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An Ensemble of Recent and Related Papers

I. TODAY: Interpret ML models macroeconomic forecasts through duality,
i.e., portfolio weights on the target variable

“Dual Interpretation of Machine Learning Forecasts," Goulet Coulombe, Gobel, and Klieber,
2024. https://arxiv.org/abs/2412.13076.

II. Interpreting dynamic causal effects obtained from differences of
conditional expectations

“Opening the Black Box of Local Projections," Goulet Coulombe and Klieber, 2025.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5237376

III. Leveraging the proximity-based interpretation of OLS to link it to
attention modules in large language models

“OLS as an Attention Mechanism," Goulet Coulombe, 2025.
https://papers.ssrn.com/sol3/papers.cfm?abstract_1d=5200864
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Motivation

® A conditional mean f is typically interpreted through =3 9fX) ( ) In linear
models, this is 3.

® Problem: In even linear regressions, the partial derivative of the
predictand with respect to a predictor becomes nearly meaningless in a
high-dimensional setup.
® How to interpret a system with 150 cross-correlated variables?

® What thought experiment does it correspond to? What does "ceteris paribus"
mean?

¢ Using nonlinear methods, which effectively expand the feature space,
makes things worse.

® Some known solutions: High-dimensionality challenges are often
addressed through reinstating sparsity in the covariate space.
® Regularization: In macro forecasting, sparsity is often empirically shaky
and/or implausible.
® Factor models: Interpretation of latent factors can be tricky.
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New Avenues?

® Takeaway: Some kind of sparsity is key, and linearity is preferable.

® Our proposition: Interpreting the model via the time series dimension.

® In macroeconomic forecasting, the number of training observations
does not require further sparsification efforts.

® After some gentle feature engineering (lags, moving average, etc), we
often face P >> N. Thus, maybe N is more manageable.

® Many ML methods that are nonlinear in X are linear in y.
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Duality

An out-of-sample prediction can be decomposed in not one, but two ways

(a) Primal: §; = X! B, B eRP (b) Dual: j; = wjy, w € RN

Forecast Contributions
15 4us Inflation (Q) ‘

54 |
Forecast Weights
41 Second Oil Crisis
34 First Ol Crigis GFC
Test Set
21 :
11 |
0 L

00 05 10 15 20 1970 1980 1990 2000 2010 2020 2022
- 2020Q3 <+ 2022Q2 — {,, — PCE Infiation

5/19



Contribution

® We propose a complementary dual interpretation of forecasts, where the
sparse and ordered nature of macroeconomic data becomes advantageous.

® We show how to obtain w for (Kernel) Ridge Regression, Neural
Networks, and tree ensembles — requiring little to no additional
computations beyond the estimation of the original model.

® We show how to interpret w, i.e., as portfolio weights quantifying pairwise
observation proximity, as perceived by the machine learning model.

® Empirical illustrations include forecasting post-Pandemic inflation, GDP
growth, and unemployment during the GFC.
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Linear Models
Ridge Regression

¢ Ridge Regression (RR) coefficients are obtained via

N
B = argnbin Y. (vi— B'X:)* + A8l 2

i=1
B = (X'X+AlIp)~ X'y (Primal Solution)
B =X (XX"+AMy) 1y (Dual Solution)
® Prediction for an out-of-sample observation j is obtained via

7= X8 = X;(X'X + Alp)~1X'y (Covariances-Based Prediction)
7 = K& = X;X' (XX + Ay) "ty (Proximity-Based Prediction)

* Defining data portfolio weights as w; = X;X'(XX' + My) ! results in

J=wyy  V j€ TestSample.
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Some Intuition for the wj Dual Formula

® We have that

w = (XX') x (XX +AMy)7' .
N—— N————
Plain Proximities Proximity Denominator

® Setting A = 0 for simplicity, the OLS solution is
ﬁ{‘ _ (X/X)flxly
7 =X8=X,(XX)"'Xy.

® We can rewrite this using the eigendecomposition:

jj=FFy
where
F=XUuA"'?,
F; = X;UA~'2,
UAU = X'X.

® We get an orthonormal representation of inputs: F'F = Ip.
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Some Intuition for the wj Dual Formula
Inner Product and Cosine Similarity

® The prediction for a test observation j becomes:

N

9i =Y (Fi,Fi) v,
=g

where (F;, F;) is the inner product in the transformed space.

® We can further decompose the inner product:

N
9 = Y IFIlIF;]l cos(6;) v
i=1 N~ N~
scale  alignment

with 6;; the angle between F; and F;.

— Interpretation:

® OLS assigns higher weight to observations that are similar in the transformed

feature space, a la nearest neighbors.
® Large wj;’s arise from both vector alignment and magnitude.
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Kernel Ridge Regression

® Obtaining w; is very straightforward, since KRR is already set up in the
dual space.

¢ KRR induces nonlinearities in X by replacing inner products with
kernel-based proximities (K).

® This implicitly encode pairwise similarities as inner products in an
expanded feature space: Z; = ®(X;) € R”, with P > P.
® Prediction for y; is then given by:
9 = K(X;, X)(K(X,X) + Ay) 'y
=K(K+AIy)y.

wj
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Neural Networks
Architecture

® NN'’s prediction j; is obtained recursively, moving from inputs X; in the
first layer | = 1 to generated features Z; 1; = ¥ (X;) in the final layer L.

® Let ¢ denote the activation function and 6; the network’s parameters for
layer I. For L = 3, we have:

Layer 1 Layer 2 Layer 3

Input layer
P y/‘ ‘ ‘ Output layer

Teses
\/ ‘ , ‘\yj = % 0,

Z1j = ([X; 1]61) Zyj = ¢([Z1; 1162) Z3j = ¥([Z2; 1]63)
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Neural Networks
Backing out w;

® If the final layer is linear, w; can be obtained as in Ridge Regression:

§j = ¥ (X})6r
=~ ¥ (X)) (¥(X)¥(X) + AL, ¥(X)y
= ¥ (X)) ¥(X)’ (‘I’(X) (X) +AIy) 'y

wj

® The trick is that, at the "optimum", first-order conditions for NN are
equivalent to running a lr-regularized linear regression using ¥ (X) as
manually generated regressors.

® One can reinterpret the NN solutions as one obtained by alternating two
optimization steps: optimizing ; conditional on él:( L-1), and then él:( L-1)
conditional on 6;..
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Tree-based Models

Random Forest and Boosting

® Random Forest uses B individual regression trees (7}) for its prediction:
53
= 2 To(X;)
B b=1

® RF’s prediction is an average of local averages, and thus, a linear
combination of y:

1 B 1 B N N 1 B
—EZE( EEZW;‘:‘%ZZE Y wyjiyi = wyy,
=1 -

b=1i=1 i=1

{:“

w. ji

I(iePh(X]-))
T (1P (X))

¢ Thus, we can back out w; through accounting operations on trees.

with wy;; = and P, being the partition implied by the tree.

® Boosting is less trivial: we use the algorithm of Geertsema and Lu (2023).
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Two Things to Visualize

® Forecast Weights: we can plot w;; as a time series, possibly smoothed with
a moving average.

® Forecast Contributions: we can plot

Cij = WjiYi
through a cumulative sum converging to jj; as we go fromi =1toi = N.
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Empirical Application

® Quarterly data from FRED-QD (McCracken and Ng, 2020) with 245
macroeconomic and financial variables, p = 4 lags, moving averages of

order 2, 4, and 8 (as in Goulet Coulombe et al., 2021). This results in
P = 1732 regressors.

® Sample runs from 1961Q2 to 2024Q1 (N = 252).

Direct forecasting for various macro variables and multiple horizons.

Inflation: h € {1} for OOS 2020Q1-2024Q1
GDP Growth: h € {1, 2, 4} for OOS 2020Q1-2025Q1
— Training is based on 1961Q2-2019Q4.

® Inclusive set of models.

1. Linear: FAAR, RR
2. Kernel-based: KRR
3. Tree-based: RFE, LGB

4. Deep learning: NN, HNN
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Inflation for the Post-Pandemic Surge I

Forecast Contributions Forecast Weights
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® For 2020Q3, NN severely underpredicts, partly due to overemphasizing the GFC.

® For 2021Q1, both models are slow to recognize parallels with the 1970s. LGB places
most of the weight on pre-pandemic years, implying a return to normal.

® For 2022Q2, there is no ambiguity in LGB: it upweights both major inflation spikes
from the 1970s.
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Inflation for the Post-Pandemic Surge II

Forecast Contributions Forecast Weights
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® LGB’s striking prediction for 2020Q2 relies on a highly sparse weighting scheme:
200804, 2009Q1 (— GFC) and 2015Q1 (— sovereign debt crisis in Europe).

¢ NN'’s flaw in 2021Q2 is missing parallels with the 1970s high-inflation period.
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Recent Predictions for GDP Growth

Are we facing a recession?
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® Both NN and KRR see first signs of a slowdown for & = 2, with contributions
mainly coming from the GFC, the second oil crisis and the 1990s recession.
¢ NN finds strong similarities with past recessions for h = 4, which is rather rare for
longer horizons.
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Parting Words

¢ The dual interpretation enables a narrative reading of otherwise opaque
forecasts.

® One avenue for future work is to develop inference methods for wj—e.g.,
to construct confidence bands.

® Another is to explore shrinkage or regularization on wj to further enhance
interpretability.
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Appendix



GDP Growth for the Great Recession
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‘ Concentration ‘ Leverage ‘ Short Position ‘ Turnover
| 2008Q1 2008Q4 2009Q4 | 2008Q1 2008Q4 2009Q4 | 2008Q1 2008Q4 2009Q4 | Overall
FAAR| 017 016 017| 100 100  1.00| 093 -168 -351 99.81
NN 037 033 028] 080 131  171| -003 -004  -0.04 6.81
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Point Forecasting Performance

‘ FAAR KRR LGB NN RF RR HNN

Inflation (h = 1)

2020Q1-2024Q1 430 090 080 150 098  1.60 1.36
2021Q1-2024Q1 1.82 0.97 0.99 1.35 1.04 1.45 0.90
GDP Growth (h = 1)

2007Q2-2009Q4 0.63 1.11 0.90 0.63 0.78 0.85 -
2020Q1-2024Q2 1.32 0.95 0.89 0.98 0.88 0.95 -
2021Q1-2024Q2 0.96 0.91 0.77 0.99 0.82 0.75 -
GDP Growth (h = 2)

2020Q1-2024Q2 1.16 0.94 0.94 0.95 0.94 0.94 -
2021Q1-2024Q2 1.88 0.85 0.84 0.97 0.83 0.69 -
GDP Growth (h = 4)

2020Q1-2024Q2 0.97 0.95 0.96 0.95 0.97 0.96 -
2021Q1-2024Q2 0.77 0.55 0.54 0.55 0.59 0.52 -
A Unemployment (2007Q2-20090Q4)

h=1 0.70 1.54 0.84 0.78 0.94 1.08 -
h=2 0.90 1.16 1.10 0.69 0.98 0.97 -
h=4 0.85 0.88 0.99 0.91 0.93 0.96 -

Notes: The table shows root mean squared errors (RMSEs) relative to the AR(4) model.
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Where does the Dual Solution Come From?

® Alternatively, we can invoke the matrix inversion lemma.
® The primal ridge regression solution is:

8= (X'X+AL) X'y

Using the matrix inversion lemma:
A+ucv) '=a"1-Alu(c'+valu)y'va!
® SetA=Alp,U=X",V=X,and C = Iy:

1 1 1
(X'X + AIp) ! = 3Ip - XX’(IN + 1/AXX’)_1XX

® Substituting this into the primal solution:

B =X (XX'+AlIy) "ty
N———
[e 2

This is the dual solution, expressed in terms of the kernel matrix XX'.
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Where does the Dual Solution Come From?

® Primal problem can be equivalently formulated as:

arg r%in % (r'r+AB'B) subjectto r=XB-y 1)
T
e [ts Lagrangian:
1 / )L / !
L(ﬂ,r,a)zirr—l—a,@BjLa(r—X,@'—i-y) )

First-order conditions give:

1
8= XX'a, r=—a

Substituting 3 and r into Lagrangian leads to the dual problem:

: _1 !/ _i / !/
argmin —a'a 2/\(Xa) (Xa) +a'y 3)

® Reparametrizing with o = %a, K = XX', we obtain:

min (y — Ka) (y — Ka) + Ao/Ka
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