(0.006)
LIHEAP (L_{sy}) $\times \geq 30^\circ\text{C}$	-0.034***	-0.035***	-0.037***	-0.031***
	(0.012)	(0.012)	(0.012)	(0.011)
Price (P_{jmy}) $\times \leq 0^\circ\text{C}$	0.008*	0.008*	0.012***	0.013***
	(0.005)	(0.005)	(0.004)	(0.005)
Price (P_{jmy}) $\times \geq 30^\circ\text{C}$	0.078***	0.079***	0.086***	0.065***
	(0.030)	(0.029)	(0.024)	(0.019)
$\delta_{bm}, \theta_{my}, \mu_{by}, X_{jmy}$	✓	✓	✓	✓
Baseline AC adoption		✓	✓	✓
Medicaid transfers			✓	✓
SNAP transfers				✓

*** p<0.01, ** p<0.05, * p<0.1

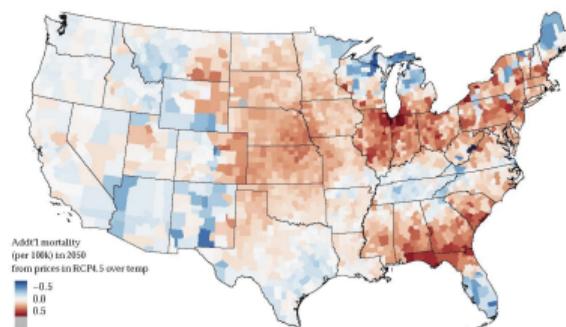
◀ Return


Simulation details

- Temp projections from CCSM4 (RCP4.5) and elect. prices from HAIKU (\$50 carbon fee)
 - ▶ Division-level price effect defined as carbon scenario – reference, standardized
- For each county-month:
 - ▶ Count projected number of days in each temp bin vs. 20–25°C bin (reference)
 - ▶ Compute differences in bin counts between 2050 and 2020
 - ▶ Aggregate to annual county-level change in relative bin counts
- Apply regression coefficients from border-pair estimates:
 - ▶ “Warming only:” Apply β_k (temp–mortality effects) to relative change in bin counts
 - ▶ “Climate policy:” Apply β_k & γ_k (bin \times price)
- Convert predicted change in mortality rate to *expected number of deaths* using county population projections (Hauer and CIESIN, 2020)


◀ Return

Simulation results: County-level estimates


Warming only

Climate policy

Difference

