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An Ensemble of Recent and Related Papers

I. TODAY: Interpret ML models macroeconomic forecasts through duality,
i.e., portfolio weights on the target variable
“Dual Interpretation of Machine Learning Forecasts," Goulet Coulombe, Göbel, and Klieber,
2024. https://arxiv.org/abs/2412.13076.

II. Interpreting dynamic causal effects obtained from differences of
conditional expectations
“Opening the Black Box of Local Projections," Goulet Coulombe and Klieber, 2025.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5237376

III. Leveraging the proximity-based interpretation of OLS to link it to
attention modules in large language models
“OLS as an Attention Mechanism," Goulet Coulombe, 2025.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5200864
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Motivation

• A conditional mean f is typically interpreted through ∂ f (X)
∂X . In linear

models, this is 𝛽.

• Problem: In even linear regressions, the partial derivative of the
predictand with respect to a predictor becomes nearly meaningless in a
high-dimensional setup.
• How to interpret a system with 150 cross-correlated variables?
• What thought experiment does it correspond to? What does "ceteris paribus"

mean?

• Using nonlinear methods, which effectively expand the feature space,
makes things worse.

• Some known solutions: High-dimensionality challenges are often
addressed through reinstating sparsity in the covariate space.
• Regularization: In macro forecasting, sparsity is often empirically shaky

and/or implausible.
• Factor models: Interpretation of latent factors can be tricky.
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New Avenues?

• Takeaway: Some kind of sparsity is key, and linearity is preferable.

• Our proposition: Interpreting the model via the time series dimension.

• In macroeconomic forecasting, the number of training observations
does not require further sparsification efforts.
• After some gentle feature engineering (lags, moving average, etc), we

often face P >> N. Thus, maybe N is more manageable.
• Many ML methods that are nonlinear in X are linear in y.
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Duality
An out-of-sample prediction can be decomposed in not one, but two ways

(a) Primal: ŷj = X′j𝛽̂, 𝛽 ∈ RP (b) Dual: ŷj = ŵjy, w ∈ RN
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Contribution

• We propose a complementary dual interpretation of forecasts, where the
sparse and ordered nature of macroeconomic data becomes advantageous.

• We show how to obtain w for (Kernel) Ridge Regression, Neural
Networks, and tree ensembles – requiring little to no additional
computations beyond the estimation of the original model.

• We show how to interpret w, i.e., as portfolio weights quantifying pairwise
observation proximity, as perceived by the machine learning model.

• Empirical illustrations include forecasting post-Pandemic inflation, GDP
growth, and unemployment during the GFC.
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Linear Models
Ridge Regression

• Ridge Regression (RR) coefficients are obtained via

𝛽̂ = arg min
𝛽

N

∑
i=1

(yi − 𝛽′Xi)
2 + λ||𝛽||2

𝛽̂ = (X′X + λIP)
−1X′y (Primal Solution)

𝛽̂ = X′(XX′ + λIN)
−1y (Dual Solution)

• Prediction for an out-of-sample observation j is obtained via

ŷj = Xj𝛽̂ = Xj(X
′X + λIP)

−1X′y (Covariances-Based Prediction)

ŷj = Kj𝛼̂ = XjX
′(XX′ + λIN)

−1y (Proximity-Based Prediction)

• Defining data portfolio weights as wj ≡ XjX′(XX′ + λIN)
−1 results in

ŷj = wjy ∀ j ∈ Test Sample .
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Some Intuition for the wj Dual Formula
• We have that

wj = (XjX
′)

︸ ︷︷ ︸
Plain Proximities

× (XX′ + λIN)
−1

︸ ︷︷ ︸
Proximity Denominator

.

• Setting λ = 0 for simplicity, the OLS solution is

𝛽̂ = (X′X)−1X′y

ŷj = Xj𝛽̂ = Xj(X
′X)−1X′y.

• We can rewrite this using the eigendecomposition:

ŷj = FjF
′y

where

F = XUΛ−1/2,

Fj = XjUΛ−1/2,

UΛU′ = X′X.

• We get an orthonormal representation of inputs: F′F = IP.
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Some Intuition for the wj Dual Formula
Inner Product and Cosine Similarity

• The prediction for a test observation j becomes:

ŷj =
N

∑
i=1
〈Fj, Fi〉︸ ︷︷ ︸
≡wji

yi,

where 〈Fj, Fi〉 is the inner product in the transformed space.

• We can further decompose the inner product:

ŷj =
N

∑
i=1
‖Fj‖‖Fi‖︸ ︷︷ ︸

scale

cos(θji)︸ ︷︷ ︸
alignment

yi

with θji the angle between Fj and Fi.

→ Interpretation:
• OLS assigns higher weight to observations that are similar in the transformed

feature space, à la nearest neighbors.
• Large wji’s arise from both vector alignment and magnitude.
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Kernel Ridge Regression

• Obtaining wj is very straightforward, since KRR is already set up in the
dual space.

• KRR induces nonlinearities in X by replacing inner products with
kernel-based proximities (K).

• This implicitly encode pairwise similarities as inner products in an
expanded feature space: Zi = Φ(Xi) ∈ RP̃, with P̃ > P.

• Prediction for yj is then given by:

ŷj = K(Xj, X)(K(X, X) + λIN)
−1y

= Kj(K + λIN)
−1

︸ ︷︷ ︸
wj

y .
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Neural Networks
Architecture

• NN’s prediction ŷj is obtained recursively, moving from inputs Xj in the
first layer l = 1 to generated features ZL−1,j ≡ Ψ(Xj) in the final layer L.

• Let ψ denote the activation function and 𝜃l the network’s parameters for
layer l. For L = 3, we have:

Xj

Layer 1 Layer 3Layer 2

Input layer
Output layer

ŷj = Z3,j︸︷︷︸
Ψ(Xj)

θ̂4

Z3,j = ψ([Z2,j 1]θ̂3)Z2,j = ψ([Z1,j 1]θ̂2)Z1,j = ψ([Xj 1]θ̂1)
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Neural Networks
Backing out wj

• If the final layer is linear, wj can be obtained as in Ridge Regression:

ŷj = Ψ(Xj)𝜃̂L

∼= Ψ(Xj)
(
Ψ(X)′Ψ(X) + λInL

)−1 Ψ(X)′y

= Ψ(Xj)Ψ(X)′
(
Ψ(X)Ψ(X)′ + λIN

)−1 y

= Kj(K + λIN)
−1

︸ ︷︷ ︸
wj

y

• The trick is that, at the "optimum", first-order conditions for NN are
equivalent to running a l2-regularized linear regression using Ψ(X) as
manually generated regressors.

• One can reinterpret the NN solutions as one obtained by alternating two
optimization steps: optimizing 𝜃̂L conditional on 𝜃̂1:(L−1), and then 𝜃̂1:(L−1)

conditional on 𝜃̂L.
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Tree-based Models
Random Forest and Boosting

• Random Forest uses B individual regression trees (Tb) for its prediction:

ŷj =
1
B

B

∑
b=1
Tb(Xj)

• RF’s prediction is an average of local averages, and thus, a linear
combination of y:

ŷj =
1
B

B

∑
b=1
Tb(Xj) =

1
B

B

∑
b=1

N

∑
i=1

wbjiyi =
N

∑
i=1

1
B

B

∑
b=1

wbji

︸ ︷︷ ︸
wji

yi = wjy,

with wbji =
I(i∈Pb(Xj))

∑N
i′=1 I(i′∈Pb(Xj))

and Pb being the partition implied by the tree.

• Thus, we can back out wj through accounting operations on trees.

• Boosting is less trivial: we use the algorithm of Geertsema and Lu (2023).
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Two Things to Visualize

• Forecast Weights: we can plot wji as a time series, possibly smoothed with
a moving average.

• Forecast Contributions: we can plot

cij = wjiyi

through a cumulative sum converging to ŷj as we go from i = 1 to i = N.
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Empirical Application

• Quarterly data from FRED-QD (McCracken and Ng, 2020) with 245
macroeconomic and financial variables, p = 4 lags, moving averages of
order 2, 4, and 8 (as in Goulet Coulombe et al., 2021). This results in
P = 1732 regressors.

• Sample runs from 1961Q2 to 2024Q1 (N = 252).

• Direct forecasting for various macro variables and multiple horizons.
Inflation: h ∈ {1} for OOS 2020Q1-2024Q1
GDP Growth: h ∈ {1, 2, 4} for OOS 2020Q1-2025Q1
→ Training is based on 1961Q2-2019Q4.

• Inclusive set of models.
1. Linear: FAAR, RR
2. Kernel-based: KRR
3. Tree-based: RF, LGB
4. Deep learning: NN, HNN
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Inflation for the Post-Pandemic Surge I

• For 2020Q3, NN severely underpredicts, partly due to overemphasizing the GFC.
• For 2021Q1, both models are slow to recognize parallels with the 1970s. LGB places

most of the weight on pre-pandemic years, implying a return to normal.
• For 2022Q2, there is no ambiguity in LGB: it upweights both major inflation spikes

from the 1970s.
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Inflation for the Post-Pandemic Surge II

• LGB’s striking prediction for 2020Q2 relies on a highly sparse weighting scheme:
2008Q4, 2009Q1 (→ GFC) and 2015Q1 (→ sovereign debt crisis in Europe).

• NN’s flaw in 2021Q2 is missing parallels with the 1970s high-inflation period.
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Recent Predictions for GDP Growth
Are we facing a recession?

• Both NN and KRR see first signs of a slowdown for h = 2, with contributions
mainly coming from the GFC, the second oil crisis and the 1990s recession.

• NN finds strong similarities with past recessions for h = 4, which is rather rare for
longer horizons.
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Parting Words

• The dual interpretation enables a narrative reading of otherwise opaque
forecasts.

• One avenue for future work is to develop inference methods for wj—e.g.,
to construct confidence bands.

• Another is to explore shrinkage or regularization on wj to further enhance
interpretability.
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Appendix
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GDP Growth for the Great Recession

Concentration Leverage Short Position Turnover

2008Q1 2008Q4 2009Q4 2008Q1 2008Q4 2009Q4 2008Q1 2008Q4 2009Q4 Overall

FAAR 0.17 0.16 0.17 1.00 1.00 1.00 -0.93 -1.68 -3.51 99.81
NN 0.37 0.33 0.28 0.80 1.31 1.71 -0.03 -0.04 -0.04 6.81

2 / 19



Point Forecasting Performance

FAAR KRR LGB NN RF RR HNN

Inflation (h = 1)

2020Q1-2024Q1 4.30 0.90 0.80 1.50 0.98 1.60 1.36
2021Q1-2024Q1 1.82 0.97 0.99 1.35 1.04 1.45 0.90

GDP Growth (h = 1)
2007Q2-2009Q4 0.63 1.11 0.90 0.63 0.78 0.85 –
2020Q1-2024Q2 1.32 0.95 0.89 0.98 0.88 0.95 –
2021Q1-2024Q2 0.96 0.91 0.77 0.99 0.82 0.75 –
GDP Growth (h = 2)
2020Q1-2024Q2 1.16 0.94 0.94 0.95 0.94 0.94 –
2021Q1-2024Q2 1.88 0.85 0.84 0.97 0.83 0.69 –
GDP Growth (h = 4)
2020Q1-2024Q2 0.97 0.95 0.96 0.95 0.97 0.96 –
2021Q1-2024Q2 0.77 0.55 0.54 0.55 0.59 0.52 –

∆ Unemployment (2007Q2-2009Q4)

h = 1 0.70 1.54 0.84 0.78 0.94 1.08 –
h = 2 0.90 1.16 1.10 0.69 0.98 0.97 –
h = 4 0.85 0.88 0.99 0.91 0.93 0.96 –

Notes: The table shows root mean squared errors (RMSEs) relative to the AR(4) model.
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Where does the Dual Solution Come From?

• Alternatively, we can invoke the matrix inversion lemma.
• The primal ridge regression solution is:

𝛽̂ = (X′X + λIP)
−1X′y

• Using the matrix inversion lemma:

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1

• Set A = λIP, U = X′, V = X, and C = IN:

(X′X + λIP)
−1 =

1
λ

IP −
1
λ

X′(IN + 1/λXX′)−1 1
λ

X

• Substituting this into the primal solution:

𝛽̂ = X′ (XX′ + λIN)
−1y︸ ︷︷ ︸

𝛼

• This is the dual solution, expressed in terms of the kernel matrix XX′.
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Where does the Dual Solution Come From?
• Primal problem can be equivalently formulated as:

arg min
𝛽,r

1
2
(
r′r + λ𝛽′𝛽

)
subject to r = X𝛽− y (1)

• Its Lagrangian:

L(𝛽, r, a) =
1
2

r′r +
λ

2
𝛽′𝛽+ a′(r−X𝛽+ y) (2)

• First-order conditions give:

𝛽 =
1
λ

X′a, r = −a

• Substituting 𝛽 and r into Lagrangian leads to the dual problem:

arg min
a
−1

2
a′a− 1

2λ
(Xa)′(Xa) + a′y (3)

• Reparametrizing with 𝛼 = 1
λ a, K ≡ XX′, we obtain:

min
𝛼

(y−K𝛼)′ (y−K𝛼) + λ𝛼′K𝛼
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